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ABSTRACT

The ambitious goal of transfer learning is to accelerate learning
on a target task after training on a different, but related, source
task. While many past transfer methods have focused on transfer-
ring value-functions, this paper presents a method for transferring
policies across tasks with different state and action spaces. In par-
ticular, this paper utilizes transfer via inter-task mappings for policy
search methods (TVITM-PS) to construct a transfer functional that
translates a population of neural network policies trained via pol-
icy search from a source task to a target task. Empirical results
in robot soccer Keepaway and Server Job Scheduling show that
TVITM-PS can markedly reduce learning time when full inter-task
mappings are available. The results also demonstrate that TVITM-
PS still succeeds when given only incomplete inter-task mappings.
Furthermore, we present a novel method for learning such map-
pings when they are not available, and give results showing they
perform comparably to hand-coded mappings.

1. INTRODUCTION
In reinforcement learning (RL) [12] problems, agents take se-

quential actions with the goal of maximizing a reward signal, which
may be time-delayed. Complex RL problems, such as robot control
and game playing, in which the agents never have access to cor-
rectly labeled training examples, have been successfully learned.
However, if RL agents begin from scratch without any assistance,
mastering larger tasks may be infeasibly slow. Hence, a signifi-
cant amount of research in RL focuses on improving performance
by exploiting domain expertise. For example, if the designer can
formulate advice about how the agent should behave [15] or can
devise incrementally more challenging reward functions [2, 5], that
agent may discover an effective policy more quickly.

Even if the designer has no expertise about how the agent should
behave, he or she can still improve the agent’s performance by
specifying how a target task relates to a similar source task. Ex-
ploiting such information is a central goal of transfer learning. If
the source task has already been learned, transfer learning need
only reduce the training time on the target task to succeed. If the
source task has not been learned, transfer learning can still be use-
ful if it reduces the total training time. In other words, the time
required to learn the source task and the target task, using transfer,
must be less than the time required to learn the target task from
scratch.
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One successful transfer approach, transfer via inter-task map-

ping for value function methods (TVITM-VF) [13], utilizes a trans-
fer functional to map a learned value function (i.e. a function that
estimates the long-term expected reward of different states) from
the source task to an initial value function in the target task. How-
ever, this approach applies only to methods which learn value func-
tions, such as temporal difference (TD) methods [12]. Since policy

search methods, which directly search the space of policies with-
out learning value functions, can outperform TD methods on some
tasks [9, 14], extending transfer learning to policy search methods
is an important goal.

This paper presents transfer via inter-task mapping for policy

search methods TVITM-PS, a method capable of transferring poli-
cies, represented as neural network action selectors, from a source
to target task. We evaluate TVITM-PS empirically in two domains:
robot soccer Keepaway, a standard multiagent RL benchmark do-
main [10], and Server Job Scheduling (SJS) [17], a probabilistic
autonomic computing domain. Results show that TVITM-PS can
reduce both target task training time and total training time com-
pared to using the base policy search method without transfer.

Like other transfer learning methods (e.g. [8, 13, 15]), this ap-
proach can use hand-coded inter-task mappings to construct a trans-
fer functional. However, this paper takes a further step by reducing
the expertise required for successful transfer. First, we present ad-
ditional empirical results that demonstrate that TVITM-PS succeeds
even when only incomplete inter-task mappings are available. Sec-
ond, we present a method for learning such mappings from experi-
ence. In this approach, mappings need not be available at all; only
semantically distinct groups of state variables need to be identified.
The resultant inter-task mappings are independent of the transfer
method, RL algorithm, and internal agent representation. Results
in both domains confirm that TVITM-PS succeeds with both incom-
plete and learned inter-task mappings.

Together, these results demonstrate that TVITM-PS is a promis-
ing approach for transfer learning with policy search methods, as it
provides substantial performance improvements even when domain
knowledge is limited.

2. TVITM­PS
To define the inter-task mappings utilized by TVITM-PS we use

standard notation for Markov decision processes (MDPs) [6]. An
agent’s knowledge of the current state of its environment, s ∈ S, is
a vector of k state variables, so that s = x1, x2, . . . , xk. The agent
has a set of actions, A, from which to choose. A reward function,
R : s 7→ R, defines the instantaneous environmental reward of a
state. A policy π : S 7→ A defines how an agent interacts with the
environment. The success of an agent’s policy is defined by how
well it maximizes the total reward it receives in the long run while
following that policy.

Transfer learning algorithms typically focus on a particular inter-



nal agent representation. This work focuses on policies represented
as neural network action selectors, which have k input nodes de-
scribing the agent’s current state. There are |A| output nodes and
the agent chooses the action whose corresponding output node has
the highest activation. We choose neural network action selectors
because of their past successes in policy search (e.g. [9], [14], [17]).
In this work we restrict the application of TVITM-PS to neural net-
work action selectors, though there are no apparent obstacles to
applying it to other policy search representations.

2.1 Constructing a Transfer Functional
This section shows how a hand-coded functional, ρH , is con-

structed for TVITM-PS such that ρH(πsource) = πtarget. Thus
ρH is able to transfer policies based on the relationship between
state variables and action in a pair of tasks, whereas past transfer
approaches [13] have focused on transferring value functions. To
perform transfer with a neural network action selector, we must
convert networks trained on the source task into networks suitable
for training on the target task via ρH . However, we cannot simply
copy the policy description unaltered because, in the general case,
the state and actions spaces may differ between tasks, and therefore
the policy function’s inputs and outputs may differ.

Given an arbitrary pair of unknown tasks, one could not hope
to correctly define such a transfer functional without sufficient do-
main knowledge or experience. When constructing ρH we assume
that two hand-constructed inter-task mappings are provided, χH,X

and χH,A. χH,X maps each state variable in the target task to the
most similar state variable in the source task: χH,X(xi,target) =
xj,source. Similarly, χH,A maps each action in the target task to
the most similar action in the source tasks: χH,A(ai,target) =
aj,source. In this paper we transfer neural network action selectors
so input nodes represent state variables while output nodes repre-
sent actions. Note that ρH transfers knowledge from the source
task to the target task, while χH,A and χH,X are mappings from
the target to the source.

Given χH,X , χH,A, and a trained network πsource, our goal is
to create a new network πtarget that can function in the target task.
Initially, we define πtarget to have no links, one input node for each
state variable in the target task, one output node for each action in
the target task, and the same number of hidden nodes as in πsource.
We define the function δ to represent the 1-to-1 correspondence
between these hidden nodes in the two networks: δ(htarget) =
hsource. Now each node n in πtarget can be mapped back to a
node in πsource via a function ψ which relies on δ and the hand-
coded mappings:

ψ(n) =

8

<

:

χH,X(n), if n is an input node
χH,A(n), if n is an output node

δ(n), if n is a hidden node

Using ψ, we can now generate πtarget by copying the links that
connect the corresponding nodes in πsource. For every pair of
nodes ni, nj , in πtarget, if a link exists between ψ(ni) and ψ(nj)
in πsource, a new link with the same weight is created between
ni and nj .1 By applying this method to source task policies, we
can initialize target task policies. All target task policies thus have
structure and weights learned from the source task and we expect
this knowledge to bias policies so that policy search methods can
master the target task more quickly. Algorithm 1 summarizes this
domain-independent process.

1Alternatively, link weights could be to set such that the tar-
get network’s activation for every output a, given s1 . . . sk, is
the same as the source network’s activation for χH,A(a), given
χH,X(s1) . . . χH,X(sk). However, informal results suggest this
approach is less effective than directly copying weights.

Algorithm 1 Constructing ρH for TVITM-PS

1: Construct a network πtarget where # of input and output nodes
are determined by the target task

2: Add the same number of hidden nodes to πtarget as πsource

3: for each pair of nodes ni, nj in πtarget do

4: if link(ψ(ni), ψ(nj)) in πsource then

5: Add link(ni, nj) to πtarget with weight identical to
link(ψ(ni), ψ(nj))

Note that there is no difficulty if the target policy has more or
fewer inputs (state variables) or outputs (actions). Furthermore,
for those policy search methods that can dynamically change the
number of hidden nodes in a neural network (such as the one we
use in our experiments), the constraint that the number of hidden
nodes be the same in πsource and ρ(πsource) is not limiting (but
for other policy search methods, it may be restrictive).

2.2 Incompletely Defined Inter­Task Mappings
Complete information relating the two tasks, as contained in

χH,X and χH,A, may not always be available. For example, when
the target task is an extension of the source task, we may know
which state variables and actions are identical in the two tasks but
not know how to map novel state variables and actions back to the
source task.

In such a scenario, instead of χH,X and χH,A, we may define in-
complete inter-task mappings, χI,X and χI,A. Hence, we must use
a partially defined ψI and the algorithm described above will some-
times be unable to add links. However, we can still use TVITM-PS

with a modified transfer functional, ρI , generated using the same
steps described in Algorithm 1 plus an additional step: fully con-
nect any unconnected input/output pairs with a random weight.2

ρI exploits whatever information is available about the state vari-
able and action correspondences, but all nodes in the network are
still connected in the absence of this information. ρI tests whether
transfer can succeed when only partial information about the cor-
respondence of state variables and actions between the two tasks is
available. While one would not expect transfer via ρI to work as
well as when utilizing ρH , we will show that agents using ρI will
still learn faster than starting from scratch (i.e. without transfer).

3. LEARNING INTER­TASK MAPPINGS
In Sections 2.1 and 2.2 we assumed knowledge of state vari-

able and action relationships in a given pair of tasks. However, in
some cases even partial mappings may not be available. This sec-
tion addresses these cases by introducing a method to learn such
mappings (domain-specific implementation details appear in Sec-
tions 5.3 and 6.2). To enable autonomous learning, we assume
that state variables may be arranged into task-independent clusters
which describe different objects in the domain. To discover appro-
priate inter-task mappings, the agent first observes its transitions in
the source and target tasks. Given groupings of state variables plus
gathered experience from source and target tasks, supervised learn-
ing methods then autonomously identify similarities between state
variables and actions in the two tasks.

When learning in the source task, the agent records data samples
of the form (ssource, asource, r, s

′

source), where r is the immediate
reward; and ssource and s′source are the state of the world (both
vectors of k state variables) before and after the agent executes ac-
tion asource. These samples may be used to train classifiers that

2These random weights are chosen from the same distribution as
used by the policy search algorithm when initializing networks
from scratch.



predict the index of a particular state variable or action, given the
rest of the data in the sample. For example, given a state, reward,
and next state, classifier CA predicts the action taken:

CA(ssource, r, s
′

source) = asource.

Such a classifier may be used to define a learned inter-task mapping
between actions, called χL,A. If a sample gathered in the target
task, (starget, atarget, r, s

′

target), is classified by CA:

CA(starget, r, s
′

target) = asource

then asource corresponds to atarget (i.e. χL,A(atarget) = asource).
In general, however, starget and s′target may have different state

variables than ssource and s′source. In such cases the state variables
would have different semantics in different tasks and thus a classi-
fier would be unlikely to produce useful mappings. To address this
problem, we leverage our assumption and do not train classifiers on
the full state, but on subsets of state variables as indicated by their
given semantic groupings. Rather than training an action classifier
with 2k + 1 inputs, we will train multiple action classifiers, each
with fewer inputs.

Suppose that there are T object types that define a domain’s se-
mantic groupings. For example, a logistics domain might have two
object types: T = {trucks, locations}. If there are two trucks
and two locations in the source task, then each state variable will
belong to a particular object in {truckA, truckB , locA, locB}. In-
stead of learning one CA, we learn a separate CA,t for each t ∈ T :

CA,t(si,source, r, s
′

i,source) = asource

where si,source contains the state variables associated with object
i of type t. Thus the inputs for CA,trucks will be state variables
associated with either truckA or truckB . Each recorded data tuple
(s, a, r, s′) thus produces multiple training examples, one for each
object.

Once trained, such classifiers can be used to define χL,A. Each
object j of type t in each sample gathered in the target task is input
to the relevant CA,t:

CA,t(sj,target, r, s
′

j,target) = asource.

Each classifier’s output is interpreted as a “vote” for a correspon-
dence between atarget and asource; χL,A(atarget) is defined as
the action in the source task with the most votes. Continuing our
example, states in the target task can be divided up so that the state
variables sj,target and s′j,target that describe truckA in the tar-
get task are classified by CA,truck, which counts as a vote for an
asource similar to the observed atarget. Likewise, state variables
corresponding to truckB are classified by CA,truck to produce a
second vote.

We may define a similar mapping between state variables, called
χL,X , by training classifiers to predict which object i is described
in the input. Hence, we learn a separate CX,t for each of the t

object types:
CX,t(si,source, r, s

′

i,source) = i

Once trained, these classifiers can be used to define χL,X . Each
object j of type t in each sample gathered in the target task is input
to the relevant CX,t:

CX,t(sj,target, r, s
′

j,target) = i.

Again, each classifier’s output is interpreted as a “vote” for a cor-
respondence between object j in the target task and object i in the
source task, and χL,X(sj,target) is defined by a winner-take-all
method.

Given the inter-task mappings χL,A and χL,X , we can then con-
struct ρL via Algorithm 1. Note that if the action mapping were
already known, each CX,t could utilize that χA to classify data in
the form:

CX,t(sj,target, r, s
′

j,target, χA(atarget)) = i

Likewise, a given χX could be leveraged to learn χL,A. If one
of the two classification tasks prove easier to learn, or one of the

mappings is given but not the other, one inter-task mapping can be
bootstrapped to learn the other.

Although we utilize these inter-task mappings with TVITM-PS,
neural network action selectors, and policy search RL, this method
is independent of the transfer method utilized, the agent’s internal
representation, and the base RL algorithm.

4. POLICY SEARCH WITH NEAT
Section 2 describes how to utilize TVITM-PS to initialize a neural

network action selector for a target task given one for a source task.
This transfer method is independent of the base learning algorithm,
as long as it uses neural network action selectors. Neuroevolution
methods [18, 20], which use genetic algorithms to evolve neural
networks, are one such class of methods.

This paper uses NeuroEvolution of Augmenting Topologies

(NEAT) [9] as a representative policy search method. Most neu-
roevolutionary systems require the network topology to be fixed
and given (i.e. how many hidden nodes there are and how they are
connected). By contrast, NEAT automatically evolves the topol-
ogy by combining the search for network weights with evolution
of the network structure. NEAT is a popular search and optimiza-
tion method and is an appropriate choice for this paper because of
past empirical successes on difficult RL tasks such as double pole
balancing [9], Keepaway [14], and Server Job Scheduling [17].

In NEAT, a population of genomes, each of which describes a
single neural network, is evolved over time: each genome is eval-
uated and the fittest individuals reproduce through crossover and
mutation. NEAT begins with a population of simple networks with
no hidden nodes and inputs connected directly to outputs. Two spe-
cial mutation operators, add hidden node and add link, introduce
new structure incrementally, but only structural mutations that im-
prove performance tend to survive evolution. Thus NEAT can find
an appropriate level of complexity for a given problem. NEAT is
a general purpose optimization technique and can be applied to a
wide variety of problems, but when applied to reinforcement learn-
ing problems it typically evolves action selectors.

5. KEEPAWAY

Figure 1: 3 vs. 2 Keepaway

To test the efficacy of
TVITM-PS we consider the
benchmark RoboCup simu-
lated soccer Keepaway do-
main [11]. This multia-
gent domain has noisy sen-
sors and actuators, and en-
forces a hidden state so
that agents can perceive
only a partial world view
at any time. One team—
the keepers—attempts to
maintain possession of the
ball on a field while an-
other team—the takers—
attempts to steal the ball or
force it out of bounds, ending an episode. Keepers that make better
decisions about their actions are able to maintain possession of the
ball longer and thus have longer average episodes. Figure 1 depicts
three keepers playing against two takers.

The agents choose not from the simulator’s primitive actions but
from a set of higher-level macro-actions implemented as part of
the player. These macro-actions can last more than one time step
and the keepers make decisions only when a macro-action termi-
nates. The macro-actions are Hold Ball, Get Open, Receive, and
Pass [11]. The agents make decisions at discrete time steps, at



which point macro-actions may be initiated and terminated. A
keeper in 3 vs. 2 Keepaway in possession of the ball may choose
to either hold the ball or pass to one of its teammates: A = {hold,
passToTeammate1, passToTeammate2}. Keepers not in possession
of the ball execute Receive, the macro-action in which the keeper
who can reach the ball the fastest goes to the ball and the remain-
ing players follow a hand-coded strategy to try to get open for a
pass. Takers do not learn but follow a static hand-coded policy.
Our players are built on version 0.6 of the benchmark players dis-
tributed by UT Austin [10], and our experiments use version 9.4.5
of the Soccer Server.

The keepers’ states comprise distances and angles of the keep-
ers K1 − Kn, the takers T1 − Tm, and the center of the field, C.
Keepers and takers are ordered by increasing distance from the ball
and states are rotationally invariant. Note that as the number of
keepers n and the number of takers m increase, the number of state
variables also increases so that the more complex state can be fully
described. The state variables must change (e.g. there are more dis-
tances to players to account for) and |A| increases as there are more
teammates to which the keeper with possession of the ball can pass.

In 3 vs. 2 Keepaway, three keepers are initially placed in three
corners of a 25m × 25m field and a ball is placed near one of
the keepers. Two takers are placed in the fourth corner. When
an episode starts, the three keepers attempt to keep control of the
ball by passing among themselves and moving to open positions.
The agent’s state is defined by 13 variables, as is shown by line
segments and angles in Figure 1. The keepers receive a reward of
+1 for every time step that the ball remains in play. The episode fin-
ishes when a taker gains control of the ball or the ball is kicked out
of bounds. The episode is then reset with a random keeper placed
near the ball. We used NEAT to evolve teams of homogeneous
agents: in any given episode, copies of the same neural network
control all three keepers.

Networks initially have 13 inputs, corresponding to the 13 state
variables; 3 outputs, corresponding to the learnable macro-actions
(i.e. A); 1 bias input; no hidden units; and random weights fully
connecting all input and output nodes. Keepers always select the
action with the highest activation, breaking ties randomly. The
Keepaway task is stochastic and the evaluations are noisy; the op-
timal number of episodes to evaluate each NEAT organism for is
difficult to establish a priori. We used 6,000 episodes per genera-
tion, as did previous research in this domain [14].

Keepaway becomes more challenging as more players are added
because the field is more crowded. The keeper with the ball has
more passing options but the average pass distance is shorter, which
causes more passes and therefore more errors due to noise. Also,
more takers are able to block passing lanes and chase down errant
passes. For these reasons, keepers in 4 vs. 3 Keepaway take longer
to learn an optimal control policy than in 3 vs. 2, and the asymptotic
performance is lower.

The addition of an extra taker and keeper to the 3 vs. 2 task also
results in a qualitative change. In 3 vs. 2, both takers must go to-
wards the ball as both are needed to capture it from the keeper, but
in 4 vs. 3 a third taker is free to roam the field and attempt to inter-
cept passes. Hence, one keeper is often blocked from receiving a
pass. Furthermore, the start state of one keeper is in the middle of
the field, which has no analogue in 3 vs. 2.

In 4 vs. 3 Keepaway, A = {hold, passToTeammate1, passToTeam-
mate2, passToTeammate3} and each state is composed of 19 state
variables due to the added players. The number of evaluation episodes
per generation was increased from 6,000 to 10,000 due to additional
task complexity.

Partial Description of χH,X

4 vs. 3 state variable 3 vs. 2 state variable
dist(K1, C) dist(K1, C)
dist(K2, C) dist(K2, C)
dist(K3, C) dist(K3, C)
dist(K4, C) dist(K3, C)
Min(dist(K2, T1), dist(K2, T2), Min(dist(K2, T1),
dist(K2,T3)) dist(K2, T2))
Min(dist(K3, T1), dist(K3, T2), Min(dist(K3, T1),
dist(K3,T3)) dist(K3, T2))
Min(dist(K4, T1), dist(K4, T2), Min(dist(K3, T1),
dist(K4,T3)) dist(K3, T2))

Table 1: This table describes correspondences between state variables

in Keepaway. We denote the distance between a and b as dist(a, b).

Relevant points are the center of the field C, keepers K1-K4, and tak-

ers T1-T3. Keepers and takers are ordered in increasing distance from

the ball and state values not present in 3 vs. 2 are bold.

5.1 Hand­Coded Keepaway Mappings
In this section we define the inter-task mappings χH,X , χH,A

used for transferring between 3 vs. 2 and 4 vs. 3 Keepaway. A and
S change when the number of players is increased but we can intu-
itively define these mappings between states and actions to transfer
knowledge between the two tasks.

The full hand-coded mapping between actions in the two tasks,
χH,A, identifies actions that have similar effects on the world state
in both tasks. For the 3 vs. 2 and 4 vs. 3 tasks, the action “Hold ball”
is equivalent, i.e. this action has a similar effect on the world in both
tasks. Likewise, the action “Pass to closest keeper” is analogous
in both tasks, as is “Pass to second closest keeper.” We map the
novel target action, “Pass to third closest keeper,” to “Pass to second
closest keeper” in the source task.

The state variable mapping, χH,X , is handled with a similar
strategy. Each of the 19 state variables in the 4 vs. 3 task is mapped
to a similar state variable in the 3 vs. 2 task. For instance, “Dis-
tance to closest keeper” is the same in both tasks. “Distance to
second closest keeper” in the source task is similar to “Distance to
second closest keeper” in the target task, and also “Distance to third
closest keeper” in the target task. See Table 1 for more examples
of state variable mappings. These mappings are analogous to those
previously used in Keepaway [13] and are used to construct ρH .

5.2 Incomplete Hand­Coded Mappings
χI,X is the same as χH,X except that the mapping for new state

variables in 4 vs. 3 are not defined. For example, “Distance to sec-
ond closest keeper” in the target task maps to “Distance to second
closest keeper” in the source task, but χI,X (Distance to third clos-

est keeper) is undefined because this state variable is novel. Like-
wise, χI,A is the same as χH,A, except χI,A (Pass to third closest

keeper) is undefined. χI,A and χI,X can then be used to construct
ψI and ρI , as in Section 2.1.

5.3 Learned Keepaway Inter­Task Mappings
As discussed in Section 3, when learning an inter-task mapping,

domain knowledge is used to define how the state space should be
semantically partitioned. In Keepaway it is natural to break the
state space up into keepers, with four state variables each, and tak-
ers, defined by two state variables (see Table 2), similar to past
transfer research in this domain [8]. To implement the learning
method described in Section 3, we consider the Keepaway state at
the time an action is executed and the state of the world, as per-
ceived from that same keeper, after the action has successfully fin-
ished (i.e. the next time a keeper can select a macro-action).

To learn the inter-task mapping we train three classifiers using
JRip, an implementation of RIPPER[1] included in Weka[19]. We



selected JRip because it learns quickly and produces human un-
derstandable rules, but other classification methods in Weka had
comparable results in informal experiments. The three classifiers
learned are:

1. CKeeper(sk, r, s′k) = Source Keeper

2. CTaker(so, r, s
′

o) = Source Taker

3. CAction(s3v2, r, s
′

3v2) = Source Action

where sk and s′k are the subsets of state variables used to repre-
sent a single keeper (an object of type keeper) before and after an
action has executed; so and s′o describe a taker (an object of type
opponent); s3v2 and s′3v2 describe an entire 3 vs. 2 Keepaway
state; and r is the Keepaway reward accrued between actions (i.e.
the number of timesteps elapsed).

Consider using a single (s3vs2, r, a, s′3vs2) tuple recorded in 3
vs. 2 used to train these three classifiers. This tuple yields two data
points for training CKeeper

3:

• (sk2
, r, s′k2

), label = 2

• (sk3
, r, s′k3

), label = 3

where sk2
and sk3

are the state variables corresponding to keepers
2 and 3. Similarly, this tuple will produce two training examples
for CTaker and one for for CAction.

Keeper State Variables
dist(Kn, K1)
dist(Kn, C)
min(dist(Kn, Tm))
min(ang(Kn, K1, Tm))
Taker State Variables
dist(Tn, K1)
dist(Tn, C)

Table 2: The Keepaway state

is partitioned into individual

keepers and takers.

Once trained, the two clas-
sifiers are able to process data
gathered from the world and la-
bel which keeper, taker, or ac-
tion in the source task it is
most similar to. Splitting data
recorded from 3 vs. 2 into train-
ing and test sets allows us to
check the correctness of the
classifiers on the source task.
We then utilize these classifiers
to learn a mapping by applying

them to data gathered in the target task.
In the target task we again assume that the state variables pertain-

ing to keepers and takers can be identified. Each (s4vs3, r, a, s′4vs3)
tuple recorded in the target task produces data for 3 keepers and 3
takers (again, assuming that K1 is trivially identified). CKeeper

classifies sets of keeper state variables and CTaker classifies the
taker state variables, constructing χL,X . Using χL,X , the full state
in the target task can be reformulated so that only information that
was present in the source task is considered by CAction. As in Sec-
tion 5.1, multiple 4 vs. 3 keepers map to a single 3 vs. 2 keeper, and
similarly for takers; one tuple recorded from the target task pro-
duces four examples for classification because s4vs3 may generate
four4 distinct s3v2’s. χL,A is then constructed via CAction.

For our experiments, we collected 1,000 tuples (s3v2, r, a3v2, s
′

3v2)
from 3 vs. 2 Keepaway and 100 (s4v3, r, a4v3, s

′

4v3) tuples from 4
vs. 3 Keepaway. Note that collecting the tuples from the source task
is “free,” assuming that at least that many tuples were experienced
during training. Recording the 100 tuples in 4 vs. 3 took about a
minute of simulated time, which was negligible compared to the

3We assume that the state variables corresponding to K1, the
keeper with the ball, are known, as the majority of distances are
measured relative to it. Learning this keeper would be simple, but
complicates the exposition. Likewise, we assume that the hold ac-
tion is known; it is trivial to classify as it is the only action lasting
a single timestep.
4s3v2 requires 3 objects of type keeper and 2 objects of type
taker. K1 will always be included in s3vs2 and K4 has been cor-
rectly included in χL,X , but the following additional player group-
ings are possible via χL,X : (K2, K4, T1, T2), (K3, K4, T1, T2),
(K2, K4, T1, T3) and (K3, K4, T1, T3).

hours spent training. The three classifiers were able to correctly
classify source players and actions, as tested with cross-validation.
A representative confusion matrix for the target task keepers is
shown in Table 3. The learned transfer functional is constructed
via a winner-take-all scheme and the resulting mappings are shown
in Table 4.

5.4 Keepaway Transfer Results

Source K2 Source K3

Target K2 286 17
Target K3 234 69
Target K4 37 266

Table 3: A representative Keeper

confusion matrix, demonstrating that

CKeeper has been successfully learned.

In this section we
compare learning times
in Keepaway when
learning from scratch
or when using one
of the three trans-
fer functionals (see
Table 4) to perform
transfer. After a population of policies in 3 vs. 2 have been trained,
we transfer the entire population5 into 4 vs. 3 via TVITM-PS using
ρH , ρI , or ρl. These initial policies in the 4 vs. 3 population will
not be optimal but should enable evolution to more rapidly discover
good policies in the target task.

Target χH,X χI,X χL,X

K1 K1 K1 K1

K2 K2 K2 K2

K3 K3 K3 K2

K4 K3 none K3

T1 T1 T1 T1

T2 T2 T2 T2

T3 T2 none T2

Target χH,A χI,A χL,A

Hold Hold Hold Hold
Pass K2 Pass K2 Pass K2 Pass K2

Pass K3 Pass K3 Pass K3 Pass K2

Pass K4 Pass K3 none Pass K3

Table 4: This table enumerates the player

correspondences defined by the three Keep-

away χ’s.

Recall that our
first learning sce-
nario focuses on
the time required
to learn in the
target task. By
setting a thresh-
old level of per-
formance in the
target task, we
are able to mea-
sure the amount
of training time
needed to achieve
this performance.
By this measure, transfer learning is effective if we learn the tar-
get task faster by utilizing policies trained in the source task than
by learning from scratch. A second, and more difficult, scenario
requires that the training time for the source and target tasks com-
bined is shorter than the training time to learn the target task from
scratch. We show in this section that TVITM-PS with NEAT meets
both transfer goals by comparing learning with transfer and learn-
ing from scratch.

In Keepaway, noise in the sensors and actuators causes the eval-
uation of a policy to have high variance. Therefore, after learning
finished we evaluated the best policy in each generation for 1,000
episodes to generate more accurate graphs. All times reported in
this paper refer to simulator time. We report only sample complex-
ity and not computational complexity because the running time for
our learning methods is negligible compared to that of the Soccer
Server. The machines used for our experiments allowed us to speed
up the simulator by a factor of two so that the real experimental time
required was roughly half that of the reported simulator time.

After setting a threshold performance values for the 4 vs. 3 task,
we analyze the champions of each generation after learning and
determine when the organism identified as the best by NEAT has
learned to hold the ball for at least the threshold value, averaged
over 1,000 episodes. If no policies reach the threshold value within

5Transferring the entire trained population instead of a single pol-
icy allows search to begin in the target task from a variety of lo-
cations in policy space, increasing the chances of finding a good
starting point for learning. Informal results show that this is more
beneficial than transferring a few of the best policies.
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Figure 2: TVITM-PS successfully reduces the average training time

needed to reach a given performance level relative to scratch.

500 hours, that trial is assigned a time of 500 hours.
Figure 2 shows the training time each method takes to reach

threshold times of 7.0 to 8.5 seconds. Five learning curves were
generated by averaging over 10 independent runs using four learn-
ing methods: learning from scratch, using ρH after training for 5
generations of 3 vs. 2 (ρ5) or 10 generations of 3 vs. 2 (ρ10), and
using both ρI and ρL after training for 5 generations of 3 vs. 2. A
Student’s t-test confirms that both the difference between ρ5 and
scratch, as well as between ρ10 and scratch, are statistically sig-
nificant at the 95% level for all points graphed. The differences
between ρI and scratch, as well as ρL and scratch, are statistically
significant at over half of the points graphed. These results clearly
show that, in Keepaway, TVITM-PS reduces learning times in the
target task.

Figure 3: Average Keepaway training

time needed to reach a target performance

of 8.5 seconds. Both the target task time

and total training time are successfully re-

duced compared to scratch.

When consider-
ing the total train-
ing time, learning
curves in Figure 2
which use transfer
are shifted up by
the amount of time
spent training in the
source task. Fig-
ure 3 shows the tar-
get and total train-
ing times needed
to reach a target
threshold of 8.5 sec-
onds. The differ-
ences between the
total training times
and scratch for all
four TVITM-PS meth-
ods are statistically
significant for roughly
half of the target threshold times shown in Figure 2.

6. SERVER JOB SCHEDULING
Server Job Scheduling (SJS) [17] is a complex probabilistic con-

trol task we use to assess whether TVITM-PS succeeds in a second,
unrelated task. SJS is an autonomic computing task in which a
server (e.g. a website’s application server or database) must deter-
mine in what order to process jobs currently waiting in its queue. Its
goal is to maximize the aggregate utility of all the jobs it processes.

A utility function for each job type maps the job’s completion time
to the utility derived by the user [16]. The problem becomes chal-
lenging when these utility functions are non-linear and/or the server
must process multiple types of jobs. Since selecting a particular
job for processing necessarily delays the completion of all other
jobs in the queue, the scheduler must weigh difficult trade-offs to
maximize aggregate utility.

Each experiment in our simulator begins with 100 jobs preloaded
into the server’s queue and ends when the queue empties. Dur-
ing each timestep, the server removes and processes one job from
its queue. During each of the first 100 timesteps, a new job of a
randomly selected type is added to the end of the queue after the
agent processes a job, forcing the agent to make decisions about
which job to process as new jobs are arriving. Since one job is pro-
cessed per timestep, each episode lasts 200 timesteps. For each job
that completes, the scheduling agent receives an immediate reward
determined by that job’s utility function. Utility functions for the
job types used in our experiments, which are not provided to the
scheduling agent, are shown in Figure 4. The source task uses job
types #1 and #2 while the target task uses all four and is therefore
a prime candidate for TVITM-PS.
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Figure 4: The four utility functions

used in our SJS experiments.

The state and action
spaces are discretized: the
range of job ages from
0 to 200 is divided into
four equal sections. The
scheduler is told, at each
timestep, how many jobs
in the queue of each type
fall in each range, result-
ing in 8 state variables
in the source task and 16
in the target. The ac-
tion space is similarly dis-
cretized to 8 or 16 distinct

actions: rather than selecting a particular job, the scheduler speci-
fies what type of job it wants to process and which of the four age
ranges that job should lie in. Each NEAT network has 8 inputs and
outputs in the source task and 16 in the target task. We use a pop-
ulation of 50 and evaluate each organism by averaging the reward
from 5 episodes. After training is finished, the champion organ-
isms are evaluated for an additional 95 episodes to reduce noise
when graphing performance. Other NEAT parameters are the same
as those reported for past research in this domain [17].

6.1 SJS Hand­Coded Mappings
In this section we define the inter-task mappings used for 2-job-

type and 4-job-type scheduling. We utilize a similar heuristic to
Keepaway: because job type 3 is most similar to job type 1, job type
1 in the source task corresponds to job types 1 and 3 in the target
task. Likewise, job type 2 in the source task corresponds to job
types 2 and 4 in the target task. The incomplete inter-task mappings
are defined so that job types 1 and 2 in the target task correspond
to job types 1 and 2 in the source task. The target task’s novel job
types, 3 and 4, are not given any correspondence to the source task
and ρI will initialize their associated weights with random values.

We found that a small modification to Algorithm 1 improves
performance. Instead of copying every link in the source task,
link(input, output), to every output node, we copy it for only half
of the outputs. For instance, consider that in the source policy, state
variable 1 for job 1 (an input) is connected to all 8 actions (out-
puts). Using χH,X and χH,A, state feature 1 in the target should
be connected to all 16 actions in the target policy. However, in the
target network we found it sufficient to connect state feature 1 (an
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Figure 5: The average number of generations in SJS needed to attain

a target performance is successfully reduced via TVITM-PS.

input for job type 1) to actions 1-8 (actions for job types 1 and 2).
State feature 9 (an input for job type 3) was connected to actions
9-16 (actions for job types 3 and 4). This effectively redefines ψ so
that the existing job features are connected to existing job actions,
while novel job features are corrected to novel job actions, halving
the number of links in the target network. We hypothesize that this
performance increase is due to removing unnecessary complexity:
learning in lower dimensional spaces is faster, assuming the com-
plexity is sufficient to represent good policies.

6.2 Learning SJS Inter­Task Mappings
In SJS we group the state variables by job type. That is, a classi-

fier CJob will take as input state variables that specify the four job
counts for a particular job type. s′ is defined to be the state of the
world immediately after a job has been removed but before a new
job is added. Thus the two classifiers we use to learn χL,X and
χL,A are defined as:

1. CJob(sjob, r, s
′

job) = Source Job Type

2. CAction(sjob, r, jobTypesource, s
′

job) = Source Action

As in Keepaway, we first learn χL,X by learning the state vari-
able correspondence between the source and target tasks. CJob

is trained with data in the source task, where every recorded tu-
ple produces two data, one for each job type. Then data from
the target task, four for each tuple, is used to map the four tar-
get job types into the two source job types. CAction is trained
on source data and two data are generated for each action taken.
When using CAction in the target task, since there are four job
types, there are four data to classify for each recorded action in the
environment. Actions in SJS are defined as removing a job from
a particular job type and we utilize χL,X when using CAction:
CAction(sjob, r, χL,X(jobTypetarget), s

′

job) = Asource. Thus
CAction is used to construct χL,A and ρL.

In our experiments, when using 10,000 tuples from the source
task and 10,000 tuples from the target task, ρL was identical to ρH

for all 4 job types and 16 actions, suggesting that this approach to
learning inter-task mappings is effective compared to hand-coded
mappings. On average, 50 episodes in the target tasks were used
collecting data to generate ρL. This is still very small (one tenth of
a generation) relative to total training times.

6.3 SJS Transfer Results
Figure 5 shows training time in the target task for server job

scheduling. There are four learning curves as ρL = ρH in this
domain. Figure 6 shows the total training time needed to reach

a performance where the average utility is at least -8150. Train-
ing times for all methods are averaged over 100 independent runs
and champion performance is averaged over 100 episodes to reduce
variance. If any NEAT run does not meet the specified threshold
it is assigned a time of 100 generations. Differences between the
number of target task episodes are significant at the 95% level for
transfer and scratch for all thresholds graphed in Figure 5. The total
number of generations used by ρ5 and ρ10 are statistically different
from scratch for all points graphed.

7. DISCUSSION

Figure 6: TVITM-PS successfully re-

duces both the number of training gen-

erations and total generations needed to

reach a target performance of -8150.

The previous sec-
tions empirically demon-
strate that TVITM-PS

can successfully trans-
fer knowledge in both
transfer scenarios, namely
reducing both the tar-
get task training time
and total training time.
Transfer with ρI en-
ables faster learning
in the target task than
from scratch in both
domains, particularly
at the beginning of
learning, but ρH is
even more beneficial.
This suggests it is most effective to formulate a full transfer func-
tional between all state variables and actions in the two tasks, but
when one is not available, a partial inter-task mappings can still
successfully enable transfer.

In our experiments we found that ρL was able to outperform
ρI because the learned transfer functionals were more similar to
the hand-coded functionals. In domains where a complete inter-
task mapping is unavailable, but classification is able to leverage
similarities between the two tasks to correctly classify objects (i.e.
cross-validation on the source data shows that the classifiers are
correctly learning concepts), it may be more beneficial to use learned
inter-task mappings rather than relying on an incomplete mapping.
This is significant because much less domain knowledge is required
when the inter-task mappings are learned; we believe this method
represents a step towards fully autonomous transfer.

We hypothesize that ρ5 outperforms ρ10 in both domains primar-
ily due to two factors. Source networks trained for 10 generations
have more links and nodes than those trained for 5, and more com-
plex networks are likely to train more slowly. Secondly, ρ10 may
have overfit the source task, as seen in other transfer work [13].

The significant benefit from TVITM-PS, particularly in SJS, is
possible in part because of qualitative similarities in the source
and target tasks, despite differing in S, A, and relative complexity.
Commonalities between tasks can make it easier to reduce target
task training time, but they will not necessarily make it easier to
reduce total training time (our second goal), and may even make
it harder. In the extreme case, the source could be identical to the
target task, making the first transfer goal trivial but the second im-
possible. The fact that TVITM-PS meets both transfer learning goals
is an important confirmation of this transfer method’s effectiveness.
Reducing the total time is possible, in part, because the source tasks
are similar to, but easier to learn than, their respective target tasks.

8. RELATED AND FUTURE WORK
There have been many previous approaches to speeding up re-

inforcement learning. For instance, directed training [7] allows a



researcher to modify the transition function over time and slowly
make the task harder. Reward shaping [2, 5] implicitly guides
agents by modifying the reward function. These methods generally
assume S and A remain the same between pairs of tasks. TVITM-PS

permits them to change, allowing transfer to be applied to a larger
set of tasks.

Another related approach uses linear programming to determine
value functions for classes of similar agents [4]. As the authors
state, the technique will not perform well in heterogeneous environ-
ments or domains with “strong and constant interactions between
many objects (e.g. RoboCup).” Automatically generated advice can
also be used to speed up learning in transfer [15], allowing an RL
agent to build up a model for the source task and extract general
advice. A human provides a mapping for this advice into the new
task, similar to ρ, to set relative preferences for different actions in
different states. Other transfer work [3] allows speedup between
tasks but does not allow S and A to differ between the two tasks.
Homomorphisms may be leveraged to transfer between tasks with
different S and A [8], and while χX is effectively unnecessary, χA

is hand-coded and total training time is not reduced.
TVITM-PS is conceptually an extension of TVITM-VF [13]; we

show in this paper that the transfer using inter-task mappings can
be successfully applied to policy search methods and in multiple
domains. Because TVITM-PS transfers policies rather than value
functions, it is robust to changes in the reward structure between
the two tasks that do not effect the optimal policy (i.e. multiplying
the reward function by a positive constant). Differences in experi-
mental setup prohibit direct comparisons between the two methods,
but the percentage speedups from both transfer methods are similar.

An important direction for future work is to attempt to further
reduce the required domain knowledge when learning χL,X and
χL,A, such as removing the requirement that the tasks contain iden-
tifiable object types. Our success when using simple classification
suggests that more complex methods which can better leverage en-
vironmental experience may be able to remove the requirement for
semantic knowledge. Additionally, it would expand the applicabil-
ity of this method if inter-task mappings could be learned between
domains with different reward structures (e.g. between Keepaway,
where the reward is based on time, and Breakaway [15], where
the reward is based on goals scored). It is possible that construct-
ing transfer functionals that use a mixture of source state variables
and actions rather than a winner-take-all approach will outperform
our current formulation. Lastly, TVITM-PS assumes inter-task map-
pings between the two tasks can be provided or learned; it would be
more beneficial to identify a priori which pairs of tasks are related
enough so that TVITM-PS could succeed.

9. CONCLUSIONS
This paper introduces TVITM-PS for transfer with policy search

methods and gives empirical evidence that it can significantly speed
up learning in pairs of related RL tasks. We demonstrate how to
construct transfer functionals from full, partial and learned inter-
task mappings. We use NEAT, a popular policy search method,
to master pairs of tasks in Keepaway and Server Job Scheduling
that have different state and action spaces. Transferring learned
policies between the two tasks reduces not only training time in the
target task, but also the total training time required, an important
confirmation of this transfer method’s efficacy.
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