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Abstract

Despite a large literature on upper bounds on complexity of convex optimization,
relatively less attention has been paid to the fundamental hardness of these prob-
lems. Given the extensive use of convex optimization in machine learning and
statistics, gaining a understanding of these complexity-theoretic issues is impor-
tant. In this paper, we study the complexity of stochastic convex optimization
in an oracle model of computation. We improve upon known results and obtain
tight minimax complexity estimates for various function classes. We also dis-
cuss implications of these results for the understanding the inherent complexity of
large-scale learning and estimation problems.

1 Introduction

Convex optimization forms the backbone of many algorithms for statistical learning and estimation.
In large-scale learning problems, in which the problem dimension and/or data are large, it is es-
sential to exploit bounded computational resources in a (near)-optimal manner. For such problems,
understanding the computational complexity of convex optimization is a key issue.

A large body of literature is devoted to obtaining rates of convergence of specific procedures for
various classes of convex optimization problems. A typical outcome of such analysis is an upper
bound on the error—for instance, gap to the optimal cost— as a function of the number of iterations.
Such analyses have been performed for many standard optimization alogrithms, among them gradi-
ent descent, mirror descent, interior point programming, and stochastic gradient descent, to name a
few. We refer the reader to standard texts on optimization (e.g., [4, 1, 10]) for further details on such
results.

On the other hand, there has been relatively little study of the inherent complexity of convex opti-
mization problems. To the best of our knowledge, the first formal study in this area was undertaken
in the seminal work of Nemirovski and Yudin [8] (hereafter referred to as NY). One obstacle to
a classical complexity-theoretic analysis, as the authors observed, was that of casting convex opti-
mization problems in a Turing Machine model. They avoided this problem by instead considering a
natural oracle model of complexity in which at every round, the optimization procedure queries an
oracle for certain information on the function being optimized. Working within this framework, the
authors obtained a series of lower bounds on the computational complexity of convex optimization
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problems. In addition to the original text NY [8], we refer the reader to Nesterov [10] or the lecture
notes by Nemirovski [7].

In this paper, we consider the computational complexity of stochastic convex optimization in the or-
acle model. Our results lead to a characterization of the inherent difficulty of learning and estimation
problems when computational resources are constrained. In particular, we improve upon the work of
NY [8] in two ways. First, our lower bounds have an improved dependence on the dimension of the
space. In the context of statistical estimation, these bounds show how the difficulty of the estimation
problem increases with the number of parameters. Second, our techniques naturally extend to give
sharper results for optimization over simpler function classes. For instance, they show that the op-
timal oracle complexity of statistical estimation with quadratic loss is significantly smaller than the
corresponding complexity with absolute loss. Our proofs exploit a new notion of the discrepancy
between two functions that appears to be natural for optimization problems. They are based on a
reduction from a statistical parameter estimation problem to the stochastic optimization problem,
and an application of information-theoretic lower bounds for the estimation problem.

2 Background and problem formulation

In this section, we introduce background on the oracle model of complexity for convex optimization,
and then define the oracles considered in this paper.

2.1 Convex optimization in the oracle model

Convex optimization is the task of minimizing a convex function f over a convex set S ⊆ Rd.
Assuming that the minimum is achieved, it corresponds to computing an element x∗f that achieves
the minimum—that is, x∗f ∈ arg minx∈S f(x). An optimization method is any procedure that solves
this task, typically by repeatedly selecting values from S. Our primary focus in this paper is the
following question: given any class of convex functions F , what is the minimum computational
labor any such optimization method would expend for any function in F?

In order to address this question, we follow the approach of Nemirovski and Yudin [8], based on the
oracle model of optimization. More precisely, an oracle is a (possibly random) function φ : S 7→ I
that answers any query x ∈ S by returning an element φ(x) in an information set I. The information
set varies depending on the oracle; for instance, for an exact oracle of kth order, the answer to a query
xt consists of f(xt) and the first k derivatives of f at xt. For the case of stochastic oracles studied
in this paper, these values are corrupted with zero-mean noise with bounded variance.

Given some number of rounds T , an optimization methodM designed to approximately minimize
the convex function f over the convex set S proceeds as follows: at any given round t = 1, . . . , T ,
the methodM queries at xt ∈ S, and the oracle reveals the information φ(xt, f). The method then
uses this information to decide at which point xt+1 the next query should be made. For a given oracle
function φ, let MT denote the class of all optimization methodsM that make T queries according
to the procedure outlined above. For any methodM ∈ MT , we define its error on function f after
T steps as

ε(M, f, S, φ) := f(xT )− inf
x∈S

f(x) = f(xT )− f(x∗f ), (1)

where xT is the method’s query at time T . Note that by definition of x∗f , this error is a non-negative
quantity.

2.2 Minimax error

When the oracle is stochastic, the method’s query xT at time T is itself random, since it depends on
the random answers provided by the oracle. In this case, the optimization error ε(M, f, S, φ) is also
a random variable. Accordingly, for the case of stochastic oracles, we measure the accuracy in terms
of the expected value Eφ[ε(M, f, S, φ)], where the expectation is taken over the oracle randomness.

Given a class of functions F , and the class MT of optimization methods making T oracle queries,
we can define the minimax error

ε∗(F , S, φ) := inf
MT∈MT

sup
f∈F

Eφ[ε(MT , f, S, φ)]. (2)
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Note that this definition depends on the optimization set S. In order to obtain uniform bounds, we
define S := {S ⊆ Rd : S convex, ‖x− y‖∞ ≤ 1 for x, y ∈ S}, and consider the worst-case average
error over all S ∈ S , given by

ε∗(F , φ) := sup
S∈S

ε∗(F , S, φ). (3)

In the sequel, we provide results for particular classes of oracles. So as to ease the notation, when
the function φ is clear from the context, we simply write ε∗(F).

It is worth noting that oracle complexity measures only the number of queries to the oracle—for
instance, the number of (approximate) function or gradient evaluations. However, it does not track
computational cost within each component of the oracle query (e.g., the actual flop count associated
with evaluating the gradient).

2.3 Types of Oracle

In this paper we study the class of stochastic first order oracles, which we will denote simply by
O. For this class of oracles, the information set I consists of pairs of noisy function and gradient
evaluations; consequently, any oracle φ in this class can be written as

φ(x, f) = (f̂(x), ĝ(x)), (4)

where f̂(x) and ĝ(x) are random variables that are unbiased as estimators of the function and gradi-
ent values respectively (i.e., Ef̂(x) = f(x) and Eĝ(x) = ∇f(x)). Moreover, we assume that both
f̂(x) and ĝ(x) have variances bounded by one. When the gradient is not defined at x, the notation
∇f(x) should be understood to mean any arbitrary subgradient at x. Recall that a subgradient of a
convex function f is any vector v ∈ Rd such that

f(y) ≥ f(x) + v>(y − x).

Stochastic gradient methods are popular examples of algorithms for such oracles.

Notation: For the convenience of the reader, we collect here some notation used throughout the
paper. We use xt1 to refer to the sequence (x1, . . . , xt). We refer to the i-th coordinate of any vector
x ∈ Rd as x(i). For a convex set S, the radius of the largest inscribed and smallest circumscribing
`∞ balls are denoted as r∞ and R∞ resp. For a convex function f , its minimizer over a set S will
be denoted as x∗f when S is obvious from context. We will often use the notation x∗α to denote the
minimizer of fα if α is an index variable over a class. For two distributions p and q, KL(p||q) refers
to the Kullback Leibler divergence between the distributions. The notation I(A) is the 0-1 valued
indicator random variable of the set (equivalently event) A. For two vectors α, β ∈ {−1,+1}d, we
define the Hamming distance ∆H(α, β) :=

∑d
i=1 I[αi 6= βi].

3 Main results and their consequences

With the setup of stochastic convex optimization in place, we are now in a position to state the
main results of this paper. In particular, we provide some tight lower bounds on the complexity of
stochastic oracle optimization. We begin by analyzing the minimax oracle complexity of optimiza-
tion for the class of convex Lipschitz functions. Recall that a function f : Rd → R is convex if for
all x, y ∈ Rd and λ ∈ (0, 1), we have the inequality f(λx+ (1−λ)y) ≤ λf(x) + (1−λ)f(y). For
some constant L > 0, we say that the function f is L-Lipschitz on S if |f(x)−f(y)| ≤ L‖x−y‖∞
for all x, y ∈ S.

Before stating the results, we note that scaling the Lipschitz constant scales minimax optimization
error linearly. Hence, to keep our results scale-free, we consider 1-Lipschitz functions only. As the
diameter of S is also bounded by 1, this automatically enforces that |f(x)| ≤ 1, ∀x ∈ S.
Theorem 1. Let FC be the class of all bounded convex 1-Lipschitz functions on Rd. Then there is
a constant c (independent of d) such that

sup
φ∈O

ε∗(FC , φ) ≥ c
√
d

T
. (5)
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Remarks: This lower bound is tight in the minimax sense, since the method of stochastic gradient
descent attains a matching upper bound for all stochastic first order oracles for any convex set S
(see Chapter 5 of NY [8]). Also, even though this lower bound requires the oracle to have only
bounded variance, we will use an oracle based on Bernoulli random variables, which has all mo-
ments bounded. As a result there is no hope to get faster rates in a simple way by assuming bounds
on higher moments for the oracle. This is in interesting contrast to the case of having less than 2
bounded moments where we get slower rates (again, see Chapter 5 of NY [8]).

The above lower bound is obtained by considering the worst case over all convex sets. However,
we expect optimization over a smaller convex set to be easier than over a large set. Indeed, we can
easily obtain a corollary of Theorem 1 that quantifies this intuition.
Corollary 1. Let FC be the class of all bounded convex 1-Lipschitz functions on Rd. Let S be a
convex set such that it contains an `∞ ball of radius r∞ and is contained in an `∞ ball of radius
R∞. Then there is a universal constant c such that,

sup
φ∈O

ε∗(FC , S, φ) ≥ c r∞
R∞

√
d

T
. (6)

Remark: The ratio r∞
R∞

is also common in results of [8], and is called the asphericity of S. As
a particular application of above corollary, consider S to be the unit `2 ball. Then r∞ = 1√

d
, and

R∞ = 1. which gives a dimension independent lower bound. This lower bound for the case of the
`2 ball is indeed tight, and is recovered by the stochastic gradient descent algorithm [8].

Just as optimization over simpler sets gets easier, optimization over simple function classes should
be easier too. A natural function class that has been studied extensively in the context of better upper
bounds is that of strongly convex functions. For any given norm ‖ · ‖ on S, a function f is strongly
convex with coefficient κ means that f(x) ≥ f(y) +∇f(y)T (x− y) + κ

2 ‖x− y‖
2 for all x, y ∈ S.

For this class of functions, we obtain a smaller lower bound on the minimax oracle complexity of
optimization.
Theorem 2. Let FS be the class of all bounded strongly convex and 1-Lipschitz functions on Rd.
Then there is a universal constant c such that,

sup
φ∈O

ε∗(FS , φ) ≥ c d
T
. (7)

Once again there is a matching upper bound using stochastic gradient descent for example, when
the strong convexity is with respect to the `2 norm. The corollary depending on the geometry of S
follows again.
Corollary 2. Let FS be the class of all bounded convex 1-Lipschitz functions on Rd. Let S be a
convex set such that it contains an `∞ ball of radius r∞ and is contained in an `∞ ball of radius
R∞. Then there is a universal constant c such that supφ∈O ε∗(FS , S, φ) ≥ c

(
r∞
R∞

)2 d
T .

In comparison, Nemirovski and Yudin [8] obtained a lower bound scaling as Ω
(

1√
T

)
for the class

FC . Their bound applies only to the class FC , and does not provide any dimension dependence,
as opposed to the bounds provided here. Obtaining the correct dependence yields tight minimax
results, and allows us to highlight the dependence of bounds on the geometry of the set S. Our
proofs are information-theoretic in nature. We characterize the hardness of optimization in terms of
a relatively easy to compute complexity measure. As a result, our technique provides tight lower
bounds for smaller function classes like strongly convex functions rather easily. Indeed, we will also
state a result for general function classes.

3.1 An application to statistical estimation

We now describe a simple application of the results developed above to obtain results on the oracle
complexity of statistical estimation, where the typical setup is the following: given a convex loss
function `, a class of functions F indexed by a d-dimensional parameter θ so that F = {fθ : θ ∈
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Rd}, find a function f ∈ F such that E`(f) − inff∈F E`(f) ≤ ε. If the distribution were known,
this is exactly the problem of computing the ε-accurate optimizer of a convex function, assuming
the function class F is convex. Even though we do not have the distribution in practice, we typically
are provided with i.i.d. samples from it, which can be used to obtain unbiased estimates of the
value and gradients of the risk functional E`(f) for any given f . If indeed the computational model
of the estimator were restricted to querying these values and gradients, then the lower bounds in
the previous sections would apply. Our bounds, then allow us to deduce the oracle complexity of
statistical estimation problems in this realistic model. In particular, a case of interest is when we
fix a convex loss function ` and consider the worst oracle complexity over all possible distributions
under which expectation is taken. From our bounds, it is straightforward to deduce:

• For the absolute loss `(f(x), y) = |f(x) − y|, the oracle complexity of ε-accurate estimation
over all possible distributions is Ω

(
d/ε2

)
.

• For the quadratic loss `(f(x), y) = (f(x) − y)2, the oracle complexity of ε-accurate estimation
over all possible distributions is Ω (d/ε).

We can use such an analysis to determine the limits of statistical estimation under computational
constraints. Several authors have recently considered this problem [3, 9], and provided upper bounds
for particular algorithms. In contrast, our results provide algorithm-independent lower bounds on
the complexity of statistical estimation within the oracle model. An interesting direction for future
work is to broader the oracle model so as to more accurately reflect the computational trade-offs in
learning and estimation problems, for instance by allowing a method to pay a higher price to query
an oracle with lower variance.

4 Proofs of results

We now turn to the proofs of our main results, beginning with a high-level outline of the main ideas
common to our proofs.

4.1 High-level outline

Our main idea is to embed the problem of estimating the parameter of a Bernoulli vector (alter-
natively, the biases of d coins) into a convex optimization problem. We start with an appropriately
chosen subset of the vertices of a d-dimensional hypercube each of which corresponds to some value
of the Bernoulli vector. For any given function class, we then construct a “difficult” subclass of
functions parameterized by these hypercube vertices. We then show that being able to optimize any
function in this subclass requires estimating its hypercube vertex, that is, the corresponding biases
of the d coins. But the only information for this estimation would be from the coin toss outcomes
revealed by the oracle in T queries. With this set-up, we are able to apply the Fano lower bound for
statistical estimation, as has been done in past work on nonparametric estimation (e.g., [5, 2, 11]).

In more detail, the proofs of Theorems 1 and 2 are both based on a common set of steps, which we
describe here.

Step I: Constructing a difficult subclass of functions. Our first step is to construct a subclass
of functions G ⊆ F that we use to derive lower bounds. Any such subclass is parameterized by
a subset V ⊆ {−1,+1}d of the hypercube, chosen as follows. Recalling that ∆H denotes the
Hamming metric on the space {−1,+1}d, we choose V to be a d/4-packing of this hypercube.
That is, V is a subset of the hypercube such that for all α, β ∈ V , the Hamming distance satisfies
∆H(α, β) ≥ d/4. By standard arguments [6], we can construct such a packing set V with cardinality
|V| ≥ (2/

√
e)d/2.

We then let Gbase = {f+
i , f

−
i , i = 1, . . . , d} denote some base set of 2d functions (to be chosen

depending on the problem at hand). Given the packing set V and some parameter δ ∈ [0, 1/4], we
define a larger class (with a total of |V| functions) via G(δ) := {gα, α ∈ V}, where each function
gα ∈ G(δ) has the form

gα(x) =
1
d

d∑
i=1

{
(1/2 + αiδ)f+

i (x) + (1/2− αiδ) f−i (x)
}
. (8)
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In our proofs, the subclasses Gbase and G(δ) are chosen such that G(δ) ⊆ F , the functions f+
i , f

−
i

are bounded over the convex set S with a Lipschitz constant independent of dimension d, and the
minimizers xβ of gβ over Rd are contained in S for all β ∈ V . We demonstrate specific choices in
the proofs of Theorems 1 and 2.

Step II: Optimizing well is equivalent to function identification. In this step, we show that if
a method can optimize over the subclass G(δ) up to a certain tolerance ψ(G(δ)), then it must be
capable of identifying which function gα ∈ G(δ) was chosen. We first require a measure for the
closeness of functions in terms of their behavior near each others’ minima. Recall that we use
x∗f ∈ Rd to denote a minimizing point of the function f . Given a convex set S ⊆ Rd and two
functions f, g, we define

ρ(f, g) = inf
x∈S

[
f(x) + g(x)− f(x∗f )− g(x∗g)

]
. (9)

The discrepancy measure is non-negative, symmetric in its arguments,1 and satisfies ρ(f, g) = 0 if
and only if x∗f = x∗g , so that we may refer to it as a semimetric.

Given the subclass G(δ), we quantify how densely it is packed with respect to the semimetric ρ using
the quantity

ψ(G(δ)) = min
α6=β∈V

ρ(gα, gβ), (10)

which we also denote by ψ(δ) when the class G is clear from the context. We now state a simple
result that demonstrates the utility of maintaining a separation under ρ among functions in G(δ).
Note that x∗α denotes a minimizing argument of the function gα.
Lemma 1. For any x̃ ∈ S, there can be at most one function gα ∈ G(δ) for which
gα(x̃)− gα(x∗α) ≤ ψ(δ)

3 .

Thus, if we have an element x̃ that approximately minimizes (meaning up to tolerance ψ(δ)) one
function in the set G(δ), then it cannot approximately minimize any other function in the set.

Proof. For a given x̃ ∈ S, suppose that there exists an α ∈ V such that gα(x̃) − gα(x∗α) ≤ ψ(δ)
3 .

From the definition of ψ(δ) in (10), for any β ∈ V, β 6= α, we have

ψ(δ) ≤ gα(x̃)− gα(x∗α) + gβ(x̃)− gβ(x∗β) ≤ ψ(δ)/3 + gβ(x̃)− gβ(x∗β),

which implies that gβ(x̃)− gβ(x∗β) ≥ 2ψ(δ)/3, from which the claim follows.

Suppose that we choose some function gα∗ ∈ G(δ), and some methodMT is allowed to make T
queries to an oracle with information function φ(·, gα∗). Our next lemma shows that in this set-up,
if the methodMT can optimize well over the class G(δ), then it must be capable of determining the
true function gα∗ . Recall the definition (2) of the minimax error in optimization:
Lemma 2. Suppose that some methodMT has minimax optimization error upper bounded as

E
[
ε∗(MT ,G(δ), S, φ)

]
≤ ψ(δ)

9
. (11)

Then the methodMT can construct an estimator α̂(MT ) such that max
α∗∈V

Pφ[α̂(MT ) 6= α∗] ≤ 1
3 .

Proof. Given a methodMT that satisfies the bound (11), we construct an estimator α̂(MT ) of the
true vertex α∗ as follows. If there exists some α ∈ V such that gα(xT ) − gα(xα) ≤ ψ(δ)

3 then we
set α̂(MT ) equal to α. If no such α exists, then we choose α̂(MT ) uniformly at random from V .
From Lemma 1, there can exist only one such α ∈ V that satisfies this inequality. Consequently,
using Markov’s inequality, we have Pφ[α̂(MT ) 6= α∗] ≤ Pφ

[
ε∗(MT , gα∗ , S, φ) ≥ ψ(δ)/3

]
≤ 1

3 .
Maximizing over α∗ completes the proof.

We have thus shown that having a low minimax optimization error over G(δ) implies that the vertex
α ∈ V can be identified.

1However, it fails to satisfy the triangle inequality and so is not a metric.
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Step III: Oracle answers and coin tosses. We now demonstrate a stochastic first order oracle φ
for which the samples {φ(x1, gα), . . . , φ(xT , gα)} can be related to coin tosses. In particular, we
associate a coin with each dimension i ∈ {1, 2, . . . , d}, and consider the set of coin bias vectors
lying in the set

Θ(δ) =
{

(1/2 + α1δ, . . . , 1/2 + αdδ) | α ∈ V
}
, (12)

Given a particular function gα ∈ G(δ) (or equivalently, vertex α ∈ V), we consider the oracle φ that
presents noisy value and gradient samples from gα according to the following prescription:

• Pick an index it ∈ {1, . . . , d} uniformly at random.

• Draw bit ∈ {0, 1} according to a Bernoulli distribution with parameter 1/2 + αitδ.

• Return the value and sub-gradient of the function

ĝα(x) = bitf
+
it

(x) + (1− bit)f−it (x).

By construction, the function value and gradient samples are unbiased estimates of those of gα;
moreover, the variance of the effective “noise” is bounded independently of d as long as the Lipschitz
constant is independent of d since the function values and gradients are bounded on S.

Step IV: Lower bounds on coin-tossing Finally, we use information-theoretic methods to lower
bound the probability of correctly estimating the true vertex α∗ ∈ V in our model.

Lemma 3. Given an arbitrary vertex α∗ ∈ V , suppose that we toss a set of d coins with bias
θ∗ = ( 1

2 + α∗1δ, . . . ,
1
2 + α∗2δ) a total of T times, but that the outcome of only one coin chosen

uniformly at random is revealed at every round. Then for all δ ≤ 1/4, any estimator α̂ satisfies

inf
α̂

max
α∗∈V

P[α̂ 6= α∗] ≥
{

1− 16Tδ2 + log 2
d
2 log(2/

√
e)

}
.

Proof. Denote the Bernoulli distribution for the i-th coin by Pθi
. Let Yt ∈ {1, . . . , d} be the variable

indicating the coin revealed at time T , and let Xt ∈ {0, 1} denote its outcome. With some abuse of
notation, we also denote the distribution of (Xt, Yt) by Pθ, and that of the entire data {(Xt, Yt)}Tt=1
by PTθ . Note that Pθ(i, b) = 1

dPθi(b). We now apply a version of Fano’s lemma [11] to the set of
distributions PTθ for θ ∈ Θ(δ). In particular, using the proof of Lemma 3 in [11] we get:

KL(PTθ ||PTθ′ ) ≤ b, ∀θ, θ′ ∈ Θ(δ) ⇒ inf
θ̂

max
θ∈Θ(δ)

Pθ[θ̂ 6= θ] ≥
(

1− b+ log 2
log |Θ|

)
. (13)

In our case, we upper bound b as follows:

b = KL(PTθ ||PTθ′ ) =
T∑
t=1

KL(Pθ(Xt, Yt)||Pθ′(Xt, Yt)) =
1
d

T∑
t=1

d∑
i=1

KL(Pθi
(Xt)||Pθ′i (Xt)).

Each term KL(Pθi
(Xt)||Pθ′i (Xt)) is at most the KL divergence g(δ) between Bernoulli variates

with parameters 1/2 + δ and 1/2− δ. A little calculation shows that

g(δ) = 2δ log
(

1 +
4δ

1− 2δ

)
≤ 8δ2

1− 2δ
,

which is less than 16δ2 as long as δ ≤ 1/4. Consequently, we conclude that b ≤ 16Tδ2. Also, we
note that P[α̂ 6= α∗] = Pθ[θ̂ 6= θ∗]. Substituting these values and the size of V into (13) yields the
claim.

4.2 Proofs of main results

We are now in a position to prove our main theorems.
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Proof of Theorem 1: By the construction of our oracle, it is clear that, at each round, only one
coin is revealed to the methodMT . Thus Lemma 3 applies to the estimator α̂(MT ):

P[α̂(MT ) 6= α] ≥
(

1− 2
16Tδ2 + log 2
d log(2/

√
e)

)
. (14)

In order to obtain an upper bound on P[α̂(MT ) 6= α] using Lemma 2, we need to identify the
subclass Gbase of FC . For i = 1, . . . , d, define:

f+
i (x) :=

∣∣x(i) + 1/2
∣∣, and f−i (x) :=

∣∣x(i)− 1/2
∣∣.

We take S to be the `∞ ball of radius 1/2. It is clear then that the minimizers of gα are contained in
S. Also, the functions f+

i , f
−
i are bounded in [0, 1] and 1-Lipschitz in the∞-norm, giving the same

properties for each function gα. Finally, we note that ρ(gα, gβ) = 2δ
d ∆H(α, β) ≥ δ

2 for α 6= β ∈ V .
Setting ε = δ/18 < 1/2, we obtain ε∗(FC , φ) ≤ ε = δ

18 = ψ(δ)
9 . Then by Lemma 2, we have

Pφ[α̂(MT ) 6= α] ≤ 1
3 which, when combined with equation (14), yields 1

3 ≥
(
1 − 2 16Tδ2+log 2

d log(2/
√
e)

)
.

Substituting δ = 18ε yields T = Ω
(
d
ε2

)
for all d ≥ 11. Combining this with Theorem 5.3.1 of

NY [8] gives T = Ω
(
d
ε2

)
for all d.

To prove Corollary 1, we note that the proof of Theorem 1 required r∞ ≥ 1
2 . If not, it is easy to see

that the computation of ρ on G(δ) scales by r∞. Further, if the set is contained in a ball of radius
R∞, then we need to scale the function with 1

R∞
to keep the function values bounded. Taking both

these dependences into account gives the desired result.

Proof of Theorem 2: In this case, we define the base class

f+
i (x) =

(
x(i) + 1/2

)2
, and f−i (x) =

(
x(i)− 1/2

)2
, for i = 1, . . . , d.

Then the functions gα are strongly convex w.r.t. the Euclidean norm with coefficient κ = 1/d.
Some calculation shows that ρ(gα, gβ) = 2δ2

d ∆H(α, β) for all α 6= β. The remainder of the proof
is identical to Theorem 1.

The reader might suspect that the dimension dependence in our lower bound for strongly convex
functions is not tight, due to the dependence of κ on the dimension d. However, this is the largest
possible value of κ under the assumptions of the theorem.

4.3 A general result

Armed with the greater understanding from these proofs, we can now state a general result for any
function class F . The proof is similar to that of earlier results.

Theorem 3. For any function class F ⊆ FC , suppose a given base set of functions Gbase yields the
subclass G(δ) and the measure ψ as defined in (10), and this function is monotone increasing. Then

there exists a universal constant c such that supφ∈O ε∗(FS , φ) ≥ c ψ
(√ log |G(δ)|

T

)
.
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