

Goal of lecture

- Develop abstractions of real caches for understanding program performance
- Study the cache performance of matrixvector multiplication (MVM)
- simple but important computational science kernel
- Understand MVM program transformations for improving performance

Matrix-vector product

- Code:
for $i=1, N$
$\begin{aligned} \text { for } j & =1, N \\ y(i) & =y(i)+A(i, j)^{*} \times(j)\end{aligned}$
- Total number of references $=4 \mathrm{~N}^{2}$
- This assumes that all elements of
A, x, y are stored in memory
- Smart compilers nowadays can
registe
loop
You
- You can get this effect manually for $i=1, \mathrm{~N}$
temp $=y(i)$
for $j=1, N$
temp $=$ temp $+\mathrm{A}(\mathrm{i}, \mathrm{j})^{*} \mathrm{x}(\mathrm{j})$ $y(i)=$ temp
- To keep things simple, we will not do this but our approach applie
to this optimized code as well

Cache abstractions

- Real caches are very complex
- Science is all about tractable and useful abstractions (models) of complex phenomena
- models are usually approximations
- Can we come up with cache abstractions that are both tractable and useful?
- Focus:
- two-level memory model: cache + memory
- ignore prefetching: more significant omission

Modeling approach

- First approximation:
- ignore conflict misses
- only cold and capacity misses
- Most problems have some notion of "problem size"
- (eg) in MVM, the size of the matrix (N) is a natural measure of problem size
- Question: how does the miss ratio change as we increase the problem size?
- Even this is hard, but we can often estimate miss ratios at two extremes
- large cache model: problem size is small compared to cache capacity
- small cache model: problem size is large compared to cache capacity
- we will define these more precisely in the next slide.

Large and small cache models

- Large cache model
- no capacity misses
- only cold misses
- Small cache model
- cold misses: first reference to a line
- capacity misses: possible for succeeding references to a line
- let r_{1} and r_{2} be two successive references to a line
- assume r_{2} will be a capacity miss if stackDistance $\left(r_{1}, r_{2}\right)$ is some function of problem size
- argument: as we increase problem size, the second reference will become a miss sooner or later
- For many problems, we can compute
- miss ratios for small and large cache models
- problem size transition point from large cache model to small cache model

MVM study

- We will study five scenarios
- Scenario I
- i,j loop order, line size = 1 number
- Scenario II
- j,i loop order, line size = 1 number
- Scenario III
- i,j loop order, line size = b numbers
- Scenario IV
- j,i loop order, line size = b numbers
- Scenario V
- blocked code, line size = b numbers

Scenario I (contd.)

Address stream: $y(1) A(1,1) \times(1) y(1) y(1) A(1,2) x(2) y(1) \ldots \ldots(\ldots(1) A(1, N) x(\mathbb{N}) y(1) y(2) A(2,1) x(1) y(2)$

- Small cache model:
- A: N^{2} misses
- $\mathrm{X}: \mathrm{N}+\mathrm{N}(\mathrm{N}-1)$ misses (reuse distance $=\mathrm{O}(\mathrm{N})$)
- y: N misses (reuse distance $=\mathrm{O}(1)$)
- Total $=2 \mathrm{~N}^{2}+\mathrm{N}$
- Miss ratio $=\left(2 \mathrm{~N}^{2}+\mathrm{N}\right) / 4 \mathrm{~N}^{2}$ $\sim 0.5+0.25 / \mathrm{N}$
- Transition from large cache model to
 small cache model
- As problem size increases, when do capacity misses begin to occur?
- Subtle issue: depends on replacement policy (see next slide)

Scenario I (contd.)

Address stream: $y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1) \ldots y(1) A(1, N) x(N) y(1) y(2) A(2,1) x(1) y(2)$

- Question: as problem size increases, when do capacity misses begin to occur?
- Depends on replacement policy:
- Optimal replacement:
do the best iob you can, knowing everything about the
computation
only x needs to be cache-resident
elements of A can be "streamed in" and tossed out of cache after So we need room for ($\mathrm{N}+2$) numbers
- LRU Translacement
by the e ime we get to end of a row of A, first few elements of x are "cold" but we do not want them
Transition: $(2 \mathrm{~N}+2)>\mathrm{C} \rightarrow \mathrm{N} \sim \mathrm{C} / 2$
- Note:
- optimal replacement requires perfect knowledge about future - most real caches use LRU or something close to it
- some architectures support "streaming"
in hardware in software: hints to tell processor not to cache certain references

A x

A

Miss ratio graph

- Jump from large cache model to small cache model will be more gradual in reality because of conflict misses
$\longrightarrow \mathrm{j} \longrightarrow$
$\square \square \mid \square$ $\square \square \square$

Scenario III (contd.)

Address stream: $y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1) \ldots \ldots(1) A(1, N) x(N) y(1) y(2) A(2,1) x(1) y(2)$

1
y

- Small cache mode
- Small cache mode
 - A: N^{2} / b misses
 - A: N^{2} / b misses
 - $\mathrm{x}: \mathrm{N} / \mathrm{b}+\mathrm{N}(\mathrm{N}-1) / \mathrm{b}$ misses (reuse distance $=\mathrm{O}(\mathrm{N})$)
 - $\mathrm{x}: \mathrm{N} / \mathrm{b}+\mathrm{N}(\mathrm{N}-1) / \mathrm{b}$ misses (reuse distance $=\mathrm{O}(\mathrm{N})$)
y: N / b misses (reuse distance $=\mathrm{O}(1)$)
y: N / b misses (reuse distance $=\mathrm{O}(1)$)
 - Total $=\left(2 \mathrm{~N}^{2}+\mathrm{N}\right) / \mathrm{b}$
 - Total $=\left(2 \mathrm{~N}^{2}+\mathrm{N}\right) / \mathrm{b}$
 - Miss ratio $=\left(2 \mathrm{~N}^{2}+\mathrm{N}\right) / 4 \mathrm{bN} \mathrm{N}^{2}$
 - Miss ratio $=\left(2 \mathrm{~N}^{2}+\mathrm{N}\right) / 4 \mathrm{bN} \mathrm{N}^{2}$
$\sim 0.5 / \mathrm{b}+0.25 / \mathrm{bN}$
$\sim 0.5 / \mathrm{b}+0.25 / \mathrm{bN}$
- Transition from large cache model to small cache
- Transition from large cache model to small cache
model
model
As problem size increases, when do capacity misses
As problem size increases, when do capacity misses
begin to occur?
begin to occur?
 - LRU: roughly when $(2 N+2 b)=C$
 - LRU: roughly when $(2 N+2 b)=C$
 - N ~ C/2
 - N ~ C/2
Optimal: roughly when $(\mathrm{N}+2 \mathrm{~b}) \sim \mathrm{C} \rightarrow \mathrm{N} \sim \mathrm{C}$
Optimal: roughly when $(\mathrm{N}+2 \mathrm{~b}) \sim \mathrm{C} \rightarrow \mathrm{N} \sim \mathrm{C}$
 - So miss ratio picture for Scenario III is similar to that of
 - So miss ratio picture for Scenario III is similar to that of
Scenario I but the y-axis is scaled down by b
Scenario I but the y-axis is scaled down by b
 - Typical value of $b=4$ (SGI Octane)
 - Typical value of $b=4$ (SGI Octane)

Scenario V (contd.)

for $\mathrm{bi}=1, \mathrm{~N}, \mathrm{~B}$
for $\mathrm{bj}=1, \mathrm{~N}, \mathrm{~B}$
for $i=b i, \min (b i+B-1, N)$
for $\mathrm{j}=\mathrm{bj}, \min (\mathrm{bj}+\mathrm{B}-1, \mathrm{~N})$
$\mathrm{y}(\mathrm{i})=\mathrm{y}(\mathrm{i})+\mathrm{A}(\mathrm{i}, \mathrm{j})^{*} \times(\mathrm{j})$
Better code: interchange the two outermost loops and
fuse bi and i loops
fuse bi and i loops
for $b j=1, N, B$
for $\mathrm{i}=1, \mathrm{~N}$
for $\mathrm{j}=\mathrm{bi}, \min (\mathrm{bi}+\mathrm{B}-1, \mathrm{~N})$
$y(i)=y(i)+A(1, j)^{*} x(j)$

This has the same memory behavior as doubly-
blocked loop but less loop overhead.

Key transformations

- Loop permutation

- Loop tiling = strip-mine and interchange

$$
\begin{aligned}
& \text { for } \mathrm{i}=1, \mathrm{~N} \\
& \quad \text { for } \mathrm{j}=1, \mathrm{~N}
\end{aligned}
$$

$\rightarrow \quad$ for $\mathrm{bi}=1, \mathrm{~N}, \mathrm{~B}$
for $\mathrm{j}=1, \mathrm{~N}$
for $\mathrm{i}=\mathrm{bj}, \min (\mathrm{bj}+\mathrm{B}-1, \mathrm{~N})$
S

Notes

- Strip-mining does not change the order in which loop body instances are executed - so it is always legal
- Loop permutation and tiling do change the order in which loop body instances are executed - so they are not always legal
- For MVM and MMM, they are legal, so there are many variations of these kernels that can be generated by using these transformations
- different versions have different memory behavior as we have seen

Matrix multiplication

- We have studied MVM in detail.
- In dense linear algebra, matrix-matrix multiplication is more important.
- Everything we have learnt about MVM carries over to MMM fortunately, but there are more variations to consider since there are three matrices and three loops.

- Three loops: I,J,K
- You can show that all six permutations of these three loops compute the same values
- As in MVM, the cache behavior of the six versions is different

MMM

for $\mathrm{I}=1, \mathrm{~N} / /$ row-major storage
for $\mathrm{J}=1$, N
for $K=1, N$
$C(I, J)=C(I, J)+A(I, K)^{*} B(K, J)$
IJK version of matrix multiplication

K loop innermost
A: good spatial locality

- C: good temporal locality
- I loop innermost
- B: good temporal locality
- Jloop innermost
- B,C: good spatial locality

A: good temporal locality
So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK,
followed by JKI/KJI

MMM miss ratios (simulated)

凶

Observations

- Miss ratios depend on which loop is in innermost position
- so there are three distinct miss ratio graphs
- Large cache behavior can be seen very clearly and all six version perform similarly in that region
- Big spikes are due to conflict misses for particular matrix sizes
- notice that versions with J loop innermost have few conflict misses (why?)

Miss ratios for other versions

$$
\begin{aligned}
& \text { for } J=1, N \\
& \text { for } K=1, N \\
& C(I, J)=C(I, J)+A(I, K)^{*} B(K, J) \\
& \text { IJK version of matrix multiplication }
\end{aligned}
$$

- K loop innermost
- A: good spatial locality
- C: good temporal locality

I loop innermost

- B: good temporal locality

Jloop innermost

- B,C: good spatial locality
$0.25(b+1) / b$
- A: good temporal locality
- So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK, followed by JKI/KJI
$\left(\mathrm{N}^{2} / \mathrm{b}+\mathrm{N}^{3}+\mathrm{N}^{3}\right) / 4 \mathrm{~N}^{3} \rightarrow 0.5$
$\left(\mathrm{N}^{3} / \mathrm{b}+\mathrm{N}^{3} / \mathrm{b}+\mathrm{N}^{2} / \mathrm{b}\right) / 4 \mathrm{~N}^{3} \rightarrow 0.5 / \mathrm{b}$

$\begin{aligned} & \text { for } I=1, N / / \text { row-major storage } \\ & \text { for } J=1, N \\ & \text { for } K=1, N \\ & C(I, J)=C(I, J)+A(I, K)^{*} B(K, J) \end{aligned}$ - Find the data element(s) that are reused with the largest stack distance - Determine the condition on N for that to be less than C - For our problem: - $\mathrm{N}^{2}+\mathrm{N}+\mathrm{b}<\mathrm{C}$ (with optimal replacement) - $\mathrm{N}^{2}+2 \mathrm{~N}<\mathrm{C}$ (with LRU replacement) - In either case, we get $\mathrm{N} \sim$ sqrt(C) - For our cache, we get $N \sim 45$ which agrees quite well with data ${ }^{33}$

Notes

- So far, we have considered a two-level memory hierarchy
- Real machines have multiple level memory hierarchies
- In principle, we need to block for all levels of the memory hierarchy
- In practice, matrix multiplication with really large matrices is very rare
- MMM shows up mainly in blocked matrix factorizations
- therefore, it is enough to block for registers, and L1/L2 cache levels
- How do we organize such a code?
- We will study the code produced by ATLAS.
- ATLAS also introduces us to self-optimizing programs.

