
 Basic Concepts in Control

393R: Autonomous Robots
Peter Stone

Slides Courtesy of
Benjamin Kuipers

Good Afternoon Colleagues

• Are there any questions?

Logistics

• Reading responses
• Next week’s readings - due Monday night

– Braitenberg vehicles
– Forward/inverse kinematics
– Aibo joint modeling

• Next class: lab intro (start here)

Controlling a Simple System

• Consider a simple system:

– Scalar variables x and u, not vectors x and u.
– Assume x is observable: y = G(x) = x
– Assume effect of motor command u:

• The setpoint xset is the desired value.
– The controller responds to error: e = x − xset

• The goal is to set u to reach e = 0.

!

˙ x = F(x,u)

!

"F

"u
> 0

The intuition behind control

• Use action u to push back toward error e = 0
– error e depends on state x (via sensors y)

• What does pushing back do?
– Depends on the structure of the system
– Velocity versus acceleration control

• How much should we push back?
– What does the magnitude of u depend on?

Car on a slope example

Velocity or acceleration control?

• If error reflects x, does u affect x′ or x′′ ?
• Velocity control: u → x′ (valve fills tank)

– let x = (x)

• Acceleration control: u → x′′ (rocket)
– let x = (x v)T

!

˙ x = (˙ x) = F (x, u) = (u)

!

˙ x =
˙ x

˙ v

"

$ $
%

&
' ' = F (x, u) =

v

u

"

$ $
%

&
' '

!

˙ v = ˙ ̇ x = u

The Bang-Bang Controller
• Push back, against the direction of the error

– with constant action u
• Error is e = x - xset

• To prevent chatter around e = 0,

• Household thermostat. Not very subtle.

!

e < 0 " u := on " ˙ x = F (x, on) > 0

e > 0 " u := off " ˙ x = F (x, off) < 0

!

e < "# $ u := on

e > +# $ u := off

Bang-Bang Control in Action

– Optimal for reaching the setpoint
– Not very good for staying near it

Hysteresis

• Does a thermostat work exactly that way?
– Car demonstration

• Why not?

• How can you prevent such frequent motor
action?

• Aibo turning to ball example

Proportional Control
• Push back, proportional to the error.

– set ub so that
• For a linear system, we get exponential

convergence.

• The controller gain k determines how
quickly the system responds to error.

!

u = "ke + u
b

!

˙ x = F(x
set

,u
b
) = 0

!

x(t) = Ce
"# t

+ x
set

Velocity Control

• You want to drive your car at velocity vset.

• You issue the motor command u = posaccel

• You observe velocity vobs.

• Define a first-order controller:

– k is the controller gain.

!

u = "k (v
obs
" v

set
) + u

b

Proportional Control in Action

– Increasing gain approaches setpoint faster
– Can leads to overshoot, and even instability
– Steady-state offset

Steady-State Offset

• Suppose we have continuing disturbances:

• The P-controller cannot stabilize at e = 0.
– Why not?

!

˙ x = F(x,u) + d

Steady-State Offset

• Suppose we have continuing disturbances:

• The P-controller cannot stabilize at e = 0.
– if ub is defined so F(xset,ub) = 0
– then F(xset,ub) + d ≠ 0, so the system changes

• Must adapt ub to different disturbances d.

!

˙ x = F(x,u) + d

Adaptive Control

• Sometimes one controller isn’t enough.
• We need controllers at different time scales.

• This can eliminate steady-state offset.
– Why?!

u = "k
P
e + u

b

!

˙ u
b

= "k
I
e where k

I
<< k

P

Adaptive Control

• Sometimes one controller isn’t enough.
• We need controllers at different time scales.

• This can eliminate steady-state offset.
– Because the slower controller adapts ub.!

u = "k
P
e + u

b

!

˙ u
b

= "k
I
e where k

I
<< k

P

Integral Control

• The adaptive controller means

• Therefore

• The Proportional-Integral (PI) Controller.

!

˙ u
b

= "k
I
e

!

u
b
(t) = "k

I
e dt

0

t

+ u
b

!

u(t) = "k
P
e(t) " k

I
e dt

0

t

+ u
b

Nonlinear P-control

• Generalize proportional control to

• Nonlinear control laws have advantages
– f has vertical asymptote: bounded error e
– f has horizontal asymptote: bounded effort u
– Possible to converge in finite time.
– Nonlinearity allows more kinds of composition.

!

u = " f (e)+ ub where f # M0

+

Stopping Controller

• Desired stopping point: x=0.
– Current position: x
– Distance to obstacle:

• Simple P-controller:

• Finite stopping time for

!

d = | x |+"

!

v = ˙ x = " f (x)

!

f (x) = k | x | sgn(x)

Derivative Control

• Damping friction is a force opposing
motion, proportional to velocity.

• Try to prevent overshoot by damping
controller response.

• Estimating a derivative from measurements
is fragile, and amplifies noise.

!

u = "k
P
e " k

D
˙ e

Derivative Control in Action

– Damping fights oscillation and overshoot
– But it’s vulnerable to noise

Effect of Derivative Control

– Different amounts of damping (without noise)

Derivatives Amplify Noise

– This is a problem if control output (CO)
depends on slope (with a high gain).

The PID Controller

• A weighted combination of Proportional,
Integral, and Derivative terms.

• The PID controller is the workhorse of the
control industry. Tuning is non-trivial.
– Next lecture includes some tuning methods.

!

u(t) = "k
P

e(t) " k
I

e dt

0

t

" k
D

˙ e (t)

PID Control in Action

– But, good behavior depends on good tuning!
– Aibo joints use PID control

Exploring PI Control Tuning

Habituation
• Integral control adapts the bias term ub.
• Habituation adapts the setpoint xset.

– It prevents situations where too much control
action would be dangerous.

• Both adaptations reduce steady-state error.

!

u = "k
P
e + u

b

!

˙ x
set

= +k
h
e where k

h
<< k

P

Types of Controllers
• Open-loop control

– No sensing
• Feedback control (closed-loop)

– Sense error, determine control response.
• Feedforward control (closed-loop)

– Sense disturbance, predict resulting error, respond to
predicted error before it happens.

• Model-predictive control (closed-loop)
– Plan trajectory to reach goal.
– Take first step.
– Repeat.

Design open and closed-loop
controllers for me to get out
of the room.

Dynamical Systems
• A dynamical system changes continuously

(almost always) according to

• A controller is defined to change the
coupled robot and environment into a
desired dynamical system.

!

˙ x =F(x) where x " #
n

!

˙ x = F(x,u)

y =G(x)

u = H
i
(y)

!

˙ x = F(x,H
i
(G(x)))

!

˙ x = "(x)

Two views of dynamic behavior

• Time
plot
(t,x)

• Phase
portrait
(x,v)

Phase Portrait: (x,v) space
• Shows the trajectory (x(t),v(t)) of the system

– Stable attractor here

In One Dimension

• Simple linear system

• Fixed point

• Solution

– Stable if k < 0
– Unstable if k > 0

!

˙ x = kx

!

x = 0 " ˙ x = 0

!

x

!

˙ x

!

x(t) = x
0
e
kt

In Two Dimensions

• Often, we have position and velocity:

• If we model actions as forces, which cause
acceleration, then we get:

!

x = (x,v)
T

where v = ˙ x

!

˙ x =
˙ x

˙ v

"

$ $
%

&
' ' =

˙ x

˙ ̇ x

"

$ $
%

&
' ' =

v

forces

"

$ $

%

&
' '

!

The Damped Spring
• The spring is defined by Hooke’s Law:

• Include damping friction

• Rearrange and redefine constants

xkxmmaF
1

!=== &&

xkxkxm &&&
21

!!=

0=++ cxxbx &&&

!

˙ x =
˙ x

˙ v

"

$ $
%

&
' ' =

˙ x

˙ ̇ x

"

$ $
%

&
' ' =

v

(b˙ x (cx

"

$ $

%

&
' '

Node
Behavior

Focus
Behavior

Saddle
Behavior

Spiral
Behavior

(stable
attractor)

Center
Behavior

(undamped
oscillator)

The Wall Follower

(x,y)

!

"

The Wall Follower
• Our robot model:

 u = (v ω)T y=(y θ)T θ ≈ 0.

• We set the control law u = (v ω)T = Hi(y)

!

˙ x =

˙ x

˙ y

˙ "

$

%
%
%

&

'

(
(
(

= F (x, u) =

v cos"

v sin"

)

$

%
%
%

&

'

(
(
(

The Wall Follower
• Assume constant forward velocity v = v0

– approximately parallel to the wall: θ ≈ 0.
• Desired distance from wall defines error:

• We set the control law u = (v ω)T = Hi(y)
– We want e to act like a “damped spring”

!

e = y " yset so ˙ e = ˙ y and ˙ ̇ e = ˙ ̇ y

!

˙ ̇ e + k
1
˙ e + k

2
e = 0

The Wall Follower
• We want a damped spring:
• For small values of θ

• Substitute, and assume v=v0 is constant.

• Solve for ω

!

˙ ̇ e + k
1

˙ e + k
2

e = 0

!

˙ e = ˙ y = v sin" # v"

˙ ̇ e = ˙ ̇ y = v cos" ˙ " # v$

!

v
0
" + k

1
v
0
+ k

2
e = 0

The Wall Follower
• To get the damped spring
• We get the constraint

• Solve for ω. Plug into u.

– This makes the wall-follower a PD controller.
– Because:

!

˙ ̇ e + k
1
˙ e + k

2
e = 0

!

u =
v

"

$
%
&

'
(=

v
0

)k
1
*)

k
2

v
0

e

$

%
%

&

'

(
(

= H
i
(e,*)!

v
0
" + k

1
v
0
+ k

2
e = 0

Tuning the Wall Follower

• The system is
• Critical damping requires

• Slightly underdamped performs better.
– Set k2 by experience.
– Set k1 a bit less than

!

˙ ̇ e + k
1
˙ e + k

2
e = 0

!

k
1

2

" 4k
2

= 0

!

k
1

= 4k
2

!

4k
2

An Observer for Distance to Wall
• Short sonar returns are reliable.

– They are likely to be perpendicular reflections.

Alternatives

• The wall follower is a PD control law.
• A target seeker should probably be a PI

control law, to adapt to motion.

• Can try different tuning values for
parameters.
– This is a simple model.
– Unmodeled effects might be significant.

Ziegler-Nichols Tuning
• Open-loop response to a unit step increase.

• d is deadtime. T is the process time constant.
• K is the process gain.

d T K

Tuning the PID Controller
• We have described it as:

• Another standard form is:

• Ziegler-Nichols says:

!

u(t) = "k
P

e(t) " k
I

e dt

0

t

" k
D

˙ e (t)

!

u(t) = "P e(t) + T
I

e dt

0

t

+ T
D

˙ e (t)
$

%
&

'

(
)

!

P =
1.5 "T

K " d
T
I

= 2.5 " d T
D

= 0.4 " d

Ziegler-Nichols Closed Loop
1. Disable D and I action (pure P control).
2. Make a step change to the setpoint.
3. Repeat, adjusting controller gain until

achieving a stable oscillation.
• This gain is the “ultimate gain” Ku.
• The period is the “ultimate period” Pu.

Closed-Loop Z-N PID Tuning
• A standard form of PID is:

• For a PI controller:

• For a PID controller:
!

u(t) = "P e(t) + T
I

e dt

0

t

+ T
D

˙ e (t)
$

%
&

'

(
)

!

P = 0.45 "K
u

T
I

=
P
u

1.2

!

P = 0.6 "K
u

T
I

=
P
u

2
T
D

=
P
u

8

Summary of Concepts

• Dynamical systems and phase portraits
• Qualitative types of behavior

– Stable vs unstable; nodal vs saddle vs spiral
– Boundary values of parameters

• Designing the wall-following control law
• Tuning the PI, PD, or PID controller

– Ziegler-Nichols tuning rules
– For more, Google: controller tuning

Followers

• A follower is a control law where the robot
moves forward while keeping some error
term small.
– Open-space follower
– Wall follower
– Coastal navigator
– Color follower

Control Laws Have Conditions

• Each control law includes:
– A trigger: Is this law applicable?
– The law itself: u = Hi(y)
– A termination condition: Should the law stop?

Open-Space Follower

• Move in the direction of large amounts of
open space.

• Wiggle as needed to avoid specular reflections.
• Turn away from obstacles.
• Turn or back out of blind alleys.

Wall Follower

• Detect and follow right or left wall.
• PD control law.
• Tune to avoid large oscillations.
• Terminate on obstacle or wall vanishing.

Coastal Navigator

• Join wall-followers to follow a complex
“coastline”

• When a wall-follower terminates, make the
appropriate turn, detect a new wall, and
continue.

• Inside and outside corners, 90 and 180 deg.
• Orbit a box, a simple room, or the desks.

Color Follower

• Move to keep a desired color centered in
the camera image.

• Train a color region from a given image.
• Follow an orange ball on a string, or a

brightly-colored T-shirt.

Problems and Solutions
• Time delay
• Static friction
• Pulse-width modulation
• Integrator wind-up
• Chattering
• Saturation, dead-zones, backlash
• Parameter drift

Unmodeled Effects

• Every controller depends on its simplified
model of the world.
– Every model omits almost everything.

• If unmodeled effects become significant,
the controller’s model is wrong,
– so its actions could be seriously wrong.

• Most controllers need special case checks.
– Sometimes it needs a more sophisticated model.

Time Delay

• At time t,
– Sensor data tells us about the world at t1 < t.
– Motor commands take effect at time t2 > t.
– The lag is dt = t2 − t1.

• To compensate for lag time,
– Predict future sensor value at t2.
– Specify motor command for time t2.

t1 t2t

now

Predicting Future Sensor Values
• Later, observers will help us make better

predictions.
• Now, use a simple prediction method:

– If sensor s is changing at rate ds/dt,
– At time t, we get s(t1), where t1 < t,
– Estimate s(t2) = s(t1) + ds/dt * (t2 - t1).

• Use s(t2) to determine motor signal u(t) that
will take effect at t2.

Static Friction (“Stiction”)
• Friction forces oppose the direction of motion.
• We’ve seen damping friction: Fd = − f(v)
• Coulomb (“sliding”) friction is a constant Fc

depending on force against the surface.
– When there is motion, Fc = η
– When there is no motion, Fc = η + ε

• Extra force is needed to unstick an object and
get motion started.

Why is Stiction Bad?

• Non-zero steady-state error.
• Stalled motors draw high current.

– Running motor converts current to motion.
– Stalled motor converts more current to heat.

• Whining from pulse-width modulation.
– Mechanical parts bending at pulse frequency.

Pulse-Width Modulation
• A digital system works at 0 and 5 volts.

– Analog systems want to output control signals
over a continuous range.

– How can we do it?
• Switch very fast between 0 and 5 volts.

– Control the average voltage over time.
• Pulse-width ratio = ton/tperiod. (30-50 µsec)

ton

tperiod

Pulse-Code Modulated Signal
• Some devices are controlled by the length

of a pulse-code signal.
– Position servo-motors, for example.

0.7ms

20ms

1.7ms

20ms

Integrator Wind-Up
• Suppose we have a PI controller

• Motion might be blocked, but the integral
is winding up more and more control action.

• Reset the integrator on significant events.

!

u(t) = "k
P
e(t) " k

I
e dt

0

t

+ u
b

!

u(t) = "k
P

e(t) + u
b

˙ u
b
(t) = "k

I
e(t)

Chattering

• Changing modes rapidly and continually.

– Bang-Bang controller with thresholds set too
close to each other.

– Integrator wind-up due to stiction near the
setpoint, causing jerk, overshoot, and repeat.

Dead Zone
• A region where controller output does not

affect the state of the system.
– A system caught by static friction.
– Cart-pole system when the pendulum is

horizontal.
– Cruise control when the car is stopped.

• Integral control and dead zones can combine
to cause integrator wind-up problems.

Saturation

• Control actions cannot grow indefinitely.
– There is a maximum possible output.
– Physical systems are necessarily nonlinear.

• It might be nice to have bounded error by
having infinite response.
– But it doesn’t happen in the real world.

Backlash

• Real gears are not perfect connections.
– There is space between the teeth.

• On reversing direction, there is a short time
when the input gear is turning, but the
output gear is not.

Parameter Drift
• Hidden parameters can change the behavior

of the robot, for no obvious reason.
– Performance depends on battery voltage.
– Repeated discharge/charge cycles age the battery.

• A controller may compensate for small
parameter drift until it passes a threshold.
– Then a problem suddenly appears.
– Controlled systems make problems harder to find

Unmodeled Effects

• Every controller depends on its simplified
model of the world.
– Every model omits almost everything.

• If unmodeled effects become significant,
the controller’s model is wrong,
– so its actions could be seriously wrong.

• Most controllers need special case checks.
– Sometimes it needs a more sophisticated model.

