Optimizing MMM
& ATLAS Library Generator

Recall: MMM miss ratios

L1 Cache Miss Ratio for Intel Pentium 111
-~ MMM with N =1...1300
- 16KB 32B/Block 4-way 8-byte elements

o ol Fa

A

| IJK version (large cache)

DO | = 1, N//row-major storage
DOJ=1,N
DOK=1,N A

—x —

C(1,J) = C(1,J) + A(LK)*B(K,J)

= Large cache scenario:
o Matrices are small enough to fit into cache
a Only cold misses, no capacity misses
o Miss ratio:
= Data size = 3 N2
= Each miss brings in b floating-point numbers
= Miss ratio = 3 N2/b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

IJK version (small cache)

DOI1=1,N I B
DOJ=1,N Pf
DOK=1,N A

1,J) = C(l A(l,K)*B(K s
C(1,J) = C(1,J) + A(LK)*B(K,J) = C
= Small cache scenario:

o Matrices are large compared to cache
= reuse distance is not O(1) => miss
o Cold and capacity misses
a Miss ratio:
= C: N2/b misses (good temporal locality)
= A: N3/b misses (good spatial locality)
= B: N3misses (poor temporal and spatial locality)
= Miss ratio > 0.25 (b+1)/b = 0.3125 (for b = 4)

MMM experiments

L1 Cache Miss Ratio for Intel Pentium 111
- MMM with N =1...1300
— 16KB 32B/Block 4-way 8-byte elements

an we predict this?

ez ol s

- B2 Zalielelied

E]

How large can matrices be and still
not suffer capacity misses?

DOI=1,M \ B
DOJ=1,N *f
DOK=1,P A P
C(1,J) = C(1,J) + A(LK)*B(K,J) .
M — K— C

= How large can these matrices be without suffering capacity

misses?

o Each iteration of outermost loop walks over entire B matrix, so all
of B must be in cache

o We walk over rows of A and successive iterations of middle loop
touch same row of A, so one row of A must be in cache

o We walk over elements of C one at a time.

o SoinequalityisNP+P +1<=C

| Check with experiment

m For our machine, capacity of L1 cache is
16KB/8 doubles = 2" doubles

= If matrices are square, we must solve
NA2 + N+ 1 =21
which gives us N = 45
m This agrees well with experiment.

High-level picture of high-performance
MMM code

m Block the code for each level of memory
hierarchy

o Registers
o L1 cache

m Choose block sizes at each level using the
theory described previously

o Useful optimization: choose block size at level
L+1 to be multiple of the block size at level L

| ATLAS

m Library generator for MMM and other BLAS
m Blocks only for registers and L1 cache
m Uses search to determine block sizes, rather

’ Our approach

» Original ATLAS Infrastructure

MFLOPS

Compile,

Execute,
Measure

than the analytical formulas we used Doea [ATEAS Seae WNIT| ATAS WM i

o Search takes more time, but we do it once when v e

library is produced
- Model-Based ATLAS Infrastructure
m Let us study structure of ATLAS in little more .

detail Hlajf;:gre SR Model e c@TeLéfnmm

Parameters Murdd &L{‘ef:‘id (MMCase)

| BLAS | Optimizations

m Let us focus on MMM:
for (int i = 0; i < M; i++)
for (int
for (int k = 0; k < K; k++)
CLilLI] += ALVIIKI*BIKILI]
= Properties
o Very good reuse: O(N2?) data, O(N?®) computation
o Many optimization opportunities
= Few “real” dependencies
a Will run poorly on modern machines
= Poor use of cache and registers
= Poor use of processor pipelines

Cache-level blocking (tiling)

o Atlas blocks only for L1 cache
o NB: L1 cache time size
Register-level blocking

o Important to hold array values in registers
o MU,NU: register tile size
Software pipelining

o Unroll and schedule operations

o Latency, xFetch: scheduling parameters

Versioning

o Dynamically decide which way to compute
Back-end compiler optimizations

o Scalar Optimizations
o Instruction Scheduling

Cache-level blocking (tiling)

= Tiling in ATLAS

o Only square tiles
(NBxNBxNB)

o Working set of tile fits in L1

o Tiles are usually copied to
continuous storage

o Special “clean-up” code
generated for boundaries

= Mini-MMM

i
for (int k = 05 k < NB; k++)
CLilLi] += ALi1[K] * BIKILi1

= NB: Optimization parameter

<NB>

<NB>

| Register-level blocking

= Micro-MMM

o A:MUx1

o B:1xNU

a C:MUxNU

a MUxNU+MU+NU registers
= Unroll loops by MU, NU, and KU
= Mini-MMM with Micro-MMM inside
0; j < NB; j += NU)

i < NB; i += MU)

+MU-1, j..j+NU-1] into registers
= 0; k < NB; ki+)
MU-1,K] into registers

for (int j
for (i

§+NU-1] into registers

<NU>

<«<—NB——>

KU times {
nultiply A’s and B’s and add to C’s

store C[i..i+MU-1, j..j+NU-1]

<MU>
R

= Special clean-up code required if

NB is not a multiple of MU,NU,KU —K—
= MU, NU, KU: optimization parameters

<«<—NB—>

%

| Scheduling

s FMA Present?

» Schedule Computation
o Using Latency

= Schedule Memory Operations
o Using IFetch, NFetch,FFetch

Memory
Operations

Memory
Computation Perations

Memory

ComputatigOPerations

Computation

Memory
oreraiior } NFetch Loads
Computation

Memory

Computation

= Latency, xFetch: optimization parameters

| Search Strategy

= Multi-dimensional optimization problem:
o Independent parameters: NB,MU,NU,KU, ...
a Dependent variable: MFlops

a Function from parameters to variables is given implicitly; can be

evaluated repeatedly

= One optimization strategy: orthogonal line search
o Optimize along one dimension at a time, using reference values

for parameters not yet optimized

o Not guaranteed to find optimal point, but might come close

Find Best NB

= Search in following range
016 <=NB <=80
o NB2? <= L1Size

m In this search, use simple estimates for other
parameters

o (eg) KU: Test each candidate for
= Full K unrolling (KU = NB)
= No K unrolling (KU = 1)

| Model-based optimization

= Original ATLAS Infrastructure

MFLOPS

Compile,
Execute,
Measure

Lisize NB
Detect ATLAS Search | MU.NUKU ATLAS MM MiniMMM
Hardware NR Engine xFetch Code Generator Source
MulAdd MulAdd (MMCase)
L Latenc,

» Model-Based ATLAS Infrastructure

Lisize NB
Detect L1I$Size MU.NUKU ATLAS MM MiniMMM
Hardware NR xFeich | Code Generator Source
Parameters [MuAdd MulAdd (MMCase)

Modeling for Optimization Parameters

= Optimization parameters
o NB
= Hierarchy of Models (later)
o MU, NU
-KUMU *NU+ MU + NU + Latency < NR
Q
= maximize subject to L1 Instruction Cache
o Latency
w [(Lo +1)2]
o MulAdd
= hardware parameter
o xFetch
= setto2

| Largest NB for no
capacity/conflict misses

n If tiles are copied into
contiguous memory,

condition for only cold misses: kl
a 3*NB2 <= L1Size

| Largest NB for no capacity misses Summary: Modeling for Tile Size (NB)
= MMM: | . = Models of increasing complexity
fo;m(_irg a 3*NB?sC <NB>
Bl flash . ™ . 2Whele work-set fits in L1 KJ’ ’/
Cache model: H o NERNBYTSC 1 K]
- . l: = Fully Associative i B]
a Fully associative N\ E = Optimal Replacement T
a Line size 1 Word = Line Size: 1 word I
Bu ::ptimal! Replacement a {f]{%}ns% or [%1,, NB1s S K, N
= Bottom line: v Line Size > 1 word e —
NB2+NB+1<C N8] [NB] ([NB c R ~\\Y\ J;’
a { 5 %2[?%[{ B-|+1]sE or A LB \\\Q !
a One full matrix g c g \= ¢
{f%mausf 1 M
o One row / column B B 7\ I
a One element = LRU Replacement B
| Summary of model | Experiments
A : +» Ten modern architectures Alpha21264
e ekl i L * Model did well on
; [, Ak 1 *RISC architectures Power 3 Mods
3 | *UltraSparc: did better
+fwig HeRhe el * Model did not do as well on e - '
Ao = No + Ko + Mo+ Le = Nn «ltanium RI2K - Unlesshed
1 .
2 s : -CISCAarchltectures -
4 Sole comiraet o 5 « Substantial gap between
WAy N ATLAS CGw/S and ATLAS trium2
Unleashed on some optaon240
architectures
Estimatiog Vi AthlonMP
= | : |%| A :’T: Pentiuml11
f My, Ni, o 2
TR Pentium4
it dvide Ny
e o " . 0% 50% ATLAS 150% 200%
L4 L yov CGw/S

L00%

’ Some sensitivity graphs for Alpha 21264

8 5 8 8 8B §

Eliminating performance gaps

= Think globally, search locally

m Gap between model-based optimization and
empirical optimization can be eliminated by
a Local search:
= for small performance gaps
= in neighborhood of model-predicted values
a Model refinement:
= for large performance gaps
= must be done manually
= (future) machine learning: learn new models
automatically
= Model-based optimization and empirical
optimization are not in conflict

Small performance gap: Alpha 21264

ATLAS CGw/S: Hrers
mini-MMM: 1300 MFlops .
NB =72
(MU,NU) = (4,4) oo

ATLAS Model .
mini-MMM: 1200 MFlops
NB = 84 “
(MU,NU) = (4,4) 00

Ne

« Local search

+Around model-predicted NB

«Hill-climbing not useful

*Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]
+Local search for MU,NU

+Hill-climbing OK

| Large performance gap: Itanium

MMM Performance e

Performance of mini-MMM
« ATLAS CGw/S: 4000 MFlops 5
« ATLAS Model: 1800 MFlops

Problem with NB value
ATLAS Model: 30
ATLAS CGw/S: 80 (search space max) 5w e ww m

NB Sensitivity

Local search will not solve problem.

Itanium diagnosis and solution

= Memory hierarchy
a L1 datacache: 16 KB
o L2 cache: 256 KB
o L3 cache: 3MB
= Diagnosis:
o Model tiles for L1 cache
o On Itanium, FP values not cached in L1 cache!
a Performance gap goes away if we model for L2 cache (NB = 105)
a

Obtain even better performance if we model for L3 cache
(NB = 360, 4.6 GFlops)

= Problem:

o Tiling for L2 or L3 may be better than tiling for L1

o How do we determine which cache level to tile for??
= Our solution: model refinement + a little search

o Determine tile sizes for all cache levels

o Choose between them empirically

’ Large performance gap: Opteron

5

15
i
wrLoes 1
2
10
9

T234567800nRnRMsE

MMM Performance

Performance of mini-MMM
+ ATLAS CGw/S: 2072 MFlops
« ATLAS Model: 1282 MFlops

Key differences in parameter values:MU/NU
+ ATLAS CGw/S: (6,1)
* ATLAS Model: (2,1)

MU.NU Sensitivity

| Opteron diagnosis and solution

= Opteron characteristics
o Small number of logical registers
o Out-of-order issue
o Register renaming
= For such processors, it is better to

o let hardware take care of scheduling dependent
instructions,

o use logical registers to implement a bigger register tile.
= x86 has 8 logical registers
o - register tiles must be of the form (x,1) or (1,x)

| Refined model

FMA
hinc paratcr FALA
o Estimatieeg L,

« Fs
1

« AELFr| +
i |l.. ALlrp 41

« Estimating Al and Vo

My < ! wap My and Nu
71 Refined Modek: 1T Neo ~ | then

= M Ny -2
Ny 1
- FMA 1
o Estimating ¥y
NI [Sm=NeY, [M: . 4
v R b Rl ow Rt
Trim ¥ge, 4o make 8 o multiple of Ay, Nir, sod 2
w E
i w W as the masinmem value for which mini-MMM fits
¢ LI instrection cache, Trim Koo e make 0 divide N

Bottom line

« Refined model is not complex.

« Refined model by itself eliminates
most performance gaps.

« Local search eliminates all
performance gaps.

Alpha21264

Power 3

Power 4

R12K

Ultrasparcllli

Itanium2

Opteron 240

AthlonMP

Pentiuml11

Pentium 4

Model

-
- Urlehed

50%

ATLAS 150% 200%
cow/s
1007

Future Directions

» Repeat study with FFTW/SPIRAL
o Uses search to choose between algorithms
= Feed insights back into compilers

o Build a linear algebra compiler for generating high-
performance code for dense linear algebra codes
= Start from high-level algorithmic descriptions
» Use restructuring compiler technology
= Part IBM PERCS Project

o Generalize to other problem domains

