
Areg Melik-Adamyan, PhD

Engineering Manager, Intel Developer Products Division

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Texbooks and References

• Try to hit the tip of the iceberg

• Explain main concepts only

• Not enough to develop your own microprocessor…

• But allow better understand behavior and performance of your program

• Hennesy, Patterson, Computer Architecture: Quantative Approach, 6th Ed.

• Blaauw, Brooks, Computer Architecture: Concepts and Evolution

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Lecture Outline

• Pipeline

• Memory Hierarchy (Caches: +1 lecture later)

• Out-of-order execution

• Branch prediction

• Real example: Haswell Microarchitecture

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Layers of Abstraction

Application

Algorithms

Programming Languages

Operating Systems/Libraries

Instruction Set Architecture

Microarchitecture

Gates/Register-Transfer Level (RTL)

Circuits

Physics

Software

Hardware

Interface between
HW and SW

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Basic CPU Actions

1. Fetch instruction by PC from memory

2. Decode it and read its operands from registers

3. Execute calculations

4. Read/write memory

5. Write the result into registers and update PC

F ME WD

4ns 8ns time

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Non-Pipelined Processing

• Instructions are processed sequentially, one per cycle

• How to speed-up?

• SW: decrease number of instructions

• HW: decrease the time to process one instruction

or overlap their processing. i.e. make pipeline

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Pipeline

• Processing is split into several steps called “stages”

• Each stage takes one cycle

• The clock cycle is determined by the longest stage

• Instructions are overlapped

• A new instruction occupies a stage as soon as the previous one leaves it

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Pipeline vs Non-Pipeline

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Pipeline vs Non-Pipeline

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Pipeline Limitations

• Max speed of the pipeline is one instruction per clock

• It is rare due to dependencies among instructions (data or control) and in-
order processing

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Pipeline Limitations

• Various types of hazards:
• read after write (RAW), true/flow dependence
• write after read (WAR), anti-dependence
• write after write (WAW), output dependence

Recap from basic architecture
course: Data Dependences

• A statement/instruction S is said to be data
dependent on statement/instruction T if
– T executes before S in the original program
– S and T access the same data item
– At least one of the accesses is a write.

2

Data Dependence

Flow dependence (True dependence)

Anti dependence

Output dependence

S1: X = A+B
S2: C= X+A

S1: A = X + B
S2: X= C + D

S1: X = A+B
S2: X= C + D

S1

S2

S1

S2

S1

S2

3

Data Dependence

• Dependences indicate an execution order that must be
honored.

• Executing statements/instructions in the order of the
dependences guarantee correct results.

• Statements/instructions not dependent on each other can
be reordered, executed in parallel, or coalesced into a
vector operation.

4

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Superscalar: Wide Pipeline

• Pipeline exploits instruction level parallelism (ILP)

• Can we improve? Execute, instructions in parallel

• Need to double HW structures

• Max speedup is 2 instructions per cycle (IPC=2)

• The real speedup is less due to dependencies and in-order execution

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Is Superscalar Good Enough?

• Theoretically can execute multiple instructions in parallel

• Wide pipeline => more performance

• But…

• Only independent subsequent instructions can be executed in parallel

• Whereas subsequent instructions are often dependent

• So the utilization of the second pipe is often low

• Solution: out-of-order execution

• Execute instructions based on the “data flow” graph, rather than
program order

• Still need to keep the visibility of in-order execution

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Data Flow Analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Instruction “Grinder”

• Then technology allowed building wide HW, but the code representation
remained sequential

• Decision: extract parallelism back by means of hardware

• Compatibility burden: needs to look like sequential hardware

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Why Order is Important?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Maintaining Architectural State

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Dependency Check

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

How Large Windows Should Be?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Limitation: False Dependencies

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Register Renaming

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Limitation: Branches

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Dynamic Branch Prediction

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

How To Predict Branch?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Using History Patterns

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Local Predictor

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Global Predictor

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Concepts Covered

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Intel Processor Roadmap

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Haswell Floorplan

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Block Diagram

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

FrontEnd

• Instruction Fetch and Decode

• 32 KB 8-way Icache

• 4 decoders, up to 4 inst/cycle

• CISC to RISC transformation

• Decode Pipeline supports 16
bytes per cycle

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

FrontEnd: Instruction Decode

• Four decoding units decode instructions
into uops
• The first can decode all instructions

up to four uops in size
• Uops emitted by the decoders are

directed to the Decode Queue and to
the Decoded Uop Cache

• Instructions with >4 uoops generate
their uops from the MSROM
• The MSROM bandwith is 4 uops per

cycle

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

FrontEnd: Decode UOP Cache

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

FrontEnd: Loop Stream Detector

• LSD detects small loops that fit in the
Decode Queue
• The loop streams from the uop queue,

with no more fetching, decoding, or
reading uops from any of the caches

• Works until a branch misprediction
• The loops with the following attributes

qualify for LSD replay
• Up to 56 uops
• All uops are also resident in the UC
• No more than eight taken branches
• No CALL or RET
• No mismatched stack operations (e.g.

more PUSH than POP)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

FrontEnd: Macro-Fusion

• Merge two instructions into a single uop
• Increased decode, rename and retire

bandwidth
• Power savings from representing

more work in fewer bits
• The first instruction of a macro-fused pair

modifies flags
• CMP, TEST, ADD, SUB, AND, INC, DEC

• The 2nd inst of a macro-fusible pair is a
conditional branch

• For each first instruction, some
branches can fuse with it

• These pairs are common in many apps

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
41

OOO Structures

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

OOO: Renamer

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

OOO: Dependency Breaking Idiom

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
44

EXE

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
45

Core Cache Size/Latency/BW

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

ST vs MT

	Binder1.pdf
	architecture-areg
	A9R1efepa4_16dfxnv_ad0.tmp
	dependence.pdf
	Definition of Dependence
	Data Dependence
	Data Dependence

	architecture-areg

