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Abstract

We consider multi-task learning in the setting of multigleebr regression, and
where some relevant features could be shared across tfe taskent research
has studied the use 6f /¢, norm block-regularizations witt > 1 for such block-
sparse structured problems, establishing strong guasinterecovery even under
high-dimensional scaling where the number of featureseswih the number of
observations. However, these papers also caution thatettiermance of such
block-regularized methods are very dependent orextentto which the features
are shared across tasks. Indeed they show [8] that if thateat@verlap is less
than a threshold, or even if parametetiuesin the shared features are highly
uneven, then block, /¢, regularization could actually performorsethan sim-
ple separate elementwide regularization. Since these caveats depend on the
unknown true parameters, we might not know when and whiclnotketo apply.
Even otherwise, we are far away from a realistic multi-tastkisg: not only do the
set of relevant features have to be exactly the same acrslss taut their values
have to as well.

Here, we ask the question: can we leverage parameter owsHap it exists,
but not pay a penalty when it does not ? Indeed, this falls wadaore general
question of whether we can model sutitty datawhich may not fall into a single
neat structural bracket (all block-sparse, or all low-ramd so on). With the
explosion of such dirty high-dimensional data in modernirsgs, it is vital to
develop tools —dirty models— to perform biased statistical estimation tailored
to such data. Here, we take a first step, focusing on devejapidirty model

for the multiple regression problem. Our method uses a vienpls idea: we
estimate auperpositiorof two sets of parameters and regularize them differently.
We show both theoretically and empirically, our methodc#fyiand noticeably
outperforms bottt; or ¢,/¢, methods, under high-dimensional scaling and over
the entire range of possible overlaps (except at boundasscavhere we match
the best method).

1 Introduction: Motivation and Setup

High-dimensional scalingln fields across science and engineering, we are incregdenggd with
problems where the number of variables or featyréslarger than the number of observations
Under such high-dimensional scaling, for any hope of ste#ily consistent estimation, it becomes
vital to leverage any potential structure in the problemhsas sparsity (e.g. in compressed sens-
ing [3] and LASSO [14]), low-rank structure [13, 9], or spaggaphical model structure [12]. Itisin
such high-dimensional contexts in particular that mutik learning [4] could be most useful. Here,



multiple tasks share some common structure such as sparsityestimating these tasks jointly by
leveraging this common structure could be more statiyiedficient.

Block-sparse Multiple RegressioA.common multiple task learning setting, and which is theufoc
of this paper, is that of multiple regression, where we hawvel response variables, and a common
set of p features or covariates. Thetasks could share certain aspects of their underlyingidistr
butions, such as common variance, but the setting we focus thris paper is where the response
variables havesimultaneously sparsstructure: the index set of relevant features for each task i
sparse; and there is a large overlap of these relevant ésafaross the different regression prob-
lems. Such “simultaneous sparsity” arises in a variety oftexts [15]; indeed, most applications
of sparse signal recovery in contexts ranging from graptmaadel learning, kernel learning, and
function estimation have natural extensions to the simalais-sparse setting [12, 2, 11].

It is useful to represent the multiple regression pararsetier a matrix, where each column corre-
sponds to a task, and each row to a feature. Having simultarsgmarse structure then corresponds
to the matrix being largely “block-sparse” — where each rewither all zero or mostly non-zero,
and the number of non-zero rows is small. A lot of recent netem this setting has focused on

¢ /¢, norm regularizations, foy > 1, that encourage the parameter matrix to have such block-
sparse structure. Particular examples include resultgukel; /¢, norm [16, 5, 8], and thé; /¢,
norm [7, 10].

Dirty Models.Block-regularization is “heavy-handed” in two ways. Byistlly encouraging shared-
sparsity, it assumes that all relevant features are shanebhence suffers under settings, arguably
more realistic, where each task depends on features spedifself in addition to the ones that are
common. The second concern with such block-sparse regetaris that the; /¢, horms can be
shown to encourage the entries in the non-sparse rows takiady identicaivalues Thus we are
far away from the original goal of multitask learning: notydo the set of relevant features have
to be exactly the same, but their values have to as well. thokxment research into such regularized
methods [8, 10] caution against the use of block-reguldméan regimes where the supports and
values of the parameters for each task can vary widely. $irecteue parameter values are unknown,
that would be a worrisome caveat.

We thus ask the question: can we learn multiple regressiatetady leveraging whatever overlap
of features there exist, and without requiring the parametkies to be near identical? Indeed this
is an instance of a more general question on whether we canagststatistical models where the
data may not fall cleanly into any one structural bracketifse, block-sparse and so on). With
the explosion oflirty high-dimensional data in modern settings, it is vital toeistigate estimation
of correspondinglirty models which might require new approaches to biased high-dinoeasi
estimation. In this paper we take a first step, focusing oh slirty models for a specific problem:
simultaneously sparse multiple regression.

Our approach uses a simple idea: while any one structuretmaglcapture the data, a superposition
of structural classes might. Our method thus searches fareaneter matrix that can lhecomposed
into a row-sparse matrix (corresponding to the overlappinghared features) and an elementwise
sparse matrix (corresponding to the non-shared featufesyve show both theoretically and em-
pirically, with this simple fix we are able to leverage anyemttof shared features, while allowing
disparities in support and values of the parameters, sawbatrealwaysbetter than both the Lasso
or block-sparse regularizers (at times remarkably so).

The rest of the paper is organized as follows: In Sec 2. baioitons and setup of the problem
are presented. Main results of the paper is discussed in. g&gp@rimental results and simulations
are demonstrated in Sec 4.

Notation: For any matrixA/, we denote itg*" row as)M;, and itsk-th column asM *). The set
of all non-zero rows (i.e. all rows with at least one non-zelement) is denoted by RowSupy)
and its support by Sugp/). Also, for any matrixdZ, let [|M |11 := 3, |M;k)\, i.e. the sums of

k
absolute values of the elements, aid |1, := >, [[M;[lsc Where,||M; || := maxy \MJ( )|.



2 Problem Set-up and Our Method

Multiple regressionWe consider the following standard multiple linear regi@ssnodel:
yB) = x®gk) Lopy®) =1

wherey(®¥) ¢ R™ is the response for thie-th task, regressed on the design mafxi¥) ¢ R"™*?
(possibly different across tasks), whil€*) € R™ is the noise vector. We assume eacti is
drawn independently fron\/(0, o2). The total number of tasks or target variables,ithe number
of features ip, while the number of samples we have for each task isor notational convenience,
we collate these quantities into matricés= R™*" for the response$) € RP*" for the regression
parameters antd’ € R™*" for the noise.

Dirty Model. In this paper we are interested in estimating the true paerefrom data by lever-
aging any (unknown) extent of simultaneous-sparsity. Inigaar, certain rows o would have
many non-zero entries, corresponding to features shareskvmsral tasks (“shared” rows), while
certain rows would be elementwise sparse, corresponditigose features which are relevant for
some tasks but not all (“non-shared rows”), while certaingavould have all zero entries, corre-
sponding to those features that are not relevant to any &kare interested in estimatagsthat
automatically adapt to different levels of sharedness yath@njoy the following guarantees:

Support recovery: We say an estimato® successfully recovers the true signed support if

sign(Sup©)) = sign(Sup©)). We are interested in deriving sufficient conditions undarcl
the estimator succeeds. We note that this is stronger thaslynecovering the row-support &,
which is union of its supports for the different tasks. Intjadar, denoting/, for the support of the
k-th column of©, and/ = J,, U.

Error bounds: We are also interested in providing bounds on the elemeatyisnorm error of the
estimatoro,

2.1 Our Method

Our method explicitly models theirty block-sparsestructure. We estimate a sum of two parameter
matricesB and.S with different regularizations for each: encouraging Blstructured row-sparsity

in B and elementwise sparsity % The corresponding “clean” models would either just useldlo
sparse regularizations [8, 10] or just elementwise sparseijularizations [14, 18], so that either
method would perform better in certain suited regimes. ragingly, as we will see in the main
results, by explicitly allowing to have both block-sparsel @&lementwise sparse component, we are
able tooutperform botltlasses of these “clean models”, fdf regimeso.

Algorithm 1 Dirty Block Sparse
Solve the following convex optimization problem:

PO ) 1 — 2
(S.B) € argmin %kZ_IHy““)—X““)(S<k)+B(k))H2+>\sHSH1,1+)\b\|BH1,oo. )

Then outpu@ =B+35.

3 Main Results and Their Consequences

We now provide precise statements of our main results. A rmurobrecent results have shown that
the Lasso [14, 18] and, //., block-regularization [8] methods succeed in recoverinmad sup-
ports with controlled error bounds under high-dimensiaualling regimes. Our first two theorems
extend these results to odirty modelsetting. In Theorem 1, we consider the case of deterministic
design matricest (*), and provide sufficient conditions guaranteeing signegstipecovery, and
elementwise., horm error bounds. In Theorem 2, we specialize this theocetimet case where the



rows of the design matrices are random from a general zera @aassian distribution: this allows
us to provide scaling on the number of observations requirextder to guarantee signed support
recovery and bounded elementwisg norm error.

Our third result is the most interesting in that it expligijuantifies the performance gains of our
method vis-a-vis Lasso and tlig/ /., block-regularization method. Since this entailed finding t
precise constants underlying earlier theorems, and asmwnelingly more delicate analysis, we
follow Negahban and Wainwright [8] and focus on the case wiieere are two-tasks (i.e.= 2),

and where we have standard Gaussian design matrices asarefh2. Further, while each of two
tasks depends onfeatures, only a fraction of these are common. It is then interesting to see how
the behaviors of the different regularization methods weit the extent of overlap..

ComparisonsNegahban and Wainwright [8] show that there is actually aaghtransition” in the
scaling of the probability of successful signed suppoctyery with the number of observations.
Denote a particular rescaling of the sample-$izg;s,(n, p, @) = W Then as Wainwright
[18] show, when the rescaled number of samples scalés as, > 2 + ¢ for anyd > 0, Lasso
succeeds in recovering the signed support of all columnis pribbability converging to one. But
when the sample size scaledas.s, < 2— ¢ foranyd > 0, Lassdfails with probability converging
to one. For the; /¢, -regurallzed multiple linear regression, define a simiéacaled sample size
01,00(n,p, ) = m. Then as Negahban and Wainwright [8] show there is again a
transition in probability of success from near zero to news, @t the rescaled sample sizépf, =

(4 — 3a). Thus, fora < 2/3 (“less sharing”) Lasso would perform better since its tigms is at
a smaller sample size, while for > 2/3 (“more sharing”) the/; /¢, regularized method would
perform better.

As we show in our third theorem, the phase transition for oethod occurs at the rescaled sample
size of#; o = (2 — «), which isstrictly before either the Lasso or tlfe//, regularized method
except for the boundary cases:= 0, i.e. the case of no sharing, where matchLasso, and for

a = 1, i.e. full sharing, where wenatch/; /¢.,. Everywhere else, wstrictly outperform both
methods. Figure 3 shows the empirical performance of eatheothree methods; as can be seen,
they agree very well with the theoretical analysis. (Furttetails in the experiments Section 4).

3.1 Sufficient Conditions for Deterministic Designs

We first consider the case where the design matri€8 for k = 1,- - -,r are deterministic,
and start by specifying the assumptions we impose on the Indde note that similar sufficient
conditions for the deterministié{ (*)'s case were imposed in papers analyzing Lasso [18] and
block-regularization methods [8, 10].

A0 Column Normalizatioﬁ‘x}’”” <+Vonforallj=1,...,pk=1,...,r
2

Let U, denote the support of thé-th column of ©, and/ = |J, Uy denote the union of
supports for each task. Then we require that

> 0.
1

k k k K\ !
() ()
Note that by the incoherence conditidd, we havey, > 0.
A2 Eigenvalue Conditiol,,in, := min Amin (% <Xb(1];>XIyZ)>> > 0.

—1
Al Incoherence Condition, := 1 — maXZ H<X<’“) X(’“) X“?,X&’j’c)» >

We will also find it useful to defing; := 1—max; <x<, max;eue

1

1<k<r

—1
A3 Boundedness Conditiab, .. := max <l <Xb<f)7 X;’“>>) < o0.
1<k<r n k k
oco,1
Further, we require the regularization penalties be set as
2(2 — s 1 2(2 — 1
. 2 —vs)ologlpr) N> (2 = m)oy/log(pr) @
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Figure 1: Probability of success in recovering the true signed support using dotleimLasso and; /4«
regularizer. For 2-task problem, the probability of success for different values of featwerlap fractiony

is plotted. As we can see in the regimes that Lasso is better than, as gautiwsrae tharf; /¢, regularizer
((@), (b) and (c) respectively), the dirty model outperforms botthefmethods, i.e., it requires less number of
observations for successful recovery of the true signed suppompared to Lasso arid /¢ regularizer. Here

s = | {] always.

Theorem 1. Supposé\0-A3 hold, and that we obtain estimafrom our algorithm with regular-
ization parameters chosen according(&). Then, with probability at least — ¢; exp(—can) — 1,
we are guaranteed that the convex program (1) has a uniguenapt and

(&) The estimat® has no false inclusions, and has boundednorm error so that

402 log (pr)

)\s Dmaa: .
n C’min *

Sup®) C Supi®), and |8 — Olfwc,e <

bimin

(b) sigr(Supg©)) = sign(Supg®)) provided that  min )‘éj(.’“)‘ > bimin-

(j,k)ESup©

Here the positive constants, c; depend only o, v, As, Ay @ndo, but are otherwise independent
of n, p, r, the problem dimensions of interest.

Remark: Condition (a) guarantees that the estimate will havéatse inclusionsi.e. all included
features will be relevant. If in addition, we require thah#ve nofalse exclusionand that recover
the support exactly, we need to impose the assumption irhéb)the non-zero elements are large
enough to be detectable above the noise.

3.2 General Gaussian Designs

Often the design matrices consist of samples from a Gaussisgmble. Suppose that for each task
k = 1,...,r the design matrix(¥) € R"*? is such that each rov;Xl.(k) € RP is a zero-mean
Gaussian random vector with covariance maki¥) € RP*?, and is independent of every other
row. Letx\)), € RVI*4| be the submatrix oE(*) with rows corresponding ' and columns to
U. We require these covariance matrices to satisfy the faligwonditions:

k k -1
Z;J/)fk’ (EZ(/{k)vuk) H >0
1

C1 Incoherence ConditioR, := 1 — max » ‘
JeEuUuc et




C2 Eigenvalue ConditiorC,i, = min Amin (E(sz,uk) > 0 so that the minimum eigenvalue

is bounded away from zero.

it — (s !
C3 Boundedness Conditiab,, q. : 0

0,1

These conditions are analogues of the conditions for détéstic designs; they are now imposed
on the covariance matrix of the (randomly generated) rowhetlesign matrix.

Further, definings := maxy, |Uj|, we require the regularization penalties be set as

A > (4‘720mm log(pr))l/Q and N> (4U2Cmmr(r log(2) + log(p)))l/2

s . 3
YsVNCrmin — /28 log(pr) Yo/ 1Crmin — /257 (rlog(2) + log(p)) ©

Theorem 2. Suppose assumptio®1-C3 hold, and that the number of samples scalenas>

25 log(pr) 257‘<rlog(2)+log(p))
Cmin 'Y‘? ’ Cmm"/;f

with probability at leastl — ¢; exp (—c2 (rlog(2) + log(p))) — ¢3 exp(—c4log(rs)) — 1 for some

positive numbers; — ¢4, we are guaranteed that the algorithm estimétés unique and satisfies
the following conditions:

max . Suppose we obtain estimate from algorithm(3). Then,

(a) the estimat® has no false inclusions, and has boundednorm error so that

~ = ~ = 5002 log(rs) 4s
C - 00,00 < -~ S -~ - max .
Supg®) C Supg®), and ||© — Oflcc,00 < Co + A S~ +D

Imin

J,k)€SupH©

(b) signSup®)) = sign(Sup®)) provided that  min )\éj(’“\ > Gmin-

3.3 Sharp Transition for 2-Task Gaussian Designs

This is one of the most important results of this paper. Here,perform a more delicate and
finer analysis to establish precise quantitative gains ofnoethod. We focus on the special case
wherer = 2 and the design matrix has rows generated from the standawds@a distribution
N(0,I,xn), SO thatC'l — C3 hold, with Cy,;, = Dy = 1. As we will see both analytically and
experimentally, our method strictly outperforms both leaasid ¢, /¢..-block-regularization over
for all cases, except at the extreme endpoints of no supparing (where it matches that of Lasso)
and full support sharing (where it matches that0f?.,,). We now present our analytical results; the
empirical comparisons are presented next in Section 4. @hdts will be in terms of a particular
rescaling of the sample sizeas

n

ﬁ(n,p7 S, Oé) = (2 — a)slog (p — (2 — a)s) .

We will also require the assumptions that

(1621~ V/sm)(log(r) + log(p — (2~ @)s)))

F1 x, )
T2 () (@ ) s (log(r) + log(p — (2 — a)s))/2
F2 ), (402(1 — \/s/n)r(rlog(2) + log(p — (2 — o¢)s)))1/2
b

(n)/2 = ()% — (1 — a/2) sr (rlog(2) + log(p — (2 — a)s)))/?

Theorem 3. Consider a2-task regression problertn, p, s, a), where the design matrix has rows

generated from the standard Gaussian distributidé{0, 7,,x,,). Supposemax;cp- @;(”




(e;(” = o(Xs), Where B* is the submatrix of* with rows where both entries are non-zero.

Then the estimat® of the problen{1) satisfies the following:

(Success) Suppose the regularization coefficients satlsty— F2. Further, assume that the number
of samples scales &n, p, s, «) > 1. Then, with probability at least — ¢; exp(—can) for

some positive numbers and ¢, we are guaranteed th&b satisfies the support-recovery
and /., error bound conditions (a-b) in Theorem 2.

(Failure) If 6(n,p,s,a) < 1 there is no solution( B, S) for any choices of\, and )\, such that
sign (SupQ@))) = sign(Supg®)).

We note that we require the g t!—);f“) to be small only on rows where both entries are

*(2)
-[o5

non-zero. As we show in a more general theorem in the appeentix in the case where the gap is
large, the dependence of the sample scaling on the gap &sweék.

4 Empirical Results

In this section, we investigate the performance of our ditbck sparse estimator on synthetic and
real-world data. The synthetic experiments explore theiraoy of Theorem 3, and compare our
estimator with LASSO and th& // ., regularizer. We see that Theorem 3 is very accurate indeed.
Next, we apply our method to a real world datasets containargl-written digits for classification.
Again we compare against LASSO and thé/.

(a multi-task regression dataset) with= 2 tasks. In both of this real world dataset, we show that
dirty model outperforms both LASSO arig//., practically. For each method, the parameters are
chosen via cross-validation; see supplemental materiahfoe details.

4.1 Synthetic Data Simulation

We consider a = 2-task regression problem as discussed in Theorem 3, forge rafrparameters
(n,p, s, ). The design matrice¥ have each entry being i.i.d. Gaussian with mean 0 and varianc
1. For each fixed set dfr, s, p, o), we generatd 00 instances of the problem. In each instance,
givenp, s, a, the locations of the non-zero entries of the tiiare chosen at randomly; each non-
zero entry is then chosen to be i.i.d. Gaussian with mean Ovaridnce 1.n samples are then
generated from this. We then attempt to estimate using tmethods: our dirty model; /¢
regularizer and LASSO. In each case, and for each instame@gnalty regularizer coefficients are
found by cross validation. After solving the three problemie compare the signed support of the
solution with the true signed support and decide whetheobthe program was successful in signed
support recovery. We describe these process in more dietéils section.

Performance Analysis We ran the algorithm for five different values of the overlapio o« €
{0.3, 2,0.8} with three different number of featurgse {128,256,512}. For any instance of the
problem(n, p, s, «), if the recovered matrid® has the same sign support as the tBuethen we
count it as success, otherwise failure (even if one elemesndtiferent sign, we count it as failure).

As Theorem 3 predicts and Fig 3 shows, the right scaling fer niimber of oservations is
m, where all curves stack on the top of each othér-ata. Also, the number of obser-
vations required by dirty model for true signed support vecp is always less than both LASSO and
¢/ regularizer. Fig 1(a) shows the probability of success lierd¢asex = 0.3 (when LASSO

is better thart?; /¢, regularizer) and that dirty model outperforms both methodthena = %
(see Fig 1(b)), LASSO and, /{, regularizer performs the same; but dirty model require aimo
33% less observations for the same performance acAgows towardl, e.g. « = 0.8 as shown in
Fig 1(c), 41 /¢~ performs better than LASSO. Still, dirty model performstéethan both methods

in this case as well.



L1/Linf Regularizer

Phase Transition Threshold
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Figure 2:Verification of the result of the Theorem 3 on the behavior of phaseitiam¢hreshold by changing
the parametet in a 2-task(n, p, s, o) problem for dirty model, LASSO ané /¢~ regularizer. They-axis
IS S1ozr—(z—aysy Wheren is the number of samples at which threshold was observed. Here 5 |. Our
dirty model method shows a gain in sample complexity over the entire rdrgl@onga. The pre-constant in
Theorem 3 is also validated.

[n [ Our Model [ €1/ ] LASSO |
10 Average Classification Errol 8.6% 9.9% 10.8%
Variance of Error 0.53% 0.64% 0.51%
Average Row Support Size| B:165 B+ S:171 170 123
Average Support Size S:18 B + 5:1651 1700 539
20 || Average Classification Erro 3.0% 3.5% 4.1%
Variance of Error 0.56% 0.62% 0.68%
Average Row Support Size| B:211 B + S:226 217 173
Average Support Size S:34 B + S:2118 2165 821
40 Average Classification Errol 2.2% 3.2% 2.8%
Variance of Error 0.57% 0.68% 0.85%
Average Row Support Size| B:270 B + S:299 368 354
Average Support Size S:67 B+ 5:2761 3669 2053

Table 1:Handwriting Classification Results for our modél/¢.. and LASSO

Scaling Verification: To verify that the phase transition threshold changesligewith o as pre-
dicted by Theorem 3, we plot the phase transition threshetdusa. For five different values of
a € {0.05,0.3, %,0.8,0.95} and three different values of € {128, 256,512}, we find the phase
transition threshold for dirty model, LASSO a#d//., regularizer. We consider the point where
the probability of success in recovery of signed supporeers50% as the phase transition thresh-
old. We find this point by interpolation on the closest tworpisi Fig 2 shows that phase transition
threshold for dirty model is always lower than the phasesitamn for LASSO and/; /¢ regular-
izer.

4.2 Handwritten Digits Dataset

We use the handwritten digit dataset [1], containing fesgtaf handwritten numeralg-0) extracted
from a collection of Dutch utility maps. This dataset hasrbased by a number of papers [17, 6]
as a reliable dataset for handwritten recognition algor#hThere are thus = 10 tasks, and each
handwritten sample consists pf= 649 features.

Table 1 shows the results of our analysis for different size$ the training set . We measure the
classification error for each digit to get tih@-vector of errors. Then, we find the average error and
the variance of the error vector to show how the error is ithisted over all tasks. We compare our
method with?, /¢, reguralizer method and LASSO. Again, in all methods, patarseare chosen
via cross-validation.

For our method we separate out tBeand S matrices that our method finds, so as to illustrate how
many features it identifies as “shared” and how many as “amesl”. For the other methods we
just report the straight row and support numbers, sincedbeayot make such a separation.
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