
In The Autonomous Agents and Multi-Agent Systems Conference (AAMAS-07),
Honolulu, Hawaii, May 2007.

Towards Reinforcement Learning Representation Transfer

Matthew E. Taylor and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712­1188
{mtaylor, pstone}@cs.utexas.edu

ABSTRACT

Transfer learning problems are typically framed as leveraging knowl-
edge learned on a source task to improve learning on a related,
but different, target task. Current transfer methods are able to suc-
cessfully transfer knowledge between agents in different reinforce-
ment learning tasks, reducing the time needed to learn the target.
However, the complimentary task of representation transfer, i.e.
transferring knowledge between agents with different internal rep-
resentations, has not been well explored. The goal in both types of
transfer problems is the same: reduce the time needed to learn the
target with transfer, relative to learning the target without transfer.
This work introduces one such representation transfer algorithm
which is implemented in a complex multiagent domain. Experi-
ments demonstrate that transferring the learned knowledge between
different representations is both possible and beneficial.

1. INTRODUCTION
Transfer learning is typically framed as leveraging knowledge

learned on a source task to improve learning on a related, but dif-
ferent, target task. Past research [1, 4, 5, 11, 15] has demonstrated
the possibility of achieving successful transfer between reinforce-

ment learning (RL) [14] tasks. In this work we refer to such transfer
learning problems as task transfer.

A key component of any reinforcement learning algorithm is the
underlying representation used by the agent for learning (e.g. its
function approximator or learning algorithm), and transfer learning
approaches generally assume that the agent will use a similar (or
even the same) representation to learn the target task as it used to
learn the source. However, this assumption may not be necessary or
desirable. This paper considers a related but distinct question: is it
possible, and desirable, for agents to use different representations in
the target and source? This paper defines and provides algorithms
for this new problem of representation transfer (RT) and contrasts
it with the more typical task transfer.

The motivation for transferring knowledge between tasks is clear:
it may enable quicker and/or better learning on the target task after
having learned on the source. Our primary motivation for RT in this
paper is procedural. Suppose an agent has already been training on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07, May 14­18, 2007, Honolulu, Hawaii.
Copyright 2007 ACM 1­59593­094­9/05/0007 ...$5.00.

a source task with a certain learning method and function approxi-
mator (FA) but the performance is poor. A different representation
could allow the agent to achieve higher performance. If experi-
ence is expensive (e.g. wear on the robot, data collection time, or
cost of poor decisions) it is preferable to leverage the agent’s ex-
isting knowledge to improve learning with the new representation
and minimize sample complexity.

This paper’s main contributions are to introduce representation
transfer, to provide a novel RT algorithm, and to empirically demon-
strate the efficacy of this algorithm in a complex multiagent RL
domain, robot soccer Keepaway [12].

2. RL BACKGROUND
In this work, we consider transfer in reinforcement learning do-

mains. Following standard notation [14], we say that an agent ex-
ists in an environment and at any given time is in some state s ∈ S,
beginning at sinitial. An agent’s knowledge of the current state
of its environment, s ∈ S is a vector of k state variables, so that
s = x1, x2, . . . , xk. The agent selects an action from available ac-
tions, a ∈ A. The agent then moves to a new state based on the
transition function T : S × A 7→ S and is given a real-valued re-
ward for reaching the new state R : S 7→ R. Over time the agent
learns a policy, π : S 7→ A, to maximize the expected total reward.

A common approach to learning this policy is to first learn an
action-value function, Q : S × A 7→ R, which predicts the return
for available actions from a given state. If the correct action-value
function is known, the agent can act optimally by always selecting
the actions with the largest Q-value. In large or continuous domains
the action-value function must be approximated via some type of
FA. One popular method to learning an action-value function is via
temporal difference (TD) [14] methods.

3. OFFLINE RT
In this section we present an algorithm for addressing RT prob-

lems where the source and target representations differ. We define
an agent’s representation as the learning method used, the FA used,
and the FA’s parameterization. An an example, suppose an agent
in the source uses Q-Learning with a neural network FA that has
20 hidden nodes. Our RT algorithm, Offline RT (ORT), may be
used to transfer between different FAs (e.g. change to a radial basis
function FA).

The key insight for ORT is that an agent using a source repre-
sentation can record some information about its experience using
the learned policy. The agent may record s, the perceived state; a,
the action taken; r, the immediate reward; and/or Q(s, a), the long-
term expected return. Then the agent can learn to mimic this behav-
ior in the target representation without the use of on-line training
(i.e. without more interactions with the environment). The agent is

Figure 1: 3 Keepers play against 2 Takers. A Keeper’s state is

composed of 11 distances to players and the center of the field

as well as 2 angles along passing lanes.

then able to learn better performance faster than if it had learned
the target representation without transfer. This paper will focus on
changes in the source and target representation’s function approxi-
mator and we leave transferring between different learning methods
to future work.

Algorithm 1 describes RT for value function methods with differ-
ent FAs. The agent saves n (state, action, Q-value) tuples and then
trains offline with the target representation to predict those saved
Q-values, given the corresponding state. Here offline training uti-
lizes a TD update, but the target Q-values are set by the recorded
experience.

Algorithm 1 ORT: Value Functions

1: Train a source representation until reaching a performance or
time threshold

2: Record n (s, a, q(si, ai)) tuples while the agent acts
3: for all n tuples do

4: Train offline with target representation, learning to predict
Qtarget(si, ai) = q(si, ai) for all a ∈ A

5: Train on-line using the target representation

4. 3 VS. 2 KEEPAWAY
To test the efficacy of RT we consider the RoboCup simulated

soccer Keepaway domain. We use a setup similar to past research [13]
and agents based on version 0.6 of the benchmark players dis-
tributed1 by UT-Austin [12]. This section discusses the Keepaway
domain and the RL methods used in our experiments.

This multiagent domain has noisy sensors and actuators, and en-
forces a hidden state so that agents can perceive only a partial world
view at any time. In Keepaway, one team of keepers attempt to pos-
sess a ball on a field, while another team of takers attempt to steal
the ball or force it out of bounds. Keepers that make better deci-
sions about their actions are able to maintain possession of the ball
longer and thus have longer average possession episodes. Three
keepers play against two takers in Figure 1.

1
http://www.cs.utexas.edu/∼AustinVilla/sim/Keepaway/

The agents choose from a set of higher-level macro-actions im-
plemented as part of the player, rather than controlling individ-
ual actuators. These macro-actions can last more than one time
step, and keepers make decisions only when a macro-action termi-
nates. The macro-actions are Hold Ball, Get Open, Receive, and
Pass [13]. A keeper in 3 vs. 2 Keepaway in possession of the ball
may choose to either hold the ball or pass it to a teammate: A =
{hold, passToTeammate1, passToTeammate2}. Otherwise, keepers
execute Receive, the macro-action that causes the keeper who can
reach the ball the fastest to approach the ball while the remaining
players follow a hand-coded strategy to try to get open for a pass.
Takers follow a static hand-coded policy.

In 3 vs. 2 Keepaway, three keepers are initially placed in three
corners of a 20m × 20m field with a ball near one of the keepers.
Two takers are located in the fourth corner. When an episode starts,
the keepers attempt to control the ball by passing among themselves
and moving to open positions. The keeper’s world state is defined
by 13 variables, as shown in Figure 1. The keepers receive a +1
reward for every time step the ball remains in play. The episode
finishes when a taker gains control of the ball or the ball is kicked
out of bounds. Further details of the Keepaway domain can be
found elsewhere [13].

Experiments presented in this paper use Sarsa [9, 10] with ǫ-
greedy exploration. We use a learning rate of 0.05 and an ǫ of
0.01 to be consistent with past research [12]. We set γ to 1 so
that the the episodic task is undiscounted [13]. Because the state
features are continuous, we use RBFs and neural network function
approximators, also consistent with past work [12].

5. RESULTS
In this section we present empirical results showing that ORT for

Value Functions can improve training in 3 vs. 2 Keepaway between
Sarsa agents that utilize neural networks and RBFs.

Learning curves presented in the section each average ten in-
dependent trials. The x-axis shows the number of Soccer Server
simulator hours and where the simulator can be sped up by roughly
a factor of two so that wall clock time is roughly half of the simula-
tor time. the y-axis shows the average performance of the keepers
by showing the average episode length in simulator seconds. Error
bars show one standard deviation. All parameters chosen in this
section were selected via experimentation with a small set of initial
test experiments.

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 2 4 6 8 10 12 14

E
p
is

o
d
e
 D

u
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Intra-Policy Transfer: RBFs

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 2 4 6 8 10 12 14

E
p
is

o
d
e
 D

u
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Intra-Policy Transfer: RBFs
ORT: Neural Network to RBFs

RT from Neural Network

Learning Without Transfer

Figure 2: RBF players utilize ORT from neural networks to

outperform RBF players learning without transfer.

To demonstrate intra-policy transfer, we first train Sarsa play-
ers using a neural network on 3 vs. 2 Keepaway for 20 simula-
tor hours and then record 20,000 tuples, which took roughly 1.0
simulator hour. TD-RBF players are then trained offline by iterat-
ing over all tuples 5 times and updating Q(si, a) where a ∈ A.
Using Algorithm 1, this process takes roughly 8 minutes of wall
clock time. Figure 5 shows that RT from neural network players
outperforms RBF players learning without transfer. T-tests con-
firm that differences graphed are statistically significant for times
less than 11 simulator hours. These results demonstrate that if a
neural network player has been trained, ORT can be used to im-
prove the performance of RBF players. By using ORT, both the
computational complexity (wall clock time) and sample complexity
(simulator time) are significantly reduced. This experiment’s com-
pliment, transferring from RBF players to neural network players,
yields similar results but is omitted due to space constraints.

6. RELATED AND FUTURE WORK
The idea of using multiple representations to solve a problem is

not new. Kaplan’s production system [3] was able to simulate the
representation shift that humans often undergo when solving the
mutilated checkerboard [7] problem. Other work [2] used libraries
of problem solving and “problem description improvement” algo-
rithms to automatically change representations in planning prob-
lems. Implicit imitation [8] allows an RL agent to train while
watching a mentor with similar actions, but this method does not
directly address internal representation differences. Additionally,
all training is done on-line; therefore agents using imitation do not
initially perform better than learning without transfer. Our method
of training offline from saved experience is more similar to the idea
of replayed TD [6], a method to improve the rate of learning by
reusing experience in a single agent.

None of these methods directly address the problem of transfer-
ring knowledge between different representations in an RL setting.
By using RT methods like ORT, different representations can be
leveraged so that better performance can be more quickly learned,
which could be used in conjunction with existing RL speedup meth-
ods.

This paper has focused on changes in the function approxima-
tor between the source and target. In the future, we would like
to extend this work to situations where the representation differers
in learning method (i.e. use an agent that learns with SARSA to
speed up a policy search learner). Additionally, we would like to
attempt to find methods which are able to perform both representa-
tion transfer and task transfer, ideally simultaneously.

7. CONCLUSION
This paper presents the problem of representation transfer and

an algorithm that successfully transfers knowledge between differ-
ent internal representations. We have presented empirical results
in Keepaway demonstrating that RT allows an agent training with
RBF function approximation to learn faster when it utilizes knowl-
edge gathered by an agent with neural network function approxi-
mation.

Acknowledgments

We would like to thank Cynthia Matuszek, Shimon Whiteson, An-
drew Dreher, Bryan Klimt, Nate Kohl, and anonymous reviewers
for helpful comments and suggestions. This research was sup-
ported in part by DARPA grant HR0011-04-1-0035, NSF CAREER
award IIS-0237699, and NSF award EIA-0303609.

8. REFERENCES
[1] F. Fernandez and M. Veloso. Learning by probabilistic reuse

of past policies. In Proc. of the 6th International Conference

on Autonomous Agents and Multiagent Systems, 2006.

[2] E. Fink. Automatic representation changes in problem
solving. Technical Report CMU-CS-99-150, Depart. of
Computer Science, Carnegie Mellon University, 1999.

[3] C. A. Kaplan. Switch: A simulation of representational
change in the mutilated checkboard problem. Technical
Report C.I.P. 477, Department of Psychology, Carnegie
Mellon University, 1989.

[4] G. Konidaris and A. Barto. Autonomous shaping:
Knowledge transfer in reinforcement learning. In
Proceedings of the 23rd Internation Conference on Machine

Learning, pages 489–496, 2006.

[5] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild.
Giving advice about preferred actions to reinforcement
learners via knowledge-based kernel regression. In
Proceedings of the 20th National Conference on Artificial

Intelligence, 2005.

[6] S. Mahadevan and J. Connell. Automatic programming of
behavior-based robots using reinforcement learning. In
National Conference on Artificial Intelligence, pages
768–773, 1991.

[7] J. McCarthy. A tough nut for proof procedures. Technical
Report Sail AI Memo 16, Computer Science Department,
Stanford University, 1964.

[8] B. Price and C. Boutilier. Accelerating reinforcement
learning through implicit imitation. Journal of Artificial

Intelligence Research, 19:569–629, 2003.

[9] G. A. Rummery and M. Niranjan. On-line Q-learning using
connectionist systems. Technical Report
CUED/F-INFENG-RT 116, Engineering Department,
Cambridge University, 1994.

[10] S. P. Singh and R. S. Sutton. Reinforcement learning with
replaceing eligibility traces. Machine Learning, 22:123–158,
1996.

[11] V. Soni and S. Singh. Using homomorphisms to transfer
options across continuous reinforcement learning domains.
In Proceedings of the Twenty First National Conference on

Artificial Intelligence, July 2006.

[12] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu. Keepaway
soccer: From machine learning testbed to benchmark. In
I. Noda, A. Jacoff, A. Bredenfeld, and Y. Takahashi, editors,
RoboCup-2005: Robot Soccer World Cup IX, volume 4020,
pages 93–105. Springer Verlag, Berlin, 2006.

[13] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement
learning for RoboCup-soccer keepaway. Adaptive Behavior,
13(3):165–188, 2005.

[14] R. S. Sutton and A. G. Barto. Introduction to Reinforcement

Learning. MIT Press, 1998.

[15] M. E. Taylor, P. Stone, and Y. Liu. Value functions for
RL-based behavior transfer: A comparative study. In
Proceedings of the Twentieth National Conference on

Artificial Intelligence, July 2005.

