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Abstract

A shared data structure is lock-free if its operations do not
require mutual exclusion. If one process is interrupted in
the middle of an operation, other processes will not be
prevented from operating on that object. In highly con-
current systems, lock-free data structures avoid common
problems associated with conventional locking techniques,
including priority inversion, convoying, and difficulty of
avoiding deadlock. This paper introduces transactional
memory, a new multiprocessor architecture intended to
make lock-free synchronization as efficient (and easy to
use) as conventional techniques based on mutual exclu-
sion. Transactional memory allows programmers to de-
fine customized read-modify-write operations that apply
to multiple, independently-chosen words of memory. It
is implemented by straightforward extensions to any mul-
tiprocessor cache-coherence protocol. Simulation results
show that transactional memory matches or outperforms
the best known locking techniques for simple benchmarks,
even in the absence of priority inversion, convoying, and
deadlock.

1 Introduction

A shared data structure is lock-free if its operations do not
require mutual exclusion. If one process is interrupted in
the middle of an operation, other processes will not be
prevented from operating on that object. Lock-free data

structures avoid common problems associated with con-
ventional locking techniques in highly concurrent systems:

� Priority inversion occurs when a lower-priority pro-
cess is preempted while holding a lock needed by
higher-priority processes.

� Convoying occurs when a process holding a lock is de-
scheduled, perhaps by exhausting its scheduling quan-
tum, by a page fault, or by some other kind of interrupt.
When such an interruption occurs, other processes ca-
pable of running may be unable to progress.

� Deadlock can occur if processes attempt to lock the
same set of objects in different orders. Deadlock
avoidance can be awkward if processes must lock mul-
tiple data objects, particularly if the set of objects is
not known in advance.

A number of researchers have investigated techniques for
implementing lock-free concurrent data structures using
software techniques [2, 4, 19, 25, 26, 32]. Experimental
evidence suggests that in the absence of inversion, con-
voying, or deadlock, software implementations of lock-
free data structures often do not perform as well as their
locking-based counterparts.

This paper introduces transactionalmemory, a new mul-
tiprocessor architecture intended to make lock-free syn-
chronization as efficient (and easy to use) as conventional
techniques based on mutual exclusion. Transactional mem-
ory allows programmers to define customized read-modify-
write operations that apply to multiple, independently-
chosen words of memory. It is implemented by straightfor-
ward extensions to multiprocessor cache-coherence proto-
cols. Simulation results show that transactional memory is
competitive with the best known lock-based techniques for
simple benchmarks, even in the absence of priority inver-
sion, convoys, and deadlock.

In Section 2, we describe transactional memory and how
to use it. In Section 3 we describe one way to implement
transactional memory, and in Section 4 we discuss some
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alternatives. In Section 5 we present some simulation re-
sults, and in Section 6, we give a brief survey of related
work.

2 Transactional Memory

A transaction is a finite sequence of machine instructions,
executed by a single process, satisfying the following prop-
erties:

� Serializability: Transactions appear to execute seri-
ally, meaning that the steps of one transaction never
appear to be interleaved with the steps of another.
Committed transactions are never observed by differ-
ent processors to execute in different orders.

� Atomicity: Each transaction makes a sequence of
tentative changes to shared memory. When the
transaction completes, it either commits, making its
changes visible to other processes (effectively) in-
stantaneously, or it aborts, causing its changes to be
discarded.

We assume here that a process executes only one trans-
action at a time. Although the model could be extended
to permit overlapping or logically nested transactions, we
have seen no examples where they are needed.

2.1 Instructions

Transactional memory provides the following primitive in-
structions for accessing memory:

� Load-transactional (LT) reads the value of a shared
memory location into a private register.

� Load-transactional-exclusive (LTX) reads the value of
a shared memory location into a private register, “hint-
ing” that the location is likely to be updated.

� Store-transactional (ST) tentatively writes a value
from a private register to a shared memory location.
This new value does not become visible to other pro-
cessors until the transaction successfully commits (see
below).

A transaction’s read set is the set of locations read by LT,
and its write set is the set of locations accessed by LTX or
ST. Its data set is the union of the read and write sets.

Transactional memory also provides the following in-
structions for manipulating transaction state:

� Commit (COMMIT) attempts to make the transaction’s
tentative changes permanent. It succeeds only if no

other transaction has updated any location in the trans-
action’s data set, and no other transaction has read any
location in this transaction’s write set. If it succeeds,
the transaction’s changes to its write set become vis-
ible to other processes. If it fails, all changes to the
write set are discarded. Either way, COMMIT returns
an indication of success or failure.

� Abort (ABORT) discards all updates to the write set.

� Validate (VALIDATE) tests the current transaction sta-
tus. A successful VALIDATE returns True, indicating
that the current transaction has not aborted (although
it may do so later). An unsuccessful VALIDATE re-
turns False, indicating that the current transaction has
aborted, and discards the transaction’s tentative up-
dates.

By combining these primitives, the programmer can de-
fine customized read-modify-write operations that operate
on arbitrary regions of memory, not just single words. We
also support non-transactional instructions, such as LOAD

and STORE, which do not affect a transaction’s read and
write sets.

For brevity, we leave undefined how transactional and
non-transactional operations interact when applied to the
same location.1 We also leave unspecified the precise cir-
cumstances that will cause a transaction to abort. In par-
ticular, implementations are free to abort transactions in
response to certain interrupts (such as page faults, quantum
expiration, etc.), context switches, or to avoid or resolve
serialization conflicts.

2.2 Intended Use

Our transactions are intended to replace short critical sec-
tions. For example, a lock-free data structure would typ-
ically be implemented in the following stylized way (see
Section 5 for specific examples). Instead of acquiring a
lock, executing the critical section, and releasing the lock,
a process would:

1. use LT or LTX to read from a set of locations,

2. use VALIDATE to check that the values read are consis-
tent,

3. use ST to modify a set of locations, and

4. use COMMIT to make the changes permanent. If either
the VALIDATE or the COMMIT fails, the process returns
to Step (1).

1One sensible way to define such interactions is to consider a LOAD

or STORE as a transaction that always commits, forcing any conflicting
transactions to abort.
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A more complex transaction, such as one that chains down a
linked list (see Figure 3), would alternate LT and VALIDATE

instructions. When contention is high, programmers are
advised to apply adaptive backoff [3, 28] before retrying.

The VALIDATE instructionis motivated by considerations
of software engineering. A set of values in memory is in-
consistent if it could not have been produced by any serial
execution of transactions. An orphan is a transaction that
continues to execute after it has been aborted (i.e., after
another committed transaction has updated its read set). It
is impractical to guarantee that every orphan will observe
a consistent read set. Although an orphan transaction will
never commit, it may be difficult to ensure that an orphan,
when confronted with unexpected input, does not store into
out-of-range locations, divide by zero, or perform some
other illegal action. All values read before a successful
VALIDATE are guaranteed to be consistent. Of course, VAL-
IDATE is not always needed, but it simplifies the writing of
correct transactions and improves performance by elimi-
nating the need for ad-hoc checks.

Our transactions satisfy the same formal serializability
and atomicity properties as database-style transactions (viz.
[18]), but they are intended to be used very differently. Un-
like database transactions, our transactions are short-lived
activities that access a relatively small number of memory
locations in primary memory. The ideal size and duration
of transactions are implementation-dependent, but, roughly
speaking, a transaction should be able to run to completion
within a single scheduling quantum, and the number of
locations accessed should not exceed an architecturally-
specified limit.

3 Implementation

In this section, we give an overview of an architecture
that supports transactional memory. An associated tech-
nical report [20] gives detailed protocols for both bus-
based (snoopy cache) and network-based (directory) ar-
chitectures.

Our design satisfies the following criteria:

� Non-transactional operations use the same caches,
cache controller logic, and coherence protocols they
would have used in the absence of transactional mem-
ory.

� Custom hardware support is restricted to primary
caches and the instructions needed to communicate
with them.

� Committing or aborting a transaction is an operation
local to the cache. It does not require communicating
with other processes or writing data back to memory.

Transactional memory is implemented by modifying
standard multiprocessor cache coherence protocols. We
exploit access rights, which are usually connected with
cache residence. In general, access may be non-exclusive
(shared) permitting reads, or exclusive, permitting writes.
At any time a memory location is either (1) not immedi-
ately accessible by any processor (i.e., in memory only), (2)
accessible non-exclusively by one or more processors, or
(3) accessible exclusively by exactly one processor. Most
cache coherence protocols incorporate some form of these
access rights.

The basic idea behind our design is simple: any protocol
capable of detecting accessibility conflicts can also detect
transaction conflict at no extra cost. Before a processor

�

can load the contents of a location, it must acquire non-
exclusive access to that location. Before another processor

�
can store to that location, it must acquire exclusive ac-

cess, and must therefore detect and revoke
�

’s access. If
we replace these operations with their transactional coun-
terparts, then it is easy to see that any protocol that detects
potential access conflicts also detects the potential transac-
tion conflict between

�
and

�
.

Once a transaction conflict is detected, it can be re-
solved in a variety of ways. The implementation described
here aborts any transaction that tries to revoke access of a
transactional entry from another active transaction. This
strategy is attractive if one assumes (as we do) that timer
(or other) interrupts will abort a stalled transaction after a
fixed duration, so there is no danger of a transaction holding
resources for too long. Alternative strategies are discussed
in [20].

3.1 Example implementation

We describe here how to extend Goodman’s “snoopy” pro-
tocol for a shared bus [15] to support transactional memory.
(See [20] for similar extensions to a directory-based proto-
col.) We first describe the general implementation strategy,
the various cache line states, and possible bus cycles. We
then describe the various possible actions of the processor
and the bus snooping cache logic.

3.1.1 General approach

To minimize impact on processing non-transactional loads
and stores, each processor maintains two caches: a regular
cache for non-transactional operations, and a transactional
cache for transactional operations. These caches are ex-
clusive: an entry may reside in one or the other, but not
both. Both caches are primary caches (accessed directly
by the processor), and secondary caches may exist between
them and the memory. In our simulations, the regular cache
is a conventional direct-mapped cache. The transactional
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Name Access Shared? Modified?
INVALID none — —
VALID R Yes No
DIRTY R, W No Yes
RESERVED R, W No No

Table 1: Cache line states

Name Meaning
EMPTY contains no data
NORMAL contains committed data
XCOMMIT discard on commit
XABORT discard on abort

Table 2: Transactional tags

cache is a small, fully-associative cache with additional
logic to facilitate transaction commit and abort. The over-
all hardware organization is similar to that used by Jouppi
for the victim cache [22], and indeed one can readily extend
the transactional cache to act as a victim cache as well.

The idea is that the transactional cache holds all the
tentative writes, without propagating them to other proces-
sors or to main memory unless the transaction commits. If
the transaction aborts, the lines holding tentative writes are
dropped (invalidated); if the transaction commits, the lines
may then be snooped by other processors, written back to
memory upon replacement, etc. We assume that since the
transactional cache is small and fully associative it is prac-
tical to use parallel logic to handle abort or commit in a
single cache cycle.

3.1.2 Cache line states

Following Goodman, each cache line (regular or trans-
actional) has one of the states in Table 1. The possible
accesses permitted are reads and/or writes; the “Shared?”
column indicates whether sharing is permitted; and the
“Modified?” column indicates whether the line may differ
from its copy in main memory.

The transactional cache augments these states with sep-
arate transactional tags shown in Table 2, used as follows.
Transactional operations cache two entries: one with trans-
actional tag XCOMMIT and one XABORT. Modifications are
made to the XABORT entry. When a transaction commits,
it sets the entries marked XCOMMIT to EMPTY, and XABORT

to NORMAL. When it aborts, it sets entries marked XABORT

to EMPTY, and XCOMMIT to NORMAL.
When the transactional cache needs space for a new en-

Name Kind Meaning New access
READ regular read value shared
RFO regular read value exclusive
WRITE both write back exclusive
T READ trans read value shared
T RFO trans read value exclusive
BUSY trans refuse access unchanged

Table 3: Bus cycles

try, it first searches for an EMPTY entry, then for a NORMAL

entry, and finally for an XCOMMIT entry. If the XCOMMIT

entry is DIRTY, it must be written back. Notice that XCOM-
MIT entries are used only to enhance performance. When
a ST tentatively updates an entry, the old value must be
retained in case the transaction aborts. If the old value is
resident in the transactional cache and dirty, then it must
either be marked XCOMMIT, or it must be written back to
memory. Avoiding such write-backs can substantially en-
hance performance when a processor repeatedly executes
transactions that access the same locations. If contention is
low, then the transactions will often hit dirty entries in the
transactional cache.

3.1.3 Bus cycles

The various kinds of bus cycles are listed in Table 3. The
READ (RFO (read-for-ownership)) cycle acquires shared (ex-
clusive) ownership of the cache line. The WRITE cycle up-
dates main memory when the protocol does write through;
it is also used when modified items are replaced. Further,
memory snoops on the bus so if a modified item is read
by another processor, the main memory version is brought
up to date. These cycles are all as in Goodman’s original
protocol. We add three new cycles. The T READ and T RFO

cycles are analogous to READ and RFO, but request cache
lines transactionally. Transactional requests can be refused
by responding with a BUSY signal. BUSY helps prevent
transactions from aborting each other too much. When
a transaction receives a BUSY response, it aborts and re-
tries, preventing deadlock or continual mutual aborts. This
policy is theoretically subject to starvation, but could be
augmented with a queueing mechanism if starvation is a
problem in practice.

3.1.4 Processor actions

Each processor maintains two flags: the transaction ac-
tive (TACTIVE) flag indicates whether a transaction is in
progress, and if so, the transaction status (TSTATUS) flag in-
dicates whether that transaction is active (True) or aborted
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(False). The TACTIVE flag is implicitly set when a transac-
tion executes its first transactional operation. (This implicit
approach seems more convenient than providing an explicit
start transaction instruction.) Non-transactional operations
behave exactly as in Goodman’s original protocol. Trans-
actional instructions issued by an aborted transaction cause
no bus cycles and may return arbitrary values.2

We now consider transactional operations issued by an
active transaction (TSTATUS is True). Suppose the operation
is a LT instruction. We probe the transactional cache for an
XABORT entry, and return its value if there is one. If there is
no XABORT entry, but there is a NORMAL one, we change the
NORMAL entry to an XABORT entry, and allocate a second
entry with tag XCOMMIT and the same data.3 If there is no
XABORT or NORMAL entry, then we issue a T READ cycle. If
it completes successfully, we set up two transactional cache
entries, one tagged XCOMMIT and one XABORT, both with
whatever state the Goodman protocol would get on a READ

cycle. If we get a BUSY response, we abort the transaction
(set TSTATUS to False, drop all XABORT entries, and set all
XCOMMIT entries to NORMAL) and return arbitrary data.

For LTX we use a T RFO cycle on a miss rather than a
T READ, and change the cache line state to RESERVED if the
T RFO succeeds. A ST proceeds like a LTX, except it updates
the XABORT entry’s data. The cache line state is updated as
in the Goodman protocol with LT and LTX acting like LOAD

and ST acting like STORE.
The VALIDATE instruction returns the TSTATUS flag, and

if it is False, sets the TACTIVE flag to False and the TSTATUS

flag to True. The ABORT instruction discards cache en-
tries as previously described, and sets TSTATUS to True and
TACTIVE to False. Finally, COMMIT returns TSTATUS, sets
TSTATUS to True and TACTIVE to False, drops all XCOMMIT

cache entries, and changes all XABORT tags to NORMAL.
Interrupts and transactional cache overflows abort the

current transaction.

3.1.5 Snoopy cache actions

Both the regular cache and the transactional cache snoop
on the bus. A cache ignores any bus cycles for lines not
in that cache. The regular cache behaves as follows. On a
READ or T READ, if the state is VALID, the cache returns the
value. If the state is RESERVED or DIRTY, the cache returns
the value and resets the state to VALID. On a RFO or T RFO,
the cache returns the data and invalidates the line.

The transactional cache behaves as follows. If TSTATUS

is False, or if the cycle is non-transactional (READ and

2As discussed below in Section 4, it is possible to provide stronger
guarantees on values read by aborted transactions.

3Different variations are possible here. Also, allocating an entry may
involve replacing a dirty cache entry, in which case it must be written
back, as previously mentioned.

RFO), the cache acts just like the regular cache, except that
it ignores entries with transactional tag other than NORMAL.
On T READ, if the state is VALID, the cache returns the value,
and for all other transactional operations it returns BUSY.

Either cache can issue a WRITE request when it needs to
replace a cache line. The memory responds only to READ,
T READ, RFO, and T RFO requests that no cache responds
to, and to WRITE requests.

4 Rationale

It would be possible to use a single cache for both trans-
actional and non-transactional data. This approach has
two disadvantages: (1) modern caches are usually set as-
sociative or direct mapped, and without additional mech-
anisms to handle set overflows, the set size would deter-
mine the maximum transaction size, and (2) the parallel
commit/abort logic would have to be provided for a large
primary cache, instead of the smaller transactional cache.

For programs to be portable, the instruction set archi-
tecture must guarantee a minimum transaction size, thus
establishing a lower bound for the transactional cache size.
An alternative approach is suggested by the LimitLESS
directory-based cache coherence scheme of Chaiken, Ku-
biatowicz, and Agarwal [6]. This scheme uses a fast, fixed-
size hardware implementation for directories. If a directory
overflows, the protocol traps into software, and the software
emulates a larger directory. A similar approach might be
used to respond to transactional cache overflow. Whenever
the transactional cache becomes full, it traps into software
and emulates a larger transactional cache. This approach
has many of the same advantages as the original LimitLESS
scheme: the common case is handled in hardware, and the
exceptional case in software.

Other transactional operations might be useful. For
example, a simple “update-and-commit” operation (like
STORE COND) would be useful for single-word updates. It
might also be convenient for a transaction to be able to
drop an item from its read or write set. Naturally, such an
operation must be used with care.

One could reduce the need for VALIDATE instructions by
guaranteeing that an orphan transaction that applies a LT or
LTX instruction to a variable always observes some value
previously written to that variable. For example, if a shared
variable always holds a valid array index, then it would not
be necessary to validate that index before using it. Such
a change would incur a cost, however, because an orphan
transaction might sometimes have to read the variable’s
value from memory or another processor’s cache.
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5 Simulations

Transactional memory is intended to make lock-free
synchronization as efficient as conventional lock-based
techniques. In this section, we present simulation results
suggesting that transactional memory is competitive with
well-known lock-based techniques on simple benchmarks.
Indeed, transactional memory has certain inherent advan-
tages: for any object that spans more than a single word of
memory, techniques based on mutual exclusion must em-
ploy an explicit lock variable. Because transactional mem-
ory has no such locks, it typically requires fewer memory
accesses.

We modified a copy of the Proteus simulator [5] to
support transactional memory. Proteus is an execution-
driven simulator system for multiprocessors developed by
Eric Brewer and Chris Dellarocas of MIT. The program to
be simulated is written in a superset of C. References to
shared memory are transformed into calls to the simulator,
which manages the cache and charges for bus or network
contention. Other instructions are executed directly, aug-
mented by cycle-counting code inserted by a preprocessor.
Proteus does not capture the effects of instruction caches
or local caches.

We implemented two versions of transactional memory,
one based on Goodman’s snoopy protocol for a bus-based
architecture, and one based on the Chaiken directory pro-
tocol for a (simulated) Alewife machine [1]. Our motive
in choosing these particular protocols was simply ease of
implementation: the Proteus release includes implementa-
tions of both. As noted below, a more complex snoopy
protocol could make spin locks more efficient.

Both simulated architectures use 32 processors. The
regular cache is a direct-mapped cache with 2048 lines
of size 8 bytes, and the transactional cache has 64 8-byte
lines. In both architectures, a memory access (without
contention) requires 4 cycles. The network architecture
uses a two-stage network with wire and switch delays of 1
cycle each.

The ability to commit and abort transactions quickly is
critical to the performance of transactional memory. In
our simulations, each access to the regular or transac-
tional cache, including transaction commit and abort, is
counted as a single cycle. Single-cycle commit requires
that the transactional cache provide logic to reset the trans-
actional tag bits in parallel. Moreover, commit must not
force newly-committed entries back to memory. Instead,
in the implementations simulated here, committed entries
are gradually replaced as they are evicted or invalidated by
the ongoing cache coherence protocol.

We constructed three simple benchmarks, and com-
pared transactional memory against two software mech-
anisms and two hardware mechanisms. The software

shared int counter;

void process(int work)
{

int success = 0, backoff = BACKOFF_MIN;
unsigned wait;

while (success < work) {
ST(&counter, LTX(&counter) + 1);
if (COMMIT()) {

success++;
backoff = BACKOFF_MIN;

}
else {

wait = random() % (01 << backoff);
while (wait--);
if (backoff < BACKOFF_MAX)

backoff++;
}

}
}

Figure 1: Counting Benchmark

typedef struct {
Word deqs;
Word enqs;
Word items[QUEUE_SIZE];

} queue;

unsigned queue_deq(queue *q) {
unsigned head, tail, result;
unsigned backoff = BACKOFF_MIN
unsigned wait;
while (1) {

result = QUEUE_EMPTY;
tail = LTX(&q->enqs);
head = LTX(&q->deqs);

/* queue not empty? */
if (head != tail) {

result =
LT(&q->items[head % QUEUE_SIZE]);

/* advance counter */
ST(&q->deqs, head + 1);

}
if (COMMIT()) break;
/* abort => backoff */
wait = random() % (01 << backoff);
while (wait--);
if (backoff < BACKOFF_MAX)

backoff++;
}
return result;

}

Figure 2: Part of Producer/Consumer Benchmark
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typedef struct list_elem{
/* next to dequeue */
struct list_elem *next;
/* previously enqueued */
struct list_elem *prev;
int value;

} entry;

shared entry *Head, *Tail;

void list_enq(entry* new) {

entry *old_tail;
unsigned backoff = BACKOFF_MIN;
unsigned wait;

new->next = new->prev = NULL;

while (TRUE) {
old_tail = (entry*) LTX(&Tail);
if (VALIDATE()) {

ST(&new->prev, old_tail);
if (old_tail == NULL) {

ST(&Head, new);
} else {

ST(&old_tail->next, new);
}
ST(&Tail, new);
if (COMMIT()) return;

}
wait = random() % (01 << backoff);
while (wait--);
if (backoff < BACKOFF_MAX)

backoff++;
}

Figure 3: Part of Doubly-Linked List Benchmark

mechanisms were (1) test-and-test-and-set (TTS) [30] spin
locks with exponential backoff [3, 28], and (2) software
queueing [3, 17, 27]. The hardware mechanisms were
(1) LOAD LINKED/STORE COND (LL/SC) with exponential
backoff, and (2) hardware queueing [16]. For a single-word
counter benchmark, we ran the LL/SC implementation di-
rectly on the shared variable, while on the others we used
LL/SC to implement a spin lock. Both software mech-
anisms perform synchronization in-line, and all schemes
that use exponential backoff use the same fixed minimum
and maximum backoff durations. We now give a brief
review of these techniques.

A spin lock is perhaps the simplest way to implement
mutual exclusion. Each processor repeatedly applies a
test-and-set operation until it succeeds in acquiring the
lock. As discussed in more detail by Anderson [3], this
naı̈ve technique performs poorly because it consumes ex-
cessive amounts of processor-to-memory bandwidth. On a
cache-coherent architecture, the test-and-test-and-set [30]
protocol achieves somewhat better performance by repeat-
edly rereading the cached value of the lock (generating no
memory traffic), until it observes the lock is free, and then
applying the test-and-set operation directly to the lock in
memory. Even better performance is achieved by introduc-
ing an exponential delay after each unsuccessful attempt
to acquire a lock [3, 27]. Because Anderson and Mellor-
Crummey et al. have shown that TTS locks with expo-
nential backoff substantially outperform conventional TTS
locks on small-scale machines, it is a natural choice for our
experiments.

The LL operation copies the value of a shared variable
to a local variable. A subsequent SC to that variable will
succeed in changing its value only if no other process has
modified that variable in the interim. If the operation does
not succeed, it leaves the shared variable unchanged. The
LL/SC operations are the principal synchronization primi-
tives provided by the MIPS II architecture [29] and Digital’s
Alpha [31]. On a cache-coherent architecture, these oper-
ations are implemented as single-word transactions — a
SC succeeds if the processor retains exclusive access to the
entry read by the LL.

In software queuing, a process that is unable to acquire
a lock places itself on a software queue, thus eliminating
the need to poll the lock. Variations of queue locks have
been proposed by Anderson [3], by Mellor-Crummey and
Scott [27], and by Graunke and Thakkar [17]. Our simula-
tions use the algorithm of Mellor-Crummey and Scott. In
hardware queuing, queue maintenance is incorporated into
the cache coherence protocol itself. The queue’s head is
kept in memory, and unused cache lines are used to hold
the queue elements. The directory-based scheme must also
keep the queue tail in memory. Our simulations use a
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queuing scheme roughly based on the QOSB mechanism
of Goodman et al. [16].

5.1 Counting Benchmark

In our first benchmark (code in Figure 1), each of � pro-
cesses increments a shared counter 216 � � times, where �
ranges from 1 to 32. In this benchmark, transactions and
critical sections are very short (two shared memory ac-
cesses) and contention is correspondingly high. In Figure
4, the vertical axis shows the number of cycles needed to
complete the benchmark, and the horizontal axis shows the
number of concurrent processes. With one exception, trans-
actional memory has substantially higher throughput than
any of the other mechanisms, at all levels of concurrency,
for both bus-based and directory-based architectures. The
explanation is simple: transactional memory uses no ex-
plicit locks, and therefore requires fewer accesses to shared
memory. For example, in the absence of contention, the
TTS spin lock makes at least five references for each in-
crement (a read followed by a test-and-set to acquire the
lock, the read and write in the critical section, and a write to
release the lock). Similar remarks apply to both software
and hardware queueing.

By contrast, transactional memory requires only three
shared memory accesses (the read and write to the counter,
and the commit, which goes to the cache but causes no
bus cycles). The only implementation that outperforms
transactional memory is one that applies LL/SC directly to
the counter, without using a lock variable. Direct LL/SC
requires no commit operation, and thus saves a cache ref-
erence. In the other benchmarks, however, this advantage
is lost because the shared object spans more than one word,
and therefore the only way to use LL/SC is as a spin lock.

Several other factors influence performance. Our im-
plementation of hardware queuing suffers somewhat from
the need to access memory when adjusting the queue at the
beginning and end of each critical section, although this
cost might be reduced by a more sophisticated implemen-
tation. In the bus architecture, the TTS spin lock suffers
because of an artifact of the particular snoopy cache proto-
col we adapted [15]: the first time a location is modified, it
is marked reserved and written back. TTS would be more
efficient with a cache protocol that leaves the location dirty
in the cache.

5.2 Producer/Consumer Benchmark

In the producer/consumer benchmark (code in Figure 2),
� processes share a bounded FIFO buffer, initially empty.
Half of the processes produce items, and half consume
them. The benchmark finishes when 216 operations have

completed. In the bus architecture (Figure 5), all through-
puts are essentially flat. Transactional memory has higher
throughputs than the others, although the difference is not
as dramatic as in the counting benchmark. In the network
architecture, all throughputs suffer somewhat as contention
increases, although the transactional memory implementa-
tions suffers least.

5.3 Doubly-Linked List Benchmark

In the doubly-linked list benchmark (code in Figure 3) �
processes share a doubly-linked list anchored by head and
tail pointers. Each process dequeues an item by removing
the item pointed to by tail, and then enqueues it by threading
it onto the list at head. A process that removes the last item
sets both head and tail to NULL, and a process that inserts
an item into an empty list sets both head and tail to point to
the new item. The benchmark finishes when 216 operations
have completed.

This example is interesting because it has potential con-
currency that is difficult to exploit by conventional means.
When the queue is non-empty, each transaction modifies
head or tail, but not both, so enqueuers can (in principle) ex-
ecute without interference from dequeuers, and vice-versa.
When the queue is empty, however, transactions must mod-
ify both pointers, and enqueuers and dequeuers conflict.
This kind of state-dependent concurrency is not realizable
(in any simple way) using locks, since an enqueuer does
not know if it must lock the tail pointer until after it has
locked the head pointer, and vice-versa for dequeuers. If an
enqueuer and dequeuer concurrently find the queue empty,
they will deadlock. Consequently, our locking implemen-
tations use a single lock. By contrast, the most natural way
to implement the queue using transactional memory per-
mits exactly this parallelism. This example also illustrates
how VALIDATE is used to check the validity of a pointer
before dereferencing it.

The execution times appear in Figure 6. The locking
implementations have substantially lower throughput, pri-
marily because they never allow enqueues and dequeues to
overlap.

5.4 Limitations

Our implementation relies on the assumption that transac-
tions have short durations and small data sets. The longer a
transaction runs, the greater the likelihood it will be aborted
by an interrupt or synchronization conflict4. The larger the
data set, the larger the transactional cache needed, and (per-
haps) the more likely a synchronization conflict will occur.

4The identical concerns apply to current implementations of the
LOAD LINKED and STORE COND instructions [31, Appendix A].
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Figure 4: Counting Benchmark: Bus and Network

Such size and length restrictions are reasonable for applica-
tions that would otherwise have used short critical sections,
but not for applications that would otherwise lock large ob-
jects for a long time (such as navigating a B-link tree with a
large node size). Support for larger and longer transactions
would require more elaborate hardware mechanisms.

The implementation described here does not guarantee
forward progress, relying instead on software-level adap-
tive backoff to reduce the abort rate by spacing out con-
flicting transactions. Our simulations suggest that adaptive
backoff works reasonably well when conflicting transac-
tions have approximately the same duration. If durations
differ, however, then longer transactions will be more likely
to abort. Some kind of hardware queueing mechanism [16]
might alleviate this limitation.

The cache coherence protocols used in our simulations
provide a sequentially consistent memory [24]. A number
of researchers have proposed weaker notions of correct-
ness that permit more efficient implementations. These
alternatives include processor consistency [14], weak con-
sistency [9, 8], release consistency [13], and others5. Most
of these models guarantee that memory will appear to be

5See Gharachorloo et al. [12] for concise descriptions of these models
as well as performance comparisons.

sequentially consistent as long as the programmer executes
a barrier (or fence) instruction at the start and finish of
each critical section. The most straightforward way to pro-
vide transactional memory semantics on top of a weakly-
consistent memory is to have each transactional instruction
perform an implicit barrier. Such frequent barriers would
limit performance. We believe our implementation can be
extended to require barriers only at transaction start, finish,
and validate instructions.

6 Related Work

Transactional memory is a direct generalization of the
LOAD LINKED and STORE COND instructions originally pro-
posed by Jensen et al. [21], and since incorporated into
the MIPS II architecture [29] and Digital’s Alpha [31].
The LOAD LINKED instruction is essentially the same as
LTX, and STORE COND is a combination of ST and COM-
MIT. The LOAD LINKED/STORE COND combination can im-
plement any read-modify-write operation, but it is restricted
to a single word. Transactional memory has the same flex-
ibility, but can operate on multiple, independently-chosen
words.

We are not the first to observe the utility of performing
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Figure 5: Producer/Consumer Benchmark: Bus and Network

atomic operations on multiple locations. For example, the
Motorola 68000 provides a COMPARE&SWAP2 that operates
on two independent locations. Massalin and Pu [25] use
this instruction for lock-free list manipulation in an oper-
ating system kernel. Transactional memory provides more
powerful support for this “lock-free” style of programming.

Other work that uses after-the-fact conflict detection to
recognize violations of desired correctness conditions in-
clude Gharachorloo and Gibbons [11], who propose an
implementation of release consistency that exploits an un-
derlying invalidation-based cache protocol to detect viola-
tions of sequential consistency, and Franklin and Sohi [10],
who propose a hardware architecture that optimistically
parallelizes sequential code at runtime.

Other researchers who have investigated architectural
support for multi-word synchronization include Knight
[23], who suggests using cache coherence protocols to add
parallelism to “mostly functional” LISP programs, and the
IBM 801 [7], which provides support for database-style
locking in hardware. Note that despite superficial similar-
ities in terminology, the synchronization mechanisms pro-
vided by transactional memory and by the 801 are intended
for entirely different purposes, and use entirely different
techniques.

Our approach to performance issues has been heavily

influenced by recent work on locking in multiprocessors,
including work of Anderson [3], Bershad [4], Graunke and
Thakkar [17], and Mellor-Crummey and Scott [27].

7 Conclusions

The primary goal of transactional memory is to make it
easier to perform general atomic updates of multiple in-
dependent memory words, avoiding the problems of locks
(priorityinversion, convoying, and deadlock). We sketched
how it can be implemented by adding new instructions
to the processor, adding a small auxiliary, transactional
cache (without disturbing the regular cache), and making
straightforward changes to the cache coherence protocol.
We investigated transactional memory for its added func-
tionality, but our simulations showed that it outperforms
other techniques for atomic updates. This is primarily be-
cause transactional memory uses no explicit locks and thus
performs fewer shared memory accesses. Since transac-
tional memory offers both improved functionality and bet-
ter performance, it should be considered in future processor
architectures.
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Figure 6: Doubly-Linked List Benchmark: Bus and Network
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