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Abstract

We consider multi-task learning in the setting of multiple linear regression, and
where some relevant features could be shared across the tasks. Recent research
has studied the use ofℓ1/ℓq norm block-regularizations withq > 1 for such block-
sparse structured problems, establishing strong guarantees on recovery even under
high-dimensional scaling where the number of features scale with the number of
observations. However, these papers also caution that the performance of such
block-regularized methods are very dependent on theextentto which the features
are shared across tasks. Indeed they show [8] that if the extent of overlap is less
than a threshold, or even if parametervaluesin the shared features are highly
uneven, then blockℓ1/ℓq regularization could actually performworsethan sim-
ple separate elementwiseℓ1 regularization. Since these caveats depend on the
unknown true parameters, we might not know when and which method to apply.
Even otherwise, we are far away from a realistic multi-task setting: not only do the
set of relevant features have to be exactly the same across tasks, but their values
have to as well.
Here, we ask the question: can we leverage parameter overlapwhen it exists,
but not pay a penalty when it does not ? Indeed, this falls under a more general
question of whether we can model suchdirty datawhich may not fall into a single
neat structural bracket (all block-sparse, or all low-rankand so on). With the
explosion of such dirty high-dimensional data in modern settings, it is vital to
develop tools –dirty models– to perform biased statistical estimation tailored
to such data. Here, we take a first step, focusing on developing a dirty model
for the multiple regression problem. Our method uses a very simple idea: we
estimate asuperpositionof two sets of parameters and regularize them differently.
We show both theoretically and empirically, our method strictly and noticeably
outperforms bothℓ1 or ℓ1/ℓq methods, under high-dimensional scaling and over
the entire range of possible overlaps (except at boundary cases, where we match
the best method).

1 Introduction: Motivation and Setup

High-dimensional scaling.In fields across science and engineering, we are increasingly faced with
problems where the number of variables or featuresp is larger than the number of observationsn.
Under such high-dimensional scaling, for any hope of statistically consistent estimation, it becomes
vital to leverage any potential structure in the problem such as sparsity (e.g. in compressed sens-
ing [3] and LASSO [14]), low-rank structure [13, 9], or sparse graphical model structure [12]. It is in
such high-dimensional contexts in particular that multi-task learning [4] could be most useful. Here,
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multiple tasks share some common structure such as sparsity, and estimating these tasks jointly by
leveraging this common structure could be more statistically efficient.

Block-sparse Multiple Regression.A common multiple task learning setting, and which is the focus
of this paper, is that of multiple regression, where we haver > 1 response variables, and a common
set ofp features or covariates. Ther tasks could share certain aspects of their underlying distri-
butions, such as common variance, but the setting we focus onin this paper is where the response
variables havesimultaneously sparsestructure: the index set of relevant features for each task is
sparse; and there is a large overlap of these relevant features across the different regression prob-
lems. Such “simultaneous sparsity” arises in a variety of contexts [15]; indeed, most applications
of sparse signal recovery in contexts ranging from graphical model learning, kernel learning, and
function estimation have natural extensions to the simultaneous-sparse setting [12, 2, 11].

It is useful to represent the multiple regression parameters via a matrix, where each column corre-
sponds to a task, and each row to a feature. Having simultaneous sparse structure then corresponds
to the matrix being largely “block-sparse” – where each row is either all zero or mostly non-zero,
and the number of non-zero rows is small. A lot of recent research in this setting has focused on
ℓ1/ℓq norm regularizations, forq > 1, that encourage the parameter matrix to have such block-
sparse structure. Particular examples include results using theℓ1/ℓ∞ norm [16, 5, 8], and theℓ1/ℓ2
norm [7, 10].

Dirty Models.Block-regularization is “heavy-handed” in two ways. By strictly encouraging shared-
sparsity, it assumes that all relevant features are shared,and hence suffers under settings, arguably
more realistic, where each task depends on features specificto itself in addition to the ones that are
common. The second concern with such block-sparse regularizers is that theℓ1/ℓq norms can be
shown to encourage the entries in the non-sparse rows takingnearly identicalvalues. Thus we are
far away from the original goal of multitask learning: not only do the set of relevant features have
to be exactly the same, but their values have to as well. Indeed recent research into such regularized
methods [8, 10] caution against the use of block-regularization in regimes where the supports and
values of the parameters for each task can vary widely. Sincethe true parameter values are unknown,
that would be a worrisome caveat.

We thus ask the question: can we learn multiple regression models by leveraging whatever overlap
of features there exist, and without requiring the parameter values to be near identical? Indeed this
is an instance of a more general question on whether we can estimate statistical models where the
data may not fall cleanly into any one structural bracket (sparse, block-sparse and so on). With
the explosion ofdirty high-dimensional data in modern settings, it is vital to investigate estimation
of correspondingdirty models, which might require new approaches to biased high-dimensional
estimation. In this paper we take a first step, focusing on such dirty models for a specific problem:
simultaneously sparse multiple regression.

Our approach uses a simple idea: while any one structure might not capture the data, a superposition
of structural classes might. Our method thus searches for a parameter matrix that can bedecomposed
into a row-sparse matrix (corresponding to the overlappingor shared features) and an elementwise
sparse matrix (corresponding to the non-shared features).As we show both theoretically and em-
pirically, with this simple fix we are able to leverage any extent of shared features, while allowing
disparities in support and values of the parameters, so thatwe arealwaysbetter than both the Lasso
or block-sparse regularizers (at times remarkably so).

The rest of the paper is organized as follows: In Sec 2. basic definitions and setup of the problem
are presented. Main results of the paper is discussed in sec 3. Experimental results and simulations
are demonstrated in Sec 4.

Notation: For any matrixM , we denote itsjth row asMj , and itsk-th column asM (k). The set
of all non-zero rows (i.e. all rows with at least one non-zeroelement) is denoted by RowSupp(M)

and its support by Supp(M). Also, for any matrixM , let ‖M‖1,1 :=
∑

j,k |M
(k)
j |, i.e. the sums of

absolute values of the elements, and‖M‖1,∞ :=
∑

j ‖Mj‖∞ where,‖Mj‖∞ := maxk |M
(k)
j |.
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2 Problem Set-up and Our Method

Multiple regression.We consider the following standard multiple linear regression model:

y(k) = X(k)θ̄(k) + w(k), k = 1, . . . , r,

wherey(k) ∈ R
n is the response for thek-th task, regressed on the design matrixX(k) ∈ R

n×p

(possibly different across tasks), whilew(k) ∈ R
n is the noise vector. We assume eachw(k) is

drawn independently fromN (0, σ2). The total number of tasks or target variables isr, the number
of features isp, while the number of samples we have for each task isn. For notational convenience,
we collate these quantities into matricesY ∈ R

n×r for the responses,̄Θ ∈ R
p×r for the regression

parameters andW ∈ R
n×r for the noise.

Dirty Model. In this paper we are interested in estimating the true parameter Θ̄ from data by lever-
aging any (unknown) extent of simultaneous-sparsity. In particular, certain rows of̄Θ would have
many non-zero entries, corresponding to features shared byseveral tasks (“shared” rows), while
certain rows would be elementwise sparse, corresponding tothose features which are relevant for
some tasks but not all (“non-shared rows”), while certain rows would have all zero entries, corre-
sponding to those features that are not relevant to any task.We are interested in estimatorŝΘ that
automatically adapt to different levels of sharedness, andyet enjoy the following guarantees:

Support recovery: We say an estimator̂Θ successfully recovers the true signed support if
sign(Supp(Θ̂)) = sign(Supp(Θ̄)). We are interested in deriving sufficient conditions under which
the estimator succeeds. We note that this is stronger than merely recovering the row-support of̄Θ,
which is union of its supports for the different tasks. In particular, denotingUk for the support of the
k-th column ofΘ̄, andU =

⋃
k Uk.

Error bounds: We are also interested in providing bounds on the elementwiseℓ∞ norm error of the
estimatorΘ̂,

‖Θ̂− Θ̄‖∞ = max
j=1,...,p

max
k=1,...,r

∣∣∣Θ̂(k)
j − Θ̄

(k)
j

∣∣∣ .

2.1 Our Method

Our method explicitly models thedirty block-sparsestructure. We estimate a sum of two parameter
matricesB andS with different regularizations for each: encouraging block-structured row-sparsity
in B and elementwise sparsity inS. The corresponding “clean” models would either just use block-
sparse regularizations [8, 10] or just elementwise sparsity regularizations [14, 18], so that either
method would perform better in certain suited regimes. Interestingly, as we will see in the main
results, by explicitly allowing to have both block-sparse and elementwise sparse component, we are
able tooutperform bothclasses of these “clean models”, forall regimesΘ̄.

Algorithm 1 Dirty Block Sparse
Solve the following convex optimization problem:

(Ŝ, B̂) ∈ argmin
S,B

1

2n

r∑

k=1

∥∥∥y(k) −X(k)
(
S(k) +B(k)

)∥∥∥
2

2
+ λs‖S‖1,1 + λb‖B‖1,∞. (1)

Then output̂Θ = B̂ + Ŝ.

3 Main Results and Their Consequences

We now provide precise statements of our main results. A number of recent results have shown that
the Lasso [14, 18] andℓ1/ℓ∞ block-regularization [8] methods succeed in recovering signed sup-
ports with controlled error bounds under high-dimensionalscaling regimes. Our first two theorems
extend these results to ourdirty modelsetting. In Theorem 1, we consider the case of deterministic
design matricesX(k), and provide sufficient conditions guaranteeing signed support recovery, and
elementwiseℓ∞ norm error bounds. In Theorem 2, we specialize this theorem to the case where the
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rows of the design matrices are random from a general zero mean Gaussian distribution: this allows
us to provide scaling on the number of observations requiredin order to guarantee signed support
recovery and bounded elementwiseℓ∞ norm error.

Our third result is the most interesting in that it explicitly quantifies the performance gains of our
method vis-a-vis Lasso and theℓ1/ℓ∞ block-regularization method. Since this entailed finding the
precise constants underlying earlier theorems, and a correspondingly more delicate analysis, we
follow Negahban and Wainwright [8] and focus on the case where there are two-tasks (i.e.r = 2),
and where we have standard Gaussian design matrices as in Theorem 2. Further, while each of two
tasks depends ons features, only a fractionα of these are common. It is then interesting to see how
the behaviors of the different regularization methods varywith the extent of overlapα.

Comparisons.Negahban and Wainwright [8] show that there is actually a “phase transition” in the
scaling of the probability of successful signed support-recovery with the number of observations.
Denote a particular rescaling of the sample-sizeθLasso(n, p, α) =

n
s log(p−s) . Then as Wainwright

[18] show, when the rescaled number of samples scales asθLasso > 2 + δ for any δ > 0, Lasso
succeeds in recovering the signed support of all columns with probability converging to one. But
when the sample size scales asθLasso < 2−δ for anyδ > 0, Lassofails with probability converging
to one. For theℓ1/ℓ∞-reguralized multiple linear regression, define a similar rescaled sample size
θ1,∞(n, p, α) = n

s log(p−(2−α)s) . Then as Negahban and Wainwright [8] show there is again a
transition in probability of success from near zero to near one, at the rescaled sample size ofθ1,∞ =
(4 − 3α). Thus, forα < 2/3 (“less sharing”) Lasso would perform better since its transition is at
a smaller sample size, while forα > 2/3 (“more sharing”) theℓ1/ℓ∞ regularized method would
perform better.

As we show in our third theorem, the phase transition for our method occurs at the rescaled sample
size ofθ1,∞ = (2 − α), which isstrictly before either the Lasso or theℓ1/ℓ∞ regularized method
except for the boundary cases:α = 0, i.e. the case of no sharing, where wematchLasso, and for
α = 1, i.e. full sharing, where wematchℓ1/ℓ∞. Everywhere else, westrictly outperform both
methods. Figure 3 shows the empirical performance of each ofthe three methods; as can be seen,
they agree very well with the theoretical analysis. (Further details in the experiments Section 4).

3.1 Sufficient Conditions for Deterministic Designs

We first consider the case where the design matricesX(k) for k = 1, · · ·, r are deterministic,
and start by specifying the assumptions we impose on the model. We note that similar sufficient
conditions for the deterministicX(k)’s case were imposed in papers analyzing Lasso [18] and
block-regularization methods [8, 10].

A0 Column Normalization
∥∥∥X(k)

j

∥∥∥
2
≤

√
2n for all j = 1, . . . , p, k = 1, . . . , r.

Let Uk denote the support of thek-th column of Θ̄, and U =
⋃

k Uk denote the union of
supports for each task. Then we require that

A1 Incoherence Conditionγb := 1−max
j∈Uc

r∑

k=1

∥∥∥∥

〈
X

(k)
j , X

(k)
Uk

(〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
〉∥∥∥∥

1

> 0.

We will also find it useful to defineγs := 1−max1≤k≤r maxj∈Uc
k

∥∥∥∥
〈
X

(k)
j , X

(k)
Uk

〉(〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
∥∥∥∥
1

.

Note that by the incoherence conditionA1, we haveγs > 0.

A2 Eigenvalue ConditionCmin := min
1≤k≤r

λmin

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)
> 0.

A3 Boundedness ConditionDmax := max
1≤k≤r

∥∥∥∥∥

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
∥∥∥∥∥
∞,1

< ∞.

Further, we require the regularization penalties be set as

λs >
2(2− γs)σ

√
log(pr)

γs
√
n

and λb >
2(2− γb)σ

√
log(pr)

γb
√
n

. (2)
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Figure 1: Probability of success in recovering the true signed support using dirty model, Lasso andℓ1/ℓ∞
regularizer. For a2-task problem, the probability of success for different values of feature-overlap fractionα
is plotted. As we can see in the regimes that Lasso is better than, as good as and worse thanℓ1/ℓ∞ regularizer
((a), (b) and (c) respectively), the dirty model outperforms both ofthe methods, i.e., it requires less number of
observations for successful recovery of the true signed support compared to Lasso andℓ1/ℓ∞ regularizer. Here
s = ⌊ p

10
⌋ always.

Theorem 1. SupposeA0-A3 hold, and that we obtain estimatêΘ from our algorithm with regular-
ization parameters chosen according to(2). Then, with probability at least1− c1 exp(−c2n) → 1,
we are guaranteed that the convex program (1) has a unique optimum and

(a) The estimatêΘ has no false inclusions, and has boundedℓ∞ norm error so that

Supp(Θ̂) ⊆ Supp(Θ̄), and ‖Θ̂− Θ̄‖∞,∞ ≤
√

4σ2 log (pr)

nCmin
+ λsDmax

︸ ︷︷ ︸
bmin

.

(b) sign(Supp(Θ̂)) = sign
(
Supp(Θ̄)

)
provided that min

(j,k)∈Supp(Θ̄)

∣∣∣θ̄(k)j

∣∣∣ > bmin.

Here the positive constantsc1, c2 depend only onγs, γb, λs, λb andσ, but are otherwise independent
of n, p, r, the problem dimensions of interest.

Remark: Condition (a) guarantees that the estimate will have nofalse inclusions; i.e. all included
features will be relevant. If in addition, we require that ithave nofalse exclusionsand that recover
the support exactly, we need to impose the assumption in (b) that the non-zero elements are large
enough to be detectable above the noise.

3.2 General Gaussian Designs

Often the design matrices consist of samples from a Gaussianensemble. Suppose that for each task
k = 1, . . . , r the design matrixX(k) ∈ R

n×p is such that each rowX(k)
i ∈ R

p is a zero-mean
Gaussian random vector with covariance matrixΣ(k) ∈ R

p×p, and is independent of every other
row. LetΣ(k)

V,U ∈ R
|V|×|U| be the submatrix ofΣ(k) with rows corresponding toV and columns to

U . We require these covariance matrices to satisfy the following conditions:

C1 Incoherence Conditionγb := 1−max
j∈Uc

r∑

k=1

∥∥∥∥Σ
(k)
j,Uk

,
(
Σ

(k)
Uk,Uk

)−1
∥∥∥∥
1

> 0
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C2 Eigenvalue ConditionCmin := min
1≤k≤r

λmin

(
Σ

(k)
Uk,Uk

)
> 0 so that the minimum eigenvalue

is bounded away from zero.

C3 Boundedness ConditionDmax :=

∥∥∥∥
(
Σ

(k)
Uk,Uk

)−1
∥∥∥∥
∞,1

< ∞.

These conditions are analogues of the conditions for deterministic designs; they are now imposed
on the covariance matrix of the (randomly generated) rows ofthe design matrix.

Further, definings := maxk |Uk|, we require the regularization penalties be set as

λs >

(
4σ2Cmin log(pr)

)1/2

γs
√
nCmin −

√
2s log(pr)

and λb >

(
4σ2Cminr(r log(2) + log(p))

)1/2

γb
√
nCmin −

√
2sr(r log(2) + log(p))

. (3)

Theorem 2. Suppose assumptionsC1-C3 hold, and that the number of samples scale asn >

max

(
2s log(pr)
Cminγ2

s
,
2sr

(
r log(2)+log(p)

)
Cminγ2

b

)
. Suppose we obtain estimatêΘ from algorithm(3). Then,

with probability at least1− c1 exp (−c2 (r log(2) + log(p)))− c3 exp(−c4 log(rs)) → 1 for some
positive numbersc1 − c4, we are guaranteed that the algorithm estimateΘ̂ is unique and satisfies
the following conditions:

(a) the estimatêΘ has no false inclusions, and has boundedℓ∞ norm error so that

Supp(Θ̂) ⊆ Supp(Θ̄), and ‖Θ̂− Θ̄‖∞,∞ ≤
√

50σ2 log(rs)

nCmin
+ λs

(
4s

Cmin
√
n
+Dmax

)

︸ ︷︷ ︸
gmin

.

(b) sign(Supp(Θ̂)) = sign
(
Supp(Θ̄)

)
provided that min

(j,k)∈Supp(Θ̄)

∣∣∣θ̄(k)j

∣∣∣ > gmin.

3.3 Sharp Transition for 2-Task Gaussian Designs

This is one of the most important results of this paper. Here,we perform a more delicate and
finer analysis to establish precise quantitative gains of our method. We focus on the special case
wherer = 2 and the design matrix has rows generated from the standard Gaussian distribution
N (0, In×n), so thatC1− C3 hold, withCmin = Dmax = 1. As we will see both analytically and
experimentally, our method strictly outperforms both Lasso andℓ1/ℓ∞-block-regularization over
for all cases, except at the extreme endpoints of no support sharing (where it matches that of Lasso)
and full support sharing (where it matches that ofℓ1/ℓ∞). We now present our analytical results; the
empirical comparisons are presented next in Section 4. The results will be in terms of a particular
rescaling of the sample sizen as

θ(n, p, s, α) :=
n

(2− α)s log (p− (2− α)s)
.

We will also require the assumptions that

F1 λs >

(

4σ2(1 −
√

s/n)(log(r) + log(p − (2 − α)s))
)

1/2

(n)1/2 − (s)1/2 − ((2 − α) s (log(r) + log(p − (2 − α)s)))1/2
,

F2 λb >

(

4σ2(1 −
√

s/n)r(r log(2) + log(p − (2 − α)s))
)

1/2

(n)1/2 − (s)1/2 − ((1 − α/2) sr (r log(2) + log(p − (2 − α)s)))1/2
.

Theorem 3. Consider a2-task regression problem(n, p, s, α), where the design matrix has rows

generated from the standard Gaussian distributionN (0, In×n). Supposemaxj∈B∗

∣∣∣∣∣

∣∣∣Θ∗(1)
j

∣∣∣ −
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∣∣∣Θ∗(2)
j

∣∣∣

∣∣∣∣∣ = o(λs), whereB∗ is the submatrix ofΘ∗ with rows where both entries are non-zero.

Then the estimatêΘ of the problem(1) satisfies the following:

(Success) Suppose the regularization coefficients satisfyF1 − F2. Further, assume that the number
of samples scales asθ(n, p, s, α) > 1. Then, with probability at least1−c1 exp(−c2n) for
some positive numbersc1 andc2, we are guaranteed that̂Θ satisfies the support-recovery
andℓ∞ error bound conditions (a-b) in Theorem 2.

(Failure) If θ(n, p, s, α) < 1 there is no solution(B̂, Ŝ) for any choices ofλs and λb such that

sign
(

Supp(Θ̂)
)
= sign

(
Supp(Θ̄)

)
.

We note that we require the gap

∣∣∣∣∣

∣∣∣Θ∗(1)
j

∣∣∣−
∣∣∣Θ∗(2)

j

∣∣∣

∣∣∣∣∣ to be small only on rows where both entries are

non-zero. As we show in a more general theorem in the appendix, even in the case where the gap is
large, the dependence of the sample scaling on the gap is quite weak.

4 Empirical Results

In this section, we investigate the performance of our dirtyblock sparse estimator on synthetic and
real-world data. The synthetic experiments explore the accuracy of Theorem 3, and compare our
estimator with LASSO and theℓ1/ℓ∞ regularizer. We see that Theorem 3 is very accurate indeed.
Next, we apply our method to a real world datasets containinghand-written digits for classification.
Again we compare against LASSO and theℓ1/ℓ∞.

(a multi-task regression dataset) withr = 2 tasks. In both of this real world dataset, we show that
dirty model outperforms both LASSO andℓ1/ℓ∞ practically. For each method, the parameters are
chosen via cross-validation; see supplemental material for more details.

4.1 Synthetic Data Simulation

We consider ar = 2-task regression problem as discussed in Theorem 3, for a range of parameters
(n, p, s, α). The design matricesX have each entry being i.i.d. Gaussian with mean 0 and variance
1. For each fixed set of(n, s, p, α), we generate100 instances of the problem. In each instance,
givenp, s, α, the locations of the non-zero entries of the trueΘ̄ are chosen at randomly; each non-
zero entry is then chosen to be i.i.d. Gaussian with mean 0 andvariance 1.n samples are then
generated from this. We then attempt to estimate using threemethods: our dirty model,ℓ1/ℓ∞
regularizer and LASSO. In each case, and for each instance, the penalty regularizer coefficients are
found by cross validation. After solving the three problems, we compare the signed support of the
solution with the true signed support and decide whether or not the program was successful in signed
support recovery. We describe these process in more detailsin this section.

Performance Analysis: We ran the algorithm for five different values of the overlapratio α ∈
{0.3, 2

3 , 0.8} with three different number of featuresp ∈ {128, 256, 512}. For any instance of the
problem(n, p, s, α), if the recovered matrix̂Θ has the same sign support as the trueΘ̄, then we
count it as success, otherwise failure (even if one element has different sign, we count it as failure).

As Theorem 3 predicts and Fig 3 shows, the right scaling for the number of oservations is
n

s log(p−(2−α)s) , where all curves stack on the top of each other at2− α. Also, the number of obser-
vations required by dirty model for true signed support recovery is always less than both LASSO and
ℓ1/ℓ∞ regularizer. Fig 1(a) shows the probability of success for the caseα = 0.3 (when LASSO
is better thanℓ1/ℓ∞ regularizer) and that dirty model outperforms both methods. Whenα = 2

3
(see Fig 1(b)), LASSO andℓ1/ℓ∞ regularizer performs the same; but dirty model require almost
33% less observations for the same performance. Asα grows toward1, e.g.α = 0.8 as shown in
Fig 1(c),ℓ1/ℓ∞ performs better than LASSO. Still, dirty model performs better than both methods
in this case as well.
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is n

s log(p−(2−α)s)
, wheren is the number of samples at which threshold was observed. Heres = ⌊ p

10
⌋. Our

dirty model method shows a gain in sample complexity over the entire range of sharingα. The pre-constant in
Theorem 3 is also validated.

n Our Model ℓ1/ℓ∞ LASSO

10 Average Classification Error 8.6% 9.9% 10.8%
Variance of Error 0.53% 0.64% 0.51%

Average Row Support Size B:165 B + S:171 170 123
Average Support Size S:18 B + S:1651 1700 539

20 Average Classification Error 3.0% 3.5% 4.1%
Variance of Error 0.56% 0.62% 0.68%

Average Row Support Size B:211 B + S:226 217 173
Average Support Size S:34 B + S:2118 2165 821

40 Average Classification Error 2.2% 3.2% 2.8%
Variance of Error 0.57% 0.68% 0.85%

Average Row Support Size B:270 B + S:299 368 354
Average Support Size S:67 B + S:2761 3669 2053

Table 1:Handwriting Classification Results for our model,ℓ1/ℓ∞ and LASSO

Scaling Verification: To verify that the phase transition threshold changes linearly with α as pre-
dicted by Theorem 3, we plot the phase transition threshold versusα. For five different values of
α ∈ {0.05, 0.3, 2

3 , 0.8, 0.95} and three different values ofp ∈ {128, 256, 512}, we find the phase
transition threshold for dirty model, LASSO andℓ1/ℓ∞ regularizer. We consider the point where
the probability of success in recovery of signed support exceeds50% as the phase transition thresh-
old. We find this point by interpolation on the closest two points. Fig 2 shows that phase transition
threshold for dirty model is always lower than the phase transition for LASSO andℓ1/ℓ∞ regular-
izer.
4.2 Handwritten Digits Dataset

We use the handwritten digit dataset [1], containing features of handwritten numerals (0-9) extracted
from a collection of Dutch utility maps. This dataset has been used by a number of papers [17, 6]
as a reliable dataset for handwritten recognition algorithms. There are thusr = 10 tasks, and each
handwritten sample consists ofp = 649 features.

Table 1 shows the results of our analysis for different sizesn of the training set . We measure the
classification error for each digit to get the10-vector of errors. Then, we find the average error and
the variance of the error vector to show how the error is distributed over all tasks. We compare our
method withℓ1/ℓ∞ reguralizer method and LASSO. Again, in all methods, parameters are chosen
via cross-validation.

For our method we separate out theB andS matrices that our method finds, so as to illustrate how
many features it identifies as “shared” and how many as “non-shared”. For the other methods we
just report the straight row and support numbers, since theydo not make such a separation.
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