
1

Is Search Really Necessary to Generate
High-Performance BLAS?
Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran,

David Padua, Keshav Pingali, Paul Stodghill

Abstract— A key step in program optimization is the estimation
of optimal values for parameters such as tile sizes and loop
unrolling factors. Traditional compilers use simple analytical
models to compute these values. In contrast, library generators
like ATLAS use global search over the space of parameter values
by generating programs with many different combinations of
parameter values, and running them on the actual hardware
to determine which values give the best performance. It is
widely believed that traditional model-driven optimization can-
not compete with search-based empirical optimization because
tractable analytical models cannot capture all the complexities
of modern high-performance architectures, but few quantitative
comparisons have been done to date.

To make such a comparison, we replaced the global search
engine in ATLAS with a model-driven optimization engine,
and measured the relative performance of the code produced
by the two systems on a variety of architectures. Since both
systems use the same code generator, any differences in the
performance of the code produced by the two systems can
come only from differences in optimization parameter values.
Our experiments show that model-driven optimization can be
surprisingly effective, and can generate code with performance
comparable to that of code generated by ATLAS using global
search.

Index Terms— program optimization, empirical optimization,
model-driven optimization, compilers, library generators, BLAS,
high-performance computing

I. I NTRODUCTION

The sciences do not try to explain, they hardly
even try to interpret, they mainly make models. By
a model is meant a mathematical construct which,
with the addition of certain verbal interpretations,
describes observed phenomena. The justification of
such a mathematical construct is solely and precisely
that it is expected to work.

John Von Neumann
It is a fact universally recognized that current restructuring

compilers do not generate code that can compete with hand-
tuned code in efficiency, even for a simple kernel like matrix
multiplication. This inadequacy of current compilers does
not stem from a lack of technology for transforming high-
level programs into programs that run efficiently on modern
high-performance architectures; over the years, the compiler
community has invented innumerable techniques such as linear
loop transformations [5, 11, 14, 29, 42], loop tiling [27, 28,

This work was supported by NSF grants ACI-9870687, EIA-9972853, ACI-
0085969, ACI-0090217, ACI-0103723, and ACI-012140. K. Yotov, K. Pingali
and P. Stodghill are with Cornell University; X. Li, G. Ren, M. Garzaran and
D. Padua are with University of Illinois at Urbana-Champaign

43] and loop unrolling [4, 32] for enhancing locality and
parallelism. Other work has focused on algorithms for esti-
mating optimal values for parameters associated with these
transformations, such as tile sizes [7, 13, 36] and loop unroll
factors [4]. Nevertheless, performance-conscious programmers
must still optimize their programs manually [15, 19].

The simplest manual approach to tuning a program for a
given platform is to write different versions of that program,
evaluate the performance of these versions on the target plat-
form, and select the one that gives the best performance. These
different versions usually implement the same algorithm, but
differ in the values they use for parameters such as tile
sizes and loop unroll factors. The architectural insights and
domain knowledge of the programmer are used to limit the
number of versions that are evaluated. In effect, the analytical
techniques used in current compilers to derive optimal values
for such parameters are replaced by anempirical searchover
a suitably restricted space of parameter values (by empirical
search, we mean a three step process: (1) generating a version
of the program corresponding to each combination of the
parameters under consideration, (2) executing each version on
the target machine and measuring its performance, and (3)
selecting the version that performs best). This approach has
been advocated most forcefully by Fred Gustavson and his co-
workers at IBM, who have used it for many years to generate
the highly optimized ESSL and PESSL libraries for IBM ma-
chines [34]. Recently, a number of projects such as FFTW [17,
18], PhiPAC [2, 6], ATLAS [1, 41], and SPIRAL [26, 33] have
automated the generation of the different program versions
whose performance must be evaluated. Experience shows that
these library generators produce much better code than native
compilers do on modern high-performance architectures.

Our work was motivated by a desire to understand the
performance gap between the BLAS codes produced by AT-
LAS and by restructuring compilers, with the ultimate goal
of improving the state of the art of current compilers. One
reason why compilers might be at a disadvantage is that they
are general-purpose and must be able to optimize any program,
whereas a library generator like ATLAS can focus on a partic-
ular problem domain. However, this is somewhat implausible
because dense numerical linear algebra, the particular problem
domain of ATLAS, is precisely the area that has been studied
most intensely by the compiler community, and there is an
extensive collection of well-understood transformationsfor
optimizing dense linear algebra programs. Another reason for
the inadequacy of current compilers might be that new trans-
formations, unknown to the compiler community, are required

2

ATLAS Search

Engine

(mmsearch)

Execute

&

Measure

ATLAS MM Code

Generator

(mmcase)

mini-MMM

SourceLS

MFLOPS

MU, NU, KU
NB

FF, IF, NF
FMA

Model Parameter

Estimator

(mmmodel)

ATLAS MM Code

Generator

(mmcase)

LS
MU, NU, KU

NB

FF, IF, NF
FMA

L1Size

NR
LS

FMA

Detect

Hardware

Parameters

mini-MMM

Source

L1Size

NR
L*, |ALUFP|

FMA

Detect

Hardware

Parameters

L1 I-Cache

Fig. 1. Architecture of ATLAS and of Model-driven ATLAS

to produce code of the same quality as the code produced by
ATLAS. Finally, it is possible that the analytical models used
by compilers to estimate optimal values for transformation
parameters are overly simplistic, given the complex hardware
of modern computers, so they are not able to produce good
values for program optimization parameters.

No definitive studies exist to settle these matters. Our
research is the first quantitative study of these issues.

Figure 1 shows our experimental set-up, which makes use
of the original ATLAS system (top of the figure) and a
modified version (bottom of the figure) that uses analytical
models instead of empirical search. Like any system that uses
empirical search, ATLAS has (i) a module that controls the
search, which is used to determine optimal values for code
optimization parameters (mmsearch), and (ii) a module that
generates code, given these values (mmcase). The parameters
used by ATLAS are described in more detail in Section II;
for example,NB is the tile size to be used when optimizing
code for the L1 data cache. In general, there is an unbounded
number of possible values for a parameter likeNB so it
is necessary to bound the size of the search space. When
ATLAS is installed, it first runs a set of micro-benchmarks
to determine hardware parameters such as the capacity of the
L1 data cache and the number of registers. These hardware
parameters are used to bound the search space. The mmsearch
module enumerates points within this bounded search space,
invokes the mmcase module to generate the appropriate code
(denoted by mini-MMM in the figure), runs this code on the
actual machine, and records its execution time. At the end of
the search, the parameter values that gave the best performance
are used to generate the library code. This library is coded in a
simple subset of C, which can be viewed as portable assembly
code, and it is compiled to produce the final executable.

We first studied the code generation module1, and deter-
mined that the code it produces can be viewed as the end

1The description of ATLAS in this paper was arrived at by studying the
ATLAS source code. In case of any discrepancy between this description and
how the ATLAS system is actually implemented, the documentation of the
ATLAS project should be considered to be authoritative [39–41].

result of applying standard compiler transformations to high-
level BLAS codes. As we describe in Section II, the code
produced by ATLAS is similar to what we would get if we
applied cache tiling, register tiling, and operation scheduling
to the standard three-loop matrix multiplication code. This
exercise ruled out the possibility that ATLAS incorporated
some transformation, unknown to the compiler community,
that was critical for obtaining good performance. We then
modified ATLAS by replacing the search module, described
in more detail in Section III, with a module (mmmodel) that
uses standard analytical models to estimate optimal values
for the optimization parameters, as described in Section IV.
Since both ATLAS and the modified ATLAS use the same
code generator, we are assured that any difference in the
performance of the generated code results solely from different
choices for optimization parameter values. In Section V,
we present experimental results on ten different platforms,
comparing

• the time spent to determine the parameter values,
• the values of the parameters, and
• the relative performance of generated code.

Our results show that on all ten platforms, a relatively
simple and very intuitive model is able to estimate near-
optimal values for the optimization parameters used by the
ATLAS Code Generator. We conclude in Section VI with a
discussion of our main findings, and suggest future directions
for research.

One feature of ATLAS is that it can make use of hand-
tuned BLAS routines, many of which are included in the
ATLAS distribution. When ATLAS is installed on a machine,
these hand-coded routines are executed and evaluated. If the
performance of one of these hand-coded routines surpasses
the performance of the code generated by the ATLAS Code
Generator, the hand-coded routine is used to produce the
library. For example, neither the ATLAS Code Generator nor
the C compilers on the Pentium IV exploit the SSE2 vector
extensions to the x86 instruction set, so ATLAS-generated
matrix multiplication code on the Pentium IV runs at around

3

1.5 GFLOPS. However, the matrix multiplication routine in
the library produced by ATLAS runs at 3.3 GFLOPS because
it uses carefully hand-coded kernels, contributed by expert
programmers and part of the ATLAS distribution, which use
these vector extensions.

Our concern in this paper is not with handwritten code, but
with the code produced by the ATLAS Code Generator and
with the estimation of optimal values for the parameters that
are inputs to the code generator. To make clear distinctions,
we use the following terminology in the rest of this paper.

• ATLAS CGw/S:This refers to the ATLAS system in
which all code is produced by theATLAS Code Generator
with Searchto determine parameter values. No hand-
written, contributed code is allowed.

• ATLAS Model:This refers to the modified ATLAS system
we built in which all code is produced by the ATLAS
Code Generator, using parameter values produced from
analytical models.

• ATLAS Unleashed:This refers to the complete ATLAS
distribution which may use hand-written codes and prede-
fined parameter values (architectural defaults) to produce
the library. Where appropriate, we include, for complete-
ness, the performance graphs for the libraries produced
by ATLAS Unleashed.

II. ATLAS CODE GENERATOR

In this section, we use the framework of restructuring
compilers to describe the structure of the code generated by
the ATLAS Code Generator. While reading this description, it
is important to keep in mind that ATLAS is not a compiler.
Nevertheless, thinking in these terms helps clarify the signifi-
cance of the code optimization parameters used in ATLAS.

We concentrate on matrix-matrix multiplication (MMM),
which is the key routine in the BLAS. Naı̈ve MMM code
is shown in Figure 2. In this, and all later codes, we use the
MATLAB notation [First : Step : Last] to represent the set
of all integers betweenFirst andLast in steps ofStep.

for i ∈ [0 : 1 : N − 1]

for j ∈ [0 : 1 : M − 1]

for k ∈ [0 : 1 : K − 1]

Cij = Cij + Aik × Bkj

Fig. 2. Naı̈ve MMM Code

A. Memory Hierarchy Optimizations

The code shown in Figure 2 can be optimized for locality
by blocking for the L1 data cache and registers. Blocking
is an algorithmic transformation that converts the matrix
multiplication into a sequence of small matrix multiplications,
each of which multiplies small blocks of the original matrices.
Blocking matrix multiplication for memory hierarchies was
discussed by McKellar and Coffman as early as 1969 [31]. The
effect of blocking can be accomplished by a loop transforma-
tion called tiling, which was introduced by Wolfe in 1987 [43].

• Optimization for the L1 data cache:

ATLAS implements an MMM as a sequence ofmini-
MMMs, where each mini-MMM multiplies sub-matrices
of sizeNB×NB. NB is an optimization parameter whose
value must be chosen so that the working set of the mini-
MMM fits in the cache.
In the terminology of restructuring compilers, the triply-
nested loop of Figure 2 is tiled with tiles of sizeNB ×
NB × NB, producing anouter and aninner loop nest.
For the outer loop nest, code for both the JIK and IJK
loop orders are implemented. When the MMM library
routine is called, it uses the shapes of the input arrays to
decide which version to invoke, as described later in this
section. For the inner loop nest, only the JIK loop order
is used, with(j′, i′, k′) as control variables. This inner
loop nest multiplies sub-matrices of sizeNB × NB, and
we call this computation amini-MMM.

• Optimization for the register file: ATLAS represents each
mini-MMM into a sequence ofmicro-MMMs, where each
micro-MMM multiplies anMU × 1 sub-matrix ofA by
a 1 × NU sub-matrix ofB and accumulates the result
into an MU × NU sub-matrix ofC. MU and NU are
optimization parameters that must be chosen so that
a micro-MMM can be executed without floating-point
register spills. For this to happen, it is necessary that
MU + NU + MU × NU ≤ NR, whereNR is the number
of floating-point registers.
In terms of restructuring compiler terminology, the
(j′, i′, k′) loops of the mini-MMM from the previous step
are tiled with tiles of sizeNU × MU × KU , producing
an extra (inner) loop nest. The JIK loop order is chosen
for the outer loop nest after tiling, and the KJI loop order
for the loop nest of the mini-MMM after tiling.
The resulting code after the two tiling steps is shown in
Figure 3. To keep this code simple, we have assumed
that all step sizes in these loops divide the appropriate
loop bounds exactly (soNB divides M , N , and K,
etc.). In reality, code should also be generated to handle
the fractional tiles at the boundaries of the three arrays;
we omit this clean-upcode to avoid complicating the
description. The strategy used by ATLAS to copy blocks
of the arrays into contiguous storage is discussed later in
this section. Figure 4 is a pictorial view of a mini-MMM
computation within which a micro-MMM is shown using
shaded rectangles. In this figure, the values assigned to
variable K are produced by executing the twofor loops
in Figure 3 corresponding to indicesk′ andk′′.

To perform register allocation for the array variables ref-
erenced in the micro-MMM code, ATLAS uses techniques
similar to those presented in [8]: the micro-MMM loop nest
(j′′, i′′) in Figure 3 is fully unrolled, producingMU×NU mul-
tiply and add statements in the body of the middle loop nest. In
the unrolled loop body, each array element is accessed several
times. To enable register allocation of these array elements,
ATLAS uses scalar replacement [9] to introduce a scalar
temporary for each element ofA, B, andC that is referenced in
the unrolled micro-MMM code, and replaces array references
in the unrolled micro-MMM code with references to these

4

// MMM loop nest (j, i, k)

// copy full A here

for j ∈ [1 : NB : M]

// copy a panel of B here

for i ∈ [1 : NB : N]

// possibly copy a tile of C here

for k ∈ [1 : NB : K]

// mini-MMM loop nest (j′, i′, k′)

for j′ ∈ [j : NU : j + NB − 1]

for i′ ∈ [i : MU : i + NB − 1]

for k′ ∈ [k : KU : k + NB − 1]

for k′′ ∈ [k′ : 1 : k′ + KU − 1]

// micro-MMM loop nest (j′′, i′′)

for j′′ ∈ [j′ : 1 : j′ + NU − 1]

for i′′ ∈ [i′ : 1 : i′ + MU − 1]

Ci′′j′′ = Ci′′j′′ + Ai′′k′′ × Bk′′j′′

Fig. 3. MMM tiled for L1 data cache and Registers

B

NB

N
B

A C

K

M
U

NU

K

Fig. 4. mini-MMM and micro-MMM

scalars. Appropriate assignment statements are introduced to
initialize the scalars corresponding toA and B elements. In
addition, assignment statements are introduced before and
after the k′ loop to initialize the scalars corresponding to
C elements, and to write the values back into the array
respectively. It is expected that the back-end compiler will
allocate floating-point registers for these scalars.

B. Pipeline scheduling

The resulting straight-line code in the body of thek′′ loop
is scheduled to exploit instruction-level parallelism. Note that
the operations in thek′′ loop are theMU +NU loads ofA and
B elements required for the micro-MMM, and the correspond-
ing MU × NU multiplications and additions. On hardware
architectures that have a fused multiply-add instruction,the
scheduling problem is much simpler because multiplies and
adds are executed together. Therefore, we only discuss the
more interesting case when a multiply-add instruction is not
present. An optimization parameterFMA tells the code
generator whether to assume that a fused multiply-add exists.
The scheduling of operations can be described as follows.

• Construct two sequences of length(MU ×NU), one con-
taining the multiply operations (we will denote them by
mul1, mul2, . . . , mulMU×NU

) and the other containing
the add operations (we will denote them byadd1, add2,
. . . , addMU×NU

).
• Interleave the two sequences as shown below to create a

single sequence that is obtained by skewing the adds by
a factor ofLs, whereLs is an optimization parameter.
Intuitively, this interleaving separates most dependent
multiplies and adds by2×Ls−1 independent instructions
to avoid stalling the processor pipeline.

mul1
mul2
· · ·
mulLs

add1

mulLs+1

add2

mulLs+2

· · ·
mulMU×NU−1

addMU×NU−Ls

mulMU×NU

addMU×NU−Ls+1

addMU×NU−Ls+2

· · ·
addMU×NU

• Inject the MU + NU loads of the elements ofA and
B into the resulting sequence of arithmetic operations
by scheduling a block ofIF (Initial Fetch) loads in the
beginning and blocks ofNF loads thereafter as needed.
IF andNF are optimization parameters.

• Unroll the k′′ loop completely. The parameterKU must
be chosen to be large enough to reduce loop overhead,
but not so large that the body of thek′ loop overflows
the L1 instruction cache.

• Reorganize thek′ loop to enable the target machine
to overlap the loads from one iteration with arithmetic
operations from previous iterations. Techniques for ac-
complishing this are known as software pipelining or
modulo scheduling [35].

Note that skewing of dependent adds and multiplies in-
creases register pressure; in particular, the following inequality
must hold to avoid register spills (that is, saving in memory
the value stored in a processor register):

MU × NU + MU + NU + Ls ≤ NR (1)

C. Additional details

There are several details we have not discussed so far.

• ATLAS considers a primitive form of L2 cache tiling,
driven by a parameter calledCacheEdge. ATLAS em-
pirically finds the best value ofCacheEdge and uses it
to computeKP , based on Inequality 2.

2 × KP × NB + N2
B ≤ CacheEdge (2)

5

KP is further trimmed to be a multiple ofNB. The
computed value ofKP is used to block theK dimension
of the original problem for one additional level of the
memory hierarchy. We will not discussCacheEdge and
KP in further detail as they are outside the scope of the
paper.

• ATLAS chooses the outermost loop order (shown as JIK
in Figure 3) during runtime. This technique is known as
versioning, because it requires both versions of the code
to be compiled in the library.
The decision of which loop order to choose is based on
the size of matricesA andB. If A is smaller thanB (N <

M), ATLAS chooses the JIK loop order. This guarantees
that if A fits completely in L2 or higher cache level, it
is reused successfully by the loop nest. Similarly, ifB is
the smaller matrix (M < N), ATLAS chooses the IJK
loop order.
For brevity, we consider only the JIK loop order in the
rest of the paper.

• Unless the matrices are too small or too large, ATLAS
copies tiles of matricesA, B and C to sequential mem-
ory to reduce the number of conflict misses and TLB
misses during the execution of a mini-MMM. Copying
is performed in a manner that allows the copied tiles to
be reused by different mini-MMMs. The comments in
Figure 3 and the discussion below explain how this goal
is achieved for the JIK loop order.

– Copy all tiles of A before the beginning of the
outermostj loop. This is necessary as these tiles
are fully reused ineachiteration of thej loop.

– Copy all tiles from thejth vertical panel ofB before
the beginning of thei loop. This is necessary as this
panel is fully reused byeachiteration of thei loop.

– The single (i, j) tile of C is copied before the
beginning of thek loop if KP

NB

≥ 12. This may
reduce TLB misses which may be beneficial since
this tile is reused byeach iteration of thek loop,
provided that the cost of copying the tile ofC to a
temporary buffer and back, can be amortized by the
computation (large enoughKP).

If the matrices are very small or if there is insufficient
memory for copying tiles, the cost of copying might out-
weigh the benefits of reducing conflict misses during the
computation. Therefore, ATLAS generates non-copying
versions of mini-MMM as well, and decides at runtime
which version to use. Without copying, the number of
conflict misses and TLB misses may rise, so it makes
sense to use a smaller tile size for the non-copying mini-
MMM. In ATLAS, this tile size is another optimization
parameter calledNCNB (non-copyingNB). Roughly
speaking, the non-copy version is used if (i) the amount
of computation is less than some threshold (M ×N ×K

in Figure 2 is less than some threshold), and (ii) at least
one dimension of one of the three matrices is smaller than
3×NCNB. The non-copy version is used also when there
is insufficient memory to perform the copying.

D. Discussion

Table I lists the optimization parameters for future reference.

Name Description
NB L1 data cache tile size
NCNB L1 data cache tile size for non-copying version
MU , NU Register tile size
KU Unroll factor for k′ loop
Ls Latency for computation scheduling
FMA 1 if fused multiply-add available, 0 otherwise
FF , IF , NF Scheduling of loads

TABLE I

SUMMARY OF OPTIMIZATION PARAMETERS

It is intuitively obvious that the performance of the gener-
ated mini-MMM code suffers if the values of the optimization
parameters in Table I are too small or too large. For example,if
MU andNU are too small, theMU×NU block of computation
instructions might not be large enough to hide the latency of
the MU + NU loads. On the other hand, if these parameters
are too large, register spills happen. Similarly, if the value of
KU is too small, there is more loop overhead, but if this value
is too big, the code in the body of thek′ loop will overflow
the instruction cache. The goal now is to determine optimal
values of these parameters for obtaining the best mini-MMM
code.

III. E MPIRICAL OPTIMIZATION IN ATLAS

ATLAS performs a global search to determine optimal
values for the optimization parameters listed in Table I. In
principle, the search space is unbounded because most of the
parameters, such asNB, are integers. Therefore, it is necessary
to bound the search space, using parameters of the machine
hardware; for example,MU and NU , the dimensions of the
register tile, must be less than the number of registers.

Since ATLAS is self-tuning, it does not require the user to
provide the values of such machine parameters; instead, it runs
simple micro-benchmarks to determine approximate values for
these parameters. It then performs a global search, using the
machine parameter values to bound the search space.

A. Estimating machine parameters

The machine parameters measured by ATLAS are the
following.

• C1: the size of L1 data cache.
• NR: the number of floating-point registers.
• FMA: the availability of a fused multiply-add instruc-

tion.
• Ls: although this is not a hardware parameter per se,

it is directly related to the latency of floating point
multiplication, as explained in Section II-B. ATLAS
measures this optimization parameter directly using a
micro-benchmark.

The micro-benchmarks used to measure machine parameters
are independent of matrix multiplication. For example, the
micro-benchmark for estimatingC1 is similar to the one
discussed in Hennessy and Patterson [23].

6

Two other machine parameters are critical for performance:
(i) the L1 instruction cache size, and (ii) the number of
outstanding loads that the hardware supports. ATLAS does not
determine these explicitly using micro-benchmarks; instead,
they are considered implicitly during the optimization of
matrix multiplication code. For example, the size of the L1
instruction cache limits theKU parameter in Figure 3. Rather
than estimate the size of the instruction cache directly by
running a micro-benchmark and using that to determine the
amount of unrolling, ATLAS generates a suite of mini-MMM
kernels with differentKU values, and selects the kernel that
achieves best performance.

B. Global search for optimization parameter values

To find optimal values for the optimization parameters in
Table I, ATLAS usesorthogonal line search, which finds
an approximation to the optimal value of a functiony =
f(x1, x2, . . . , xn), ann-dimensional optimization problem, by
solving a sequence ofn 1-dimensional optimization problems
corresponding to each of then parameters. When optimizing
the value of parameterxi, it uses reference values for para-
meters (xi+1, xi+2, . . . , xn) that have not yet been optimized.
Orthogonal line search is heuristic because it does not neces-
sarily find the optimal value even for a convex function, but
with luck, it might come close.

To specify an orthogonal line search, it is necessary to
specify (i) the order in which the parameters are optimized,(ii)
the set of possible values considered during the optimization of
each parameter, and (iii) the reference value used for parameter
k during the optimization of parameters1, 2, . . . , k − 1.

The optimization sequence used in ATLAS is the following.

1) Find bestNB.
2) Find bestMU andNU .
3) Find bestKU .
4) Find bestLs.
5) Find bestFF , IF , andNF .
6) Find bestNCNB: a non-copy version ofNB.
7) Find best clean-up codes.

We now discuss each of these steps in greater detail.
1) Find bestNB: In this step, ATLAS generates a number

of mini-MMMs for matrix sizesNB × NB where NB is a
multiple of 4 that satisfies the following inequality:

16 ≤ NB ≤ min
(

80,
√

C1

)

(3)

The reference values ofMU andNU are set to the values
closest to each other that satisfy (1). For each matrix size,
ATLAS tries two extreme cases forKU – no unrolling (KU =
1) and full unrolling (KU = NB).

The NB value that produces highest MFLOPS is chosen
as “bestNB” value, and it is used from this point on in all
experiments as well as in the final versions of the optimized
mini-MMM code.

2) Find bestMU and NU : This step is a straightforward
search that refines the reference values ofMU and NU that
were used to find the bestNB. ATLAS tries all possible
combinations ofMU andNU that satisfy inequality (1). Cases

whenMU or NU is 1 are treated specially. A test is performed
to see if1× 9 unrolling or9× 1 unrolling is better than3× 3
unrolling. If not, unrolling factors of the form1×U andU ×1
for values ofU greater than3 are not checked.

3) Find bestKU : This step is another simple search. Unlike
MU andNU , KU does not depend on the number of available
registers, so it can be made as large as desired without causing
register spills. The main constraint is instruction cache size.
ATLAS tries values forKU between4 and NB

2 as well
as the special values1 and NB. The value that gives best
performance (based onNB, MU andNU as determined from
the previous steps) is declared the optimal value forKU .

4) Find bestLs: In this step, ATLAS usesLs values in
the interval[1, 6] to schedule the computations in the micro-
MMM of Figure 3 to determine the best choice forLs. It
also ensures that the chosen value dividesMU ×NU ×KU to
facilitate instruction scheduling.

5) Find bestFF , IF , andNF : In this step, ATLAS searches
for the values ofFF , IF and NF . First, ATLAS determines
the value ofFF (0 or 1). Then, it searches for the best value
of the pair (IF , NF) whereIF is in the interval [2,MU+NU]
andNF is in the interval [1,MU+NU -IF].

6) Find bestNCNB: For the non-copying version of mini-
MMM, ATLAS uses the same values ofMU , NU , FF , IF , and
NF that it uses for the copying version. Without copying, the
likelihood of conflict misses is higher, so it makes sense to
use a smaller L1 cache tile size than in the version of mini-
MMM that performs copying. ATLAS searches for an optimal
value ofNCNB in the range[NB : −4 : 4]. We would expect
performance to increase initially as the tile size is decreased,
but decrease when the tile size becomes too small. ATLAS
terminates the search when the performance falls by 20% or
more from the best performance it finds during this search.
Finally, some restricted searches for better values ofKU and
Ls are done.

7) Find best clean-up codes:If the tile size is not a multiple
of the original matrix size, there may be left-over rows and
columns, at the boundaries of the matrices, forming fractional
tiles. To handle these fractional tiles, ATLAS generates clean-
up code – a special mini-MMM in which one or more of the
dimensions of the three tiles is smaller thanNB. For M and
N clean-up only the corresponding dimension is smaller than
NB, while for K cleanup, any of the three dimensions can be
smaller thanNB.

For example, ATLAS generatesK clean-up codes as fol-
lows. For each value ofL, representing the size of theK
dimension, starting withL = NB − 1 and going down, it
generates a specialized version of the mini-MMM code in
which some of the loops are fully unrolled. Full unrolling
is possible because the shapes of the operands are completely
known. When the performance of the general version falls
within 1% of the performance of the current specialized
version, the generation process is terminated. The currentL is
declared to be theCrossover Point. At runtime, the specialized
versions are invoked when the dimension of the left-over tile
is greater thanL, while the general version is invoked for tile
sizes smaller thanL.

For M and N clean-up ATLAS produces only a general

7

version, as these are outer loops in the outermost loop nest
in Figure 3 and they are not as crucial to performance asK

clean-up is. The use of clean-up code in ATLAS is discussed
in more detail in [39].

C. Discussion

In optimization problems, there is usually a trade-off be-
tween search time and the quality of the solution. For example,
we can refine the parameters found by ATLAS by repeating the
orthogonal line search some number of times, using the values
determined by one search as the reference values for the next
search. It is also possible to use more powerful global search
algorithms like simulated annealing. However, the potential for
obtaining better solutions must be weighed carefully against
the increase in installation time. We will address this point in
the conclusions.

IV. M ODEL-BASED OPTIMIZATION

In this section, we present analytical models for estimat-
ing optimal values for the parameters in Table I. To avoid
overwhelming the reader, we first present models that ignore
interactions between different levels of the memory hierarchy
(in this case, L1 data cache and registers). Then, we refine the
models to correct for such interactions.

A. Estimating hardware Parameters

Model-based optimization requires more machine parame-
ters than the ATLAS approach because there is no search. The
hardware parameters required by our model are as follows.

• C1, B1: the capacity and the line size of the L1 data
cache.

• CI : The capacity of the L1 instruction cache.
• L×: hardware latency of the floating-point multiply in-

struction
• |ALUFP |: number of floating-point functional units
• NR: the number of floating-point registers.
• FMA: the availability of a fused multiply-add instruc-

tion.

Empirical optimizers use the values of machine parameters
only to bound the search space, so approximate values for
these parameters are adequate. In contrast, analytical models
require accurate values for these parameters. Therefore, we
have developed a tool called X-Ray [44], which accurately
measures these values.

B. EstimatingNB

We present our model for estimatingNB using a sequence
of refinements for increasingly complex cache organizations.
We start with the mini-MMM code in Figure 5, and then adjust
the model to take register tiling into account.

The goal is to find the value ofNB that optimizes the use
of the L1 data cache. First, we consider a simple cache of
capacityC1, which is fully-associative with optimal replace-
ment policy and unit line-size. There are no conflict misses,
and spatial locality is not important.

for j′ ∈ [0 : 1 : NB − 1]

for i′ ∈ [0 : 1 : NB − 1]

for k′ ∈ [0 : 1 : NB − 1]

Ci′j′ = Ci′j′ + Ai′k′ × Bk′j′

Fig. 5. Schematic Pseudo-Code for mini-MMM

The working set in memory of the mini-MMM loop nest in
Figure 5 consists of threeNB × NB tiles, one from each of
the matricesA, B, andC. For the rest of this section, we will
refer to these tiles just asA, B, andC. This working set fits
entirely in the cache if Inequality (4) holds.

3N2
B ≤ C1 (4)

A more careful analysis shows that it is not actually neces-
sary for all threeNB × NB blocks to reside in the cache for
the entire duration of the mini-MMM computation. Consider
the mini-MMM code shown in Figure 5. Becausek′ is the
innermost loop, elements ofC are computed in succession;
once a given element ofC has been computed, subsequent
iterations of the loop nest do not touch that location again.
Therefore, with this loop order, it is sufficient to hold a single
element ofC in the cache, rather than the entire array. The
same reasoning shows that it is sufficient to hold a single
column ofB in the cache. Putting these facts together, we see
that with this loop order, there will be no capacity misses if
the cache can hold all ofA, a single column ofB, and a single
element ofC. This leads to Inequality (5).

N2
B + NB + 1 ≤ C1 (5)

1) Correcting for non-unit line size:In reality, caches have
non-unit line size. Assume that the line size isB1. If the
three tiles are stored in column major order, bothB andC are
walked by columns andA is in cache for the entire duration
of the mini-MMM. This leads to the refined constraint shown
in Inequality (6).

⌈

N2
B

B1

⌉

+

⌈

NB

B1

⌉

+ 1 ≤ C1

B1
(6)

2) Correcting for LRU replacement policy:We can further
relax the restrictions of our cache organization to allow for
Least Recently Used (LRU) replacement instead of optimal
replacement. To determine the effects of LRU replacement
on the optimal tile sizeNB, we must examine the history of
memory accesses performed by the loop nest. This analysis is
in the spirit of Mattson et.al. [30], who introduced the notions
of stack replacement and stack distance.

We start with the innermost loop of the mini-MMM loop
nest. A single iteration〈j, i, k〉 of this loop touches elements

Aik; Bkj ; Cij ;

where the most recently accessed element is written rightmost
in this sequence.

Extending this analysis to the middle loop, we see that the
sequence of memory access for a given value of the outer loop
indices 〈j, i〉 is the following (as before, the most recently
accessed element is rightmost):

8

Ai0; B0j ; Cij ; Ai1; B1j ; Cij ; . . . ; Ai,NB−1; BNB−1,j; Cij ;

Note that the locationCij is touched repeatedly, so the
corresponding history of memory accesses from least recently
accessed to most recently accessed is the following:

Ai0; B0j ; Ai1; B1j ; . . . ; Ai,NB−1; BNB−1,j ; Cij ;

Extending this to a single iterationj of the outermost loop,
we see that the sequence of memory accesses is the following
(in left-to-right, top-to-bottom order):

A00; B0j ; . . . A0,NB−1; BNB−1,j; C0j ;
A10; B0j ; . . . A1,NB−1; BNB−1,j; C1j ;

...
ANB−1,0; B0j ; . . . ANB−1,NB−1; BNB−1,j ; CNB−1,j ;

Note that the column ofB is reusedNB times, and thus the
corresponding history of memory accesses from least recently
accessed to most recently accessed is

A00; . . . A0,NB−1; C0j ;
A10; . . . A1,NB−1; C1j ;

...
ANB−1,0; B0j ; . . . ANB−1,NB−1; BNB−1,j ; CNB−1,j ;

We do not want to evict the oldest element of this history
(A00) because, as we discussed before,A is completely reused
in all iterations of the outermost loop. Therefore we need to
chooseNB is such a way that this whole history fits in the
cache.

Furthermore, after thejth iteration of the outermost loop
is complete, thej + 1st iteration will bring in the j + 1st

column of B, which participates in an inner product with all
the rows ofA. Because of LRU, this new column will not be
able to “optimally” replace the oldjth column ofB, since the
old column ofB has been used quite recently. For the same
reason the new element ofC, namelyC0,j+1, will not be able
to optimally replace the oldC0j . To account for this, we need
extra storage for an extra column ofB and an extra element
of C.

Putting this all together, we see that if the cache is fully-
associative with capacityC1, line sizeB1 and has an LRU
replacement policy, we need to cache all ofA, two columns of
B and a column plus an element ofC. This result is expressed
formally in Inequality (7).

⌈

N2
B

B1

⌉

+ 3

⌈

NB

B1

⌉

+ 1 ≤ C1

B1
(7)

Finally, to model the mini-MMM code of Figure 3, which
includes register tiling, we need to take into account inter-
actions between the register file and the L1 cache. Thus far,
we implicitly assumed that the computation works directly
on the scalar elements of the tiles. As Figure 3 shows, the
mini-MMM loop nest actually works on register tiles. We
refine Inequality (7) by recognizing that considerations of
rows, columns, and elements ofA, B, andC respectively must

be replaced by considerations of horizontal panels, vertical
panels, and register tiles instead. Taking this into account, we
get Inequality (8).

⌈

N2
B

B1

⌉

+ 3

⌈

NB × NU

B1

⌉

+

⌈

MU

B1

⌉

× NU ≤ C1

B1
(8)

3) Correcting to avoid micro-MMM clean-up code:Note
that estimatingNB using Inequality (7), it is possible to get a
value forNB which is not an exact multiple ofMU andNU .
This requires the generation of clean-up code for fractional
register tiles at the boundaries of mini-MMM tiles. This com-
plicates code generation, and generally lowers performance.
We avoid these complications by trimming the value ofNB

determined from Inequality (7) so that it becomes a multiple
of MU andNU . The ATLAS Code Generator requiresNB to
be an even integer, so we enforce this constraint as well.

If N ′

B is the tile size obtained by using Inequality (7), we

setNB to the value
⌊

N ′

B

lcm(MU ,NU ,2)

⌋

× lcm (MU , NU , 2).
Note this requires that the value ofNB be determined after

the values ofMU andNU have been determined as described
below.

4) Other cache organizations:If the cache organization
is not fully-associative, conflict misses must be taken into
account. Although there is some work in the literature on
modeling conflict misses [10, 12], these models are not com-
putationally intractable. Therefore, we do not model conflict
misses, although there are some general remarks we can make.

If A, B, and C are copied to3N2
B contiguous storage

locations, Inequality (4) can also be viewed as determiningthe
largest value ofNB for which there are no capacity or conflict
misses during the execution of the mini-MMM inany cache
organization. Although ATLAS usually copies tiles, the code
in Figure 3 shows that the three copied tiles are not necessarily
adjacent in memory. However, if the set-associativity of the L1
data cache is at least 3, there will be no conflict misses.

Inequality (5) determines the largestNB for which there are
no capacity misses during the execution of the mini-MMM,
although there may be conflict misses if the cache is direct-
mapped or set-associative. Notice that these conflict misses
arise even if data from all three matrix tiles is copied into
contiguous memory, because the amount of the data touched
by the program is more than the capacity of the cache, and
some elements will map to the same cache set.

C. EstimatingMU and NU

One can look at the register file as a software-controlled,
fully-associative cache with unit line size and capacity equal
to the number of available registersNR. Therefore we can use
a variant of Inequality (5), to estimate the optimal register file
tile size value.

The ATLAS Code Generator uses the KIJ loop order to tile
for the register file, and thus we need to cache the complete
MU ×NU tile of C, an1×NU row of B and a single element
of A. Therefore the analog of Inequality (5) for registers is
Inequality (9), shown below.

MU × NU + NU + 1 ≤ NR (9)

9

Because the register file is software controlled, the ATLAS
Code Generator is free to allocate registers differently than
Inequality (9) prescribes. In fact, as discussed in SectionII,
it allocates to registers aMU × 1 column ofA, rather than a
single element ofA. Furthermore, it needsLs registers to store
temporary values of multiplication operations to schedulefor
optimal use of the floating point pipelines. Taking into account
these details, we refine Inequality (9) to obtain Inequality(10).

MU × NU + NU + MU + Ls ≤ NR (10)

NR is a hardware parameter, which is measured by the
micro-benchmarks. The value of the optimization parameter
Ls is estimated as discussed in Section IV-E. Therefore the
only unknowns in Inequality (10) areMU and NU . We
estimate their values using the following procedure.

• Let MU = NU = u. Solve Inequality (10) foru.
• Let MU = max (u, 1). Solve Inequality (10) forNU .
• Let NU = max (NU , 1)
• Let 〈MU , NU 〉 = 〈max (MU , NU) , min (MU , NU)〉.

D. EstimatingKU

Although KU is structurally similar toMU and NU , it is
obviously not limited by the size of the register file. Therefore
the only practical limit forKU is imposed by the size of the
instruction cache. To avoid micro-MMM clean-up code, we
trim KU so thatNB is a multiple ofKU . Note that ifKU =
NB it is left unchanged by this update.

Therefore our model for estimatingKU is to unroll the
loop as far as possible within the size constraints of the
L1 instruction cache, while ensuring thatKU divides NB.
On most platforms, we found that the loop can be unrolled
completely (KU = NB).

E. EstimatingLs

Ls is the optimization parameter that represents the skew
factor the ATLAS Code Generator uses when scheduling
dependent multiplication and addition operations for the CPU
pipeline.

Studying the description of the scheduling in Section II,
we see that the schedule effectively executesLs independent
multiplications andLs − 1 independent additions between a
multiplicationmuli and the corresponding additionaddi. The
hope is that these2×Ls−1 independent instructions will hide
the latency of the multiplication. If the floating-point units are
fully pipelined and the latency of multiplication isL×, we get
the following inequality, which can be solved to obtain a value
for Ls.

2 × Ls − 1 ≥ L× (11)

On some machines, there are multiple floating-point units.
If |ALUFP | is the number of floating-point ALUs, Inequal-
ity (11) gets refined as follows.

2 × Ls − 1

|ALUFP |
≥ L× (12)

Solving Inequality (12) forLs, we obtain Inequality (13).

Ls =

⌈

L× × |ALUFP | + 1

2

⌉

(13)

Of the machines in our study, only the Intel Pentium
machines have floating-point units that are not fully pipelined;
in particular, multiplications can be issued only once every
2 cycles. Nevertheless, this does not introduce any error
in our model because ATLAS does not schedule back-to-
back multiply instructions, but intermixes them with additions.
Therefore, Inequality (11) holds.

F. Estimating other parameters

Our experience shows that performance is insensitive to the
values ofFF , IF , andNF optimization parameters. Therefore
we setFF = 1(true), IF = 2 andNF = 2.

FMA is a hardware parameter, independent of the specific
application. If our micro-benchmarks determine that the archi-
tecture supports a fused multiply-add instruction, we set this
parameter appropriately.

Finally, we setNCNB = NB. That is, we use the same
tile size for the non-copying version of mini-MMM as we
do for the copying version. In our experiments, ATLAS
always decided to use the copying version of mini-MMM2,
so the value of this parameter was moot. A careful model
for NCNB is difficult because it is hard to model conflict
misses analytically. There is some work on this in the compiler
literature but most of the models are based on counting
integer points within certain parameterized polyhedra and
appear to be intractable [10, 12]. Fraguela et. al. have proposed
another approach to modeling conflict misses when the sizes
of matrices are known [16]. In some compilers, this problem
is dealt with heuristically by using theeffectivecache capacity,
defined to be a fraction (such as1

3) of the actual cache capacity,
when computing the optimal tile size. In our context, we
could setNCNB to the value determined from Inequality (7)
with C1 replaced with C1

3 . We recommend this approach
should it become necessary to use a smaller tile size on some
architectures.

G. Discussion

We have described a fairly elaborate sequence of models
for estimating the optimal value ofNB. In practice, the value
found by using Inequality (6), a relatively simple model, is
close to the value found by using more elaborate models such
as Inequalities (7) and (8).

V. EXPERIMENTAL RESULTS

Models are to be used, not believed.
H. Theil ‘Principles of Econometrics’

In this section, we present the results of running ATLAS
CGw/s and ATLAS Model on ten common platforms. For all
experiments we used the latest stable version of ATLAS, which
as of this writing is 3.6.0. Where appropriate, we also present

2Using the non-copy version is mainly beneficial when the matrices
involved in the computation are either very small or are longand skinny [37].

10

numbers for ATLAS Unleashed and vendor supported, native
BLAS.

We did our experiments on the following platforms.

• RISC, Out-of-order

– DEC Alpha 21264
– IBM Power 3
– IBM Power 4
– SGI R12K

• RISC In-order

– Sun UltraSPARC IIIi
– Intel Itanium2

• CISC, Out-of-order

– AMD Opteron 240
– AMD Athlon MP
– Intel Pentium III
– Intel Pentium 4

For each platform, we present the following results.

• Times:

– X-Ray: time taken by X-Ray to determine hardware
parameters.

– ATLAS Micro-benchmarks: time taken by the micro-
benchmarks in ATLAS to determine hardware para-
meters.

– ATLAS Optimization Parameter Search: time taken
by global search in ATLAS for determining opti-
mization parameter values.

We do not report the actual installation time of any of the
versions of ATLAS because most of this time is spent in
optimizing other BLAS kernels, generating library code,
building object modules, etc.
We do not discuss the timing results in detail as they are
not particularly surprising. X-Ray is faster than ATLAS
in measuring hardware parameters on nine out of the ten
platforms, and has comparable timing (10% slower) on
one (IBM Power 3). Moreover, while ATLAS CGw/S
spends considerable amount of time, ranging between 8
minutes on the DEC Alpha to more than 8 hours on the
Intel Itanium 2, to find optimal values for optimization
parameters, the model-based approach takes no measur-
able time.

• Performance:

– Optimization parameter values: values determined
by ATLAS CGw/S and ATLAS Model. Where ap-
propriate, we also report these values for ATLAS
Unleashed.

– mini-MMM performance: performance of mini-
MMM code produced by ATLAS CGw/S, ATLAS
Model and ATLAS Unleashed.

– MMM performance: for matrices sized100× 100 to
5000 × 5000. We report performance of complete
MMM computations using (i) vendor supported, na-
tive BLAS, and the code produced by (ii) ATLAS
CGw/S, (iii) ATLAS Model, (iv) ATLAS Unleashed,
and (v) the native Fortran compiler. On each plat-
form, the code produced by ATLAS is compiled with
the best C compiler we could find on that platform.

The input to the FORTRAN compiler is the standard
triply-nested loop shown in Figure 2.
For vendor supported, native BLAS (labeled “BLAS”
on all figures) we used to following libraries and
corresponding versions, which were current at the
time of our experiments:
∗ DEC Alpha: CXML 5.2
∗ IBM Power 3/4: ESSL 3.3
∗ SGI R12K: SCSL 6.5
∗ SUN UltraSPARC IIIi: Sun One Studio 8
∗ Intel Itanium 2, Pentium III/4: MKL 6.1
∗ AMD Opteron, Athlon: ACML 2.0

• Sensitivity Analysis:this describes the relative change
of performance as we change one of the optimization
parameters, keeping all other parameters fixed to the
values found by ATLAS CGw/S. Sensitivity analysis
explains how variations in the values of optimization
parameters influence the performance of the generated
mini-MMM kernel.

– NB: change in mini-MMM performance when the
value ofNB is changed

– MU , NU : change in mini-MMM performance when
values ofMU andNU are changed. Because optimal
values ofMU andNU depend on the same hardware
resource (NR), we vary them together.

– KU : change in min-MMM performance when value
of KU is changed.

– Ls: change in mini-MMM performance whenLs is
changed.

– FF , IF andNF : we do not show sensitivity graphs
for these parameters because performance is rela-
tively insensitive to their values.

A. DEC Alpha 21264

1) mini-MMM: On this machine the model-determined
optimization parameters provided performance of about 100
MFLOPS (7%) slower than the ones determined by search.
The reason of the difference is the suboptimal selection of the
NB parameter (84 for Atlas Model vs. 72 for ATLAS CGw/S),
as can be seen in theNB sensitivity graph of Figure 12(g).

2) MMM Performance: Figure 12(d) shows the MMM
performance.

ATLAS Unleashed produces the fastest BLAS implemen-
tation because it uses highly-optimized, hand-tuned BLAS
kernels written by Goto. A newer version of these kernels is
described in [25]. The native BLAS library is only marginally
slower.

Although the gap in performance of the mini-MMM codes
produced by ATLAS CGw/S and ATLAS Model is 100
MFLOPS, the gap in performance of complete MMM com-
putations is only about 50 MFLOPS (4%) for large matrices.
Finally, we note that the GNU FORTRAN compiler is unable
to deliver acceptable performance. We did not have access to
the Compaq FORTRAN compiler, so we did not evaluate it.

3) Sensitivity Analysis:Figure 12(e) shows the sensitivity
of performance to the values ofMU and NU . The optimal
value is (4, 4), closely followed by(3, 6), and (6, 3). These

11

match our expectations that optimal unroll factors are as close
to square as possible, while dividing the tile sizeNB = 72
without reminder.

Figure 12(f) shows the sensitivity of performance to the
value ofNB. Figure 12(g) shows a scaled-up version of this
graph in the region of the optimalNB value. The optimal
value forNB is 88. ATLAS does not find this point because
it does not explore tile sizes greater than 80, as explained in
Section III, but it chooses a tile size of 72, which is close to
optimal. If we use Inequality (8) to determineNB analytically,
we obtainNB = 84. Note that using the simpler model of
Inequality (6), we obtainNB = 90, which appears to be almost
as good as the value determined by the more complex model.

TheNB sensitivity graph of Figure 12(g) has a saw-tooth of
periodicity 4, with notable peaks occurring with a periodicity
of 8. The saw-tooth of periodicity 4 arises from the interaction
between cache tiling and register tiling - the register tileis
(4, 4), so wheneverNB is divisible by 4, there is no clean-up
code for fractional register tiles in the mini-MMM code, and
performance is good. We do not yet understand why there are
notable peaks in the saw-tooth with a periodicity of 8.

Figure 12(h) shows the sensitivity of performance to the
value of KU . On this machine the entire mini-MMM loop
body can fit into the L1 instruction cache for values ofKU

up toNB. Performance is relatively insensitive toKU as long
as the value of this parameter is sufficiently large (KU > 7).

Figure 12(i) shows the sensitivity of performance to the
value ofLs. The graph is convex upwards, with a peak at 4.
The multiplier on this machine has a latency of 4 cycles, so
the model forLs in Section IV, computesLs = 5, which is
close to optimal. The inverted-U shape of this graph follows
our expectations. For very small values ofLs, dependent
multiplications and additions are not well separated and CPU
pipeline utilization is low. AsLs grows, the problem gradually
disappears, until the performance peak is reached when the full
latency of the multiplication is hidden. IncreasingLs further
does not improve performance as there is no more latency to
hide. On the contrary, more temporary registers are needed to
save multiplication results, which causes more register spills
to memory, decreasing performance.

B. IBM Power 3

1) mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 40 MFLOPS (3%) slower
than mini-MMM code produced by ATLAS CGw/S. Fig-
ure 13(g) shows that one reason for this difference is the sub-
optimal choice ofNB; fixing the values of all parameter other
thanNB to the ones chosen by ATLAS CGw/S and using the
model-predicted value of 84 forNB results in mini-MMM
code that performs about 100 MFLOPS worse than the mini-
MMM code produced by ATLAS CGw/S.

2) MMM Performance:For multiplying large matrices, the
handwritten BLAS as well as the codes produced by ATLAS
CGw/S, ATLAS Model, and ATLAS Unleashed perform al-
most identically.

3) Sensitivity Analysis:Figure 13(f) shows the sensitivity
of performance to the value ofNB. Figure 13(g) shows a

scaled-up version of this graph in the region of the optimal
NB value.

Figure 13(e) shows the sensitivity of performance to the
values ofMU andNU .

Figure 13(h) shows the sensitivity of performance to the
value of KU . On this machine, the entire mini-MMM loop
body can fit into the L1 instruction cache for values ofKU up
to NB. Performance is relatively insensitive toKU as long as
the value of this parameter is sufficiently large (KU > 5). We
do not understand the sudden drop in performance atKU = 3.

Figure 13(i) shows the sensitivity of performance to the
value ofLs. The Power 3 platform has a fused multiply-add
instruction, which the ATLAS micro-benchmarks and X-ray
find, and the Code Generator exploits, so performance does
not depend on the value ofLs.

C. IBM Power 4

1) mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 70 MFLOPS (2%) slower
than mini-MMM code produced by ATLAS CGw/S. Fig-
ure 14(g) shows that one reason for this difference is a slightly
sub-optimal choice ofNB; fixing the values of all parameter
other thanNB to the ones chosen by ATLAS CGw/S and using
the model-predicted value of 56 forNB results in mini-MMM
code that performs slightly worse than the mini-MMM code
produced by ATLAS CGw/S.

2) MMM Performance:Figure 14(d) shows MMM perfor-
mance. For large matrices, the hand-tuned BLAS perform
the best, although by a small margin. The code produced
by ATLAS Model, ATLAS CGw/S and ATLAS Unleashed
perform almost identically. On this machine the native IBM
XL Fortran compiler produced relatively good results for small
matrices.

3) Sensitivity Analysis:Figure 14(e) shows the sensitivity
of performance to changes in the values ofMU andNU . The
parameter values(4, 4) perform best, and these are the values
used by both ATLAS CGw/S and ATLAS Model.

Figure 14(f) shows the sensitivity of performance to the
value ofNB. Figure 14(g) shows a scaled-up version of this
graph in the neighborhood of theNB value determined by
ATLAS CGw/S. Figure 14(f) shows that on this machine,NB

values between 150 and 350 give the best performance of
roughly 3.5 GFLOPS. Using Inequality (4) for the L2 cache
(capacity of 1.5 MB) givesNB= 254, while Inequality (8)
givesNB= 436, showing that on this machine, it is better to
tile for the L2 cache rather than the L1 cache.

Figure 14(h) shows the sensitivity of performance to the
value of KU . The L1 instruction cache on this machine is
large enough that we can setKU to NB. As on the Power 3,
unrolling by 3 gives poor performance for reasons we do not
understand.

Figure 14(i) shows the sensitivity of performance to the
value ofLs. The Power 4 platform has a fused multiply-add
instruction, which the ATLAS micro-benchmarks find and the
Code Generator exploits, so performance does not depend on
the value ofLs.

12

D. SGI R12K

1) mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 20 MFLOPS (4%) slower
than mini-MMM code produced by ATLAS CGw/S. The
performance of both codes is similar to that of mini-MMM
code produced by ATLAS Unleashed.

2) MMM Performance: Figure 15(d) shows MMM per-
formance. The hand-coded BLAS perform best by a small
margin. On this machine the native compiler (in this case, the
SGI MIPSPro) generated relatively good code that was only
20% lower in performance than the hand-coded BLAS, at least
for small matrices.

3) Sensitivity Analysis:Figure 15(e) shows the sensitivity
of performance to the values ofMU and NU . This machine
has a relatively large number of registers (32), so there is a
fairly broad performance plateau in this graph.

Figure 15(f) shows the sensitivity of performance to the
value of theNB. Figure 15(g) shows a scaled-up version of
this graph in the region of the optimalNB value. Figure 15(f)
shows that on this machine,NB values between 300 and 500
give the best performance of roughly 510 MFLOPS. Using
Inequality (4) for the L2 cache (capacity of 4MB) givesNB=
418, while Inequality (8) givesNB = 718, showing that on
this machine, it is better to tile for the L2 cache rather than
the L1 cache.

Figure 15(h) shows the sensitivity of performance to the
value of theKU . On this machine, the instruction cache is
large enough that full unrolling (KU=NB) is possible.

Figure 15(i) shows the sensitivity of performance to the
value of theLs. The R12K processor has a fused multiply-
add instruction, so we would expect performance of the
generated code to be insensitive to the value ofLs. While
this is borne out by Figure 15(i), notice that Table 15(b)
shows that the micro-benchmark used by ATLAS did not
discover the fused multiply-add instruction on this machine
(FMA = 0)! It is worth mentioning that on this platform
the FMA instruction, while present in the ISA, is not backed
up by a real FMA pipeline in hardware. Instead it allows the
two separate functional units (for multiplication and addition
respectively) to be used sequentially saving one latency cycle.
Therefore, in theory, peak performance is achievable even
by using separate multiply and add instructions. Although
ATLAS Code Generator schedules code usingLs = 3, the SGI
MIPSPro compiler is clever enough to discover the separated
multiplies and adds, and fuse them. In fact the compiler is
able to do this even whenLs = 20, which is impressive.

E. Sun UltraSPARC IIIi

1) mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 160 MFLOPS (17%)faster
than mini-MMM code produced by ATLAS CGw/S. The main
reason for this is that the micro-benchmarks used by ATLAS
incorrectly measured the capacity of the L1 data cache as 16
KB, rather than 64 KB. Therefore ATLAS only searched for
NB values less than44. Our micro-benchmarks on the other
hand correctly measured the capacity of the L1 cache, so the
model estimatedNB = 84, which gave better performance as
can be seen in Figure 16(g).

2) MMM Performance: Figure 16(d) shows the MMM
performance. On this machine, the hand-coded BLAS and AT-
LAS Unleashed performed roughly 50% better than the code
produced by ATLAS CGw/S. The reason for this difference is
that the mini-MMM code in ATLAS Unleashed (and perhaps
the hand-coded BLAS) pre-fetches portions of theA and B

matrices required for the next mini-MMM. This may be related
to the Level-3 pre-fetching idea of Gustavson et. al. [3].

3) Sensitivity Analysis:Figure 16(e) shows the sensitivity
of performance to the values ofMU andNU .

Figure 16(f) shows the sensitivity of performance to the
value of theNB. Figure 16(g) shows a scaled-up version of
this graph in the region of the optimalNB value. On this
machine, as on many other machines, it is better to tile for the
L2 cache, as can be seen in Figure 16(f). Using Inequality (4)
for the L2 cache (capacity of 1 MB), we obtainNB = 208,
which gives roughly 1380 MFLOPS. Using Inequality (8),
we obtainNB = 356, which is close to theNB value in
Figure 16(f) where the performance drops rapidly.

Figure 16(h) shows the sensitivity of performance to the
value of theKU . On this machine, the instruction cache is
large enough that full unrolling (KU=NB) is possible.

Figure 16(i) shows the sensitivity of performance to the
value of theLs. This machine does not have a fused multiply-
add instruction, so the value of theLs parameter affects
performance. Both the model and ATLAS CGw/S find good
values for this parameter.

F. Intel Itanium 2

1) mini-MMM: On this machine, the mini-MMM code
produced by ATLAS Model is about 2.2 GFLOPS (55%)
slower than mini-MMM code produced by ATLAS CGw/S.
This is a rather substantial difference in performance, so it is
necessary to examine the sensitivity graphs to understand the
reasons why ATLAS Model is doing so poorly.

Figure 17(g) shows that one reason for this difference
is that ATLAS Model usedNB = 30, whereas ATLAS
CGw/S usedNB = 80. ATLAS CGw/S usesNB = 80
because it disregards the L1 data cache size (16KB) and
considers directly the L2 cache size (256KB), and therefore
the expressionmin

(

80,
√

C
)

in Inequality (3) evaluates to
80, the largest possible value ofNB in the search space used
by ATLAS.

While the valueNB = 30 used by ATLAS Model is correct
with respect to the L1 data cache size, Intel Itanium 2 does
not allow storing floating point numbers in the L1 data cache,
and thus L2 has to be considered instead. Once we incorporate
in X-Ray the ability to measure this specific hardware feature,
the shortcoming of ATLAS Model will be resolved.

2) MMM Performance:Figure 17(d) shows MMM perfor-
mance. The hand-written BLAS and ATLAS Unleashed give
the best performance. The code produced by ATLAS CGw/S
runs about 1.5 GFlops slower than the hand-written BLAS,
while the code produced by ATLAS Model runs about 3.5
GFlops slower.

3) Sensitivity Analysis:Figure 17(e) shows the sensitivity
of performance to the values ofMU andNU . The Itanium has

13

128 general-purpose registers, so the optimal register tiles are
relatively large. There is a broad plateau of (MU ,NU) values
that give excellent performance.

Figure 17(f) shows the sensitivity of performance to the
value of theNB. Figure 17(g) shows a scaled-up version of
this graph in the region of the optimalNB value. Figure 17(f)
shows that on this machine, the best performance is obtained
by tiling for the L3 cache! Indeed, using Inequality (4) for the
L3 cache (capacity of 3 MB), we obtainNB = 360, which
gives roughly 4.6 GFLOPS. Figure 17(f) shows that this value
is close to optimal. Using Inequality (8), we obtainNB = 610,
which is close to theNB value in Figure 17(f) where the
performance starts to drop.

Figure 17(h) shows the sensitivity of performance to the
value of KU . On the Itanium, unlike on other machines in
our study, performance is highly sensitive to the value of
KU . The main reason is the large register tile(MU , NU) =
(10, 10); after unrolling the micro-MMM loops, we get a very
long straight-line code sequence. Furthermore, unrollingof
the k′′ loop creates numerous copies of this code sequence.
Unfortunately, the L1 instruction cache on this machine hasa
capacity of 32 KB, so it can hold only about 9 copies of the
micro-MMM code sequence. Therefore, performance drops off
dramatically for values ofKU greater than 9 or 10.

Since this is the only machine in our study in which theKU

parameter mattered, we decided to investigate the sensitivity
graph more carefully. Figure 6 shows a magnified version of
Figure 17(h) in the intervalKU ∈ [0, 15]. We would expect the
KU sensitivity graph to exhibit the typical inverted-U shape,
and it more or less does. However, performance forKU = 7
is significantly worse than the performance forKU = 6, and
KU = 8, which appears anomalous.

The anomaly arises from clean-up code that is required
when KU does not divideNB evenly (see thek′ loop in
the tiled code in Figure 3). If we unroll thek′ loop by
KU , the number of times the completely unrolled micro-
MMM code is replicated inside the mini-MMM is notKU ,
but KU +NB%KU (% is the reminder from integer division).
The first term in the sum is the expected number of repetitions
inside the unrolledk′ loop, while the second part is the clean-
up code which takes care of the case whenKU does not divide
NB exactly. This second piece of code is still part of the mini-
MMM loop nest, and it has to be stored in the L1 instruction
cache during execution to achieve optimal performance.

For NB = 80, performance increases initially asKU

increases because loop overhead is reduced. WhenKU = 6,
there are 8 copies of the unrolled micro-MMM code in the
mini-MMM, and this is close to the I-cache limit. When
KU = 7, there are7 + 80%7 = 10 copies of the micro-
MMM code, which exceeds the I-cache limit, and performance
drops substantially. However, whenKU = 8, there is no clean-
up code, and there are only 8 copies of the unrolled micro-
MMM code, so performance goes up again. Beyond this point,
the code sizes overflows the I-cache and grows larger, and
performance degrades gradually. Ultimately, performanceis
limited by the rate at which L1 I-cache misses can be serviced.
For NB = 360, the trends are similar, but the effect of clean-
up code is less because the clean-up code performs a smaller

fraction of the computations of thek′ loop (less than 1%
compared to about 5% forNB = 80).

2 4 6 8 10 12 14
KU

1000

2000

3000

4000

MFLOPS

NB=360

NB=80

Fig. 6. Intel Itanium 2: Sensitivity of performance toKU

Figure 17(i) shows the sensitivity of performance to the
value of theLs. The Itanium has a fused multiply-add in-
struction, so performance is insensitive to theLs parameter.

In summary, the code produced by ATLAS Model on this
machine did not perform as well as the code produced by AT-
LAS CGw/S. However, this is because ATLAS Model tiled for
the L1 cache, whereas on this machine, the best performance
is obtained by tiling for L3 cache. ATLAS CGw/S gets better
performance because the tile size is set to a larger value than
the value used by ATLAS Model.

G. AMD Opteron 240

1) mini-MMM: Table 18(c) shows that on this machine, the
mini-MMM code generated by ATLAS Model runs roughly
38% slower than the code generated by ATLAS CGw/S. The
values of almost all optimization parameters determined by
the two systems are different, so it is not obvious where the
problem is. To get some insight, it is necessary to look at the
sensitivity graphs.

Figure 18(f) shows the performance sensitivity graph for
NB. Both 60 and 88 appear to be reasonable values, so
the problem with ATLAS Model is not in its choice of
NB. BecauseKU is bound to the value ofNB, the only
remaining differences are those betweenMU , NU , Ls, and
FMA. Table 18(b) shows that ATLAS Model choseMU = 2,
NU = 1, FMA = 0, while ATLAS CGw/S choseMU = 6,
NU = 1, FMA = 1. We verified experimentally that if the
model had chosenMU = 6 and FMA = 1, keeping the
rest of the parameters the same, the mini-MMM performance
becomes 2050 MFLOPS, closing the performance gap with
ATLAS CGw/S.

The parameters values used by ATLAS CGw/S are puzzling
for several reasons. First, the Opteron does not have an FMA
instruction, so it is not clear why ATLAS CGw/S chose to set
FMA = 1. Second, choosing 6 and 1 for the values ofMU

andNU violates Inequality (10) since the Opteron has only 8
registers.

We address the problem of the register-tile size first. Recall
that Inequality (10) stems from the fact that ATLAS uses
registers to multiply anMU ×1 vector-tile of matrixA (which
we call ā) with a 1 × NU vector-tile of matrix B (which

14

we call b̄), accumulating the result into anMU × NU tile
of matrix C (which we call c̄). Notice that ifNU = 1, then
b̄ is a single scalar that is multiplied by each element ofā.
Thereforeno reuse existsfor elements of̄a. This observation
lets us generate the code in Figure 7, which uses 1 register for
b̄ (rb), 6 registers for̄c (rc1 . . . rc6) and 1 temporary register
(rt) to hold elements of̄a.

rc1 ← c̄1 . . . rc6 ← c̄6

...

loop k

{

rb← b̄1

rt← ā1

rt← rt× rb

rc1 ← rc1 + rt

rt← ā2

rt← rt× rb

rc2 ← rc2 + rt

...

rt← ā6

rt← rt× rb

rc6 ← rc6 + rt

}

...

c̄1 ← rc1 . . . c̄6 ← rc6

Fig. 7. (MU , NU) = (6, 1) code for x86 CISC

Even if there are enough logical registers, this kind of
scheduling may be beneficial if the ISA is 2-address rather than
3-address, because one of the operands is overwritten. Thisis
true on the Opteron when the 16 SSE vector registers are
used to hold scalar values, which is GCC’s default behavior.
Even though Inequality 1 prescribes3 × 3 register tiles, the
refined model prescribes14 × 1 tiles. Experiments show that
this performs better [38].

One might expect that this code will not perform well
because there are dependences between most of the instruc-
tions that arise from the use of temporary registerrt. In fact,
experiments show that the code in Figure 7 performs well
because of two architectural features of the Opteron.

1) Out-of-order execution: it is possible to schedule several
multiplications in successive cycles without waiting for
the first one to complete.

2) Register renaming: the single temporary registerrt is
renamed to a different physical register for each pair of
multiply-add instructions.

Performing instruction scheduling as described in SectionII
requires additional logical registers for temporaries, which in
turn limits the sizes of the register tiles.When an architecture
provides out-of-order execution and a small number of logical
registers, it is better to use the logical registers for allocating

larger register tiles and leave instruction scheduling to the
out-of-order hardware core which can use the extra physical
registers to hold the temporaries.

These insights permit us to refine the model described
in Section IV as follows: for processors with out-of-order
execution and a small number of logical registers, setNU = 1,
MU = NR − 2, FMA = 1.

To finish this story, it is interesting to analyze how the
ATLAS search engine settled on these parameter values. Note
that on a processor that does not have a fused multiply-add
instruction, FMA = 1 is equivalent toFMA = 0 and
Ls = 1. The code produced by the ATLAS Code Generator
is shown schematically in Figure 8. Note that this code uses
6 registers for̄a (ra1 . . . ra6), 1 register for̄b (rb), 6 registers
for c̄ (rc1 . . . rc6) and 1 temporary register (implicitly by
the multiply-add statement). However, the back-end compiler
(GCC) reorganizes this code into the code pattern shown in
Figure 7.

rc1 ← c̄1 . . . rc6 ← c̄6

...

loop k

{

ra1 ← ā1

rb← b̄1

rc1 ← rc1 + ra1 × rb

ra2 ← ā2

ra3 ← ā3

rc2 ← rc2 + ra2 × rb

rc3 ← rc3 + ra3 × rb

ra4 ← ā4

ra5 ← ā5

rc4 ← rc4 + ra4 × rb

rc5 ← rc5 + ra5 × rb

ra6 ← ā6

rc6 ← rc6 + ra6 × rb

}

...

c̄1 ← rc1 . . . c̄6 ← rc6

Fig. 8. ATLAS unroll (MU , NU) = (6, 1) code for x86 CISC

Notice that the ATLAS Code Generator itself is not aware
that the code of Figure 7 is optimal. However, settingFMA =
1 (even though there is no fused-multiply instruction) produces
code that triggers the right instruction reorganization heuristics
inside GCC, and performs well on the Opteron. This illustrates
the well-known point that search does not need to be intelligent
to do the right thing! Nevertheless, our refined model explains
the observed performance data, makes intuitive sense, and can
be easily incorporated into a compiler.

2) MMM Performance: Figure 18(d) shows the MMM
performance. ATLAS Unleashed is once again the fastest
implementation here, as it uses the highly-optimized, hand-
tuned BLAS kernels, using the SSE2 SIMD instructions, for
which the ATLAS Code Generator does not generate code.
The native BLAS library is about 200 MFLOPS slower on

15

average. ATLAS CGw/S and ATLAS Model perform at the
same level as their corresponding mini-MMM kernels.

Refining the model as explained above brings ATLAS
Model on par with ATLAS CGw/s. To bridge the gap between
ATLAS CGw/S and user contributed code, we would need
a different code generator – one that understands SIMD and
prefetch instructions. GCC exposes these as intrinsic functions
and we plan to explore this in our future work.

3) Performance Sensitivity Analysis:Figure 18(f) shows the
sensitivity of performance to the value of theNB optimization
parameter. The first drop in performance is the result of L1
data cache misses starting to occur. This fact is accurately
captured by our model forNB in Inequality (8). Solving the
inequality forC = 8192 (the L1 data cache capacity in double-
sized floating-point values), we obtainNB = 89. Similarly the
second drop in performance in Figure 18(f) can be explained
by applying the same model to the 1MB L2 cache.

Figure 18(e) shows the performance sensitivity to the values
of the MU andNU optimization parameters. As discussed in
Section V-G.1, the optimal value, is(6, 1). From the graph we
can see that the only plausible values are those withNU = 1.
Furthermore, performance increases while we growMU from
1 to 6, while it suddenly drops forMU = 7. This is easily
explained by our refined model, asMU + 2 ≤ NR would
require 9 registers, while only 8 are available.

Figure 18(h) shows the performance sensitivity to the value
of theKU optimization parameter. On this machine the entire
mini-MMM loop body can fit into the L1 instruction cache
for arbitrary KU values (up toKU = NB). Performance is
relatively insensitive toKU as long as this unroll factor is
sufficiently large (KU > 10).

Figure 18(i) shows the performance sensitivity to the value
of the Ls optimization parameter. As we mentioned before,
whenFMA = 1, theLs optimization parameter does not in-
fluence the generated code. Therefore, performance is constant
with respect toLs.

H. AMD Athlon MP

The AMD Athlon implements the x86 instruction set, so we
would expect the experimental results to be similar to those
on the Opteron.

1) mini-MMM: Table 19(c) shows that on this machine, the
mini-MMM code generated by ATLAS Model runs roughly
20% slower than the code generated by ATLAS CGw/S.
Figure 19(f) shows that the choice ofNB made by the model
is reasonable, while Figure 19(e) shows that the register-tile
values were not chosen optimally by the model, as on the
Opteron. The problem and its solution are similar to those on
the Opteron.

2) MMM Performance:Figure 19(d) shows MMM perfor-
mance. ATLAS Unleashed out-performs the other approaches
by a significant margin. The hand-coded BLAS do almost as
well, followed by ATLAS CGw/S.

3) Sensitivity Analysis:Figure 19(e) shows the sensitivity
of performance to the values ofMU andNU .

Figure 19(f) shows the sensitivity of performance to the
value ofNB. Figure 19(g) shows a scaled-up version of this

graph in the region of the optimalNB value. Both ATLAS
Model and ATLAS CGw/S choose good values ofNB. In
Figure 19(g), the saw-tooth with period 2 arises from the
overhead of executing clean-up code when the value ofNB is
odd, and therefore not divisible by the value ofMU (= 2). As
on other machines, we do not understand the saw-tooth with
period 4 that has larger spikes in performance.

Figure 19(h) shows the sensitivity of performance to the
value of KU . The L1 I-cache is large enough to permit full
unrolling (KU = NB). However, the sensitivity graph ofKU is
anomalous; performance is relatively low for all values ofKU

other thanKU = NB. By examining the code produced by the
native compiler (GCC), we found that this anomaly arose from
interference between instruction scheduling in ATLAS and
instruction scheduling in GCC. Notice that ATLAS CGw/S
usesFMA = 0, so it attempts to schedule instructions and
perform software pipelining in the mini-MMM code. Fully
unrolling thek′ loop (KU = NB) produces straight-line code
which is easier for GCC to schedule.

To verify this conjecture, we redid theKU sensitivity study
with FMA set to 1. Figure 9 shows the results. Setting
FMA = 1 dissuades the ATLAS Code Generator from
attempting to schedule code, so GCC has an easier job,
producing aKU sensitivity graph that is in line with what
we would expect.

Notice that our refined model, described in the context of
the Opteron, does exactly on this. Using this model, mini-
MMM performance is 1544 MFLOPS, which is faster than the
performance of the mini-MMM produced by ATLAS CGw/S.

10 20 30 40 50 60 70
KU

250

500

750

1000

1250

1500

1750

MFLOPS

FMA=1

FMA=0

Fig. 9. AMD Athlon MP: Sensitivity of performance toKU

Figure 19(i) shows the sensitivity of performance to the
value of theLs.

I. Pentium III

1) mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 50 MFLOPS (6%) slower
than mini-MMM code produced by ATLAS CGw/S. The
code produced by ATLAS Unleashed performs roughly 50
MFLOPS better than the code produced by ATLAS CGw/S.

The difference in performance between the codes produced
by ATLAS CGw/S and ATLAS Model arises mostly from the
sub-optimal register tile chosen by the model, as explainedin
the context of the Opteron in Section V-G. Using(6, 1) as the
register tile raises mini-MMM performance to 916 MFLOPS.

16

2) MMM Performance: Figure 20(d) shows MMM per-
formance. The hand-coded BLAS perform at roughly 1100
MFLOPS, whereas the codes produced by ATLAS CGw/S
and ATLAS Unleashed perform roughly at 900 MFLOPS.
The code produced by ATLAS Model runs roughly at 850
MFLOPS; using the refined model improves performance to a
point that is slightly above the performance of code produced
by ATLAS CGw/S.

3) Sensitivity Analysis:Figure 20(e) shows the sensitivity
of performance to the values ofMU and NU . Like all x86
machines, the Pentium III has a limited number of logical
registers. Our base-line model picked(2, 1) for the register
tile, whereas ATLAS CGw/S chose(4, 1). If we use the refined
model described in Section V-G, the size of the register tile
becomes(6, 1), and mini-MMM performance rises to 916
MFLOPS.

Figure 20(f) shows the sensitivity of performance to the
value ofNB. Figure 20(g) shows a scaled-up version of this
graph in the region of the optimalNB value. The broad peak
in Figure 20(f) arises from the influence of the L2 cache
(capacity of 512 KB). Using Inequality (4) for the L2 cache,
we obtainNB = 104, which is theNB values where the
peak starts, while Inequality (8) givesNB = 164, which
corresponds to theNB value where the peak ends. The L2
cache on the Pentium III is 8-way set-associative, so the drop
in performance betweenNB = 104 andNB = 164 is small.

Figure 20(h) shows the sensitivity of performance to the
value of theKU . On this machine, the L1 instruction cache is
large enough to permit full unrolling (KU = NB).

Figure 20(i) shows the sensitivity of performance to the
value of theLs. There is no fused multiply-add instruction,
so performance is sensitive to the value ofLs, but both ATLAS
Model and ATLAS CGw/S find reasonable values for this
parameter. If we use the refined model described in Section V-
G, we setFMA = 1, and the value of theLs parameter
becomes irrelevant.

J. Pentium 4

1) mini-MMM: On this machine, mini-MMM code pro-
duced by ATLAS Model is about 600 MFLOPS (40%) slower
than mini-MMM code produced by ATLAS CGw/S. This is
mostly because of the sub-optimal register tile used by ATLAS
Model; changing it to(6, 1) improves the performance of mini-
MMM code produced by ATLAS Model to 1445 MFLOPS,
which is only 50 MFLOPS (3%) less than the performance of
the mini-MMM code produced by ATLAS CGw/S.

The mini-MMM produced by ATLAS Unleashed is roughly
twice as fast as the mini-MMM produced by ATLAS Model
because this code uses the SSE2 vector extensions to the x86
instruction set.

2) MMM Performance: Figure 21(d) shows the MMM
performance. The hand-coded BLAS routines for this machine
perform best, followed by the code produced by ATLAS
Unleashed. Both the hand-coded BLAS and the code produced
by ATLAS Unleashed use the SSE2 vector extensions, and
this accounts for most of the gap between these codes and the
codes produced by ATLAS Model and ATLAS CGw/S. We

do not know why the hand-coded BLAS perform substantially
better than the code produced by ATLAS Unleashed.

The gap in performance between the codes produced by
ATLAS CGw/S and ATLAS Model disappears if the refined
model for register tiles is used.

3) Sensitivity Analysis:Figure 21(e) shows the sensitivity
of performance to the values ofMU andNU . This figure shows
that the best register tile is(5, 1), which produces mini-MMM
code that runs at 1605 MFLOPS. Using(6, 1) as the register
tile is not as good because it reduces performance to 1521
MFLOPS.

Figure 21(f) shows the sensitivity of performance to the
value of theNB. Figure 21(g) shows a scaled-up version
of this graph in the region of the optimalNB value. Both
ATLAS Model and ATLAS CGw/S choose good tile sizes for
the L1 cache. Tiling for the L2 cache gives slightly better
performance. The L2 cache on this machine has a capacity of
256 KB; using Inequalities (4) and (8), we getNB = 105 and
NB = 180, which agree well with the data.

Figure 21(h) shows the sensitivity of performance to the
value of KU . On this machine, the L1 instruction cache is
large enough to permit full unrolling (KU = NB).

Figure 21(i) shows the sensitivity of performance to the
value ofLs.

K. Discussion

The experimental results in this section can be summarized
as follows. Figure 10 describes the analytical models used to
compute values for the optimization parameters. This figure
also shows the refined model used to compute register tile
values for the x86 architectures.

Figure 11 shows the relative performance of the mini-MMM
codes produced by ATLAS Model and by ATLAS Unleashed,
using the performance of the codes produced by ATLAS
CGw/S as the base line (the 100% line in this figure represents
the performance of ATLAS CGw/S on all machines). All the
performance numbers for ATLAS Model in this graph are
obtained by tiling for the L1 cache.

We see that on all machines other than the Itanium, the
codes produced by using the analytical models perform almost
as well or slightly better than the codes produced using global
search. On the Itanium, we saw that it is best to tile for the L3
cache, rather than the L1 cache. By using the L2 cache instead,
ATLAS CGw/S was able to obtain some of the benefits of
tiling for the L3 cache. If we use this value in the model
of Figure 10, we produce mini-MMM code of comparable
performance. Using the actual capacity of the L3 cache gives
even better performance.

In our experiments we noticed that on several platforms,
we get better MMM performance by tiling for a lower cache
level, such as L2 or L3, rather than L1. This may result in a
large value forNB, which may hurt overall performance if the
resulting MMM library routine is invoked from other routines
such as LU and Cholesky factorizations [22]. It is unclear to
us that this is an issue in the context of compilers, where codes
like LU and Cholesky would be optimized directly, rather than
built upon MMM.

17

• Estimating FMA:
Use the machine parameterFMA

• Estimating Ls:

Ls =

⌈

L× × |ALUF P |+ 1

2

⌉

• Estimating MU and NU :

MU ×NU + NU + MU + Ls ≤ NR

1) MU , NU ← u.
2) Solve constraint foru.
3) MU ← max (u, 1).
4) Solve constraint forNU .
5) NU ← max (NU , 1).
6) If MU < NU then swapMU andNU .
7) Refined Model: If NU = 1 then

– MU ← NR − 2
– NU ← 1
– FMA← 1

• Estimating NB :
⌈

N2

B

B1

⌉

+ 3

⌈

NB ×NU

B1

⌉

+

⌈

MU

B1

⌉

×NU ≤
C1

B1

Trim NB , to make it a multiple ofMU , NU , and 2.
• Estimating KU :

ChooseKU as the maximum value for which mini-MMM fits in
the L1 instruction cache. TrimKU to make it divideNB evenly.

• Estimating FF , IF , and NF :

FF = 0, IF = 2, NF = 2

Fig. 10. Summary of Model

0% 50% ATLAS

CGw�S

100%

150% 200%

Pentium 4

Pentium III

Athlon MP

Opteron 240

Itanium2

UltraSparc IIIi

R12K

Power 4

Power 3

Alpha 21264

Unleashed

Refined Model

Model

Fig. 11. Summary of mini-MMM Performance. Performance numbers are
normalized to that of ATLAS CGw/S, which is presented as 100%

VI. CONCLUSIONS ANDFUTURE WORK

. . . the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S.Eliot, Four Quartets

The experimental results in this paper demonstrate that it is
possible to use analytical models to determine near-optimal
values for the optimization parameters needed in the ATLAS
system to produce high-quality BLAS codes. The models in
this paper were designed to be compatible with the ATLAS
Code Generator; for example, since ATLAS uses square cache
tiles, we had only one parameterNB, whereas a different
Code Generator that uses general rectangular tiles may require
three cache tile parameters. Van de Geijn and co-workers have
considered such models in their work on optimizing matrix
multiplication code for multi-level memory hierarchies [20,
21, 24].

Our results show that using models to determine values
for the optimization parameters is much faster than using
empirical search. However, this does not imply that search has
no role to play in the generation of high-performance code.
Systems like FFTW and SPIRAL use search not to choose
optimal values for transformation parameters, but to choose an
optimal algorithm from a whole suite of algorithms. We do not
know if model-driven optimization is effective in this context.
Even in the relatively simple context of the BLAS, there are
aspects of program behavior that may not be worth modeling
in practice even if they can be modeled in principle. For
example, the analytical models forNB described in Section IV
ignore conflict misses. Although there is some work in the
compiler literature on modeling conflict misses [10, 12], these
models appear to be computationally intractable. Fortunately,
the effect of conflict misses on performance can be reduced by
appropriate copying. If necessary, the value ofNB found by
the model can be refined by local search in the neighborhood
of theNB value predicted by the model. This combination of
modeling and local search may be the most tractable approach
for optimizing large programs for complex high-performance
architectures.

At the end of this paper, we are left with the same question
that we asked at its beginning: how do we improve the state of
the art of compilers? Conventional wisdom holds that current
compilers are unable to produce high-quality code because the
analytical models they use to estimate optimization parameter
values are overly simplistic compared to the complexity of
modern high-performance architectures. The results in this
paper contradict this conventional wisdom, and suggest that
there is no intrinsic reason why compilers cannot use analytical
models to generate excellent code, at least for the BLAS.

However, it is important not to underestimate the challenge
in improving general-purpose compilers to bridge the current
performance gap with library generators. Although the tech-
niques used by ATLAS, such as loop tiling, unrolling, and
instruction scheduling, have been in the compiler literature for
many years, it is not easy to incorporate them into general-
purpose compilers. For example, transformations such as tiling
are not always legal, so a general-purpose compiler must

18

perform dependence analysis before transforming a program.
In contrast, the implementor of a library generator focuses
on one application and knows the precise structure of the
code to be generated for that application, so he is not en-
cumbered by the baggage required to support restructuring of
general codes. At the very least, improving the state of the
art of compilation technology will require an open compiler
infrastructure which permits researchers to experiment easily
with different transformations and to vary the parameters of
those transformations. This has been a long-standing problem,
and no adequate infrastructure exists in spite of many attempts.

An equally important conclusion of this study is that there
is still a significant gap in performance between the code
generated by ATLAS CGw/S and the vendor BLAS routines.
Although we understand some of the reasons for this gap, the
problem of automating library generation remains open. The
high cost of library and application tuning makes this one of
the most important questions we face today.

REFERENCES

[1] ATLAS homepage. http://math-atlas.sourceforge.net/.
[2] The PHiPAC home page.http://www.icsi.berkeley.edu/

∼bilmes/phipac.
[3] R. C. Agarwal, F. G. Gustavson, and M. Zubair. Improving perfor-

mance of linear algebra algorithms for dense matrices usingalgorithmic
prefetch. IBM Journal of Research and Development, 38(3):265–275,
1994.

[4] R. Allan and K. Kennedy.Optimizing Compilers for Modern Architec-
tures. Morgan Kaufmann Publishers, 2002.

[5] Uptal Banerjee. Unimodular transformations of double loops. In
Languages and compilers for parallel computing, pages 192–219, 1990.

[6] Jeff Bilmes, Krste Asanović, Chee whye Chin, and Jim Demmel. Op-
timizing matrix multiply using PHiPAC: a Portable, High-Performance,
ANSI C coding methodology. InProceedings of International Confer-
ence on Supercomputing, Vienna, Austria, July 1997.

[7] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-
ultimate tiling? InINTEGRATION, the VLSI Journal, volume 17, pages
33–51. 1994.

[8] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and
improving balance for pipelined architectures.Journal of Parallel and
Distributed Computing, 5(4):334–358, 1988.

[9] David Callahan, Steve Carr, and Ken Kennedy. Improving register
allocation for subscripted variables. InSIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 53–65, 1990.

[10] Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon,and Alvin R.
Lebeck. Exact analysis of the cache behavior of nested loops. In
Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 286–297. ACM Press, 2001.

[11] Michael Cierniak and Wei Li. Unifying data and control transformations
for distributed shared memory machines. InSIGPLAN 1995 conference
on Programming Languages Design and Implementation, June 1995.

[12] Phillipe Claus. Counting solutions to linear and nonlinear constraints
through Erhart polynomials. InACM International Conference on
Supercomputing. ACM, May 1996.

[13] Stephanie Coleman and Kathryn S. McKinley. Tile size selection
using cache organization and data layout. InSIGPLAN Conference on
Programming Language Design and Implementation, pages 279–290,
1995.

[14] Paul Feautrier. Some efficient solutions to the affine scheduling problem
- part 1: one dimensional time. International Journal of Parallel
Programming, October 1992.

[15] Martin Fowler. Yet another optimization article.IEEE Software, pages
20–21, May/June 2002.

[16] B. B. Fraguela, R. Doallo, and E. Zapata. Automatic analytical modeling
for the estimation of cache misses. InParallel Architectures and
Compilation Techniques (PACT), pages 221–231, 1999.

[17] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software
architecture for the FFT. InProc. IEEE Intl. Conf. on Acoustics, Speech,
and Signal Processing, volume 3, pages 1381–1384, Seattle, WA, May
1998.

[18] Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2), 2005. special issue on
”Program Generation, Optimization, and Adaptation”.

[19] Stefan Goedecker and Adolfy Hoisie.Performance Optimization of
Numerically Intensive Codes. Society for Industrial & Applied Mathe-
matics, 2001.

[20] Kazushige Goto and Robert van de Geijn. On reducing tlb misses
in matrix multiplication. Technical Report TR-2002-55, University of
Texas at Austin, Department of Computer Sciences, November2002.

[21] John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family
of high-performance matrix algorithms. InProceedings of International
Conference of Computational Science - ICCS 2001: San Francisco, CA,
USA, May 28-30, 2001 Proceedings, Part I, pages 51–60. Springer, 2001.

[22] Fred Gustavson. Personal communication.
[23] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quanti-

tative Approach. Morgan Kaufmann Publishers, 1990.
[24] G. Henry. Flexible high-performance matrix multiply via self-modifying

runtime code, 2001.
[25] High-performance blas by kazushige goto. http://www.cs.

utexas.edu/users/flame/goto/.
[26] Jeremy Johnson, Robert W. Johnson, David A. Padua, and Jianxin

Xiong. Searching for the best FFT formulas with the SPL compiler. In
Proc. of the 13th International Workshop on Languages and Compilers
for Parallel Computing, pages 109–124, 2000.

[27] Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-
centric multi-level blocking. InProgramming Languages, Design and
Implementation. ACM SIGPLAN, June 1997.

[28] Induprakas Kodukula and Keshav Pingali. Imperfectly nested loop
transformations for memory hierarchy management. InInternational
Conference on Supercomputing, Rhodes, Greece, June 1999.

[29] W. Li and K. Pingali. Access Normalization: Loop restructuring for
NUMA compilers. ACM Transactions on Computer Systems, 1993.

[30] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies.IBM Systems Journal, 9(2):78–92,
1970.

[31] A. C. McKellar and E. G. Coffman, Jr. Organizing matrices and matrix
operations for paged memory systems.Commun. ACM, 12(3):153–165,
1969.

[32] David Padua and Michael Wolfe. Advanced compiler optimization
for supercomputers.Communications of the ACM, 29(12):1184–1201,
December 1986.

[33] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua,
Manuela Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca
Gačić, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick
Rizzolo. SPIRAL: Code generation for DSP transforms.Proceedings
of the IEEE, 93(2), 2005. special issue on ”Program Generation,
Optimization, and Adaptation”.

[34] Joan McComb Ramesh C. Agarwal, Fred G. Gustavson and Stanley
Schmidt. Engineering and Scientific Subroutine Library Release 3 for
IBM ES/3090 Vector Multiprocessors.IBM Systems Journal, 28(2):345–
350, 1989.

[35] B. Ramakrishna Rau. Iterative modulo scheduling. Technical Report
HPL-94-115, Hewlett-Packard Research Laboratories, November 1995.

[36] Robert Schreiber and Jack Dongarra. Automatic blocking of nested
loops. Technical Report CS-90-108, Knoxville, TN 37996, USA, 1990.

[37] R. Clint Whaley. Personal communication.
[38] R. Clint Whaley. http://sourceforge.net/mailarchive/

forum.php?thread id=1569256&forum id=426.
[39] R. Clint Whaley. User contribution to atlas.http://math-atlas.

sourceforge.net/devel/atlas contrib.
[40] R. Clint Whaley and Antoine Petitet. Minimizing development and

maintenance costs in supporting persistently optimized BLAS. Accepted
for publication in Software: Practice and Experience, 2004. http:
//www.cs.utk.edu/∼rwhaley/papers/spercw04.ps.

[41] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra.Automated
empirical optimization of software and the ATLAS project.Par-
allel Computing, 27(1–2):3–35, 2001. Also available as University
of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

[42] Michael E. Wolf and Monica S. Lam. An algorithmic approach
to compund loop transformations. InAdvances in Languages and
Compilers for Parallel Computing. Pitman Publisher, 1991.

[43] M. Wolfe. Iteration space tiling for memory hierarchies. In Third SIAM
Conference on Parallel Processing for Scientific Computing, December
1987.

19

[44] Kamen Yotov, Keshav Pingali, and Paul Stodghill. X-ray: A tool for
automatic measurement of architectural parameters. Technical Report
TR2004-1966, Cornell University, Computer Science, October 2004.

20

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 833 MHz
L1 Data Cache 64 KB, 64 B/line, 2-way
L1 Instruction Cache 64 KB, 64 B/line, 2-way
L2 Unified Cache 4 MB, 64 B/line, 1-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System Tru64 v5.1B (rev.2650)
C Compiler Compaq C v6.5-003
Fortran Compiler GNU Fortran 3.3

TABLE 12(a)

DEC ALPHA 21264: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 72 4, 4, 72 4 0 1, 7, 1 1281
Model 84 4, 4, 84 4 0 0, 2, 2 1189
Unleashed 80 1491

TABLE 12(b)

DEC ALPHA 21264: OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 148s 101s
Optimization Parameters 556s
Total 704s 101s

TABLE 12(c)

DEC ALPHA 21264: TIMINGS

1000 2000 3000 4000 5000
Size

200

400

600

800

1000

1200

1400

MFLOPS

Compiler

Model

CGw�S

BLAS

Unleashed

Fig. 12(d). DEC Alpha 21264: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0

500

1000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 12(e). DEC Alpha 21264: Sensitivity of performance toMU andNU

200 400 600 800
NB

200

400

600

800

1000

1200

MFLOPS

Fig. 12(f). DEC Alpha 21264: Sensitivity of performance toNB

20 40 60 80 100 120
NB

200

400

600

800

1000

1200

MFLOPS

Fig. 12(g). DEC Alpha 21264: Sensitivity of performance toNB (zoomed)

10 20 30 40 50 60 70
KU

200

400

600

800

1000

1200

MFLOPS

Fig. 12(h). DEC Alpha 21264: Sensitivity of performance toKU

2 4 6 8 10 12
LS

200

400

600

800

1000

1200

MFLOPS

Fig. 12(i). DEC Alpha 21264: Sensitivity of performance toLs

21

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 375 MHz
L1 Data Cache 64 KB, 128 B/line, 128-way
L1 Instruction Cache 32 KB, 128 B/line, 128-way
L2 Unified Cache 4 MB, 128 B/line, ???-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System AIX
C Compiler XL C for AIX v.5
Fortran Compiler XL Fortran for AIX

TABLE 13(a)

IBM POWER 3: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 80 4, 5, 80 6 1 0, 8, 1 1264
Model 84 4, 4, 84 4 1 0, 2, 2 1225
Unleashed 80 1257

TABLE 13(b)

IBM POWER 3: OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 139s 154s
Optimization Parameters 1984s
Total 2123s 154s

TABLE 13(c)

IBM POWER 3: TIMINGS

1000 2000 3000 4000 5000
Size

200

400

600

800

1000

1200

1400

MFLOPS

Compiler

Model

BLAS

Unleashed

CGw�S

Fig. 13(d). IBM Power 3: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0

500

1000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 13(e). IBM Power 3: Sensitivity of performance toMU andNU

200 400 600 800 1000
NB

200

400

600

800

1000

1200

1400

MFLOPS

Fig. 13(f). IBM Power 3: Sensitivity of performance toNB

20 40 60 80 100 120
NB

200

400

600

800

1000

1200

1400

MFLOPS

Fig. 13(g). IBM Power 3: Sensitivity of performance toNB (zoomed)

20 40 60 80
KU

200

400

600

800

1000

1200

MFLOPS

Fig. 13(h). IBM Power 3: Sensitivity of performance toKU

2 4 6 8 10 12
LS

200

400

600

800

1000

1200

MFLOPS

Fig. 13(i). IBM Power 3: Sensitivity of performance toLs

22

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 1450 MHz
L1 Data Cache 32 KB, 128 B/line, 2-way
L1 Instruction Cache 64 KB, 128 B/line, 1-way
L2 Unified Cache 1.5 MB, 128 B/line, 8-way
L3 Cache 32 MB, 512B/line, 8-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System AIX
C Compiler XL C for AIX v.5
Fortran Compiler XL Fortran for AIX

TABLE 14(a)

IBM POWER 4: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 64 4, 4, 64 1 1 1, 8, 1 3468
Model 56 4, 4, 56 6 1 0, 2, 2 3400
Unleashed 64 3468

TABLE 14(b)

IBM POWER 4: OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 175s 125s
Optimization Parameters 2390s
Total 2665s 125s

TABLE 14(c)

IBM POWER 4: TIMINGS

1000 2000 3000 4000 5000
Size

500

1000

1500

2000

2500

3000

3500

MFLOPS

Compiler

Model

CGw�S

Unleashed

BLAS

Fig. 14(d). IBM Power 4: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0

1000

2000

3000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 14(e). IBM Power 4: Sensitivity of performance toMU andNU

200 400 600 800 1000 1200 1400
NB

500

1000

1500

2000

2500

3000

MFLOPS

Fig. 14(f). IBM Power 4: Sensitivity of performance toNB

20 40 60 80 100 120
NB

500

1000

1500

2000

2500

3000

MFLOPS

Fig. 14(g). IBM Power 4: Sensitivity of performance toNB (zoomed)

10 20 30 40 50 60
KU

500

1000

1500

2000

2500

3000

3500

MFLOPS

Fig. 14(h). IBM Power 4: Sensitivity of performance toKU

2 4 6 8 10 12
LS

500

1000

1500

2000

2500

3000

3500

MFLOPS

Fig. 14(i). IBM Power 4: Sensitivity of performance toLs

23

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 270 MHz
L1 Data Cache 32 KB, 32 B/line, 2-way
L1 Instruction Cache 32 KB, 32 B/line, 2-way
L2 Unified Cache 4 MB, 32 B/line, 1-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 2
Has Fused Multiply Add Yes
Operating System IRIX64
C Compiler SGI MIPSPro C 7.3.1.1m
Fortran Compiler SGI MIPSPro FORTRAN 7.3.1.1m

TABLE 15(a)

SGI R12K: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 64 4, 5, 32 3 0 1, 8, 1 459
Model 58 5, 4, 58 1 1 0, 2, 2 442
Unleashed 64 464

TABLE 15(b)

SGI R12K: OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 251s 117s
Optimization Parameters 5015s
Total 5266s 117s

TABLE 15(c)

SGI R12K: TIMINGS

1000 2000 3000 4000 5000
Size

100

200

300

400

500

MFLOPS

Compiler

Model

Unleashed

CGw�S

BLAS

Fig. 15(d). SGI R12K: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0
100
200
300
400

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 15(e). SGI R12K: Sensitivity of performance toMU andNU

200 400 600 800 1000
NB

100

200

300

400

500

600

MFLOPS

Fig. 15(f). SGI R12K: Sensitivity of performance toNB

20 40 60 80 100 120
NB

100

200

300

400

500

600

MFLOPS

Fig. 15(g). SGI R12K: Sensitivity of performance toNB (zoomed)

10 20 30 40 50 60
KU

100

200

300

400

500

MFLOPS

Fig. 15(h). SGI R12K: Sensitivity of performance toKU

2 4 6 8 10 12
LS

100

200

300

400

500

MFLOPS

Fig. 15(i). SGI R12K: Sensitivity of performance toLs

24

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 1060 MHz
L1 Data Cache 64 KB, 32 B/line, 4-way
L1 Instruction Cache 32 KB, 32 B/line, 4-way
L2 Unified Cache 1 MB, 32 B/line, 4-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System SUN Solaris 9
C Compiler SUN C 5.5
Fortran Compiler SUN FORTRAN 95 7.1

TABLE 16(a)

SUN ULTRASPARC IIII : PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 44 4, 3, 44 5 0 0, 3, 2 986
Model 84 4, 4, 84 4 0 0, 2, 2 1149
Unleashed168 1695

TABLE 16(b)

SUN ULTRASPARC IIII : OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 203s 112s
Optimization Parameters 1254s
Total 1457s 112s

TABLE 16(c)

SUN ULTRASPARC IIII : T IMINGS

1000 2000 3000 4000 5000
Size

250

500

750

1000

1250

1500

1750

MFLOPS

Compiler

CGw�S

Model

BLAS

Unleashed

Fig. 16(d). Sun UltraSPARC IIIi: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0
200
400
600
800

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 16(e). Sun UltraSPARC IIIi: Sensitivity of performance to MU and
NU

100 200 300 400 500 600
NB

200

400

600

800

1000

1200

1400

MFLOPS

Fig. 16(f). Sun UltraSPARC IIIi: Sensitivity of performance to NB

20 40 60 80 100 120
NB

200

400

600

800

1000

1200

1400

MFLOPS

Fig. 16(g). Sun UltraSPARC IIIi: Sensitivity of performance toNB (zoomed)

10 20 30 40
KU

200

400

600

800

1000

MFLOPS

Fig. 16(h). Sun UltraSPARC IIIi: Sensitivity of performance to KU

2 4 6 8 10 12
LS

200

400

600

800

1000

MFLOPS

Fig. 16(i). Sun UltraSPARC IIIi: Sensitivity of performance to Ls

25

Feature Value
Architecture In-Order, EPIC, IA-64
CPU Core Frequency 1500 MHz
L1 Data Cache 16 KB, 64 B/line, 4-way
L1 Instruction Cache 16 KB, 64 B/line, 4-way
L2 Unified Cache 256 KB, 128 B/line, 8-way
L3 Cache 3 MB, 128B/line, 12-way
Floating-Point Registers 128
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System Linux 2.4.18-e.31smp
C Compiler GNU C/C++ 3.3
Fortran Compiler GNU Fortran 3.3

TABLE 17(a)

INTEL ITANIUM 2: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 80 10, 10, 4 4 1 0, 19, 1 4028
Model 30 10, 10, 8 1 1 0, 2, 2 1806
Unleashed120 4891

TABLE 17(b)

INTEL ITANIUM 2: OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 1555s 143s
Optimization Parameters 30710s
Total 32265s 143s

TABLE 17(c)

INTEL ITANIUM 2: TIMINGS

1000 2000 3000 4000 5000
Size

1000

2000

3000

4000

5000

MFLOPS

Compiler

Model

CGw�S

Unleashed

BLAS

Fig. 17(d). Intel Itanium 2: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0
1000
2000
3000

4000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 17(e). Intel Itanium 2: Sensitivity of performance toMU andNU

200 400 600 800 1000
NB

1000

2000

3000

4000

MFLOPS

Fig. 17(f). Intel Itanium 2: Sensitivity of performance toNB

20 40 60 80 100 120
NB

1000

2000

3000

4000

MFLOPS

Fig. 17(g). Intel Itanium 2: Sensitivity of performance toNB (zoomed)

20 40 60 80
KU

1000

2000

3000

4000

MFLOPS

Fig. 17(h). Intel Itanium 2: Sensitivity of performance toKU

2 4 6 8 10 12
LS

1000

2000

3000

4000

MFLOPS

Fig. 17(i). Intel Itanium 2: Sensitivity of performance toLs

26

Feature Value
Architecture Out-Of-Order, CISC, x86-64
CPU Core Frequency 1400 MHz
L1 Data Cache 64 KB, 64 B/line, 2-way
L1 Instruction Cache 64 KB, 64 B/line, 2-way
L2 Unified Cache 1024 MB, 64 B/line, 16-way
Floating-Point Registers 8 x87
Floating-Point Functional Units ADD + MUL + Memory
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System Linux 2.4.19
C Compiler GCC C/C++ 3.3.2
Fortran Compiler GNU Fortran 3.3.2

TABLE 18(a)

AMD OPTERON240: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 60 6, 1, 60 6 1 0, 6, 1 2072
Model 88 2, 1, 88 2 0 0, 2, 2 1282
Unleashed 56 2608

TABLE 18(b)

AMD OPTERON240: OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 148s 101s
Optimization Parameters 556s
Total 704s 101s

TABLE 18(c)

AMD OPTERON240: TIMINGS

1000 2000 3000 4000 5000
Size

500

1000

1500

2000

2500

MFLOPS

Compiler

Model

CGw�S

BLAS

Unleashed

Fig. 18(d). AMD Opteron 240: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0
500

1000

1500

2000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 18(e). AMD Opteron 240: Sensitivity of performance toMU andNU

100 200 300 400 500 600
NB

500

1000

1500

2000

MFLOPS

Fig. 18(f). AMD Opteron 240: Sensitivity of performance toNB

20 40 60 80 100 120
NB

500

1000

1500

2000

MFLOPS

Fig. 18(g). AMD Opteron 240: Sensitivity of performance toNB (zoomed)

10 20 30 40 50 60
KU

500

1000

1500

2000

MFLOPS

Fig. 18(h). AMD Opteron 240: Sensitivity of performance toKU

2 4 6 8 10 12
LS

500

1000

1500

2000

MFLOPS

Fig. 18(i). AMD Opteron 240: Sensitivity of performance toLs

27

Feature Value
Architecture Out-Of-Order, CISC, x86
CPU Core Frequency 1733 MHz
L1 Data Cache 64 KB, 64 B/line, 2-way
L1 Instruction Cache 64 KB, 64 B/line, 2-way
L2 Unified Cache 256 KB, 64 B/line, 16-way
Floating-Point Registers 8
Floating-Point Functional Units ADD + MUL + Memory
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System Linux 2.4.20
C Compiler GNU C/C++ 3.2.2
Fortran Compiler GNU Fortran 3.2.2

TABLE 19(a)

AMD ATHLON MP: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 76 4, 1, 76 1 0 0, 3, 2 1531
Model 88 2, 1, 88 2 0 0, 2, 2 1239
Unleashed 30 2512

TABLE 19(b)

AMD ATHLON MP: OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 220s 121s
Optimization Parameters 3195s
Total 3415s 121s

TABLE 19(c)

AMD ATHLON MP: TIMINGS

1000 2000 3000 4000 5000
Size

500

1000

1500

2000

2500

MFLOPS

Compiler

Model

CGw�S

BLAS

Unleashed

Fig. 19(d). AMD Athlon MP: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0

500

1000

1500

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 19(e). AMD Athlon MP: Sensitivity of performance toMU andNU

50 100 150 200 250
NB

200

400

600

800

1000

1200

MFLOPS

Fig. 19(f). AMD Athlon MP: Sensitivity of performance toNB

20 40 60 80 100 120
NB

200

400

600

800

1000

1200

MFLOPS

Fig. 19(g). AMD Athlon MP: Sensitivity of performance toNB (zoomed)

10 20 30 40 50 60 70
KU

250

500

750

1000

1250

1500

MFLOPS

Fig. 19(h). AMD Athlon MP: Sensitivity of performance toKU

2 4 6 8 10 12
LS

250

500

750

1000

1250

1500

MFLOPS

Fig. 19(i). AMD Athlon MP: Sensitivity of performance toLs

28

Feature Value
Architecture Out-Of-Order, CISC, x86
CPU Core Frequency 1266 MHz
L1 Data Cache 16 KB, 32 B/line, 4-way
L1 Instruction Cache 16 KB, 32 B/line, 4-way
L2 Unified Cache 512 MB, 32 B/line, 8-way
Floating-Point Registers 8
Floating-Point Functional Units 1
Floating-Point Multiply Latency 5
Has Fused Multiply Add No
Operating System Linux 2.4.20-28.8smp
C Compiler GNU C/C++ 3.2
Fortran Compiler GNU Fortran 3.2

TABLE 20(a)

PENTIUM III: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 44 4, 1, 44 3 0 0, 3, 2 894
Model 42 2, 1, 42 2 0 0, 2, 2 841
Unleashed 40 951

TABLE 20(b)

PENTIUM III: O PTIMIZATION PARAMETERS

Search Model
Machine Parameters 133s 100s
Optimization Parameters 630s
Total 763s 100s

TABLE 20(c)

PENTIUM III: T IMINGS

1000 2000 3000 4000 5000
Size

200

400

600

800

1000

1200

MFLOPS

Model

CGw�S

Unleashed

BLAS

Fig. 20(d). Pentium III: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0
200
400
600
800

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 20(e). Pentium III: Sensitivity of performance toMU andNU

50 100 150 200 250 300 350
NB

200

400

600

800

1000

MFLOPS

Fig. 20(f). Pentium III: Sensitivity of performance toNB

20 40 60 80 100 120
NB

200

400

600

800

1000

MFLOPS

Fig. 20(g). Pentium III: Sensitivity of performance toNB (zoomed)

10 20 30 40
KU

200

400

600

800

1000

MFLOPS

Fig. 20(h). Pentium III: Sensitivity of performance toKU

2 4 6 8 10 12
LS

200

400

600

800

1000

MFLOPS

Fig. 20(i). Pentium III: Sensitivity of performance toLs

29

Feature Value
Architecture Out-Of-Order, CISC, x86
CPU Core Frequency 2000 MHz
L1 Data Cache 8 KB, 64 B/line, 4-way
L1 Instruction Cache 12 K uOPs, 6 uOPs/line, 8-way
L2 Unified Cache 512 KB, 128 B/line, 8-way
Floating-Point Registers 8
Floating-Point Functional Units 1
Floating-Point Multiply Latency 7
Has Fused Multiply Add No
Operating System Linux 2.4.20-30.9smp
C Compiler GNU C v3.2.2
Fortran Compiler GNU Fortran 3.2.2

TABLE 21(a)

PENTIUM 4: PLATFORM SPECIFICATION

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
CGw/S 28 3, 1, 28 1 0 0, 2, 1 1504
Model 30 1, 1, 30 4 0 0, 2, 2 913
Unleashed 72 3317

TABLE 21(b)

PENTIUM 4: OPTIMIZATION PARAMETERS

Search Model
Machine Parameters 136s 98s
Optimization Parameters 643s
Total 779s 98s

TABLE 21(c)

PENTIUM 4: TIMINGS

1000 2000 3000 4000 5000
Size

500

1000

1500

2000

2500

3000

3500

MFLOPS

Model

CGw�S

Unleashed

BLAS

Fig. 21(d). Pentium 4: MMM Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0

500

1000

1500

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Fig. 21(e). Pentium 4: Sensitivity of performance toMU andNU

50 100 150 200 250 300 350
NB

500

1000

1500

2000

2500

MFLOPS

Fig. 21(f). Pentium 4: Sensitivity of performance toNB

20 40 60 80 100 120
NB

500

1000

1500

2000

2500

MFLOPS

Fig. 21(g). Pentium 4: Sensitivity of performance toNB (zoomed)

5 10 15 20 25
KU

250

500

750

1000

1250

1500

MFLOPS

Fig. 21(h). Pentium 4: Sensitivity of performance toKU

2 4 6 8 10 12
LS

250

500

750

1000

1250

1500

MFLOPS

Fig. 21(i). Pentium 4: Sensitivity of performance toLs

