
1

Optimizing MMM
& ATLAS Library Generator

Recall: MMM miss ratios
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

IJK version (large cache)

DO I = 1, N//row-major storage
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

Large cache scenario:
Matrices are small enough to fit into cache
Only cold misses, no capacity misses
Miss ratio:

Data size = 3 N2

Each miss brings in b floating-point numbers
Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

C

B
A

K

K

IJK version (small cache)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

Small cache scenario:
Matrices are large compared to cache

reuse distance is not O(1) => miss
Cold and capacity misses
Miss ratio:

C: N2/b misses (good temporal locality)
A: N3 /b misses (good spatial locality)
B: N3 misses (poor temporal and spatial locality)
Miss ratio 0.25 (b+1)/b = 0.3125 (for b = 4)

C

B
A

K

K

2

MMM experiments
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Can we predict this?

How large can matrices be and still
not suffer capacity misses?

DO I = 1, M
DO J = 1, N

DO K = 1, P
C(I,J) = C(I,J) + A(I,K)*B(K,J)

How large can these matrices be without suffering capacity
misses?

Each iteration of outermost loop walks over entire B matrix, so all
of B must be in cache
We walk over rows of A and successive iterations of middle loop
touch same row of A, so one row of A must be in cache
We walk over elements of C one at a time.
So inequality is NP + P + 1 <= C

C

B

A

K

K

M

N

P

Check with experiment

For our machine, capacity of L1 cache is
16KB/8 doubles = 211 doubles
If matrices are square, we must solve

N^2 + N + 1 = 211

which gives us N = 45
This agrees well with experiment.

High-level picture of high-performance
MMM code

Block the code for each level of memory
hierarchy

Registers
L1 cache
…..

Choose block sizes at each level using the
theory described previously

Useful optimization: choose block size at level
L+1 to be multiple of the block size at level L

3

ATLAS

Library generator for MMM and other BLAS
Blocks only for registers and L1 cache
Uses search to determine block sizes, rather
than the analytical formulas we used

Search takes more time, but we do it once when
library is produced

Let us study structure of ATLAS in little more
detail

Original ATLAS Infrastructure

Model-Based ATLAS Infrastructure

Our approach

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)
NR

MulAdd
L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MM
Code Generator

(MMCase)
xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

BLAS

Let us focus on MMM:
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
for (int k = 0; k < K; k++)

C[i][j] += A[i][k]*B[k][j]

Properties
Very good reuse: O(N2) data, O(N3) computation
Many optimization opportunities

Few “real” dependencies
Will run poorly on modern machines

Poor use of cache and registers
Poor use of processor pipelines

Optimizations

Cache-level blocking (tiling)
Atlas blocks only for L1 cache
NB: L1 cache time size

Register-level blocking
Important to hold array values in registers
MU,NU: register tile size

Software pipelining
Unroll and schedule operations
Latency, xFetch: scheduling parameters

Versioning
Dynamically decide which way to compute

Back-end compiler optimizations
Scalar Optimizations
Instruction Scheduling

4

Cache-level blocking (tiling)

Tiling in ATLAS
Only square tiles
(NBxNBxNB)
Working set of tile fits in L1
Tiles are usually copied to
continuous storage
Special “clean-up” code
generated for boundaries

Mini-MMM
for (int j = 0; j < NB; j++)

for (int i = 0; i < NB; i++)
for (int k = 0; k < NB; k++)

C[i][j] += A[i][k] * B[k][j]

NB: Optimization parameter

B

N

A C

NB

K

Register-level blocking

Micro-MMM
A: MUx1
B: 1xNU
C: MUxNU
MUxNU+MU+NU registers

Unroll loops by MU, NU, and KU
Mini-MMM with Micro-MMM inside
for (int j = 0; j < NB; j += NU)

for (int i = 0; i < NB; i += MU)
load C[i..i+MU-1, j..j+NU-1] into registers
for (int k = 0; k < NB; k++)

load A[i..i+MU-1,k] into registers
load B[k,j..j+NU-1] into registers
multiply A’s and B’s and add to C’s

store C[i..i+MU-1, j..j+NU-1]

Special clean-up code required if
NB is not a multiple of MU,NU,KU
MU, NU, KU: optimization parameters

N
B

M
U

K

KU times

Scheduling

FMA Present?
Schedule Computation

Using Latency
Schedule Memory Operations

Using IFetch, NFetch,FFetch

Latency, xFetch: optimization parameters

M1

M2

M3

M4

MMU*NU

…

A1

A2

A3

A4

AMU*NU

…

L1

L2

L3

LMU+NU

…

Latency=2

A1

A2

AMU*NU

…

Computation

Memory
OperationsComputation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

IFetch Loads

NFetch Loads

NFetch Loads

NFetch Loads

…

Search Strategy

Multi-dimensional optimization problem:
Independent parameters: NB,MU,NU,KU,…
Dependent variable: MFlops
Function from parameters to variables is given implicitly; can be
evaluated repeatedly

One optimization strategy: orthogonal line search
Optimize along one dimension at a time, using reference values
for parameters not yet optimized
Not guaranteed to find optimal point, but might come close

5

Find Best NB

Search in following range
16 <= NB <= 80
NB2 <= L1Size

In this search, use simple estimates for other
parameters

(eg) KU: Test each candidate for
Full K unrolling (KU = NB)
No K unrolling (KU = 1)

Original ATLAS Infrastructure

Model-Based ATLAS Infrastructure

Model-based optimization

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)
NR

MulAdd
L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MM
Code Generator

(MMCase)
xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

Modeling for Optimization Parameters

Optimization parameters
NB

Hierarchy of Models (later)
MU, NU

KU
maximize subject to L1 Instruction Cache

Latency
(L* + 1)/2

MulAdd
hardware parameter

xFetch
set to 2

NRLatencyNUMUNUMU ≤+++*

Largest NB for no
capacity/conflict misses

If tiles are copied into
contiguous memory,
condition for only cold misses:

3*NB2 <= L1Size

A

k

B

j

k

i

NB
NB

NB
NB

6

Largest NB for no capacity misses

MMM:
for (int j = 0; i < N; i++)

for (int i = 0; j < N; j++)
for (int k = 0; k < N; k++)

c[i][j] += a[i][k] * b[k][j]

Cache model:
Fully associative
Line size 1 Word
Optimal Replacement

Bottom line:
NB2+NB+1<C

One full matrix
One row / column
One element

A

M
 (I)

K

C

B

N (J)

K

Summary: Modeling for Tile Size (NB)

Models of increasing complexity
3*NB2 ≤ C

Whole work-set fits in L1
NB2 + NB + 1 ≤ C

Fully Associative
Optimal Replacement
Line Size: 1 word

or

Line Size > 1 word

or

LRU Replacement

B

N

A C

NB

KB
C

B
NB

B
NB

≤+⎥
⎥

⎤
⎢
⎢

⎡+⎥
⎥

⎤
⎢
⎢

⎡ 1
2

B
CNB

B
NB

≤++⎥
⎥

⎤
⎢
⎢

⎡ 1
2

B
C

B
NB

B
NB

B
NB

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥⎥

⎤
⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+⎥

⎥

⎤
⎢
⎢

⎡ 12
2

B
CNB

B
NB

≤++⎥
⎥

⎤
⎢
⎢

⎡ 13
2

A

K

C

B

N (J)

K
L

Summary of model Experiments

0% 50% ATLAS

CGw�S

100%

150% 200%

Pentium 4

Pentium III

Athlon MP

Opteron 240

Itanium2

UltraSparc IIIi

R12K

Power 4

Power 3

Alpha 21264

Unleashed

Refined Model

Model

• Ten modern architectures
• Model did well on

•RISC architectures
•UltraSparc: did better

• Model did not do as well on
•Itanium
•CISC architectures

• Substantial gap between
ATLAS CGw/S and ATLAS
Unleashed on some
architectures

7

Some sensitivity graphs for Alpha 21264

1000 2000 3000 4000 5000
Size

200

400

600

800

1000

1200

1400

MFLOPS

Compiler

Model

CGw�S

BLAS

Unleashed

200 400 600 800
NB

200

400

600

800

1000

1200

MFLOPS

20 40 60 80 100 120
NB

200

400

600

800

1000

1200

MFLOPS

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0

500

1000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Eliminating performance gaps

Think globally, search locally
Gap between model-based optimization and
empirical optimization can be eliminated by

Local search:
for small performance gaps
in neighborhood of model-predicted values

Model refinement:
for large performance gaps
must be done manually
(future) machine learning: learn new models
automatically

Model-based optimization and empirical
optimization are not in conflict

Small performance gap: Alpha 21264

20 40 60 80 100 120
NB

200

400

600

800

1000

1200

MFLOPSATLAS CGw/S:
mini-MMM: 1300 MFlops
NB = 72
(MU,NU) = (4,4)

ATLAS Model
mini-MMM: 1200 MFlops
NB = 84
(MU,NU) = (4,4)

• Local search
•Around model-predicted NB
•Hill-climbing not useful
•Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]

•Local search for MU,NU
•Hill-climbing OK

Large performance gap: Itanium

1000 2000 3000 4000 5000
Size

1000

2000

3000

4000

5000

MFLOPS

Compiler

Model

CGw�S

Unleashed

BLAS

200 400 600 800 1000
NB

1000

2000

3000

4000

MFLOPS

20 40 60 80 100 120
NB

1000

2000

3000

4000

MFLOPSMMM Performance

NB Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 4000 MFlops
• ATLAS Model: 1800 MFlops

Problem with NB value
ATLAS Model: 30
ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.

8

Itanium diagnosis and solution

Memory hierarchy
L1 data cache: 16 KB
L2 cache: 256 KB
L3 cache: 3 MB

Diagnosis:
Model tiles for L1 cache
On Itanium, FP values not cached in L1 cache!
Performance gap goes away if we model for L2 cache (NB = 105)
Obtain even better performance if we model for L3 cache
(NB = 360, 4.6 GFlops)

Problem:
Tiling for L2 or L3 may be better than tiling for L1
How do we determine which cache level to tile for??

Our solution: model refinement + a little search
Determine tile sizes for all cache levels
Choose between them empirically

Large performance gap: Opteron

1000 2000 3000 4000 5000
Size

500

1000

1500

2000

2500

MFLOPS

Compiler

Model

CGw�S

BLAS

Unleashed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0
500

1000

1500

2000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

MMM Performance

MU,NU Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 2072 MFlops
• ATLAS Model: 1282 MFlops

Key differences in parameter values:MU/NU
• ATLAS CGw/S: (6,1)
• ATLAS Model: (2,1)

Opteron diagnosis and solution

Opteron characteristics
Small number of logical registers
Out-of-order issue
Register renaming

For such processors, it is better to
let hardware take care of scheduling dependent
instructions,
use logical registers to implement a bigger register tile.

x86 has 8 logical registers
register tiles must be of the form (x,1) or (1,x)

Refined model

9

Bottom line

0% 50% ATLAS

CGw�S

100%

150% 200%

Pentium 4

Pentium III

Athlon MP

Opteron 240

Itanium2

UltraSparc IIIi

R12K

Power 4

Power 3

Alpha 21264

Unleashed

Refined Model

Model

• Refined model is not complex.
• Refined model by itself eliminates
most performance gaps.
• Local search eliminates all
performance gaps.

Future Directions

Repeat study with FFTW/SPIRAL
Uses search to choose between algorithms

Feed insights back into compilers
Build a linear algebra compiler for generating high-
performance code for dense linear algebra codes

Start from high-level algorithmic descriptions
Use restructuring compiler technology
Part IBM PERCS Project

Generalize to other problem domains

