Is Search Really Necessary to Generate
High-Performance BLAS?

Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran,
David Padua, Keshav Pingali, Paul Stodghill

Abstract— A key step in program optimization is the estimation 43] and loop unrolling [4,32] for enhancing locality and
of optimal values for parameters such as tile sizes and loop parallelism. Other work has focused on algorithms for esti-
unrolling factors. Traditional compilers use simple analytical mating optimal values for parameters associated with these

models to compute these values. In contrast, library genetars . . .
like ATLAS use global search over the space of parameter vaks transformations, such as tile sizes [7,13,36] and loop Iinro

by generating programs with many different combinations of factors [4]. Nevertheless, performance-conscious progrers
parameter values, and running them on the actual hardware must still optimize their programs manually [15, 19].
to determine which values give the best performance. It is The simplest manual approach to tuning a program for a
widely belleved_that traditional model_—c_zlnven optimization can- given platform is to write different versions of that progra
not compete with search-based empirical optimization beazse .
tractable analytical models cannot capture all the compleities evaluate the performance of these versions on the target pla
of modern high-performance architectures, but few quantiative form, and select the one that gives the best performanceeThe
comparisons have been done to date. different versions usually implement the same algorithot, b
To make such a comparison, we replaced the global searchdiffer in the values they use for parameters such as tile
engine in ATLAS with a model-driven optimization engine, gj;a5 and loop unroll factors. The architectural insightd a
and measured the relative performance of the code produced d in k led f th d to limit th
by the two systems on a variety of architectures. Since both omain know e_ ge of the programmer are used 1o _'m' e
systems use the same code generator, any differences in th@umber of versions that are evaluated. In eﬁeCt, the alnalyt
performance of the code produced by the two systems can techniques used in current compilers to derive optimalealu
come only_ from differences in optimi_zation p_aramgter valus. for such parameters are replaced byeanmpirical searchover
Our experiments show that model-driven optimization can be 5 g jitaply restricted space of parameter values (by enapiric
surprisingly effective, and can generate code with perforrance) ; .
comparable to that of code generated by ATLAS using global search, we mean a three Ste_p process: (1) gengratllng anversio
search. of the program corresponding to each combination of the
parameters under consideration, (2) executing each veosio
the target machine and measuring its performance, and (3)
selecting the version that performs best). This approash ha
been advocated most forcefully by Fred Gustavson and his co-
workers at IBM, who have used it for many years to generate
. INTRODUCTION the highly optimized ESSL and PESSL libraries for IBM ma-
The sciences do not try to explain, they hardly chines [34]. Recently, a number of projects such as FFTW [17,
even try to interpret, they mainly make models. By 18], PhiPAC [2, 6], ATLAS [1,41], and SPIRAL [26, 33] have
a model is meant a mathematical construct which, automated the generation of the different program versions
with the addition of certain verbal interpretations, whose performance must be evaluated. Experience shows that
describes observed phenomena. The justification of these library generators produce much better code thavenati
such a mathematical construct is solely and precisely compilers do on modern high-performance architectures.
that it is expected to work. Our work was motivated by a desire to understand the

John Von Neumann performance gap between the BLAS codes produced by AT-

It is a fact universally recognized that current restruogr LAS and by restructuring compilers, with the ultimate goal
compilers do not generate code that can compete with ha®fi-improving the state of the art of current compilers. One
tuned code in efficiency, even for a simple kernel like matrif€ason why compilers might be at a disadvantage is that they
multiplication. This inadequacy of current compilers doedre general-purpose and must be able to optimize any program
not stem from a lack of technology for transforming highwhereas a library generator like ATLAS can focus on a partic-
level programs into programs that run efﬁcient|y on modemar prOblem domain. However, this is somewhat implaUSible
high-performance architectures; over the years, the dempiPecause dense numerical linear algebra, the particulatgmo
community has invented innumerable techniques such aarlindomain of ATLAS, is precisely the area that has been studied

loop transformations [5,11,14,29,42], loop tiling [27,28Most intensely by the compiler community, and there is an
extensive collection of well-understood transformatidos
This work was supported by NSF grants ACI-9870687, EIA- & ACI- gptimizing dense linear algebra programs. Another reason f
0085969, ACI-0090217, ACI-0103723, and ACI-012140. K.ootK. Pingali . ; .
and P. Stodghill are with Cornell University; X. Li, G. Ren,. @arzaran and the 'nadequacy of current compllers mlght be that new trans-
D. Padua are with University of lllinois at Urbana-Chameig formations, unknown to the compiler community, are reqilire

Index Terms— program optimization, empirical optimization,
model-driven optimization, compilers, library generators, BLAS,
high-performance computing

Execute
MFLOPS &
Measure
A
v
+——L1Size—p»| NB—p
Detect ATLAS Search —MU, NU, KU ATLAS MM Code mini-MMM
Hardware ——LS—p Engine LS——p Generator > Source
Parameters F——NR—p| (mmsearch) —FF, IF, NF—p»| (mmcase)
——FMA—p FMA—p
——L1Size—p>| NB—p
Detect —L1 I-Cache Model Parameter —MU, NU, KU ATLAS MM Code mini-MMM
Hardware —L*, |ALUgp| P> Estimator LS—» Generator » Source
Parameters F——NR—p| (mmmodel) —FF, IF, NF—p»| (mmcase)
——FMA— ——FMA—p

Fig. 1. Architecture of ATLAS and of Model-driven ATLAS

to produce code of the same quality as the code producedrbgult of applying standard compiler transformations tghhi
ATLAS. Finally, it is possible that the analytical modelseds level BLAS codes. As we describe in Section I, the code
by compilers to estimate optimal values for transformatigproduced by ATLAS is similar to what we would get if we
parameters are overly simplistic, given the complex hardwaapplied cache tiling, register tiling, and operation sahied

of modern computers, so they are not able to produce gomdthe standard three-loop matrix multiplication code. sThi

values for program optimization parameters. exercise ruled out the possibility that ATLAS incorporated
No definitive studies exist to settle these matters. Osome transformation, unknown to the compiler community,
research is the first quantitative study of these issues. that was critical for obtaining good performance. We then

Figure 1 shows our experimental set-up, which makes usmdified ATLAS by replacing the search module, described
of the original ATLAS system (top of the figure) and an more detail in Section Ill, with a module (mmmaodel) that
modified version (bottom of the figure) that uses analyticakes standard analytical models to estimate optimal values
models instead of empirical search. Like any system that uger the optimization parameters, as described in Section IV
empirical search, ATLAS has (i) a module that controls th8ince both ATLAS and the modified ATLAS use the same
search, which is used to determine optimal values for codede generator, we are assured that any difference in the
optimization parameters (mmsearch), and (ii) a module thaérformance of the generated code results solely fromrdifte
generates code, given these values (mmcase). The parametesices for optimization parameter values. In Section V,
used by ATLAS are described in more detail in Section llve present experimental results on ten different platforms
for example,Ng is the tile size to be used when optimizingzomparing
code for the L1 d_ata cache. In general, there is. an uanundeg the time spent to determine the parameter values,
pumber of possible values fgr a parameter likg so it . the values of the parameters, and
is_necessary to bou_nd_ the size of the se_arch space. When the relative performance of generated code.

ATLAS is installed, it first runs a set of micro-benchmarks _

to determine hardware parameters such as the capacity of th@ur results show that on all ten platforms, a relatively
L1 data cache and the number of registers. These hardw@ifgPle and very intuitve model is able to estimate near-
parameters are used to bound the search space. The mmséRifal values for the optimization parameters used by the
module enumerates points within this bounded search spatE-AS Code Generator. We conclude in Section VI with a
invokes the mmcase module to generate the appropriate cgigeussion of our main findings, and suggest future dirastio
(denoted by mini-MMM in the figure), runs this code on théOr research.

actual machine, and records its execution time. At the end ofOne feature of ATLAS is that it can make use of hand-
the search, the parameter values that gave the best perfoemduned BLAS routines, many of which are included in the
are used to generate the library code. This library is coded i ATLAS distribution. When ATLAS is installed on a machine,
simple subset of C, which can be viewed as portable assemifigse hand-coded routines are executed and evaluatee If th
code, and it is compiled to produce the final executable. performance of one of these hand-coded routines surpasses

We first studied the code generation moduland deter- the performance of the code generated by the ATLAS Code
mined that the code it produces can be viewed as the ga@nerator, the hand-coded routine is used to produce the

library. For example, neither the ATLAS Code Generator nor

1The description of ATLAS in this paper was arrived at by stadythe the C compilers on the Pentium IV exploit the SSE2 vector
ATLAS source code. In case of any discrepancy between tlssriigion and . . .

how the ATLAS system is actually implemented, the docuntentaof the EXIENSIONS t0 the x86 instruction set, so ATLAS-generated

ATLAS project should be considered to be authoritative [B9— matrix multiplication code on the Pentium IV runs at around

1.5 GFLOPS. However, the matrix multiplication routine in ATLAS implements an MMM as a sequence wfini-

the library produced by ATLAS runs at 3.3 GFLOPS because MMMs, where each mini-MMM multiplies sub-matrices
it uses carefully hand-coded kernels, contributed by exper of sizeNgx Ng. Ny is an optimization parameter whose
programmers and part of the ATLAS distribution, which use value must be chosen so that the working set of the mini-
these vector extensions. MMM fits in the cache.

Our concern in this paper is not with handwritten code, but In the terminology of restructuring compilers, the triply-
with the code produced by the ATLAS Code Generator and nested loop of Figure 2 is tiled with tiles of sizZ€g x
with the estimation of optimal values for the parameters tha Np x Npg, producing anouter and aninner loop nest.
are inputs to the code generator. To make clear distingtions For the outer loop nest, code for both the JIK and 1JK
we use the following terminology in the rest of this paper. loop orders are implemented. When the MMM library

« ATLAS CGW/S:This refers to the ATLAS system in routine is called, it uses the shapes of the input arrays to
which all code is produced by tH&TLAS Code Generator decide which version to invoke, as described later in this
with Searchto determine parameter values. No hand- Section. For the inner loop nest, only the JIK loop order
written, contributed code is allowed. is used, with(j',4', k") as control variables. This inner

« ATLAS ModelThis refers to the modified ATLAS system l00p nest multiplies sub-matrices of si2é; x Np, and
we built in which all code is produced by the ATLAS ~ We call this computation aini-MMM.

Code Generator, using parameter values produced front Optimization for the register fileATLAS represents each
analytical models. mini-MMM into a sequence oficro-MMMs, where each

« ATLAS UnleashedThis refers to the complete ATLAS ~ micro-MMM multiplies an M x 1 sub-matrix ofA by
distribution which may use hand-written codes and prede- @ 1 x Ny sub-matrix of B and accumulates the result
fined parameter valuearchitectural defaultsto produce into an My x Ny sub-matrix of C. My and Ny are
the library. Where appropriate, we include, for complete- ~ Optimization parameters that must be chosen so that

ness, the performance graphs for the libraries produced @ micro-MMM can be executed without floating-point
by ATLAS Unleashed. register spills. For this to happen, it is necessary that

My + Ny + My x Ny < Ng, whereNg is the number
Il. ATLAS CoODE GENERATOR of floating-point reg|ster§. . .
. . . In terms of restructuring compiler terminology, the
In this section, we use the framework of restructuring (j/,7, k') loops of the mini-MMM from the previous step
compilers to describe the structure of the code generated by are tiled with tiles of sizeNy x My x Ky, producing

the ATLAS Code Generator. While reading this description, i an extra inner) loop nest. The JIK loop order is chosen

is important to keep in mind that ATLAS is not a compiler. for the outer loop nest after tiling, and the KJI loop order

Nevertheless, thinking in these terms helps clarify thaifiig for the loop nest of the mini-MMM after tiling.

cance of the code optimization parameters used in ATLAS. The resulting code after the two tiling steps is shown in
We concentrate on matrix-matrix multiplication (MMM), Figure 3. To keep this code simple, we have assumed

which is the key routine in the BLAS. Naive MMM code that all step sizes in these loops divide the appropriate
is shown in Figure 2. In this, and all later codes, we use the loop bounds exactly (saVg divides M, N, and K,
MATLAB notation [F'irst : Step : Last] to represent the set etc.). In reality, code should also be generated to handle
of all integers betweeit'irst and Last in steps ofStep. the fractional tiles at the boundaries of the three arrays;
we omit this clean-upcode to avoid complicating the
description. The strategy used by ATLAS to copy blocks
of the arrays into contiguous storage is discussed later in
this section. Figure 4 is a pictorial view of a mini-MMM
computation within which a micro-MMM is shown using
Fig. 2. Naive MMM Code shaded rectangles. In this figure, the values assigned to

variable K are produced by executing the tfvor loops

in Figure 3 corresponding to indicés$ and k”.

for ¢€0:1: N —1]
for je[0:1: M —1]
for kel0:1: K —1]
Cij = Cij + A X By

A. Memory Hierarchy Optimizations . : .
To perform register allocation for the array variables ref-

The code shown in Figure 2 can be optimized for localityrenced in the micro-MMM code, ATLAS uses techniques
by blocking for the L1 data cache and registers. Blockingmilar to those presented in [8]: the micro-MMM loop nest
is an algorithmic transformation that converts the matriegj//vi//) in Figure 3 is fully unrolled, producind/y; x Ny mul-
multiplication into a sequence of small matrix multiplicats, tiply and add statements in the body of the middle loop nest. |
each of which multiplies small blocks of the original maésc the unrolled loop body, each array element is accessedasever
Blocking matrix multiplication for memory hierarchies wasimes. To enable register allocation of these array elespent
discussed by McKellar and Coffman as early as 1969 [31]. TRgAS uses scalar replacement [9] to introduce a scalar
effect of blocking can be accomplished by a loop transformgsmporary for each element &f B, andC that is referenced in
tion called tiling, which was introduced by Wolfe in 1987 |43 the unrolled micro-MMM code, and replaces array references

« Optimization for the L1 data cache in the unrolled micro-MMM code with references to these

/1l MW | oop nest (j,i,k)
/1 copy full A here
for je[l: Np:M]
/1 copy a panel of B here
for i€[l:Ng:N]
/1 possibly copy atile of C here
for k€[l: Np: K]
/1 mini-MW I oop nest (j,i,k)
for jIE[j:NU:j—I—NB—l]
for /€li:My:i+ Np—1]
for K e€lk:Ky:k+ N —1]
for K" e[k :1:k + Ky —1]

/1 micro-MwW | oop nest (j”,i")

for 57 €[f :1:5 + Ny —1]
for i €[’ :1:4 + My —1]

C,-N,'// = Ci”"” + Ai”k” X Bk”j”

() J

Fig. 3. MMM tiled for L1 data cache and Registers

« Construct two sequences of lendth/;; x Ny;), one con-
taining the multiply operations (we will denote them by

muly, mula, ..

., mular, x N,) @and the other containing

the add operations (we will denote them &yd,, adds,

ey addMuxNU).

« Interleave the two sequences as shown below to create a
single sequence that is obtained by skewing the adds by
a factor of L, where L, is an optimization parameter.
Intuitively, this interleaving separates most dependent
multiplies and adds bg x L,—1 independent instructions
to avoid stalling the processor pipeline.

muly
muls

muly,,
add1

muly_ 11
<NU> add2
mulLS+2

<—

mul g« Ny —1
addnr, x Ny~ L,
mulMU X Ny
addnr, x Ny —L,+1
addpr, « Ny —L,+2

<—NB——>

addMU X Ny

. « Inject the My + Ny loads of the elements oA and

B into the resulting sequence of arithmetic operations
by scheduling a block of = (Initial Fetch) loads in the
beginning and blocks oNy loads thereafter as needed.
c Ir and Ny are optimization parameters.
« Unroll the £ loop completely. The parametéf;; must

be chosen to be large enough to reduce loop overhead,

but not so large that the body of thé loop overflows

the L1 instruction cache.
« Reorganize thek’ loop to enable the target machine
to overlap the loads from one iteration with arithmetic
operations from previous iterations. Techniques for ac-
complishing this are known as software pipelining or
modulo scheduling [35].

Note that skewing of dependent adds and multiplies in-
creases register pressure; in particular, the followirg)irality
must hold to avoid register spills (that is, saving in memory
the value stored in a processor register):

<MU>
|

— K>

<—NB———>

A

Fig. 4. mini-MMM and micro-MMM

scalars. Appropriate assignment statements are intrddiace
initialize the scalars corresponding #oand B elements. In

addition, assignment statements are introduced before and
after the ¥’ loop to initialize the scalars corresponding to

C elements, and to write the values back into the array
respectively. It is expected that the back-end compilet wil

allocate floating-point registers for these scalars.

B. Pipeline scheduling

The resulting straight-line code in the body of th'é loop
is scheduled to exploit instruction-level parallelism.tdlohat
the operations in thé” loop are theM; + Ny loads ofA and
B elements required for the micro-MMM, and the correspon%— Additional details
ing My x Ny multiplications and additions. On hardware™
architectures that have a fused multiply-add instructitue, There are several details we have not discussed so far.
scheduling problem is much simpler because multiplies ande ATLAS considers a primitive form of L2 cache tiling,
adds are executed together. Therefore, we only discuss the driven by a parameter calle@acheEdge. ATLAS em-
more interesting case when a multiply-add instruction is no pirically finds the best value of'ache Edge and uses it
present. An optimization parametdri/ A tells the code to computeK p, based on Inequality 2.
generator whether to assume that a fused multiply-addsexist
The scheduling of operations can be described as follows.

My X Ny + My + Ny + Ls < Np (1)

2 x Kp x Ng 4+ N3 < CacheEdge (2)

Kp is further trimmed to be a multiple oNg. The D. Discussion
computed value of{ p is used to block thd{ dimension

4V N Table | lists the optimization parameters for future refer
of the original problem for one additional level of the

memory hierarchy. We will not discugSache Edge and Name Description
Kp in further detail as they are outside the scope of the | N5 L1 data cache ftile size _ _
aper NCNg L1 data cache tile size for non-copying versign

paper. My, Ny Register tile size
ATLAS chooses the outermost loop order (shown as JIK | g, Unroll factor for &’ loop
in Figure 3) during runtime. This technique is known as IL?SMA |ia_;efncy;0f C?mrutiat;on St?lh%tliuligg horui

. if fused multiply-a avallapole, otherwise
versioning, because it requires both versions of the code Fr, Iy, Ng || Scheduling of loads

to be compiled in the library.
The decision of which loop order to choose is based on
the size of matriced andB. If A is smaller tharB (V <

M), ATLAS chooses the JIK loop order. This guarantees
that if A fits completely in L2 or higher cache level, it
is reused successfully by the loop nest. Similarlygifs

TABLE |
SUMMARY OF OPTIMIZATION PARAMETERS

It is intuitively obvious that the performance of the gener-
) ated mini-MMM code suffers if the values of the optimization
the smaller matrix #/ < N), ATLAS chooses the IJK parameters in Table | are too small or too large. For exanfple,
loop ord_er. . . My and Ny are too small, thé/; x Ny block of computation
For brevity, we consider only the JIK loop order in th(?nstructions might not be large enough to hide the latency of
rest of the paper. he My + Ny loads. On the other hand, if these parameters
Unlgss Fhe matnce; are 100 small or too Iarge, ATLA re too large, register spills happen. Similarly, if theueabf
copies tiles of matrices, B and C tq squent|a| mem- K is too small, there is more loop overhead, but if this value
ory to redu_ce the numbe_r of confllqt [MISSes and TL% too big, the code in the body of the loop will overflow
misses during the execution of a mini-MMM. Copymglhe instruction cache. The goal now is to determine optimal

is performed in a manner_that allows the copied tiles,\?alues of these parameters for obtaining the best mini-MMM
be reused by different mini-MMMs. The comments 'Q:Pde

Figure 3 and the discussion below explain how this goa
is achieved for the JIK loop order. "
— Copy all tiles of A before the beginning of the ATLAS performs a global search to determine optimal
outermost; loop. This is necessary as these tilesalues for the optimization parameters listed in Table I. In
are fully reused ireachiteration of thej loop. principle, the search space is unbounded because most of the
— Copy all tiles from thej*" vertical panel oB before parameters, such @6z, are integers. Therefore, it is necessary
the beginning of the loop. This is necessary as thisto bound the search space, using parameters of the machine
panel is fully reused beachiteration of the; loop. hardware; for example)/;; and Ny, the dimensions of the
— The single (i,5) tile of C is copied before the register tile, must be less than the number of registers.
beginning of thek loop if]’\i—g > 12. This may Since ATLAS is self-tuning, it does not require the user to
reduce TLB misses which may be beneficial sincgrovide the values of such machine parameters; insteaghst r
this tile is reused byeachiteration of thek loop, simple micro-benchmarks to determine approximate valoes f
provided that the cost of copying the tile 6fto a these parameters. It then performs a global search, using th
temporary buffer and back, can be amortized by thmachine parameter values to bound the search space.
computation (large enougR p).

EMPIRICAL OPTIMIZATION IN ATLAS

If the matrices are very small or if there is insufficienfa" Estimating machine parameters

memory for copying tiles, the cost of copying might out- The machine parameters measured by ATLAS are the
weigh the benefits of reducing conflict misses during tHellowing.

computation. Therefore, ATLAS generates non-copying e
versions of mini-MMM as well, and decides at runtime «
which version to use. Without copying, the number of «
conflict misses and TLB misses may rise, so it makes
sense to use a smaller tile size for the non-copying mini- e
MMM. In ATLAS, this tile size is another optimization
parameter calledVCNg (non-copying Ng). Roughly
speaking, the non-copy version is used if (i) the amount
of computation is less than some threshald ¥ N x K

C;: the size of L1 data cache.

Ng: the number of floating-point registers.

FM A: the availability of a fused multiply-add instruc-
tion.

Ls: although this is not a hardware parameter per se,
it is directly related to the latency of floating point
multiplication, as explained in Section 1I-B. ATLAS
measures this optimization parameter directly using a
micro-benchmark.

in Figure 2 is less than some threshold), and (ii) at leastThe micro-benchmarks used to measure machine parameters
one dimension of one of the three matrices is smaller thafe independent of matrix multiplication. For example, the
3x NCNpg. The non-copy version is used also when theligjcro-benchmark for estimating’, is similar to the one

is insufficient memory to perform the copying. discussed in Hennessy and Patterson [23].

Two other machine parameters are critical for performanaghen M; or Ny is 1 are treated specially. A test is performed
(i) the L1 instruction cache size, and (ii) the number ab see ifl x 9 unrolling or9 x 1 unrolling is better thar$ x 3
outstanding loads that the hardware supports. ATLAS does mmrolling. If not, unrolling factors of the formh x U andU x 1
determine these explicitly using micro-benchmarks; iadte for values ofU greater thar8 are not checked.
they are considered implicitly during the optimization of 3) Find bestK: This step is another simple search. Unlike
matrix multiplication code. For example, the size of the L1y and Ny, Ky does not depend on the number of available
instruction cache limits thé(;; parameter in Figure 3. Ratherregisters, so it can be made as large as desired withounhcausi
than estimate the size of the instruction cache directly ggister spills. The main constraint is instruction cactze.s
running a micro-benchmark and using that to determine tB&LAS tries values for Ky between4 and % as well
amount of unrolling, ATLAS generates a suite of mini-MMMas the special values and Ng. The value that gives best
kernels with differentK;; values, and selects the kernel thaperformance (based aNg, My and Ny as determined from
achieves best performance. the previous steps) is declared the optimal valueHor.

4) Find bestL;: In this step, ATLAS used., values in
the interval[1, 6] to schedule the computations in the micro-
MMM of Figure 3 to determine the best choice fdr,. It

To find optimal values for the optimization parameters ig|sq ensures that the chosen value divitiés x Ny x Ky to
Table I, ATLAS usesorthogonal line searchwhich finds tgcilitate instruction scheduling.
an approximation to the optimal value of a functign= 5) Find bestFr, Ir, and Ny In this step, ATLAS searches
f(@1,22,. .., 2n), ann-dimensional optimization problem, by oy the values ofF, I and Ny. First, ATLAS determines
solving a sequence of 1-dimensional optimization problemsine yvalye ofFr (0 or 1). Then, it searches for the best value
corresponding to each of .the parameters. When optimizing of the pair (=, Nx) wherelr is in the interval [2My+Ny]
the value of parameter;, it uses reference values fqr Paraang Ny is in the interval [LMy+Ny-Ix].
meters i1, Tiy2, . .., ¥,) that have not yet been optimized. 6 Find bestVC'Ng: For the non-copying version of mini-
Orthogonal line search is heuristic because it does NOtsAeCRIMM. ATLAS uses the same values of,;, Ny, Fr, I, and
sa_lrily find _the_optimal value even for a convex function, buNF that it uses for the copying version. Without copying, the
with luck, it might come close. o likelihood of conflict misses is higher, so it makes sense to

To specify an orthogonal line search, it is necessary {e 3 smaller L1 cache tile size than in the version of mini-
specify (i) the order in which the parameters are optimi#gd, MM that performs copying. ATLAS searches for an optimal
the set of possible values considered during the optintizatf 5, of NC N in the rangg N : —4 : 4]. We would expect
each parameter, and (iii) the reference value used for EEEM performance to increase initially as the tile size is deseda

B. Global search for optimization parameter values

k during the optimization of parametets2, ...,k —1. pyt decrease when the tile size becomes too small. ATLAS
The optimization sequence used in ATLAS is the followingerminates the search when the performance falls by 20% or
1) Find bestNg. more from the best performance it finds during this search.
2) Find bestMy and Ny. Finally, some restricted searches for better value& pfand
3) Find bestKy. L, are done.

4) Find bestL,. 7) Find best clean-up codedf the tile size is not a multiple
5) Find bestF, Ir, and Ng. of the original matrix size, there may be left-over rows and
6) Find bestNCNpg: a non-copy version oiVg. columns, at the boundaries of the matrices, forming fraetio
7) Find best clean-up codes. tiles. To handle these fractional tiles, ATLAS generatesct

We now discuss each of these steps in greater detail. Up code — a special mini-MMM in which one or more of the
1) Find bestNg: In this step, ATLAS generates a numbeglimensions of the three tiles is smaller thaig. For M/ and
of mini-MMMs for matrix sizesNz x Nz where Ng is a N clean-up only the corresponding dimension is smaller than

multiple of 4 that satisfies the following inequality: Np, while for K cleanup, any of the three dimensions can be
smaller thanNp.
16 < Ng < min (807 01) (3) For example, ATLAS generates’ clean-up codes as fol-

lows. For each value of., representing the size of th&

The reference values dff;; and Ny are set to the values dimension, starting with, = Ng — 1 and going down, it
closest to each other that satisfy (1). For each matrix sizgenerates a specialized version of the mini-MMM code in
ATLAS tries two extreme cases fdf; — no unrolling Ky = which some of the loops are fully unrolled. Full unrolling
1) and full unrolling Ky = Np). is possible because the shapes of the operands are completel

The Np value that produces highest MFLOPS is chosdmown. When the performance of the general version falls
as “bestNg” value, and it is used from this point on in allwithin 1% of the performance of the current specialized
experiments as well as in the final versions of the optimize@rsion, the generation process is terminated. The cufrést
mini-MMM code. declared to be th€rossover PointAt runtime, the specialized

2) Find bestMy and Ny: This step is a straightforward versions are invoked when the dimension of the left-over til
search that refines the reference valued\fhf and Ny that is greater tharl., while the general version is invoked for tile
were used to find the besVg. ATLAS tries all possible sizes smaller thar..
combinations of\f; and Ny that satisfy inequality (1). Cases For M and N clean-up ATLAS produces only a general

for j/€[0:1: Ng—1]
for i €[0:1: Ng—1]
for K e€[0:1:Np—1]
C,L-/j/ = Ci/j/ + Ay X Bk’j’

version, as these are outer loops in the outermost loop nest
in Figure 3 and they are not as crucial to performancé{as
clean-up is. The use of clean-up code in ATLAS is discussed
in more detail in [39].

Fig. 5. Schematic Pseudo-Code for mini-MMM
C. Discussion

In optimization problems, there is usually a trade-off be- The working set in memory of the mini-MMM loop nest in
tween search time and the quality of the solution. For exampkigure 5 consists of thre&/z x Ny tiles, one from each of
we can refine the parameters found by ATLAS by repeating thge matricesA, B, andC. For the rest of this section, we will

orthogonal line search some number of times, using the salygfer to these tiles just a&, B, andC. This working set fits
determined by one search as the reference values for the n&iirely in the cache if Inequality (4) holds.

search. It is also possible to use more powerful global searc
algorithms like simulated annealing. However, the posgidir 3NZ < 4 (4)
obtaining better solutions must be weighed carefully agfain

the increase in installation time. We will address this pain A more careful analysis shows that it is not actually neces-
the conclusions. sary for all threeNp x N blocks to reside in the cache for

the entire duration of the mini-MMM computation. Consider
the mini-MMM code shown in Figure 5. Becaugg is the
innermost loop, elements d@ are computed in succession;
In this section, we present analytical models for estimagnce a given element of has been computed, subsequent
ing optimal values for the parameters in Table I. To avoigerations of the loop nest do not touch that location again.
overwhelming the reader, we first present models that ignofierefore, with this loop order, it is sufficient to hold aglim
interactions between different levels of the memory himgr ejement ofC in the cache, rather than the entire array. The
(in this case, L1 data cache and registers). Then, we refee fame reasoning shows that it is sufficient to hold a single

IV. M ODEL-BASED OPTIMIZATION

models to correct for such interactions. column of B in the cache. Putting these facts together, we see
that with this loop order, there will be no capacity misses if
A. Estimating hardware Parameters the cache can hold all &, a single column oB, and a single

Model-based optimization requires more machine parameeIsament ofC. This leads to Inequality (5).

ters than the ATLAS approach because there is no search. The
hardware parameters required by our model are as follows.

o C1,B;: the capacity and the line size of the L1 data 1) Correcting for non-unit line sizetn reality, caches have

NE+Np+1<Cy ()

cache. non-unit line size. Assume that the line size 5. If the

« Cr: The capacity of the L1 instruction cache. three tiles are stored in column major order, bBtandC are

« L,: hardware latency of the floating-point multiply in-walked by columns and is in cache for the entire duration
struction of the mini-MMM. This leads to the refined constraint shown

o |ALUpp|: number of floating-point functional units in Inequality (6).

o Ng: the number of floating-point registers. N2 Ng)

o FMA: the availability of a fused multiply-add instruc- ’VE-‘ + {Bﬁl-‘ +1< B, (6)
tion.

Empirical optimizers use the values of machine parameter) Correctlng for LRU replacement pollgyNg can further
only to bound the search space, so approximate values relax the restrictions of our cache organization to allow fo
these parameters are adequate. In contrast, analyticaetl:;nob‘e"’}st RecentI}I/_ Ujed (LRU) Leplaf(;ementflrliséaad 0'; optimal
require accurate values for these parameters. Therefare, &P acement. o determine the effects o replacement

have developed a tool called X-Ray [44], which accurate%1 the optimal tile sizeVs, we must examine the hlstory Of .
measures these values. emory accesses performed by the loop nest. This analysis is

in the spirit of Mattson et.al. [30], who introduced the oot
o of stack replacement and stack distance.
B. EstimatingNp We start with the innermost loop of the mini-MMM loop
We present our model for estimatingz using a sequence nest. A single iteratior{j, , k) of this loop touches elements
of refinements for increasingly complex cache organization Ar:Bro: Cor:
We start with the mini-MMM code in Figure 5, and then adjust thy Bk =ig
the model to take register tiling into account. where the most recently accessed element is written rigsttmo
The goal is to find the value oWV that optimizes the use in this sequence.
of the L1 data cache. First, we consider a simple cache ofExtending this analysis to the middle loop, we see that the
capacityCy, which is fully-associative with optimal replace-sequence of memory access for a given value of the outer loop
ment policy and unit line-size. There are no conflict missemdices (j,:) is the following (as before, the most recently
and spatial locality is not important. accessed element is rightmost):

be replaced by considerations of horizontal panels, \artic
panels, and register tiles instead. Taking this into actoue
get Inequality (8).

Note that the locatiorC;; is touched repeatedly, so the
corresponding history of memory accesses from least rigcent [Nﬂ +3 [NB X NUW N [MUW

Ai0; Boji Cizs Ai1s Bij; Cijs o Aing =15 B —1,55 Cijs

«Ny< (g

accessed to most recently accessed is the following: By B B B
3) Correcting to avoid micro-MMM clean-up code\ote
Aio; Bojs Ai1i Bijs . s Ai N —13 B 1,55 Cijs that estimatingVs using Inequality (7), it is possible to get a

Extending this to a single iteratiohof the outermost loop, Value for Np which is not an exact multiple ai/y; and Ny .

we see that the sequence of memory accesses is the followlfis requires the generation of clean-up code for fractiona
(in left-to-right, top-to-bottom order): register tiles at the boundaries of mini-MMM tiles. This com

plicates code generation, and generally lowers performanc
We avoid these complications by trimming the valueof
Aoo; Boj; o AoNg-13 B Coj determined from Inequality (7) so that it becomes a multiple
Ato; Boj; o ALNg-13BNg-1j Cujs of My and Ny;. The ATLAS Code Generator requir@és to
: be an even integer, so we enforce this constraint as well.
If N3 is the tile size obtained by using Inequality (7), we

set Ny to the value{m(l\f% x lem (My, Ny, 2).
Note this requires that the value dfg be determined after

e values ofMy and Ny have been determined as described

ANp-1,0iBoj; - ANpg-1,N5-1;BNp-155 Cnp-1;

Note that the column oB is reusedNg times, and thus the
corresponding history of memory accesses from least r@cer&1
accessed to most recently accessed is

below.
Ago; Ao, Ng—1; Coj; 4) Other cache organizationsif the cache organization
A1o; A1 Np-1; Cyy; is not fully-associative, conflict misses must be taken into

account. Although there is some work in the literature on

modeling conflict misses [10, 12], these models are not com-

putationally intractable. Therefore, we do not model conbfli
We do not want to evict the oldest element of this histomnisses, although there are some general remarks we can make.

(Aoo) because, as we discussed beférés completely reused If A, B, and C are copied to3N3 contiguous storage

in all iterations of the outermost loop. Therefore we need tocations, Inequality (4) can also be viewed as determittieg

chooseNp is such a way that this whole history fits in thdargest value ofVz for which there are no capacity or conflict

cache. misses during the execution of the mini-MMM any cache
Furthermore, after thg'" iteration of the outermost loop organization. Although ATLAS usually copies tiles, the eod

is complete, thej + 1%¢ iteration will bring in thej + 15* in Figure 3 shows that the three copied tiles are not nedgssar

column of B, which participates in an inner product with alladjacent in memory. However, if the set-associativity @f it

the rows ofA. Because of LRU, this new column will not bedata cache is at least 3, there will be no conflict misses.

able to “optimally” replace the old* column ofB, since the Inequality (5) determines the largesis for which there are

old column of B has been used quite recently. For the sanm® capacity misses during the execution of the mini-MMM,

reason the new element @f namelyC, ;41, will not be able although there may be conflict misses if the cache is direct-

to optimally replace the old,;. To account for this, we need mapped or set-associative. Notice that these conflict misse

extra storage for an extra column Bfand an extra elementarise even if data from all three matrix tiles is copied into

of C. contiguous memory, because the amount of the data touched
Putting this all together, we see that if the cache is fullysy the program is more than the capacity of the cache, and

associative with capacity’,, line size B; and has an LRU some elements will map to the same cache set.

replacement policy, we need to cache alPoftwo columns of

B and a column plus an element ©f This result is expressedC. EstimatingMy and Ny

ANp-1,0;Boj; -+ ANpg-1,N5-1;BNp-15 Cnp-1;

formally in Inequality (7). One can look at the register file as a software-controlled,
N2 N C fully-associative cache with unit line size and capacityaq
{FB-‘ +3 {FB-‘ +1< Fl (7) tothe number of available registei&;. Therefore we can use
1 1 1

a variant of Inequality (5), to estimate the optimal regisile
Finally, to model the mini-MMM code of Figure 3, whichtile size value.

includes register tiling, we need to take into account inter The ATLAS Code Generator uses the KlJ loop order to tile

actions between the register file and the L1 cache. Thus fam; the register file, and thus we need to cache the complete

we implicitly assumed that the computation works directi}/y; x Ny tile of C, an1 x Ny row of B and a single element

on the scalar elements of the tiles. As Figure 3 shows, thé A. Therefore the analog of Inequality (5) for registers is

mini-MMM loop nest actually works on register tiles. Welnequality (9), shown below.

refine Inequality (7) by recognizing that considerations of

rows, columns, and elements &f B, andC respectively must My x Ny + Ny +1< Npg (9)

Because the register file is software controlled, the ATLAS
Code Generator is free to allocate registers differentgnth L. = [Lx X |[ALUFp|+ 1} (13)
Inequality (9) prescribes. In fact, as discussed in Sedtion 2
it allocates to registers &/ x 1 column of A, rather than a Of the machines in our study, only the Intel Pentium
single element oA. Furthermore, it needs, registers to store machines have floating-point units that are not fully piped!;
temporary values of multiplication operations to schedalte in particular, multiplications can be issued only once gver
optimal use of the floating point pipelines. Taking into ased 2 cycles. Nevertheless, this does not introduce any error
these details, we refine Inequality (9) to obtain Inequdli§). in our model because ATLAS does not schedule back-to-

My x Ny + Ny + My + Ly < Np (10) back multiply instru_ctions, but intermixes them with adlafits.
Therefore, Inequality (11) holds.

Npg is a hardware parameter, which is measured by the
micro-benchmarks. The value of the optimization parameter -
L, is estimated as discussed in Section IV-E. Therefore t .eEstlmatlng other parameters
only unknowns in Inequality (10) aré/y and Ny. We Our experience shows tha}t perfprmance is insensitive to the
estimate their values using the following procedure. values of Fr, Ir, and Ny optimization parameters. Therefore

« Let My = Ny = u. Solve Inequality (10) for. we setFp = 1(true), Ir =2 and Nf = 2. o

« Let My = max (u, 1). Solve Inequality (10) forVy. FMA is a hardwa.re parameter, mdependgnt of the specmc

« Let Ny — max (Ny, 1) application. If our m|cro—bench.marks dgtermm(_e that thfhlar

« Let (My, Nyy) = (max (My, Niy) , min (M, No)). tecture supports a_fused multiply-add instruction, we bt t

parameter appropriately.
o Finally, we setNCNg = Np. That is, we use the same
D. EstimatingKy tile size for the non-copying version of mini-MMM as we

Although Ky, is structurally similar toMy and Ny, it is do for the copying version. In our experiments, ATLAS
obviously not limited by the size of the register file. Themef always decided to use the copying version of mini-M&#M
the only practical limit forKy is imposed by the size of theso the value of this parameter was moot. A careful model
instruction cache. To avoid micro-MMM clean-up code, wéor NCNp is difficult because it is hard to model conflict
trim Ky so thatNp is a multiple of K;. Note that if Ky = misses analytically. There is some work on this in the coenpil
Np it is left unchanged by this update. literature but most of the models are based on counting

Therefore our model for estimating;; is to unroll the integer points within certain parameterized polyhedra and
loop as far as possible within the size constraints of tteppear to be intractable [10, 12]. Fraguela et. al. haveqseqgh
L1 instruction cache, while ensuring thafy divides Ng. another approach to modeling conflict misses when the sizes
On most platforms, we found that the loop can be unrollesf matrices are known [16]. In some compilers, this problem

completely & = Np). is dealt with heuristically by using theffectivecache capacity,
defined to be a fraction (such éssof the actual cache capacity,
E. EstimatingL, when computing the optimal tile size. In our context, we

: S could setNC N to the value determined from Inequality (7)
L, is the optimization parameter that represents the skew o) .
With € replaced with 5. We recommend this approach
factor the ATLAS Code Generator uses when scheduhggl . o
L " : ould it become necessary to use a smaller tile size on some
dependent multiplication and addition operations for tHJC .
A architectures.
pipeline.
Studying the description of the scheduling in Section I, _ _
we see that the schedule effectively executesndependent G. Discussion
multiplications andl; — 1 independent additions between a We have described a fairly elaborate sequence of models
multiplicationnul; and the corresponding additiand;. The = for estimating the optimal value d¥s. In practice, the value
hope is that thes2x L; — 1 independent instructions will hide found by using Inequality (6), a relatively simple model, is

the latency of the multiplication. If the floating-point tsiare close to the value found by using more elaborate models such
fully pipelined and the latency of multiplication 6., we get as Inequalities (7) and (8).

the following inequality, which can be solved to obtain auel
for L. V. EXPERIMENTAL RESULTS

9% Lo—1>1L, (11) Models are to be_usec_i, not believed. _
H. Theil ‘Principles of Econometrics’
On some machines, there are multiple floating-point units.
If |JALUpp| is the number of floating-point ALUs, Inequal-
ity (11) gets refined as follows.

2xLs =1 1 (12)

|ALUpp| =" . o | .
. . . . 2Using the non-copy version is mainly beneficial when the ioedr
Solving Inequality (12) forL,, we obtain Inequality (13). involved in the computation are either very small or are lang skinny [37].

In this section, we present the results of running ATLAS
CGw/s and ATLAS Model on ten common platforms. For all
experiments we used the latest stable version of ATLAS, whic
as of this writing is 3.6.0. Where appropriate, we also prese

numbers for ATLAS Unleashed and vendor supported, native
BLAS.
We did our experiments on the following platforms.
« RISC, Out-of-order
— DEC Alpha 21264
— IBM Power 3
— IBM Power 4
— SGI R12K

e RISC In-order

— Sun UltraSPARC llli
— Intel ltanium?2

« CISC, Out-of-order

— AMD Opteron 240
— AMD Athlon MP
— Intel Pentium Il
— Intel Pentium 4

For each platform, we present the following results.
o Times:

— X-Ray time taken by X-Ray to determine hardware
parameters.

— ATLAS Micro-benchmarksime taken by the micro-
benchmarks in ATLAS to determine hardware para-
meters.

— ATLAS Optimization Parameter Seardime taken
by global search in ATLAS for determining opti-
mization parameter values.

We do not report the actual installation time of any of the
versions of ATLAS because most of this time is spent in
optimizing other BLAS kernels, generating library code,

building object modules, etc.

We do not discuss the timing results in detail as they are
not particularly surprising. X-Ray is faster than ATLAS

10

The input to the FORTRAN compiler is the standard
triply-nested loop shown in Figure 2.

For vendor supported, native BLAS (labeled “BLAS”
on all figures) we used to following libraries and
corresponding versions, which were current at the
time of our experiments:

DEC Alpha: CXML 5.2

IBM Power 3/4: ESSL 3.3

SGI R12K: SCSL 6.5

SUN UltraSPARC llli: Sun One Studio 8

Intel Itanium 2, Pentium I1l/4: MKL 6.1

x AMD Opteron, Athlon: ACML 2.0

EE

« Sensitivity Analysisthis describes the relative change
of performance as we change one of the optimization
parameters, keeping all other parameters fixed to the
values found by ATLAS CGw/S. Sensitivity analysis
explains how variations in the values of optimization
parameters influence the performance of the generated
mini-MMM kernel.

Npg: change in mini-MMM performance when the
value of N is changed

My, Ny: change in mini-MMM performance when
values of My and Ny are changed. Because optimal
values ofMy and Ny depend on the same hardware
resource Ng), we vary them together.

Ky: change in min-MMM performance when value
of Ky is changed.

L, change in mini-MMM performance wheh; is
changed.

Fr, Ir and Nr: we do not show sensitivity graphs
for these parameters because performance is rela-
tively insensitive to their values.

in measuring hardware parameters on nine out of the t&n DEC Alpha 21264

platforms, and has comparable timing (10% slower) on 1) mini-MMM: On this machine the model-determined
one (IBM Power 3). Moreover, while ATLAS CGWI/S gptimization parameters provided performance of about 100
spends considerable amount of time, ranging between=. OPS (7%) slower than the ones determined by search.
minutes on the DEC Alpha to more than 8 hours on thene reason of the difference is the suboptimal selectiomef t
Intel Itanium 2, to find optimal values for optimization parameter (84 for Atlas Model vs. 72 for ATLAS CGw/S),
parameters, the model-based approach takes no meagircan be seen in th¥ sensitivity graph of Figure 12(g).

2) MMM Performance: Figure 12(d) shows the MMM

« Performance: performance_

— Optimization parameter valuevalues determined ATLAS Unleashed produces the fastest BLAS implemen-
by ATLAS CGw/S and ATLAS Model. Where ap-tation because it uses highly-optimized, hand-tuned BLAS
propriate, we also report these values for ATLAZernels written by Goto. A newer version of these kernels is
Unleashed. described in [25]. The native BLAS library is only marginall

— mini-MMM performance performance of mini- slower.
MMM code produced by ATLAS CGw/S, ATLAS Although the gap in performance of the mini-MMM codes
Model and ATLAS Unleashed. produced by ATLAS CGw/S and ATLAS Model is 100

— MMM performancefor matrices sized00 x 100 to MFLOPS, the gap in performance of complete MMM com-
5000 x 5000. We report performance of completeputations is only about 50 MFLOPS (4%) for large matrices.
MMM computations using (i) vendor supported, naFinally, we note that the GNU FORTRAN compiler is unable
tive BLAS, and the code produced by (ii) ATLASto deliver acceptable performance. We did not have access to
CGw/S, (iii) ATLAS Model, (iv) ATLAS Unleashed, the Compaq FORTRAN compiler, so we did not evaluate it.
and (v) the native Fortran compiler. On each plat- 3) Sensitivity AnalysisFigure 12(e) shows the sensitivity
form, the code produced by ATLAS is compiled withof performance to the values dff;; and Ny. The optimal
the best C compiler we could find on that platformvalue is (4, 4), closely followed by(3,6), and (6,3). These

able time.

11

match our expectations that optimal unroll factors are asecl scaled-up version of this graph in the region of the optimal

to square as possible, while dividing the tile siXg; = 72 Np value.

without reminder. Figure 13(e) shows the sensitivity of performance to the
Figure 12(f) shows the sensitivity of performance to thealues of My and Ny;.

value of Np. Figure 12(g) shows a scaled-up version of this Figure 13(h) shows the sensitivity of performance to the

graph in the region of the optimaVp value. The optimal value of K;. On this machine, the entire mini-MMM loop

value for N is 88. ATLAS does not find this point becauseyody can fit into the L1 instruction cache for valuesrf up

it does not explore tile sizes greater than 80, as explainedtd Nz. Performance is relatively insensitive 6 as long as

Section llI, but it chooses a tile size of 72, which is close tthe value of this parameter is sufficiently large/f > 5). We

optimal. If we use Inequality (8) to determiéz analytically, do not understand the sudden drop in performandéat= 3.

we obtainNp = 84. Note that using the simpler model of Figure 13(i) shows the sensitivity of performance to the

Inequality (6), we obtainVz = 90, which appears to be almostyalue of L,. The Power 3 platform has a fused multiply-add

as good as the value determined by the more complex moggktruction, which the ATLAS micro-benchmarks and X-ray
The N sensitivity graph of Figure 12(g) has a saw-tooth aind, and the Code Generator exploits, so performance does

periodicity 4, with notable peaks occurring with a periotic not depend on the value df,.

of 8. The saw-tooth of periodicity 4 arises from the intei@ct

between cache tiling and register tiling - the register idle

(4,4), so wheneveN g is divisible by 4, there is no clean-upC. IBM Power 4

de for fractional register tiles in the mini-MMM code, and - . . i
coce for Tractional register es in the min! coce, an e1) mini-MMM: On this machine, mini-MMM code pro-

performance is good. We do not yet understand why there . 0
notable peaks in the saw-tooth with a periodicity of 8. %ruced by ATLAS Model is about 70 MPLOPS (2%) slower

Figure 12(h) shows the sensitivity of performance to igan mini-MMM code produced by ATLAS CGW/S. Fig-

value of K. On this machine the entire mini-MMM loop ure 14(9) shows_that ong reason for this difference is atigh
o i : sub-optimal choice ofVg; fixing the values of all parameter
body can fit into the L1 instruction cache for values i6f;)
. . . . other thanV s to the ones chosen by ATLAS CGw/S and using
up to Ng. Performance is relatively insensitive f; as long

as the value of this parameter is sufficiently largé,(> 7). the model-predicted value of 56 féfg results in mini-MMM

: . L code that performs slightly worse than the mini-MMM code
Figure 12(i) shows the sensitivity of performance to theroduced by ATLAS CGW/S.

value of L,. The graph is convex upwards, with a peak at P .
2) MMM Performance:Figure 14(d) shows MMM perfor-

The multiplier on this machine has a latency of 4 cycles, so i
the model forL, in Section IV, computed., — 5, which is mance. For large matrices, the hand-tuned BLAS perform

close to optimal. The inverted-U shape of this graph follom{?eﬁreLi'Sa&h%u?hAﬁ)_{:SSéng” /rgargig.A'_ll'_fll_eAScoLchel pror:qu(I:ed
our expectations. For very small values 6f, dependent y odel, WIS an nieashe

multiplications and additions are not well separated ant CFgJ(Ie_rE)rm almost |_c|ient|ce;|||y. %n tlh's. mlachmg the Pa?VZAJBM
pipeline utilization is low. AsL, grows, the problem gradually ortran compiler produced relatively good results foresm

disappears, until the performance peak is reached whenlthe patrices. o o o
latency of the multiplication is hidden. Increasiig further ~ 3) Sensitivity AnalysisFigure 14(e) shows the sensitivity
does not improve performance as there is no more latency®foPerformance to changes in the values\df; and Ny The
hide. On the contrary, more temporary registers are neaded@rameter valuegi, 4) perform best, and these are the values

save multiplication results, which causes more registéissp Used by both ATLAS CGw/S and ATLAS Model.
to memory, decreasing performance. Figure 14(f) shows the sensitivity of performance to the

value of Ng. Figure 14(g) shows a scaled-up version of this
graph in the neighborhood of th&p value determined by
B. IBM Power 3 ATLAS CGWI/S. Figure 14(f) shows that on this machiné;

1) mini-MMM: On this machine, mini-MMM code pro- values between 150 and 350 give the best performance of
duced by ATLAS Model is about 40 MFLOPS (3%) sloweroughly 3.5 GFLOPS. Using Inequality (4) for the L2 cache
than mini-MMM code produced by ATLAS CGw/S. Fig-(capacity of 1.5 MB) givesNp= 254, while Inequality (8)
ure 13(g) shows that one reason for this difference is the sigives Nz= 436, showing that on this machine, it is better to
optimal choice ofN; fixing the values of all parameter othettile for the L2 cache rather than the L1 cache.
than N to the ones chosen by ATLAS CGw/S and using the Figure 14(h) shows the sensitivity of performance to the
model-predicted value of 84 foNg results in mini-MMM value of K. The L1 instruction cache on this machine is
code that performs about 100 MFLOPS worse than the mim&rge enough that we can sk, to Ng. As on the Power 3,
MMM code produced by ATLAS CGw/S. unrolling by 3 gives poor performance for reasons we do not

2) MMM Performance:For multiplying large matrices, the understand.
handwritten BLAS as well as the codes produced by ATLAS Figure 14(i) shows the sensitivity of performance to the
CGw/S, ATLAS Model, and ATLAS Unleashed perform alvalue of L,. The Power 4 platform has a fused multiply-add
most identically. instruction, which the ATLAS micro-benchmarks find and the

3) Sensitivity AnalysisFigure 13(f) shows the sensitivity Code Generator exploits, so performance does not depend on
of performance to the value aVg. Figure 13(g) shows a the value ofL,.

12

D. SGI R12K 2) MMM Performance: Figure 16(d) shows the MMM
1) mini-MMM: On this machine, mini-MMM code pro- Performance. On this machine, the hand-coded BLAS and AT-

duced by ATLAS Model is about 20 MFLOPS (4%) slowet-AS Unleashed performed roughly 50% better than the code
than mini-MMM code produced by ATLAS CGw/S. TheProduced by ATLAS CGw/S. The reason for this difference is

performance of both codes is similar to that of mini-MMMhat the mini-MMM code in ATLAS Unleashed (and perhaps
code produced by ATLAS Unleashed. the hand-coded BLAS) pre-fetches portions of theand B

2) MMM Performance: Figure 15(d) shows MMM per- matrices required for the next mini-MMM. This may be related
formance. The hand-coded BLAS perform best by a smafl the Level-3 pre-fetching idea of Gustavson et. al. [3].
margin. On this machine the native compiler (in this case, th 3) Sensitivity AnalysisFigure 16(e) shows the sensitivity
SGI MIPSPro) generated relatively good code that was orflf performance to the values aff; and Ny .

20% lower in performance than the hand-coded BLAS, at leastFigure 16(f) shows the sensitivity of performance to the
for small matrices. value of theNg. Figure 16(g) shows a scaled-up version of
3) Sensitivity AnalysisFigure 15(e) shows the sensitivitythis graph in the region of the optimaiz value. On this
of performance to the values dff;y and Ny;. This machine machine, as on many other machines, it is better to tile fer th
has a relatively large number of registers (32), so there id-2 cache, as can be seen in Figure 16(f). Using Inequality (4)

fairly broad performance plateau in this graph. for the L2 cache (capacity of 1 MB), we obtai¥ig = 208,
Figure 15(f) shows the sensitivity of performance to thehich gives roughly 1380 MFLOPS. Using Inequality (8),
value of theNg. Figure 15(g) shows a scaled-up version oive obtain Nz = 356, which is close to theNp value in
this graph in the region of the optimalg value. Figure 15(f) Figure 16(f) where the performance drops rapidly.
shows that on this machiné/g values between 300 and 500 Figure 16(h) shows the sensitivity of performance to the
give the best performance of roughly 510 MFLOPS. Usingalue of the K;. On this machine, the instruction cache is
Inequality (4) for the L2 cache (capacity of 4MB) givdg= large enough that full unrollingKy=Np) is possible.
418, while Inequality (8) givesVp = 718, showing that on Figure 16(i) shows the sensitivity of performance to the
this machine, it is better to tile for the L2 cache rather tharalue of theL,. This machine does not have a fused multiply-
the L1 cache. add instruction, so the value of the, parameter affects
Figure 15(h) shows the sensitivity of performance to thgerformance. Both the model and ATLAS CGw/S find good
value of the Ky. On this machine, the instruction cache isalues for this parameter.
large enough that full unrollingy=Ng) is possible.
Figure 15(i) shows the sensitivity of performance to th -
value of theL,. The R12K processor has a fused muItipIy-E' Intel_lt.amum 2) _ o
add instruction, so we would expect performance of the 1) Mini-MMM: On this machine, the mini-MMM code
generated code to be insensitive to the valueLof While Produced by ATLAS Model is about 2.2 GFLOPS (55%)
this is borne out by Figure 15(i), notice that Table 15(gjlower than mini-MMM code produced by ATLAS CGw/S.
shows that the micro-benchmark used by ATLAS did n his is a rather supstantlal d|ffe.r¢r_1ce in performancet $® i
discover the fused multiply-add instruction on this maehir€cessary to examine the sensitivity graphs to understend t
(FMA = 0)! It is worth mentioning that on this platform r€@sons why ATLAS Model is doing so poorly.
the FMA instruction, while present in the ISA, is not backed Figure 17(g) shows that one reason for this difference
up by a real FMA pipeline in hardware. Instead it allows thi$ that ATLAS Model usedNp = 30, whereas ATLAS
two separate functional units (for multiplication and auai CCW/S usedNp = 80. ATLAS CGW/S usesNp = 80
respectively) to be used sequentially saving one latenciecy Pecause it disregards the L1 data cache size (16KB) and
Therefore, in theory, peak performance is achievable evepnsiders directly the L2 cache size (256KB), and therefore
by using separate multiply and add instructions. Althoughe expressiomnin (80,\/6) in Inequality (3) evaluates to
ATLAS Code Generator schedules code using= 3, the SGI 80, the largest possible value dfg in the search space used
MIPSPro compiler is clever enough to discover the separatey ATLAS.
multiplies and adds, and fuse them. In fact the compiler is While the valueNg = 30 used by ATLAS Model is correct

able to do this even wheh, = 20, which is impressive. with respect to the L1 data cache size, Intel Itanium 2 does
_ not allow storing floating point numbers in the L1 data cache,
E. Sun UltraSPARC llli and thus L2 has to be considered instead. Once we incorporate

1) mini-MMM: On this machine, mini-MMM code pro- in X-Ray the ability to measure this specific hardware fegtur
duced by ATLAS Model is about 160 MFLOPS (17%8ster the shortcoming of ATLAS Model will be resolved.
than mini-MMM code produced by ATLAS CGw/S. The main 2) MMM Performance:Figure 17(d) shows MMM perfor-
reason for this is that the micro-benchmarks used by ATLASance. The hand-written BLAS and ATLAS Unleashed give
incorrectly measured the capacity of the L1 data cache asth& best performance. The code produced by ATLAS CGw/S
KB, rather than 64 KB. Therefore ATLAS only searched foruns about 1.5 GFlops slower than the hand-written BLAS,
Np values less thad4. Our micro-benchmarks on the othewhile the code produced by ATLAS Model runs about 3.5
hand correctly measured the capacity of the L1 cache, so tBElops slower.
model estimatedVp = 84, which gave better performance as 3) Sensitivity AnalysisFigure 17(e) shows the sensitivity
can be seen in Figure 16(g). of performance to the values 8f;; and Ny;. The Itanium has

13

128 general-purpose registers, so the optimal register éite fraction of the computations of thé’ loop (less than 1%
relatively large. There is a broad plateau o8f;{,/Nyy) values compared to about 5% faVg = 80).
that give excellent performance.

Figure 17(f) shows the sensitivity of performance to the wrors
value of theNg. Figure 17(g) shows a scaled-up version of
this graph in the region of the optimalg value. Figure 17(f) 4000
shows that on this machine, the best performance is obtained
by tiling for the L3 cache! Indeed, using Inequality (4) faet
L3 cache (capacity of 3 MB), we obtaiVg = 360, which 2000 —+— nB-go
gives roughly 4.6 GFLOPS. Figure 17(f) shows that this value
is close to optimal. Using Inequality (8), we obtdif = 610,
which is close to theNg value in Figure 17(f) where the KU
performance starts to drop.

Figure 17(h) shows the sensitivity of performance to the
value of Ki;. On the Itanium, unlike on other machines in .

. . " Fig. 6.
our study, performance is highly sensitive to the value of
Ky. The main reason is the large register ile/y;, Niy) =
(lg, 10); after unrolling the micro?MMl\/?Ioopst(, W[ggetU; very Figure 17(i) shows the_ sensitivity of perform_ance to _the
long straight-line code sequence. Furthermore, unrolbifig value_of theL,. The Itanu_Jm_ has z?_fused multiply-add in-
the k" loop creates numerous copies of this code sequenﬁg.ucuon’ S0 performance is insensitive to g parameter. .
Unfortunately, the L1 instruction cache on this machine das In summary, the code produced by ATLAS Model on this
capacity of 32 KB, so it can hold only about 9 copies of th@achlne did not perform as well as the code produced by AT-

micro-MMM code sequence. Therefore, performance drops J#‘SL(;GW/ﬁ' HO\;]vever, this ii_becaui_e ATer\SbModel tifled for
dramatically for values of{;; greater than 9 or 10. the L1 cache, whereas on this machine, the best performance

Since this is the only machine in our study in which fiie is obtained by tiling for L3 cache. ATLAS CGw/S gets better

parameter mattered, we decided to investigate the S(:.it)siti\pen‘ormance because the tile size is set to a larger value tha
graph more carefully. Figure 6 shows a magnified version g}e value used by ATLAS Model.

Figure 17(h) in the intervak(y; € [0, 15]. We would expect the

K sensitivity graph to exhibit the typical inverted-U shapd>- AMD Opteron 240

1000 # NB=360

Intel Itanium 2: Sensitivity of performance 6,

and it more or less does. However, performanceHer = 7 1) mini-MMM: Table 18(c) shows that on this machine, the
is significantly worse than the performance &y, = 6, and mini-MMM code generated by ATLAS Model runs roughly
Ky = 8, which appears anomalous. 38% slower than the code generated by ATLAS CGw/S. The

The anomaly arises from clean-up code that is requirgdlues of almost all optimization parameters determined by
when Ky does not divideNg evenly (see thet’ loop in the two systems are different, so it is not obvious where the
the tiled code in Figure 3). If we unroll thé’ loop by problem is. To get some insight, it is necessary to look at the
Ky, the number of times the completely unrolled microsensitivity graphs.

MMM code is replicated inside the mini-MMM is naoky, Figure 18(f) shows the performance sensitivity graph for
but Ky + Ng% Ky (% is the reminder from integer division). Nz. Both 60 and 88 appear to be reasonable values, so
The first term in the sum is the expected number of repetitiottee problem with ATLAS Model is not in its choice of
inside the unrolled’ loop, while the second part is the cleanNg. BecauseKy is bound to the value ofVg, the only

up code which takes care of the case wiién does not divide remaining differences are those betwekh;, Ny, L, and

Np exactly. This second piece of code is still part of the minif’ M A. Table 18(b) shows that ATLAS Model chodé; = 2,
MMM loop nest, and it has to be stored in the L1 instructiodNy = 1, FM A = 0, while ATLAS CGw/S choselly; = 6,
cache during execution to achieve optimal performance. Ny = 1, FM A = 1. We verified experimentally that if the

For Ngp = 80, performance increases initially a&;; model had chosey = 6 and FMA = 1, keeping the
increases because loop overhead is reduced. V#hen= 6, rest of the parameters the same, the mini-MMM performance
there are 8 copies of the unrolled micro-MMM code in theecomes 2050 MFLOPS, closing the performance gap with
mini-MMM, and this is close to the I-cache limit. WhenATLAS CGw/S.

Ky = 7, there are7 + 80%7 = 10 copies of the micro- The parameters values used by ATLAS CGw/S are puzzling
MMM code, which exceeds the I-cache limit, and performander several reasons. First, the Opteron does not have an FMA
drops substantially. However, whéfy; = 8, there is no clean- instruction, so it is not clear why ATLAS CGw/S chose to set
up code, and there are only 8 copies of the unrolled micré*M A = 1. Second, choosing 6 and 1 for the valuesidf;
MMM code, so performance goes up again. Beyond this poi@ind Ny violates Inequality (10) since the Opteron has only 8
the code sizes overflows the I-cache and grows larger, amgjisters.

performance degrades gradually. Ultimately, performaisce We address the problem of the register-tile size first. Recal
limited by the rate at which L1 I-cache misses can be servicddat Inequality (10) stems from the fact that ATLAS uses
For Np = 360, the trends are similar, but the effect of cleanregisters to multiply am/;; x 1 vector-tile of matrixA (which

up code is less because the clean-up code performs a smallercall a) with a 1 x Ny vector-tile of matrix B (which

14

we call b), accumulating the result into at/y x Ny tile larger register tiles and leave instruction scheduling teet

of matrix C (which we call¢). Notice that if Ny = 1, then out-of-order hardware core which can use the extra physical
b is a single scalar that is multiplied by each elementof registers to hold the temporaries

Thereforeno reuse existfor elements ofi. This observation These insights permit us to refine the model described
lets us generate the code in Figure 7, which uses 1 registerifo Section IV as follows: for processors with out-of-order

b (rb), 6 registers fole (rc; ...rcg) and 1 temporary register execution and a small number of logical registers égt= 1,

(rt) to hold elements of;. My =Nr—2, FMA=1.
To finish this story, it is interesting to analyze how the
TC1 ¢ C1...TCo + Co ATLAS search engine settled on these parameter values. Note
- that on a processor that does not have a fused multiply-add
| oop k instruction, FMA = 1 is equivalent toFMA = 0 and
{ L, = 1. The code produced by the ATLAS Code Generator
rh — by is shown schematically in Figure 8. Note that this code uses
6 registers fow@ (ra; .. .rag), 1 register forb (rb), 6 registers
Tt @ for ¢ (rep...7rcg) and 1 temporary register (implicitly by
rt «—rt X 1b the multiply-add statement). However, the back-end cosnpil
rei «—rer +rt (GCC) reorganizes this code into the code pattern shown in
Figure 7.
rt «— a2

Tt —rt XTbh rCcl1 <— C1...7TCg < Cg

rce «— rcee +rt
| oop &k
ray < a1
rt «— ag rh «— l_)l
rt «—rt X rb rc1 «—re1 +rayr X b
rceg «— reg + 1t ras <— a2
} ras <— as
reg < res +ras X rb
Cl < TC1...C6 < TCg rez <— res +rasz X rb
ra4 <— Q4
. ras <— as
Fig. 7. (My, Ny) = (6,1) code for x86 CISC ° °
req <— req +rag X rb

Even if there are enough logical registers, this kind of res <15 +ras Xrb

scheduling may be beneficial if the ISA is 2-address rathar th
3-address, because one of the operands is overwrittenisThis
true on the Opteron when the 16 SSE vector registers are
used to hold scalar values, which is GCC’s default behavior. " "~ ~
Even though Inequality 1 prescrib&sx 3 register tiles, the ~ ¢ = "1+ T 7%
refined model prescribekt x 1 tiles. Experiments show that
this performs better [38]. Fig. 8. ATLAS unroll (Mg, Ny) = (6,1) code for x86 CISC
One might expect that this code will not perform well
because there are dependences between most of the instrugmptice that the ATLAS Code Generator itself is not aware
tions that arise from the use of temporary registerin fact, that the code of Figure 7 is optimal. However, settiif/ A =
experiments show that the code in Figure 7 performs wallieven though there is no fused-multiply instruction) proes:
because of two architectural features of the Opteron. code that triggers the right instruction reorganizationristics
1) Out-of-order executiarit is possible to schedule severainside GCC, and performs well on the Opteron. This illustsat
multiplications in successive cycles without waiting fothe well-known point that search does not need to be ingailig
the first one to complete. to do the right thing! Nevertheless, our refined model exyglai
2) Register renamingthe single temporary registet is the observed performance data, makes intuitive sense,aand ¢
renamed to a different physical register for each pair @k easily incorporated into a compiler.
multiply-add instructions. 2) MMM Performance: Figure 18(d) shows the MMM
Performing instruction scheduling as described in Sedtionperformance. ATLAS Unleashed is once again the fastest
requires additional logical registers for temporariesiclvhin implementation here, as it uses the highly-optimized, hand
turn limits the sizes of the register tiléd/hen an architecture tuned BLAS kernels, using the SSE2 SIMD instructions, for
provides out-of-order execution and a small number of lalgicwhich the ATLAS Code Generator does not generate code.
registers, it is better to use the logical registers for aing The native BLAS library is about 200 MFLOPS slower on

rag < ag
rcg < rcg +1rag X b

15

average. ATLAS CGw/S and ATLAS Model perform at theyraph in the region of the optimaVp value. Both ATLAS
same level as their corresponding mini-MMM kernels. Model and ATLAS CGw/S choose good values dfs. In

Refining the model as explained above brings ATLA&igure 19(g), the saw-tooth with period 2 arises from the
Model on par with ATLAS CGw/s. To bridge the gap betweenverhead of executing clean-up code when the valu¥ gfis
ATLAS CGw/S and user contributed code, we would neealdd, and therefore not divisible by the value &, (= 2). As
a different code generator — one that understands SIMD amnl other machines, we do not understand the saw-tooth with
prefetch instructions. GCC exposes these as intrinsidiiume period 4 that has larger spikes in performance.
and we plan to explore this in our future work. Figure 19(h) shows the sensitivity of performance to the

3) Performance Sensitivity AnalysiBigure 18(f) shows the value of K;. The L1 I-cache is large enough to permit full
sensitivity of performance to the value of thé optimization unrolling (Ky = Ng). However, the sensitivity graph & is
parameter. The first drop in performance is the result of lanomalous; performance is relatively low for all valuesiaf
data cache misses starting to occur. This fact is accurateiper thanky = Npz. By examining the code produced by the
captured by our model folNp in Inequality (8). Solving the native compiler (GCC), we found that this anomaly arose from
inequality forC' = 8192 (the L1 data cache capacity in doubleinterference between instruction scheduling in ATLAS and
sized floating-point values), we obtaiviz = 89. Similarly the instruction scheduling in GCC. Notice that ATLAS CGw/S
second drop in performance in Figure 18(f) can be explainedesF'M A = 0, so it attempts to schedule instructions and
by applying the same model to the 1MB L2 cache. perform software pipelining in the mini-MMM code. Fully

Figure 18(e) shows the performance sensitivity to the wlugnrolling the’ loop (K = Ng) produces straight-line code
of the My and Ny optimization parameters. As discussed iwvhich is easier for GCC to schedule.

Section V-G.1, the optimal value, {§, 1). From the graph we To verify this conjecture, we redid thEy sensitivity study

can see that the only plausible values are those With= 1. with FA/A set to 1. Figure 9 shows the results. Setting
Furthermore, performance increases while we gidw from FAMA = 1 dissuades the ATLAS Code Generator from
1 to 6, while it suddenly drops folMy = 7. This is easily attempting to schedule code, so GCC has an easier job,
explained by our refined model, a&;; + 2 < Ngr would producing aKy sensitivity graph that is in line with what
require 9 registers, while only 8 are available. we would expect.

Figure 18(h) shows the performance sensitivity to the valueNotice that our refined model, described in the context of
of the Ky optimization parameter. On this machine the entifdie Opteron, does exactly on this. Using this model, mini-
mini-MMM loop body can fit into the L1 instruction cacheMMM performance is 1544 MFLOPS, which is faster than the
for arbitrary Ky values (up toKy = Np). Performance is performance of the mini-MMM produced by ATLAS CGw/S.
relatively insensitive toKy as long as this unroll factor is
sufficiently large &y > 10). MFLOPS

Figure 18(i) shows the performance sensitivity to the value 17so
of the L, optimization parameter. As we mentioned before, s |f"
when FFM A = 1, the L, optimization parameter does not in- 1250 3
fluence the generated code. Therefore, performance isazdnst 100
with respect tol,. 750 —*— FMA<0

500

—#%— FMA=1

250

H. AMD Athlon MP

The AMD Athlon implements the x86 instruction set, so we o200 3 40 80 6070
would expect the experimental results to be similar to those
on the Opteron. , .
1) mini-MMM: Table 19(c) shows that on this machine, thE'9: 9- AMD Athlon MP: Sensitivity of performance &y
mini-MMM code generated by ATLAS Model runs roughly) .
20% slower than the code generated by ATLAS CGW/S. Figure 19(i) shows the sensitivity of performance to the
Figure 19(f) shows that the choice fs made by the model Value of theLs.
is reasonable, while Figure 19(e) shows that the regideer-t
values were not chosen optimally by the model, as on thePentium Il
Opteron. The problem and its solution are similar to those on1) mini-MMM: On this machine, mini-MMM code pro-
the Opteron. duced by ATLAS Model is about 50 MFLOPS (6%) slower
2) MMM Performance:Figure 19(d) shows MMM perfor- than mini-MMM code produced by ATLAS CGw/S. The
mance. ATLAS Unleashed out-performs the other approachesie produced by ATLAS Unleashed performs roughly 50
by a significant margin. The hand-coded BLAS do almost a8FLOPS better than the code produced by ATLAS CGw/S.

KU

well, followed by ATLAS CGw/S. The difference in performance between the codes produced
3) Sensitivity AnalysisFigure 19(e) shows the sensitivityby ATLAS CGw/S and ATLAS Model arises mostly from the
of performance to the values af;; and Ny . sub-optimal register tile chosen by the model, as explained

Figure 19(f) shows the sensitivity of performance to ththe context of the Opteron in Section V-G. Usi(@1) as the
value of Ng. Figure 19(g) shows a scaled-up version of thisegister tile raises mini-MMM performance to 916 MFLOPS.

16

2) MMM Performance: Figure 20(d) shows MMM per- do not know why the hand-coded BLAS perform substantially
formance. The hand-coded BLAS perform at roughly 11Qfetter than the code produced by ATLAS Unleashed.
MFLOPS, whereas the codes produced by ATLAS CGw/S The gap in performance between the codes produced by
and ATLAS Unleashed perform roughly at 900 MFLOPSATLAS CGw/S and ATLAS Model disappears if the refined
The code produced by ATLAS Model runs roughly at 85énodel for register tiles is used.

MFLOPS; using the refined model improves performance to a3) Sensitivity AnalysisFigure 21(e) shows the sensitivity
point that is slightly above the performance of code producef performance to the values 81;; and Ny;. This figure shows
by ATLAS CGw/S. that the best register tile i$, 1), which produces mini-MMM

3) Sensitivity AnalysisFigure 20(e) shows the sensitivitycode that runs at 1605 MFLOPS. Usifg 1) as the register
of performance to the values dff;; and Ny. Like all x86 tile is not as good because it reduces performance to 1521
machines, the Pentium Il has a limited number of logicdFLOPS.
registers. Our base-line model pické?, 1) for the register Figure 21(f) shows the sensitivity of performance to the
tile, whereas ATLAS CGw/S chosd, 1). If we use the refined value of the Ng. Figure 21(g) shows a scaled-up version
model described in Section V-G, the size of the register tilgf this graph in the region of the optim@/s value. Both
becomes(6,1), and mini-MMM performance rises to 916ATLAS Model and ATLAS CGw/S choose good tile sizes for
MFLOPS. the L1 cache. Tiling for the L2 cache gives slightly better

Figure 20(f) shows the sensitivity of performance to thperformance. The L2 cache on this machine has a capacity of
value of Ng. Figure 20(g) shows a scaled-up version of thig56 KB; using Inequalities (4) and (8), we g¥z = 105 and
graph in the region of the optim&¥z value. The broad peak Nz = 180, which agree well with the data.
in Figure 20(f) arises from the influence of the L2 cache Figure 21(h) shows the sensitivity of performance to the
(capacity of 512 KB). Using Inequality (4) for the L2 cacheyalue of K. On this machine, the L1 instruction cache is
we obtain Ng = 104, which is the Ng values where the large enough to permit full unrollingi(yy = Np).
peak starts, while Inequality (8) givedp = 164, which Figure 21(i) shows the sensitivity of performance to the
corresponds to théVz value where the peak ends. The L¥alue of L.
cache on the Pentium Il is 8-way set-associative, so thp dro
in performance betweelVp = 104 and Np = 164 is small. k. piscussion

Figure 20(h) shows the sensitivity of performance to the The experimental results in this section can be summarized
value of theK ;. On this machine, the L1 instruction cache is P

large enough to permit full unrollingiy = Nx). as follows. Figure 10 describes the analytical models used t

Figure 20(i) shows the sensitivity of performance to th%ompute values for the optimization parameters. This figure

value of theL,. There is no fused multiply-add instructionSzlislsezhfzvrvfh;h§8%eg?sgit$?3risused to compute register tile
so performance is sensitive to the valudgf but both ATLAS)

! . Figure 11 shows the relative performance of the mini-MMM
Model and ATLAS CGW/S_ find reasonable_ valu_es for_th%\?Oles produced by ATLAS Model and by ATLAS Unleashed,
parameter. If we use the refined model described in Section V-.

G, we setFMA — 1, and the value of thel, parameter using the performance of the cers_proQuc;ed by ATLAS
. CGW/S as the base line (the 100% line in this figure represents
becomes irrelevant.

the performance of ATLAS CGw/S on all machines). All the
performance numbers for ATLAS Model in this graph are
J. Pentium 4 obtained by tiling for the L1 cache.
1) mini-MMM: On this machine, mini-MMM code pro- We see that on all machines other than the Itanium, the

duced by ATLAS Model is about 600 MFLOPS (40%) sIoweFOdes produced by using the analytical models perform d@lmos
than mini-MMM code produced by ATLAS CGW/S. This isas well or slightly better than the codes produced usingailob

mostly because of the sub-optimal register tile used by MI_Asearch. On the Itanium, we saw that it is best to tile for the L3
Model; changing it tq6, 1) improves the performance of mini—caChe’ rather than the L1 cache. By using the L2 cache instead
MMM code produced by ATLAS Model to 1445 MFLOPS ATLAS CGw/S was able to obtain some of the benefits of

which is only 50 MFLOPS (3%) less than the performance 6‘””9, for the L3 cache. If we use this value in the model
the mini-MMM code produced by ATLAS CGW/S. of Figure 10, we produce mini-MMM code of comparable

The mini-MMM produced by ATLAS Unleashed is rOughlypen‘ormance. Using the actual capacity of the L3 cache gives

twice as fast as the mini-MMM produced by ATLAS ModeFVeN better per_formance. iced th | olatf
because this code uses the SSE2 vector extensions to the xg8 CUr €xperiments we noticed t qt_on several platforms,
instruction set. we get better MMM performance by tiling for a lower cache
2) MMM Performance: Figure 21(d) shows the MMM level, such as L2 or L3, rather than L1. This may result in a
performance. The hand-coded BLAS routines for this machiJ?e(ge yalue forNB, which may *_‘“Ft overall performance 'f. the
perform best, followed by the code produced by ATLAéeSUIt'ng MMM library routine is invoked from other routise
Unleashed. B’oth the hand-coded BLAS and the code producséJ&h as LU and Cholesky factorizations [22]. It is unclear to
by ATLAS Unleashed use the SSE2 vector extensions that this is an issue in the context of compilers, wheresod
this accounts for most of the gap between these codes and LU and Cholesky would be optimized directly, ratherrtha

codes produced by ATLAS Model and ATLAS CGw/S. Wi uilt upon MMM.

o Estimating FM A:
Use the machine parametérM A
o Estimating Ls:

[LX X |[ALUpp| + 1}
LSZ f

e Estimating My and Ny:
My X Ny + Ny + My + Ls < Np

1) My, Ny < u.

2) Solve constraint fok.

3) My < max (u,1).

4) Solve constraint forVy;.

5) Ny <« max (Ny,1).

6) If My < Ny then swapMy and Ny;.

7) Refined Model: If Ny =1 then
— My < Nr—2
— Ny «—1
- FMA «—1

o Estimating Ng:

N2 N N, M,
NB +3[MW+[_U] « Ny < L
B1 By By B

Trim Npg, to make it a multiple ofMy, Ny, and 2.
o Estimating Ky:

ChooseK; as the maximum value for which mini-MMM fits in

the L1 instruction cache. Trink';; to make it divideNpg evenly.
e Estimating Fr, Ir, and Ng:

Fp=0,Ip =2,Np =2

Fig. 10. Summary of Model

Alpha 21264

- Refined Model
- Unleashed

Power 4

R12K

UltraSparc Illi

Itanium 2

Opteron 240

Athlon MP

Pentium 11

Pentium 4

0% 50% ATLAS 150% 200%
CGw'S
100%

Fig. 11. Summary of mini-MMM Performance. Performance narsbare
normalized to that of ATLAS CGw/S, which is presented as 100%

17

VI. CONCLUSIONS ANDFUTURE WORK

...the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S.Eliot, Four Quartets

The experimental results in this paper demonstrate that it i
possible to use analytical models to determine near-optima
values for the optimization parameters needed in the ATLAS
system to produce high-quality BLAS codes. The models in
this paper were designed to be compatible with the ATLAS
Code Generator; for example, since ATLAS uses square cache
tiles, we had only one parameté‘z, whereas a different
Code Generator that uses general rectangular tiles maireequ
three cache tile parameters. Van de Geijn and co-workeies hav
considered such models in their work on optimizing matrix
multiplication code for multi-level memory hierarchies0}2
21,24].

Our results show that using models to determine values
for the optimization parameters is much faster than using
empirical search. However, this does not imply that seaesh h
no role to play in the generation of high-performance code.
Systems like FFTW and SPIRAL use search not to choose
optimal values for transformation parameters, but to ch@ws
optimal algorithm from a whole suite of algorithms. We do not
know if model-driven optimization is effective in this cext.
Even in the relatively simple context of the BLAS, there are
aspects of program behavior that may not be worth modeling
in practice even if they can be modeled in principle. For
example, the analytical models fofz described in Section IV
ignore conflict misses. Although there is some work in the
compiler literature on modeling conflict misses [10, 1246l
models appear to be computationally intractable. Forgaipat
the effect of conflict misses on performance can be reduced by
appropriate copying. If necessary, the valueNg$ found by
the model can be refined by local search in the neighborhood
of the N value predicted by the model. This combination of
modeling and local search may be the most tractable approach
for optimizing large programs for complex high-performanc
architectures.

At the end of this paper, we are left with the same question
that we asked at its beginning: how do we improve the state of
the art of compilers? Conventional wisdom holds that curren
compilers are unable to produce high-quality code becdese t
analytical models they use to estimate optimization patame
values are overly simplistic compared to the complexity of
modern high-performance architectures. The results ia thi
paper contradict this conventional wisdom, and suggedt tha
there is no intrinsic reason why compilers cannot use aicalyt
models to generate excellent code, at least for the BLAS.

However, it is important not to underestimate the challenge
in improving general-purpose compilers to bridge the aurre
performance gap with library generators. Although the tech
niques used by ATLAS, such as loop tiling, unrolling, and
instruction scheduling, have been in the compiler literafor
many years, it is not easy to incorporate them into general-
purpose compilers. For example, transformations sucliag ti
are not always legal, so a general-purpose compiler must

perform dependence analysis before transforming a pragrans]
In contrast, the implementor of a library generator focuses

on one application and knows the precise structure of t

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

REFERENCES

ATLAS homepage. http://math-atlas.sourceforge.net/

The PHIPAC home page.http://ww. i csi . berkel ey. edu/
~bi | mes/ phi pac.

R. C. Agarwal, F. G. Gustavson, and M. Zubair. Improvingrfpr-
mance of linear algebra algorithms for dense matrices wamgyithmic
prefetch. IBM Journal of Research and DevelopmeB8(3):265—-275,
1994.

R. Allan and K. Kennedy.Optimizing Compilers for Modern Architec-
tures Morgan Kaufmann Publishers, 2002.

Uptal Banerjee. Unimodular transformations of doub@®gs. In
Languages and compilers for parallel computimgges 192-219, 1990.
Jeff Bilmes, Krste Asanovi¢, Chee whye Chin, and Jim Dezh Op-
timizing matrix multiply using PHIPAC: a Portable, High+f@mance,
ANSI C coding methodology. IfProceedings of International Confer-
ence on Supercomputinyienna, Austria, July 1997.

Pierre Boulet, Alain Darte, Tanguy Risset, and Yves RbbgPen)-
ultimate tiling? ININTEGRATION, the VLSI Journavolume 17, pages
33-51. 1994.

D. Callahan, J. Cocke, and K. Kennedy. Estimating ikl and
improving balance for pipelined architecturedournal of Parallel and
Distributed Computing5(4):334—358, 1988.

David Callahan, Steve Carr, and Ken Kennedy. Improviegister
allocation for subscripted variables. 8iIGPLAN Conference on Pro-
gramming Language Design and Implementatipages 53-65, 1990.
Siddhartha Chatterjee, Erin Parker, Philip J. Hanland Alvin R.
Lebeck. Exact analysis of the cache behavior of nested lodps
Proceedings of the ACM SIGPLAN 2001 conference on Progragmi

language design and implementatjgprages 286—297. ACM Press, 2001.

Michael Cierniak and Wei Li. Unifying data and contrehhsformations
for distributed shared memory machines.SIGPLAN 1995 conference
on Programming Languages Design and Implementatlame 1995.
Phillipe Claus. Counting solutions to linear and noehr constraints
through Erbart polynomials. IPACM International Conference on
SupercomputingACM, May 1996.

Stephanie Coleman and Kathryn S. McKinley. Tile sizdestion
using cache organization and data layout.SIGPLAN Conference on
Programming Language Design and Implementatipages 279-290,
1995.

Paul Feautrier. Some efficient solutions to the affiteesiciling problem
- part 1: one dimensional time.International Journal of Parallel
Programming October 1992.

Martin Fowler. Yet another optimization articléEEE Software pages
20-21, May/June 2002.

B. B. Fraguela, R. Doallo, and E. Zapata. Automatic wiizdl modeling
for the estimation of cache misses. PRarallel Architectures and
Compilation Techniques (PACTpages 221-231, 1999.

Matteo Frigo and Steven G. Johnson. FFTW: An adaptiviawsoe

architecture for the FFT. IRroc. IEEE Intl. Conf. on Acoustics, Speech,

18

Matteo Frigo and Steven G. Johnson. The design and imgiéation
of FFTW3. Proceedings of the IEEE93(2), 2005. special issue on
"Program Generation, Optimization, and Adaptation”.

L . %] Stefan Goedecker and Adolfy HoisiePerformance Optimization of
code to be generated for that application, so he is not en-

cumbered by the baggage required to support restructufing o
general codes. At the very least, improving the state of i)
art of compilation technology will require an open compiler
infrastructure which permits researchers to experimesiyea [21]
with different transformations and to vary the parametdrs o
those transformations. This has been a long-standing gmgbl
and no adequate infrastructure exists in spite of many ateem [22]
An equally important conclusion of this study is that ther&3l
is still a significant gap in performance between the co
generated by ATLAS CGw/S and the vendor BLAS routines.
Although we understand some of the reasons for this gap, {ag
problem of automating library generation remains open. The
high cost of library and application tuning makes this one é%q
the most important questions we face today.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

and Signal Processing/olume 3, pages 1381-1384, Seattle, WA, May

1998.

Numerically Intensive CodesSociety for Industrial & Applied Mathe-
matics, 2001.

Kazushige Goto and Robert van de Geijn. On reducing tibses
in matrix multiplication. Technical Report TR-2002-55, idersity of
Texas at Austin, Department of Computer Sciences, Nover2de?.
John A. Gunnels, Greg M. Henry, and Robert A. van de Gdijfiamily
of high-performance matrix algorithms. Rroceedings of International
Conference of Computational Science - ICCS 2001: San FsaaciCA,
USA, May 28-30, 2001 Proceedings, Pampages 51-60. Springer, 2001.
Fred Gustavson. Personal communication.

J. L. Hennessy and D. A. Pattersd@omputer Architecture: A Quanti-
tative Approach Morgan Kaufmann Publishers, 1990.

G. Henry. Flexible high-performance matrix multiphiavself-modifying
runtime code, 2001.

High-performance blas by kazushige goto.http://wwv. cs.
ut exas. edu/ users/ fl ame/ goto/ .

Jeremy Johnson, Robert W. Johnson, David A. Padua, &@mkid
Xiong. Searching for the best FFT formulas with the SPL cdenpin
Proc. of the 13th International Workshop on Languages anchiters
for Parallel Computing pages 109-124, 2000.

Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingdliata-
centric multi-level blocking. InProgramming Languages, Design and
Implementation ACM SIGPLAN, June 1997.

Induprakas Kodukula and Keshav Pingali. Imperfectigsted loop
transformations for memory hierarchy management. International
Conference on Supercomputjnighodes, Greece, June 1999.

W. Li and K. Pingali. Access Normalization: Loop restturing for
NUMA compilers. ACM Transactions on Computer Systerh893.

R. L. Mattson, J. Gecsei, D. R. Slutz, and |. L. Traigervakiation
techniques for storage hierarchietBM Systems Journal9(2):78-92,
1970.

A. C. McKellar and E. G. Coffman, Jr. Organizing matscand matrix
operations for paged memory syster@mmun. ACM12(3):153-165,
1969.

David Padua and Michael Wolfe. Advanced compiler ojation
for supercomputersCommunications of the ACM29(12):1184-1201,
December 1986.

Markus Puschel, José M. F. Moura, Jeremy Johnson,idDBadua,
Manuela Veloso, Bryan W. Singer, Jianxin Xiong, Franz Fheatii, Aca
Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnsod, Mick
Rizzolo. SPIRAL: Code generation for DSP transfornBroceedings
of the IEEE 93(2), 2005. special issue on "Program Generation,
Optimization, and Adaptation”.

Joan McComb Ramesh C. Agarwal, Fred G. Gustavson andeSgta
Schmidt. Engineering and Scientific Subroutine LibraryeRek 3 for
IBM ES/3090 Vector Multiprocessor$BM Systems JournaR8(2):345—
350, 1989.

B. Ramakrishna Rau. Iterative modulo scheduling. ezl Report
HPL-94-115, Hewlett-Packard Research Laboratories, hdez 1995.
Robert Schreiber and Jack Dongarra. Automatic blagkai nested
loops. Technical Report CS-90-108, Knoxville, TN 37996,A)3990.
R. Clint Whaley. Personal communication.

R. Clint Whaley. http://sourceforge. net/ mail archive/
forum php?t hread.li d=1569256&f or umi d=426.

R. Clint Whaley. User contribution to atlabt t p: // mat h- at | as.
sour cef orge. net/ devel /atlascontrib.

R. Clint Whaley and Antoine Petitet. Minimizing devplment and
maintenance costs in supporting persistently optimizeABLAccepted
for publication in Software: Practice and Experienc004. htt p:
/1 ww. cs. ut k. edu/ ~rwhal ey/ paper s/ sper cw04. ps.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarrautomated
empirical optimization of software and the ATLAS projectPar-
allel Computing 27(1-2):3-35, 2001. Also available as University
of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www. net | i b. org/l apack/ | awns/ | awmn147. ps).

Michael E. Wolf and Monica S. Lam. An algorithmic appcba
to compund loop transformations. lAdvances in Languages and
Compilers for Parallel ComputingPitman Publisher, 1991.

M. Wolfe. Iteration space tiling for memory hierarchieln Third SIAM
Conference on Parallel Processing for Scientific Compytigcember
1987.

[44] Kamen Yotov, Keshav Pingali, and Paul Stodghill. Xray tool for
automatic measurement of architectural parameters. ethReport
TR2004-1966, Cornell University, Computer Science, Oetdb004.

19

20

Np|My, Ny, Ky |Ls |FMA | Fg, I, Nr |MFLOPS|
Feature Value CGwiS | 72 4,4, 72 4]0 1,71 1281
Architecture Out-Of-Order, RISC Model 84 4,4,84 410 0,22 1189
CPU Core Frequency 833 MHz Unleashed 80 1491
L1 Data Cache 64 KB, 64 Blline, 2-way
L1 Instruction Cache 64 KB, 64 Blline, 2-way TABLE 12(b)
L2 Unified Cache 4 MB, 64 Blline, 1-way DEC ALPHA 21264: QPTIMIZATION PARAMETERS
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System Tru64 v5.1B (rev.2650) Search | Model
C Compiler Compaq C v6.5-003 Machine Parameters 148s | 101s
Fortran Compiler GNU Fortran 3.3 Optimization Parameterg 5565
TABLE 12(a) Total 704s 101s
DEC ALPHA 21264: RATFORM SPECIFICATION TABLE 12(c)

DEC ALPHA 21264: TIMINGS

MFLOPS

16 [y
15—
14—
13
—2— Unleashed 12
11
—+— BLAS 10

1400

1200

1000

800 —4&— CGWS 3
600 —=— Model g
400 4
—*— Compiler z
200
Serneas . : i 1]
1000 2000 3000 4000 5000 e 12345678 910111213141516
Fig. 12(d). DEC Alpha 21264: MMM Performance Fig. 12(e). DEC Alpha 21264: Sensitivity of performancelMfy; and Ny,
MFLOPS MFLOPS

1200 1200 MMW
1000 1000

800

600

400

200 200
- - - ” NB " " = - - - e
Fig. 12(f). DEC Alpha 21264: Sensitivity of performance gz Fig. 12(g). DEC Alpha 21264: Sensitivity of performanceNg; (zoomed)
MFLOPS MFLOPS

.
1200 W 1200 ‘_‘/,/‘

1000 1000

800 800

600 600

400 400

200 200

KU Ls
10 20 30 40 50 60 70 2 4 6 8 10 12

Fig. 12(h). DEC Alpha 21264: Sensitivity of performance A, Fig. 12(). DEC Alpha 21264: Sensitivity of performance &Q

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 375 MHz

L1 Data Cache
L1 Instruction Cache
L2 Unified Cache

64 KB, 128 B/line, 128-way
32 KB, 128 Bl/line, 128-way
4 MB, 128 Blline, ???-way

Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System AIX

C Compiler
Fortran Compiler

XL C for AIX v.5
XL Fortran for AIX

TABLE 13(a)

IBM POWER 3: PLATFORM SPECIFICATION

MFLOPS

1400

1200

1000

800

Fig. 13(d)

—a— cows

Unleashed

—4— BLAS

—=— Model

—*— Compiler

1000 2000 3000

Size
5000

. IBM Power 3: MMM Performance

MFLOPS

1400

1200

1000

800

600

400

200

Fig. 13(f).

200 400

600

NB
800 1000

IBM Power 3: Sensitivity of performance f§p

MFLOPS

1200

1000

800

600

400

200

Fig. 13(h).

20 40

KU
60 80

IBM Power 3: Sensitivity of performance 6

21

Np|My, Ny, Ky |Ls|FMA|Fr, I, Np | MFLOPS
CGw/S 80 4,5, 80 6 1 0,81 1264
Model 84 4,4, 84 4 0,22 1225
Unleashed 80 1257
TABLE 13(b)

IBM POWER 3: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 139s 154s
Optimization Parameters| 1984s
Total 2123s 154s

TABLE 13(c)
TIMINGS

IBM POWER 3:

16
15
14
13
12

10

PNWAO DN ®

NB

Ls

12345678 910111213141516
Fig. 13(e). I1BM Power 3: Sensitivity of performance 3dy; and Ny
MFLOPS
1400
1000
800
600
400
200
20 40 60 80 100 120
Fig. 13(g). IBM Power 3: Sensitivity of performance g (zoomed)
MFLOPS
+ + 3 + r————¢o—
1200
1000
800
600
400
200
2 4 6 8 10 12
Fig. 13(i). IBM Power 3: Sensitivity of performance o,

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 1450 MHz

L1 Data Cache

L1 Instruction Cache
L2 Unified Cache
L3 Cache

32 KB, 128 Bl/line, 2-way
64 KB, 128 B/line, 1-way
1.5 MB, 128 Blline, 8-way
32 MB, 512Bl/line, 8-way

Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System AIX

C Compiler
Fortran Compiler

XL C for AIX v.5
XL Fortran for AIX

TABLE 14(a)
IBM POWER4: PLATFORM SPECIFICATION

MFLOPS

3500

3000

2500

2000 |

1500 [§

1000

500

—4— BLAS

Unleashed

—4— cews

—=— Model

—*— Compiler

Fig. 14(d).

1000 2000 3000

MFLOPS

3000

2500

2000

1500

1000

500

4000

Size
5000

IBM Power 4: MMM Performance

Fig. 14(f).

200 400 600 800

1000

NB

1200 1400

IBM Power 4: Sensitivity of performance ¥z

MFLOPS

3500

3000

2500

2000

1500

1000

500

Fig. 14(h).

40

KU
50 60

IBM Power 4: Sensitivity of performance 6

22

Np|My, Ny, Ky |Ls|FMA|Fr, I, Np | MFLOPS
CGw/S 64 4,4, 64 1 1 1,8, 1 3468
Model 56 4, 4, 56 6 1 0,22 3400
Unleashed 64 3468

TABLE 14(b)
IBM POWER4: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 175s 125s
Optimization Parameters| 2390s
Total 2665s 125s

TABLE 14(c)
IBM POWER4: TIMINGS

16
15
14
13
12
11
10

PNWAO DN ®

k-

12345678 910111213141516

Fig. 14(e).

Q

MFLOPS

3000

2500

2000

1500

1000

500

IBM Power 4: Sensitivity of performance Ad;; and Ny,

,/W

Fig. 14(9).

MFLOPS
3500

3000
2500
2000
1500
1000

500

20 40 60

80

100

NB
120

IBM Power 4: Sensitivity of performance 1z (zoomed)

Fig. 14().

IBM Power 4: Sensitivity of performance fos

10

Ls
12

L1 Data Cache
L1 Instruction Cache
L2 Unified Cache

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 270 MHz

32 KB, 32 Blline, 2-way
32 KB, 32 Blline, 2-way
4 MB, 32 Blline, 1-way

C Compiler
Fortran Compiler

Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 2
Has Fused Multiply Add Yes
Operating System IRIX64

SGI MIPSPro C 7.3.1.1m|

SGI MIPSPro FORTRAN 7.3.1.1m

TABLE 15(a)

SGI R12K: RATFORM SPECIFICATION

MFLOPS

100

—4— BLAS

—— cows

—#— Unleashed

—=— Model

—*— Compiler

1000 2000 3000

Fig. 15(d).

MFLOPS

600
500
400
300
200

100

4000

SGI R12K: MMM Performance

Size
5000

200 400 600
Fig. 15(f).
MFLOPS

500

NB
800 1000

SGI R12K: Sensitivity of performance ¥z

200

100

10 20 30 40

Fig. 15(h).

KU
50 60

SGI R12K: Sensitivity of performance 6y

23

Np|My, Ny, Ky |Ls|FMA|Fr, I, Np | MFLOPS
CGw/S 64 4,5, 32 3 0 1,8, 1 459
Model 58 5, 4, 58 1 1 0,22 442
Unleashed 64 464

TABLE 15(b)
SGI R12K: CPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 251s 117s
Optimization Parameters| 5015s
Total 5266s 117s

TABLE 15(c)
SGI R12K: TIMINGS

16
15
14

13
12
11
10
9
8
7
6
5
4
3
2
il [l
12345678 910111213141516
Fig. 15(e). SGI R12K: Sensitivity of performance Ad;; and Ny
MFLOPS
600
500 O)
400 -
300
200
100
NB
20 40 60 80 100 120
Fig. 15(g). SGI R12K: Sensitivity of performance g (zoomed)

Fig. 15().

MFLOPS

500

400

300

200

100

LS

SGI R12K: Sensitivity of performance fos

Feature Value
Architecture Out-Of-Order, RISC
CPU Core Frequency 1060 MHz

L1 Data Cache
L1 Instruction Cache
L2 Unified Cache

64 KB, 32 Blline, 4-way
32 KB, 32 Blline, 4-way
1 MB, 32 Blline, 4-way

Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System SUN Solaris 9
C Compiler SUNC 5.5

Fortran Compiler

SUN FORTRAN 95 7.1

TABLE 16(a)
SUN ULTRASPARC I1II: PLATFORM SPECIFICATION

MFLOPS

1750

1500

1250

1000

750

500

250

—2— Unleashed

—4— BLAS

—=— Model

—— cews

—*— Compiler

Fig. 16(d).

1000 2000 3000

Size

4000 5000

Sun UltraSPARC Illi: MMM Performance

MFLOPS

1400

1200

1000

800

600

400

200

Fig. 16(f).

100 200 300

NB
400 500 600

Sun UltraSPARC llli: Sensitivity of performamdo N

MFLOPS

1000

800

600

400

200

—

Fig. 16(h).

10 20

KU
30 40

Sun UltraSPARC llli: Sensitivity of performando K s

24

Np|My, Ny, Ky |Ls|FMA|Fr, I, Np | MFLOPS
CGw/S 44 4,3, 44 5 0 0,32 986
Model 84 4,4, 84 4 0 0,22 1149
Unleasheq 168 1695

TABLE 16(b)

SUN ULTRASPARC IIlI: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 203s 112s
Optimization Parameters| 1254s
Total 1457s 112s

TABLE 16(c)

SUN ULTRASPARC IIli: TIMINGS

16
15
14
13
12
11

BPNWA OO N ®

Fig.

Ny

12345678 910111213141516

16(e).

MFLOPS
1400
1200
1000

800

A

Sun UltraSPARC llli: Sensitivity of performand¢o My and

Ryt

20 40 60 80

100

NB
120

Fig. 16(g). Sun UltraSPARC llli: Sensitivity of performanto N (zoomed)

Fig.

MFLOPS

1000

800

600

400

200

SR R S

16()).

10

LS
12

Sun UltraSPARC llli: Sensitivity of performa@do L

Feature Value
Architecture In-Order, EPIC, 1A-64
CPU Core Frequency 1500 MHz

L1 Data Cache

L1 Instruction Cache

L2 Unified Cache

L3 Cache

Floating-Point Registers
Floating-Point Functional Units
Floating-Point Multiply Latency
Has Fused Multiply Add

16 KB, 64 Blline, 4-way
16 KB, 64 Bl/line, 4-way
256 KB, 128 Blline, 8-way
3 MB, 128B/line, 12-way
128

2

4

Yes

Operating System
C Compiler
Fortran Compiler

Linux 2.4.18-e.31smp|
GNU C/C++ 3.3
GNU Fortran 3.3

TABLE 17(a)
INTEL ITANIUM 2: PLATFORM SPECIFICATION

MFLOPS

5000

4000

3000

2000

1000

BLAS

Unleashed

CGwSs

Model

Compiler

Fig. 17(d).

1000 2000 3000

MFLOPS

4000

3000

2000

1000

Size

4000 5000

Intel Itanium 2: MMM Performance

Fig. 17(f).

200 400

NB

600 1000

Intel Itanium 2: Sensitivity of performance 6

MFLOPS

3000

2000

1000

4000 }ﬂy

Fig. 17(h).

20 40

KU
60 80

Intel Itanium 2: Sensitivity of performance k6,

16
15
14
13
12
1
10

PNWAO DN ®

25

Np|My, Ny, Ky |Ls|FMA|Fr, I, Np | MFLOPS
CGw/S 80 10, 10, 4 4 1 0,191 4028
Model 30 10, 10, 8 1 1 0,22 1806
Unleasheq 120 4891

TABLE 17(b)

INTEL ITANIUM 2: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 1555s 143s
Optimization Parameterg| 30710s
Total 32265s 143s

TABLE 17(c)
INTEL ITANIUM 2: Ti

Fi

Q

Fig

Fig.

12345678 910111213141516

MINGS

120

12

NB

Ls

. 17(e). Intel Itanium 2: Sensitivity of performance Xdy; and Ny,
MFLOPS
4000
3000
2000
1000
20 40 60 80 100
.17(g). Intel Itanium 2: Sensitivity of performance ¥g (zoomed)
MFLOPS
4000 + + + 4+ + + 4 4 4
3000
2000
1000
2 4 6 8 10
17(i). Intel Itanium 2: Sensitivity of performance 1o,

Feature Value
Architecture Out-Of-Order, CISC, x86-64
CPU Core Frequency 1400 MHz

L1 Data Cache

L1 Instruction Cache

L2 Unified Cache
Floating-Point Registers
Floating-Point Functional Units
Floating-Point Multiply Latency
Has Fused Multiply Add

64 KB, 64 Blline, 2-way

64 KB, 64 Blline, 2-way
1024 MB, 64 Blline, 16-way
8 x87

ADD + MUL + Memory

4

No

Operating System
C Compiler
Fortran Compiler

Linux 2.4.19
GCC C/C++ 3.3.2

GNU Fortran 3.3.2

TABLE 18(a)
AMD OPTERON240: RLATFORM SPECIFICATION

MFLOPS

2500
2000
1500
1000

500

Fig. 18(d).

jp v

—2— Unleashed

—4— BLAS

—4— cews

—=— Model

—*— Compiler

1000 2000 3000

MFLOPS

2000

1500

1000

500

g O Ui P
Jy¢e éve I IE L gy

Wy
|
L

Size
4000 5000

AMD Opteron 240: MMM Performance

100 200 300

NB
400 500 600

Fig. 18(f). AMD Opteron 240: Sensitivity of performance g
MFLOPS
2000]!”[WW —3
1500
1000
500
KU
10 20 30 40 50 60
Fig. 18(h). AMD Opteron 240: Sensitivity of performance kq;

16
15
14
13
12
1
10

PNWAO DN ®

26

Np|My, Ny, Ky |Ls|FMA|Fr, I, Np | MFLOPS
CGw/S 60 6, 1, 60 6 1 0,6,1 2072
Model 88 2,1, 88 2 0 0,22 1282
Unleashed 56 2608

TABLE 18(b)
AMD OPTERON240: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 148s 101s
Optimization Parameterg 556s
Total 704s 101s

TABLE 18(c)
AMD OPTERON240: TIMINGS

12345678 910111213141516

Fig. 18(e). AMD Opteron 240: Sensitivity of performancefy; and Ny,
MFLOPS
2000 NARPD Py,
1500
1000
500
NB
20 40 60 80 100 120
Fig. 18(g). AMD Opteron 240: Sensitivity of performanceXg; (zoomed)
MFLOPS
2000 L. —3—% 3 —%—+—+
1500
1000
500
LS
2 4 6 8 10 12
Fig. 18(i). AMD Opteron 240: Sensitivity of performance g

27

Np|My, Ny, Ky |Ls |FMA | Fg, I, Nr |MFLOPS|
Feature Value CGwiS | 76 41,76 1] 0 0,32 1531
Architecture Out-Of-Order, CISC, x86 Model | 88| 21,8 |2| 0 0,22 1239
CPU Core Frequency 1733 MHz Unleashed 30 2512
L1 Data Cache 64 KB, 64 Blline, 2-way
L1 Instruction Cache 64 KB, 64 Blline, 2-way TABLE 19(b)
L2 Unified Cache 256 KB, 64 Blline, 16-way AMD ATHLON MP: OPTIMIZATION PARAMETERS
Floating-Point Registers 8
Floating-Point Functional Units ADD + MUL + Memory
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System Linux 2.4.20 Search | Model
C Compiler GNU C/C++3.2.2 Machine Parameters 220s | 121s
Fortran Compiler GNU Fortran 3.2.2 Optimization Parameterg| 3195s
TABLE 19(a) Total 3415s 121s
AMD ATHLON MP: PLATFORM SPECIFICATION TABLE 19(c)
AMD ATHLON MP: TIMINGS
MFLOPS 16
15
2500 14
13
—&— Unleashed 12
2000 1
—+— BlLAs 10
1500 2
W e o °
1000 —*— Model g
4
500 —k— Compiler ;
’\N Ak Size '
1000 2000 3000 4000 5000 12345678 910111213141516
Fig. 19(d). AMD Athlon MP: MMM Performance Fig. 19(e). AMD Athlon MP: Sensitivity of performance fly; and Ny
MFLOPS MFLOPS
1200 1200

1000 1000

M . .l f
.»’m'qmw.(l’|!l!;‘l'i‘l’l“’l‘lil“’i“,‘(‘W‘],'!‘,‘!M'M
i)[i\

800 800

600

400

200 200

NB NB
50 100 150 200 250 20 40 60 80 100 120

Fig. 19(f). AMD Athlon MP: Sensitivity of performance t&/p Fig. 19(g). AMD Athlon MP: Sensitivity of performance g (zoomed)

MFLOPS MFLOPS

1500 1500 \

1250 1250 ’\‘\\ﬂ*‘._/\

1000 1000

750 750

500 500

250 250

KU Ls
10 12

Fig. 19(h). AMD Athlon MP: Sensitivity of performance t&, Fig. 19()). AMD Athlon MP: Sensitivity of performance th

Feature Value
Architecture Out-Of-Order, CISC, x86
CPU Core Frequency 1266 MHz

L1 Data Cache

L1 Instruction Cache

L2 Unified Cache
Floating-Point Registers
Floating-Point Functional Units
Floating-Point Multiply Latency
Has Fused Multiply Add

16 KB, 32 Blline, 4-way
16 KB, 32 Blline, 4-way
512 MB, 32 Blline, 8-way
8

1

5

No

Operating System
C Compiler
Fortran Compiler

Linux 2.4.20-28.8smp
GNU C/C++ 3.2
GNU Fortran 3.2

TABLE 20(a)
PENTIUM IlI: PLATFORM SPECIFICATION

MFLOPS

1200

1000

800

600

400

200

T,

—4— BLAS

e

—4A— Unleashed

—a— cows

—*— Model

Fig. 20(d).

1000 2000 3000

Size

4000 5000

Pentium 1ll: MMM Performance

MFLOPS

1000

800

600

400

200

Fig. 20(f).

50 100 150 200

NB
250 300 350

Pentium llI: Sensitivity of performance ¥z

MFLOPS

1000

800

600

400

200

e |]

Fig. 20(h).

10 20

KU
30 40

Pentium 1lI; Sensitivity of performance f6;;

28

Np|My, Ny, Ky |Ls|FMA|Fr, I, Np | MFLOPS
CGw/S 44 4,1, 44 3 0 0,32 894
Model 42 2,1,42 2 0 0,22 841
Unleashed 40 951

TABLE 20(b)
PENTIUM I1I: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 133s 100s
Optimization Parameterg 630s
Total 763s 100s

TABLE 20(c)
PENTIUM II1: T IMINGS

16
15
14
13
12
11

Pentium lII: Sensitivity of performance M, and Ny,

QW

80

100

NB
120

Pentium IlI; Sensitivity of performance 65 (zoomed)

SIS

8
7
6
ol
2l
3
2
1
[]
12345678 910111213141516
Fig. 20(e).
MFLOPS
1000
800
600
400
200
20 40 60
Fig. 20(g).
MFLOPS
1000
800
600
400
200
2 4 6
Fig. 20(i).

10

Pentium lII: Sensitivity of performance g

Ls
12

Fig. 21(d).

Fig. 21(f).

Fig. 21(h).

L1 Data Cache
L1 Instruction Cache
L2 Unified Cache

Feature Value
Architecture Out-Of-Order, CISC, x86
CPU Core Frequency 2000 MHz

8 KB, 64 Blline, 4-way
12 K uOPs, 6 uOPs/line, 8-wa)
512 KB, 128 Blline, 8-way

Floating-Point Registers 8
Floating-Point Functional Units 1
Floating-Point Multiply Latency 7
Has Fused Multiply Add No
Operating System Linux 2.4.20-30.9smp
C Compiler GNU C v3.2.2
Fortran Compiler GNU Fortran 3.2.2
TABLE 21(a)

PENTIUM 4: PLATFORM SPECIFICATION

MFLOPS

3500

3000

2500

2000

1500

1000

500

—4— BLAS

—4A— Unleashed

—a— cows

—*— Model

1000 2000 3000

MFLOPS

2500

2000

1500

1000

500

Size

4000 5000

Pentium 4; MMM Performance

50 100 150

Pentium 4: Sensitivity of
MFLOPS

1500

1250

1000
750
500

250

NB
200 250 300 350

performance A

KU
20 25

Pentium 4: Sensitivity of performance &g,

16
15
14
13
12
11

PNWAO DN ®

29

Np|My, Ny, Ky |Ls|FMA|Fr, I, Np | MFLOPS
CGw/S 28 3,128 1 0 0,21 1504
Model 30 1,1, 30 4 0 0,22 913
Unleasheq 72 3317

TABLE 21(b)

PENTIUM 4: OPTIMIZATION PARAMETERS

Search | Model
Machine Parameters 136s 98s
Optimization Parameterg 643s
Total 779s 98s

TABLE 21(c)

PENTIUM 4: TIMINGS

12345678 910111213141516

NB

120

Ls
12

Fig. 21(e). Pentium 4: Sensitivity of performance Xy, and Ny,
MFLOPS
2500
2000
1500 o
1000
500
20 40 60 80 100
Fig. 21(g). Pentium 4: Sensitivity of performance &z (zoomed)
MFLOPS
1500
1250
1000
750
500
250
2 4 6 8 10
Fig. 21(i). Pentium 4: Sensitivity of performance iq

