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Ivan Jibaja
CS 395T – Topics in Multicore Programming

Recall: PRAM Model
New Model
Architecture Details
Consistency Models (Relaxed, Release)
Locks

Disadvantages

Lock-free Synchronization
Lock-free Data Structures
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Parallel Random Access 
Machine (PRAM)

Natural extension of RAM 
model

Processors operate 
synchronously (in lockstep)
Each processor has private 
memory
Are PRAM Models any good?
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PRAM Model:
No lock-step execution of global instructions
No global shared-memory for reads/writes by all of the 
processors in each cycle

New Model:
Each processor executes its own program at its own 
speed
Only one processor can access memory at a time
How does a processor know what other processors are 
doing? We need synchronization

Let’s look at our new model in more detail
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Assumptions for this example:
Processor executes all threads of a 
program:

Unspecified scheduling policies
Operations in each thread are 
executed in order
Atomic operations (lock/unlock) for 
synchronization between threads
Result is as if instructions from 
different threads were interleaved in 
some order
Non-determinacy: program might 
produce different outputs based on 
the scheduling of the threads (Can 
you come up with an example?)
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MEMORY

P

Assumptions for this model:
Each processors executes one thread
Operations in each thread are executed 
in order
One processor at a time can access 
global memory to perform 
load/store/atomic operations (no 
caching of global data)

With these assumptions, you can 
show that running a multi-threaded 
program on a multiprocessor does 
not change possible output from 
the uniprocessor case
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MEMORY

P P P

Code:
Initially A = Flag = 0

P1 P2 
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

Semantics: 
P1 writes data into A and sets Flag to tell P2 that data value 
can be read from A. 
P2 waits till Flag is set and then reads data from A.
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Code: (similar to Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2 
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0)               If (Flag1 == 0) 

critical section critical section
What is the problem with our model? We are 
making unrealistic architectural assumptions.
Note: More complex synchronization problems require hardware support in the form of atomic instructions. We’ll discuss this later in this 

lecture.
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We have some architectural constrains with 2 of our 
assumptions:

1. Processors do not cache global data:
For execution efficiency, processors are allowed to cache 
global data:

Leads to cache coherence problems, which can be solved using 
coherent caches

2. Instructions within each thread are executed in order
For execution efficiency, processors are allowed to execute 
instructions out of order subject to data/control 
dependances:

Changes the semantics of the program
To prevent this requires attention to memory consistency models
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Adding new constrains to our uniprocessor model:
Processors reorder operations to improve performance
Constraint on reordering: must respect dependences

data dependences must be respected: in particular, 
loads/stores to a given memory address must be executed in 
program order
control dependences must be respected

Reorderings can be performed either by the compiler or 
the processor
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Stores to different memory locations can be 
performed out of program order

store v1, data                                store b1, flag
store b1, flag             store v1, data

Loads from different memory locations can be 
performed out of program order

load flag, r1                                    load data,r2
load data, r2              load flag, r1

Load and store to different memory locations 
can be performed out of program order
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• Store buffer holds store operations that need to be sent to memory
• Loads are higher priority operations than stores since their results are 

needed to keep processor busy, so they bypass the store buffer
• Load address is checked against addresses in store buffer, so store buffer 

satisfies load if there is an address match
• Result: load can bypass stores to other addresses
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Memory systemProcessor

Store buffer

Load bypassing
Our first model (Canonical ordering)

Operations from given processor are executed in program 
order 
Memory operations from different processors appear to be 
interleaved in some order at the memory

Our revisited model:
If a processor is allowed to reorder independent operations 
in its own instruction stream, will the execution always 
produce the same results as the canonical model?
Answer: ?
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Code:
Initially A = Flag = 0

P1 P2 
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

Semantics: 
P1 writes data into A and sets Flag to tell P2 that data value 
can be read from A. 
P2 waits till Flag is set and then reads data from A.
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Code:
Initially A = Flag = 0
P1 P2 
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

Possible execution sequence on each processor:
P1 P2 
Write A 23 Read Flag      //get 0 
Write Flag 1                                 ……

Read Flag      //get 1 
Read A          //what do you get?

Problem: 
If the two writes on processor P1 can be reordered, it is possible for 
processor P2 to read 0 from variable A. 
Can happen on most modern processors
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Code: (similar to Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2 
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0)                     If (Flag1 == 0) 

critical section critical section

Possible execution sequence on each processor:
P1 P2 
Write Flag1, 1 Write Flag2, 1 
Read Flag2  //get 0 Read Flag1  //what could you get?
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Code: (similar to Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2 
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0)                     If (Flag1 == 0) 

critical section critical section

Possible execution sequence on each processor:
P1 P2 
Write Flag1, 1 Write Flag2, 1 
Read Flag2  //get 0 Read Flag1  //what could you get?

Most people would say that P2 will read 1 as the value of Flag1. Since P1 reads 0 as 
the value of Flag2, P1’s read of Flag2 must happen before P2 writes to Flag2. 
Intuitively, we would expect P1’s write of Flag to happen before P2’s read of Flag1.
However, this is true only if reads and writes on the same processor to different 
locations are not reordered by the compiler or the hardware. Unfortunately, this is 
very common on most processors (store-buffers with load-bypassing).
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Uniprocessors can reorder instructions subject only to control 
and data dependence constraints
These constraints are not sufficient in shared-memory context

simple parallel programs may produce counter-intuitive 
results

Question: what constraints must we put on uniprocessor 
instruction reordering so that:

shared-memory programming is intuitive?
but we do not lose uniprocessor performance?

Many answers to this question:
answer is called memory consistency model supported by 
the processor
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Consistency models are not about memory 
operations from different processors .
Consistency models are not about dependent 
memory operations in a single processor’s 
instruction stream (these are respected even 
by processors that reorder instructions).
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Consistency models are all about ordering 
constraints on independent memory operations 
in a single processor’s instruction that should 
be respected to obtain intuitively reasonable 
results. 
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Sequential consistency (SC) [Lamport]
Our canonical model: processor is not allowed to reorder 
reads and writes to global memory
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MEMORY

P1 P3P2 Pn

SC constrains all memory operations:
Write → Read

Write → Write 

Read → Read, Write

- Simple model for reasoning about parallel programs

- You can verify that the examples considered earlier work correctly 
under sequential consistency.

- However, this simplicity comes at the cost of uniprocessor 
performance.

- Question: how do we reconcile sequential consistency model with the 
demands of performance?
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Programmer specifies regions within which global memory operations can be 
reordered
Processor has fence instruction:

all data operations before fence in program order must complete before fence is executed
all data operations after fence in program order must wait for fence to complete
fences are performed in program order

Implementation of fence: 
processor has counter that is incremented when data op is issued, and decremented when data 
op is completed

Example: PowerPC has SYNC instruction
Language constructs:

OpenMP: flush
All synchronization operations like lock and unlock act like a fenc
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fence

fence

fence

program
execution

Memory operations within these
regions can be reordered

Code:
Initially A = Flag = 0

P1 P2 
A = 23;
flush; while (Flag != 1) {;} 
Flag = 1; flush;

... = A; 
Execution: 

P1 writes data into A
Flush waits till write to A is completed
P1 then writes data to Flag
Therefore, if P2 sees Flag = 1, it is guaranteed that it will read the 
correct value of A even if memory operations in P1 before flush and 
memory operations after flush are reordered by the hardware or 
compiler.
Does P2 need a flush between the two statements?
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Further relaxation of weak consistency
Synchronization accesses are divided into 

Acquires: operations like lock
Release: operations like unlock

Semantics of acquire:
Acquire must complete before all following memory accesses

Semantics of release: 
All memory operations (read/write) before release are complete

However,
Acquire does not wait for accesses preceding it
Accesses after release in program order do not have to wait for release

Operations which follow release and which need to wait must be protected by an 
acquire
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There are a lot of other consistency models out 
there:

Causal consistency
Processor consistency
Delta consistency….

It is important to remember that these are 
concerned with reordering of independent memory 
operations within a processor.
Easy to come up with shared-memory programs 
that behave differently for each consistency 
model.
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MEMORY CONSISTENCY MEMORY COHERENCE

What instructions is compiler or 
hardware allowed to reorder?
Nothing really to do with 
memory operations from 
different processors/threads
Sequential consistency: 
perform global memory 
operations in program order
Relaxed consistency models: all 
of them rely on some notion of 
a fence operation that 
demarcates regions within 
which reordering is permissible

Preserve the illusion that there is a 
single logical memory location 
corresponding to each program 
variable even though there may be 
lots of physical memory locations 
where the variable is stored
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In a Uniprocessor, locking was achieved by 
disabling interrupts for the smallest possible 
number of instructions that will access shared 
data (“the critical section”):

while (true) {
/* disable interrupts */
/* critical section */
/* enable interrupts */
/* remainder */

}

This approach does not work with multiprocessors. 
Why?
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Test and Set, here on, TS: 
TS on a boolean variable flag

#atomic // The two lines below will be executed one after the 
other without interruption 

If(flag == false)
flag = true;

#end atomic
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bool lock = false; // shared lock variable
// Process i
Init i;
while(true) {

while (lock==false){ // entry protocol
TS(lock)}; 

Critical secion # i;
lock = false; // exit protocol
//Remainder of code;}



Notice the while loop in the algorithm
If process 0 waits a lot of time to enter the critical 
section, it continually checks the flag and turn to 
see it can or not, while not doing any useful work 
This is termed busy waiting, and locking 
mechanisms have a major disadvantage in that 
regard.
Locks that employ continuous checking 
mechanism for a flag are called Spin-Locks.
Spin locks are good when the you know that the 
wait is not long enough.
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Stack: A list or an array based data structure that 
enforces last-in-first-out ordering of elements
Operations

Void Push(T data) : pushes the variable data on to the 
stack
T Pop() : removes the last item that was pushed on to a 

stack. Throws a stackEmptyException if the stack is 
empty
Int Size() : returns the size of the stack

All operations are synchronized using one 
common lock object.
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Class Stack<T> {

ArrayList<T> _container = new ArrayList<T>();
RentrantLock _lock = new ReentrantLock();

public void push(T data){ _lock.lock(); _container.add(data); _lock.unlock();}

public int size(){ 
int retVal; _lock.Lock(); retVal = _container.size(); 
_lock.unlock();
return retVal;

}

public T pop(){ 
_lock.lock(); 
if(_container.empty()) {

_lock.unlock();
throw new Exception(“Stack Empty”);}

T retVal _container.get(_container.size() – 1);
_lock.unlock(); return retVal;

}

Stack is simple enough. There is only one lock. 
The overhead isn’t that much. But there are 
data structures that could have multiple locks
Problems with locking

Deadlock
Priority inversion
Convoying
Preemption tolerance
Overall performance
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Priority inversion:
Assume two threads:

T2 with very low priority
T1 with very high priority

Both need to access a shared resource R but T2 
holds the lock to R

T2 takes longer to complete the operation leaving the 
higher priority thread waiting, hence by extension T1 has 
achieved a lower priority
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Deadlock: Processes can’t proceed because each 
of them is waiting for the other release a needed 
resource.
Scenario:

There are two locks A and B
Process 1 needs A and B in that order to safely execute
Process 2 needs B and A in that order to safely execute
Process 1 acquires A and Process two acquires B
Now Process 1 is waiting for Process 2 to release B and 
Process 2 is waiting for process 1 to release A
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Convoying, all the processes need a lock A 
to proceed however, a lower priority process 
acquires A it first. Then all the other 
processes slow down to the speed of the 
lower priority process.
Think of a freeway:

You are driving an Aston Martin but you are 
stuck behind a beat up old pick truck that is 
moving very slow and there is no way to 
overtake him.
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Overall performance
Arguable
Efficient lock-based algorithms exist
Constant struggle between simplicity and efficiency
Example. thread-safe linked list with lots of nodes

Lock the whole list for every operation?
Reader/writer locks?
Allow locking individual elements of the list?
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A data structure wherein there are no explicit locks 
used for achieving synchronization between 
multiple threads, and the progress of one thread 
doesn’t block/impede the progress of another.
Doesn’t imply starvation freedom ( Meaning one 
thread could potentially wait forever). But nobody 
starves in practice
Advantages:

You don’t run into all the problems that you would with 
using locks

Disadvantages: To be discussed later
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Think in terms of Algorithms + Data Structure = 
Program
Thread safe access to shared data without the use 
of locks, mutexes etc.
Possible but not practical/feasible in the absence 
of hardware support
So what do we need?

Design algorithm to avoid critical sections
A compare and set primitive (CAS) from the hardware
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Compare and Set primitive
boolean cas( int * valueToChange, int * valueToSet To, int * 
ValueToCompareTo)
Sematics: The pseudocode below executes atomically without 
interruption

If( valueToChange == valueToCompareTo){
valueToChange = valueToSetTo;
return true;

}
else {

return false;
}

This function is exposed in Java through the atomic namespace, in C++ 
depending on the OS and architecture, you find libraries

CAS is all you need for lock-free queues, stacks, linked-lists, and 
sets.
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What do we need to build these lock-
free data structures?
Limit the scope of changes to a single 
atomic variable

Stack : head
Queue: head or tail depending on enque or 
deque
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A lock-free Stack
Adopted from Geoff Langdale at CMU

Intended to illustrate the design of lock-free data 
structures and problems with lock-free 
synchronization
There is a primitive operation we need:

Compare and Set (CAS)
Available on most modern machines

X86 assembly: xchg
PowerPC assembly: LL(load linked), SC (Store Conditional)
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A stack based on a singly linked list. Not 
particularly good design!

Now that we have the nodes let us proceed to 
body of the stack
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struct NodeEle {
int data;
Node *next;

};

typedef NodeEle Node;

Node* head; // The head of the list
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void push(int t) {
Node* node = malloc(sizeof(Node));
node->data = t;
do {

node->next = head;
} while (!cas(&head, node, node->next));

}

Let us see how this works!



Currently Head points to the Node containing data 6
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10 6

Head

Two threads T1 and T2 comes along 
wanting to push 7 and 8 respectively, by 
calling the push function
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T1T1 push(7); T2T2 push(8);

10 6

Head

Two new node structs on the heap will be 
created on the heap in parallel after the 
execution of the code shown
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T1T1
Node* node = 
malloc(sizeof(Node));
node->data = 7;

T2T2

Node* node = 
malloc(sizeof(Node));
node->data = 8;

10 6

Head

The above code means set the newly created Nodes next to 
head, if the head is still points to 6 then change head pointer to 
point to the new Node
Both of them try to execute this portion of the code on their 
respective threads. But only one will succeed.
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T1T1 T2T2

10 6

Head7 8

do {
node->next = head;

} while (!cas(&head, node, node->next));



Let us Assume T1 Succeeds, therefore T1 exits out of the while and 
consequently the push()

T2’s cas failed why? Hint: Look at the picture.
T2 has no choice but to try again 
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T1T1 T2T2

10 6

Head7 8

do {
node->next = head;

} while (!cas(&head, node, node->next));

Assume T2 Succeeds this time because no one else trying 
to push
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T1T1 T2T2

10 6

Head

7 8
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bool pop(int& t) {
Node* current = head;
while(current) {
if(cas(&head, current->next, current)) {

t = current->data; // problem?
return true;

}
current = head;
}

return false;
}

There is something wrong this code. It is very subtle. Can you figure it 
out? Most of the time this piece of code will work.

While a thread tries to modify A, what happens 
if A gets changed to B then back to A?
Malloc recycles addresses. It has to eventually. 
Now Imagine this scenario. 
Curly braces contain addresses for each node
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10 6

Head

{ 0x89} { 0x90}



Assume two 
threads T1 and T2.
T1 calls pop() to delete 
Node at 0x90 but before it 
has a change and CAS, 
there is a context switch 
and T1 goes to sleep.

www.themegallery.com
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10 6

Head

{ 0x89} { 0x90}

bool pop(int& t) {
Node* current = del = head;
while(current) {
if(cas(&head, current->next, current)) {

t = current->data; // problem?
delete del;
return true;

}
current = head;
}

return false;
}

The following happens 
while T1 is asleep

www.themegallery.com
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10 6

Head

{ 0x89} { 0x90}

The following happens 
while T1 is asleep
T2 calls Pop(), Node at 
0x90 is deleted

www.themegallery.com
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10

Head

{ 0x89} { 0x90} The following happens 
while T1 is asleep
T2 calls Pop(), Node at 
0x90 is deleted
T2 calls Pop(), Node at 
0x89 is deleted

www.themegallery.com
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10

Head

{ 0x89} { 0x90}



The following happens 
while T1 is asleep
T2 calls Pop(), Node at 0x90 
is deleted

T2 calls Pop(), Node at 0x89 
is deleted

T2 calls push(11) but malloc 
has recycled the memory 
0x90 while allocating space 
for the new Node

www.themegallery.com
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10 11

Head

{ 0x89} { 0x90} The following happens 
while T1 is asleep
T2 calls Pop(), Node at 0x90 
is deleted
T2 calls Pop(), Node at 0x89 
is deleted
T2 calls push(11) but malloc 
has recycled the memory 
0x90 while allocating space 
for the new Node
T1  now wakes up and the 
CAS operation succeeds

www.themegallery.com
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10 11

Head

{ 0x89} { 0x90}

Head is now pointing 
to illegal memory!!!!

Replace 10 and 6 with B and A 

Now you know where the 
name (ABA) comes from

Double word compare and set.
One 32 bit word for the address
One 32 bit word for the update count which is incremented 
every time a node is updated
Compare and Set iff both of the above match
Java provides AtomicStampedReference

Use the lower address bits of the pointer (if the memory 
is 4/8 byte Aligned) to keep a counter to update

But the probability of a false positive is still greater than 
doubleword compareandset because instead of 2^32 
choices for the counter you have 2^2 or 2^3 choices for the 
counter
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Current hardware limits the amount of bits 
available in CAS operation to 32/64 bits. 
Imagine the implementation of data structures 
like BST’s pose a problem

When you need to balance a tree you need update 
several nodes all at once.

Way to get around it
Transactional memory based systems
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