
1

Ivan Jibaja
CS 395T – Topics in Multicore Programming

Recall: PRAM Model
New Model
Architecture Details
Consistency Models (Relaxed, Release)
Locks

Disadvantages

Lock-free Synchronization
Lock-free Data Structures

2

Parallel Random Access
Machine (PRAM)

Natural extension of RAM
model

Processors operate
synchronously (in lockstep)
Each processor has private
memory
Are PRAM Models any good?

3

PRAM Model:
No lock-step execution of global instructions
No global shared-memory for reads/writes by all of the
processors in each cycle

New Model:
Each processor executes its own program at its own
speed
Only one processor can access memory at a time
How does a processor know what other processors are
doing? We need synchronization

Let’s look at our new model in more detail

4

Assumptions for this example:
Processor executes all threads of a
program:

Unspecified scheduling policies
Operations in each thread are
executed in order
Atomic operations (lock/unlock) for
synchronization between threads
Result is as if instructions from
different threads were interleaved in
some order
Non-determinacy: program might
produce different outputs based on
the scheduling of the threads (Can
you come up with an example?)

5

MEMORY

P

Assumptions for this model:
Each processors executes one thread
Operations in each thread are executed
in order
One processor at a time can access
global memory to perform
load/store/atomic operations (no
caching of global data)

With these assumptions, you can
show that running a multi-threaded
program on a multiprocessor does
not change possible output from
the uniprocessor case

6

MEMORY

P P P

Code:
Initially A = Flag = 0

P1 P2
A = 23; while (Flag != 1) {;}
Flag = 1; ... = A;

Semantics:
P1 writes data into A and sets Flag to tell P2 that data value
can be read from A.
P2 waits till Flag is set and then reads data from A.

7

Code: (similar to Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0) If (Flag1 == 0)

critical section critical section
What is the problem with our model? We are
making unrealistic architectural assumptions.
Note: More complex synchronization problems require hardware support in the form of atomic instructions. We’ll discuss this later in this

lecture.

8

We have some architectural constrains with 2 of our
assumptions:

1. Processors do not cache global data:
For execution efficiency, processors are allowed to cache
global data:

Leads to cache coherence problems, which can be solved using
coherent caches

2. Instructions within each thread are executed in order
For execution efficiency, processors are allowed to execute
instructions out of order subject to data/control
dependances:

Changes the semantics of the program
To prevent this requires attention to memory consistency models

9 10

Adding new constrains to our uniprocessor model:
Processors reorder operations to improve performance
Constraint on reordering: must respect dependences

data dependences must be respected: in particular,
loads/stores to a given memory address must be executed in
program order
control dependences must be respected

Reorderings can be performed either by the compiler or
the processor

11

Stores to different memory locations can be
performed out of program order

store v1, data store b1, flag
store b1, flag store v1, data

Loads from different memory locations can be
performed out of program order

load flag, r1 load data,r2
load data, r2 load flag, r1

Load and store to different memory locations
can be performed out of program order

12

• Store buffer holds store operations that need to be sent to memory
• Loads are higher priority operations than stores since their results are

needed to keep processor busy, so they bypass the store buffer
• Load address is checked against addresses in store buffer, so store buffer

satisfies load if there is an address match
• Result: load can bypass stores to other addresses

13

Memory systemProcessor

Store buffer

Load bypassing
Our first model (Canonical ordering)

Operations from given processor are executed in program
order
Memory operations from different processors appear to be
interleaved in some order at the memory

Our revisited model:
If a processor is allowed to reorder independent operations
in its own instruction stream, will the execution always
produce the same results as the canonical model?
Answer: ?

14

Code:
Initially A = Flag = 0

P1 P2
A = 23; while (Flag != 1) {;}
Flag = 1; ... = A;

Semantics:
P1 writes data into A and sets Flag to tell P2 that data value
can be read from A.
P2 waits till Flag is set and then reads data from A.

15

Code:
Initially A = Flag = 0
P1 P2
A = 23; while (Flag != 1) {;}
Flag = 1; ... = A;

Possible execution sequence on each processor:
P1 P2
Write A 23 Read Flag //get 0
Write Flag 1 ……

Read Flag //get 1
Read A //what do you get?

Problem:
If the two writes on processor P1 can be reordered, it is possible for
processor P2 to read 0 from variable A.
Can happen on most modern processors

16

Code: (similar to Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0) If (Flag1 == 0)

critical section critical section

Possible execution sequence on each processor:
P1 P2
Write Flag1, 1 Write Flag2, 1
Read Flag2 //get 0 Read Flag1 //what could you get?

17

Code: (similar to Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0) If (Flag1 == 0)

critical section critical section

Possible execution sequence on each processor:
P1 P2
Write Flag1, 1 Write Flag2, 1
Read Flag2 //get 0 Read Flag1 //what could you get?

Most people would say that P2 will read 1 as the value of Flag1. Since P1 reads 0 as
the value of Flag2, P1’s read of Flag2 must happen before P2 writes to Flag2.
Intuitively, we would expect P1’s write of Flag to happen before P2’s read of Flag1.
However, this is true only if reads and writes on the same processor to different
locations are not reordered by the compiler or the hardware. Unfortunately, this is
very common on most processors (store-buffers with load-bypassing).

18

Uniprocessors can reorder instructions subject only to control
and data dependence constraints
These constraints are not sufficient in shared-memory context

simple parallel programs may produce counter-intuitive
results

Question: what constraints must we put on uniprocessor
instruction reordering so that:

shared-memory programming is intuitive?
but we do not lose uniprocessor performance?

Many answers to this question:
answer is called memory consistency model supported by
the processor

19

Consistency models are not about memory
operations from different processors .
Consistency models are not about dependent
memory operations in a single processor’s
instruction stream (these are respected even
by processors that reorder instructions).

20

Consistency models are all about ordering
constraints on independent memory operations
in a single processor’s instruction that should
be respected to obtain intuitively reasonable
results.

21

Sequential consistency (SC) [Lamport]
Our canonical model: processor is not allowed to reorder
reads and writes to global memory

22

MEMORY

P1 P3P2 Pn

SC constrains all memory operations:
Write → Read

Write → Write

Read → Read, Write

- Simple model for reasoning about parallel programs

- You can verify that the examples considered earlier work correctly
under sequential consistency.

- However, this simplicity comes at the cost of uniprocessor
performance.

- Question: how do we reconcile sequential consistency model with the
demands of performance?

23

Programmer specifies regions within which global memory operations can be
reordered
Processor has fence instruction:

all data operations before fence in program order must complete before fence is executed
all data operations after fence in program order must wait for fence to complete
fences are performed in program order

Implementation of fence:
processor has counter that is incremented when data op is issued, and decremented when data
op is completed

Example: PowerPC has SYNC instruction
Language constructs:

OpenMP: flush
All synchronization operations like lock and unlock act like a fenc

24

25

fence

fence

fence

program
execution

Memory operations within these
regions can be reordered

Code:
Initially A = Flag = 0

P1 P2
A = 23;
flush; while (Flag != 1) {;}
Flag = 1; flush;

... = A;
Execution:

P1 writes data into A
Flush waits till write to A is completed
P1 then writes data to Flag
Therefore, if P2 sees Flag = 1, it is guaranteed that it will read the
correct value of A even if memory operations in P1 before flush and
memory operations after flush are reordered by the hardware or
compiler.
Does P2 need a flush between the two statements?

26

Further relaxation of weak consistency
Synchronization accesses are divided into

Acquires: operations like lock
Release: operations like unlock

Semantics of acquire:
Acquire must complete before all following memory accesses

Semantics of release:
All memory operations (read/write) before release are complete

However,
Acquire does not wait for accesses preceding it
Accesses after release in program order do not have to wait for release

Operations which follow release and which need to wait must be protected by an
acquire

27

There are a lot of other consistency models out
there:

Causal consistency
Processor consistency
Delta consistency….

It is important to remember that these are
concerned with reordering of independent memory
operations within a processor.
Easy to come up with shared-memory programs
that behave differently for each consistency
model.

28

MEMORY CONSISTENCY MEMORY COHERENCE

What instructions is compiler or
hardware allowed to reorder?
Nothing really to do with
memory operations from
different processors/threads
Sequential consistency:
perform global memory
operations in program order
Relaxed consistency models: all
of them rely on some notion of
a fence operation that
demarcates regions within
which reordering is permissible

Preserve the illusion that there is a
single logical memory location
corresponding to each program
variable even though there may be
lots of physical memory locations
where the variable is stored

29 30

In a Uniprocessor, locking was achieved by
disabling interrupts for the smallest possible
number of instructions that will access shared
data (“the critical section”):

while (true) {
/* disable interrupts */
/* critical section */
/* enable interrupts */
/* remainder */

}

This approach does not work with multiprocessors.
Why?

31

Test and Set, here on, TS:
TS on a boolean variable flag

#atomic // The two lines below will be executed one after the
other without interruption

If(flag == false)
flag = true;

#end atomic

32

bool lock = false; // shared lock variable
// Process i
Init i;
while(true) {

while (lock==false){ // entry protocol
TS(lock)};

Critical secion # i;
lock = false; // exit protocol
//Remainder of code;}

Notice the while loop in the algorithm
If process 0 waits a lot of time to enter the critical
section, it continually checks the flag and turn to
see it can or not, while not doing any useful work
This is termed busy waiting, and locking
mechanisms have a major disadvantage in that
regard.
Locks that employ continuous checking
mechanism for a flag are called Spin-Locks.
Spin locks are good when the you know that the
wait is not long enough.

33

Stack: A list or an array based data structure that
enforces last-in-first-out ordering of elements
Operations

Void Push(T data) : pushes the variable data on to the
stack
T Pop() : removes the last item that was pushed on to a

stack. Throws a stackEmptyException if the stack is
empty
Int Size() : returns the size of the stack

All operations are synchronized using one
common lock object.

34

35

Class Stack<T> {

ArrayList<T> _container = new ArrayList<T>();
RentrantLock _lock = new ReentrantLock();

public void push(T data){ _lock.lock(); _container.add(data); _lock.unlock();}

public int size(){
int retVal; _lock.Lock(); retVal = _container.size();
_lock.unlock();
return retVal;

}

public T pop(){
_lock.lock();
if(_container.empty()) {

_lock.unlock();
throw new Exception(“Stack Empty”);}

T retVal _container.get(_container.size() – 1);
_lock.unlock(); return retVal;

}

Stack is simple enough. There is only one lock.
The overhead isn’t that much. But there are
data structures that could have multiple locks
Problems with locking

Deadlock
Priority inversion
Convoying
Preemption tolerance
Overall performance

36

Priority inversion:
Assume two threads:

T2 with very low priority
T1 with very high priority

Both need to access a shared resource R but T2
holds the lock to R

T2 takes longer to complete the operation leaving the
higher priority thread waiting, hence by extension T1 has
achieved a lower priority

37

Deadlock: Processes can’t proceed because each
of them is waiting for the other release a needed
resource.
Scenario:

There are two locks A and B
Process 1 needs A and B in that order to safely execute
Process 2 needs B and A in that order to safely execute
Process 1 acquires A and Process two acquires B
Now Process 1 is waiting for Process 2 to release B and
Process 2 is waiting for process 1 to release A

38

Convoying, all the processes need a lock A
to proceed however, a lower priority process
acquires A it first. Then all the other
processes slow down to the speed of the
lower priority process.
Think of a freeway:

You are driving an Aston Martin but you are
stuck behind a beat up old pick truck that is
moving very slow and there is no way to
overtake him.

39

Overall performance
Arguable
Efficient lock-based algorithms exist
Constant struggle between simplicity and efficiency
Example. thread-safe linked list with lots of nodes

Lock the whole list for every operation?
Reader/writer locks?
Allow locking individual elements of the list?

40

41

A data structure wherein there are no explicit locks
used for achieving synchronization between
multiple threads, and the progress of one thread
doesn’t block/impede the progress of another.
Doesn’t imply starvation freedom (Meaning one
thread could potentially wait forever). But nobody
starves in practice
Advantages:

You don’t run into all the problems that you would with
using locks

Disadvantages: To be discussed later

42

Think in terms of Algorithms + Data Structure =
Program
Thread safe access to shared data without the use
of locks, mutexes etc.
Possible but not practical/feasible in the absence
of hardware support
So what do we need?

Design algorithm to avoid critical sections
A compare and set primitive (CAS) from the hardware

43

Compare and Set primitive
boolean cas(int * valueToChange, int * valueToSet To, int *
ValueToCompareTo)
Sematics: The pseudocode below executes atomically without
interruption

If(valueToChange == valueToCompareTo){
valueToChange = valueToSetTo;
return true;

}
else {

return false;
}

This function is exposed in Java through the atomic namespace, in C++
depending on the OS and architecture, you find libraries

CAS is all you need for lock-free queues, stacks, linked-lists, and
sets.

44

What do we need to build these lock-
free data structures?
Limit the scope of changes to a single
atomic variable

Stack : head
Queue: head or tail depending on enque or
deque

45

A lock-free Stack
Adopted from Geoff Langdale at CMU

Intended to illustrate the design of lock-free data
structures and problems with lock-free
synchronization
There is a primitive operation we need:

Compare and Set (CAS)
Available on most modern machines

X86 assembly: xchg
PowerPC assembly: LL(load linked), SC (Store Conditional)

46

A stack based on a singly linked list. Not
particularly good design!

Now that we have the nodes let us proceed to
body of the stack

47

struct NodeEle {
int data;
Node *next;

};

typedef NodeEle Node;

Node* head; // The head of the list

48

void push(int t) {
Node* node = malloc(sizeof(Node));
node->data = t;
do {

node->next = head;
} while (!cas(&head, node, node->next));

}

Let us see how this works!

Currently Head points to the Node containing data 6

49

10 6

Head

Two threads T1 and T2 comes along
wanting to push 7 and 8 respectively, by
calling the push function

50

T1T1 push(7); T2T2 push(8);

10 6

Head

Two new node structs on the heap will be
created on the heap in parallel after the
execution of the code shown

51

T1T1
Node* node =
malloc(sizeof(Node));
node->data = 7;

T2T2

Node* node =
malloc(sizeof(Node));
node->data = 8;

10 6

Head

The above code means set the newly created Nodes next to
head, if the head is still points to 6 then change head pointer to
point to the new Node
Both of them try to execute this portion of the code on their
respective threads. But only one will succeed.

52

T1T1 T2T2

10 6

Head7 8

do {
node->next = head;

} while (!cas(&head, node, node->next));

Let us Assume T1 Succeeds, therefore T1 exits out of the while and
consequently the push()

T2’s cas failed why? Hint: Look at the picture.
T2 has no choice but to try again

53

T1T1 T2T2

10 6

Head7 8

do {
node->next = head;

} while (!cas(&head, node, node->next));

Assume T2 Succeeds this time because no one else trying
to push

54

T1T1 T2T2

10 6

Head

7 8

55

bool pop(int& t) {
Node* current = head;
while(current) {
if(cas(&head, current->next, current)) {

t = current->data; // problem?
return true;

}
current = head;
}

return false;
}

There is something wrong this code. It is very subtle. Can you figure it
out? Most of the time this piece of code will work.

While a thread tries to modify A, what happens
if A gets changed to B then back to A?
Malloc recycles addresses. It has to eventually.
Now Imagine this scenario.
Curly braces contain addresses for each node

56

10 6

Head

{ 0x89} { 0x90}

Assume two
threads T1 and T2.
T1 calls pop() to delete
Node at 0x90 but before it
has a change and CAS,
there is a context switch
and T1 goes to sleep.

www.themegallery.com

57

10 6

Head

{ 0x89} { 0x90}

bool pop(int& t) {
Node* current = del = head;
while(current) {
if(cas(&head, current->next, current)) {

t = current->data; // problem?
delete del;
return true;

}
current = head;
}

return false;
}

The following happens
while T1 is asleep

www.themegallery.com

58

10 6

Head

{ 0x89} { 0x90}

The following happens
while T1 is asleep
T2 calls Pop(), Node at
0x90 is deleted

www.themegallery.com

59

10

Head

{ 0x89} { 0x90} The following happens
while T1 is asleep
T2 calls Pop(), Node at
0x90 is deleted
T2 calls Pop(), Node at
0x89 is deleted

www.themegallery.com

60

10

Head

{ 0x89} { 0x90}

The following happens
while T1 is asleep
T2 calls Pop(), Node at 0x90
is deleted

T2 calls Pop(), Node at 0x89
is deleted

T2 calls push(11) but malloc
has recycled the memory
0x90 while allocating space
for the new Node

www.themegallery.com

61

10 11

Head

{ 0x89} { 0x90} The following happens
while T1 is asleep
T2 calls Pop(), Node at 0x90
is deleted
T2 calls Pop(), Node at 0x89
is deleted
T2 calls push(11) but malloc
has recycled the memory
0x90 while allocating space
for the new Node
T1 now wakes up and the
CAS operation succeeds

www.themegallery.com

62

10 11

Head

{ 0x89} { 0x90}

Head is now pointing
to illegal memory!!!!

Replace 10 and 6 with B and A

Now you know where the
name (ABA) comes from

Double word compare and set.
One 32 bit word for the address
One 32 bit word for the update count which is incremented
every time a node is updated
Compare and Set iff both of the above match
Java provides AtomicStampedReference

Use the lower address bits of the pointer (if the memory
is 4/8 byte Aligned) to keep a counter to update

But the probability of a false positive is still greater than
doubleword compareandset because instead of 2^32
choices for the counter you have 2^2 or 2^3 choices for the
counter

63

Current hardware limits the amount of bits
available in CAS operation to 32/64 bits.
Imagine the implementation of data structures
like BST’s pose a problem

When you need to balance a tree you need update
several nodes all at once.

Way to get around it
Transactional memory based systems

64

65

