Transferring Instances for Model-Based Reinforcement
Learning

Matthew E. Taylor, Nicholas K. Jong, and Peter Stone
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188
{mtaylor, nkj, pstone}@cs.utexas.edu

ABSTRACT

Model-free algorithms such as Q-Learning [24] and Sarsa [13

Reinforcement learninggents typically require a significant amount 15] leam to predict the utility of each action in differeftustions,

of data before performing well on complex tasksansfer learn-

ing methods have made progress reducing sample complexity, bu

they have only been applied to model-free learning methods,
more data-efficient model-based learning methods. Thismpiap
troducesTIMBREL, a novel method capable of transferring infor-
mation effectively into a model-based reinforcement leaylgo-
rithm. We demonstrate thatmMBREL can significantly improve the
sample complexity and asymptotic performance of a modseéda
algorithm when learning in a continuous state space.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords

Transfer Learning, Model Transfer, Reinforcement Leagnin

1. INTRODUCTION

In many situations, an agent must learn to execute a series of

sequential actions, which is typically framed aseinforcement
learning [18] (RL) problem. Although RL approaches have en-
joyed past successes (e.g., TDGammon [22], inverted Hebco
control [9], and robot locomotion [7]), they frequently &akub-
stantial amounts of data to learn a reasonable controlypolic
many domains, collecting such data may be slow, expensiva; 0
feasible, motivating the need for sample-efficient leagmirethods.

One recent approach to speeding up RL so that it can be ap

plied to difficult problems with large, continuous state g is
transfer learning(TL). TL is a machine learning paradigm that
reuses knowledge gathered in a previous source task to lestta

a novel, but related, target task. Recent empirical suesdssa va-
riety of RL domains [12, 20, 23] have shown that transfer ¢gn s
nificantly increase an agent’s ability to learn quickly, mieagents

in the two tasks have different available sensors or actibtov-
ever, to the best of our knowledge, TL methods have thus fan be
applied only to model-free RL algorithms.

Cite as: Transferring Instances for Model-Based Reinforcementiiiag,
Matthew E. Taylor, Nicholas K. Jong, and Peter StdRepceedings of
the ALAMAS+ALAG 2008 workshop at AAMAS 2008y, 12-16.,
2008, Estoril, Portugal.

Copyright© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

but they do not learn the effects of actions. In contrast,ehbdsed

t(or model-learning) methods, such as PEGASUS [10y 4% [3],

and Fitted RmAX [5], use their experience to learn an internal
model of how the actions affect the agent and its environment
an approach empirically shown to often be more sample efficie
Such a model can be used in conjunction wdtmamic program-
ming [2] to perform off-line planning, often enabling superia-a
tion selection without requiring additional environmdrgamples.
Building these models may be computationally intensive, us4
ing CPU cycles to reduce data collection time is a highly fatte
tradeoff in many domains (such as physically embodied ayelimt
order to further reduce sample complexity and ultimatdigvaRL

to be applicable in more complex domains, this paper inttedu
Transferring Instances for Model-Based REinforcementrihieg
(TIMBREL), a novel approach to combining TL with model-based
RL.

The key insight behindIMBREL is that data may be reused be-
tween different tasks. Data is first recorded in a source tasis-
formed so that it applies to a target task, and then used katpet
task learner as it builds its model. In this paper we utilitéeB R-
MAX, an instance based model-learning algorithm, and show how
TIMBREL can help construct a target task model by using source
task data.TIMBREL combines the benefits of transfer with those
of model-based learning to reduce sample complexity. Ikean
continuous state spaces and is applicable when the sout¢arget
tasks have different state variables and action spacesuNy/erf-
plement and test our method in a set of Mountain Car taskspdem
strating that transfer can significantly reduce the sanieptexity
of learning.

The rest of this paper is organized as follows. Section 2igesv
a brief background of RL and Fitted RAX, as well as discussing

“a selection of related TL methods. The experimental donsadte+

tailed in Section 3. Section 4 introducesvBREL and discusses
its implementation when using Fitted ®®ax. Experimental re-
sults are presented in Section 5. Section 6 discusses [gofilre
directions and concludes.

2. BACKGROUND AND RELATED WORK

In this paper we use the notation Mfarkov decision processes
(MDPs). At every time step the agent observes its state S as
a vector of kstate variablesuch thats = (z1,z2,...,z¢). In
episodic tasks there is a starting statg+;.; and often a goal state
Sgoal, Which terminates the episode if reached by the agent. The
agent selects an action from the set of available actibas every
time step. The start and goal states may be generalizedsofet
states. A task also defines the reward funcfibnS x A — R, and

the transition functiol” : S x A — S fully describes the dynamics
of the system. The agent will attempt to maximize the longite
reward determined by the (initially unknown) reward fupatiR
and the (initially unknown) transition functidmi.

A learner chooses which action to take in a state via a policy,
7 : S — A. wis modified by the learner over time to improve
performance, which is defined as the expected total rewastead
of learningr directly, many RL algorithms instead approximate the
action-value function@ : S x A — R, which maps state-action
pairs to the expected real-valued return. If the agent traadel the
optimal action-value function, it can select the optimal@atfrom
any state by executing the action with the highest actidneva

In this paper, we introduce and utilizemBREL to improve the
performance of Fitted RtaXx [5], an algorithm that approximates
the action-value functio for large or infinite state spaces by con-
structing an MDP over a small (finite) sample of states S. For
each sample state € X and actiona € A, Fitted RMAX esti-
mates the dynamic¥(x, a) using all the available data for action
a and for states nearx.! Some generalization from nearby states
is necessary because we cannot expect the agent to be alsé to v
X enough times to try every action. As a result of this genesali
tion process, Fitted Rtax first approximated’(x, a) as a prob-
ability distribution over predicted successor states$inA value
approximation step then approximates this distributiostafes in
S with a distribution of states itX. The result is a stochastic MDP
over a finite state spac¥, with transition and reward functions
derived from data inS. Applying dynamic programming to this
MDP yields an action-value function ovéf x A that can be used
to approximate the desired action-value functi@nFor the origi-
nal 2D Mountain Car task, Fitted RAX learns policies using less
data than many existing model-free algorithms [5].

Approaches that transfer between model-free RL algoritaras
most closely related toiIMBREL. Torrey et al. [23] show how to
automatically extracadvicefrom a source task by identifying ac-
tions which have higher Q-values than other available astithis
advice is then mapped by a human to the target task as inigé! p
erences given to the target task learner. In our previouk y@8y,
we learn an action-value function for a source task, tramsfze
function into a target task via a hand-codeter-task mappingand
then use the transferred function to initialize the targsktagent.
Other work [12] shows that imelational reinforcement learning
object-specific action-value functions can be used foiailiation
when the number of objects change between the source arad targ
tasks. In all three cases the transferred knowledge istiége
used to improve learning in the target task, but only usingleho
free learning methods that inherently require more datatinadel-
based learning.

3. GENERALIZED MOUNTAIN CAR

This section introduces our experimental domain, a geizecl
version of the standard RL benchmark Mountain Car task [15].
Mountain Car is an appropriate testbed fomBREL with Fitted

R-MAX because it is among the simplest continuous domains that

can benefit from model-based learning, and it is easily gdizer
able to enable TL experiments.

In Mountain Car, the agent must generalize across contsuou
state variables in order to drive an underpowered car up akdgu
to a goal state. We also introduce 3D Mountain Car as extensio

IFitted RMAX is an instance-based learning method; our imple-
mentation currently retains all observed data to comp@ertbdel.

In the future we plan to enhance the algorithm so that ingsnan

be discarded without significantly decreasing model aayura

2D Mountain Car

1
0.8 |
0.6 |
0.4
0.2
O L
-0.2 +
-0.4
-0.6
-0.8

Goal

mountain height

-12 -1 -08 -06-04-02 0 02 04 06
X

Figure 1: In the standard 2D Mountain Car the agent must
travel along a curve (Mountain).

of the 2D task, retaining much of the structure of the 2D peobl

In both tasks the transition and reward functions are ihytian-
known. The agent begins at rest at the bottom of the?hillhe
reward for each time step is1. The episode ends, and the agent
is reset to the start state, after 500 time steps or if reatizegoal
state.

3.1 Two Dimensional Mountain Car

In the two dimensional Mountain Car task, two continuous-var
ables fully describe the agent’s state. The horizontaltjpos{z)
and velocity §) are restricted to the ranggs1.2, 0.6] and[—0.07,
0.07] respectively. The agent may select one of three actions-on ev
ery timestep; Lef t, Neut ral , Ri ght } change the velocity by
-0.001, 0, and 0.001 respectively. Additionaly).025(cos(3z))
is added tar on every timestep to account for the force of gravity
on the car. The start state is = —n/6,2£ = 0), and the goal
states are those whete> 0.5 (see Figure 1). We use the publicly
availablé version of this code for our experiments.

3.2 Three Dimensional Mountain Car

To create a three dimensional task, we extend the Mountain’s
curve into a surface (see Figure 2). The state is composesliof f
continuous state variablest, ,y,y. The positions and veloc-
ities have ranges of—1.2,0.6] and [—0.07,0.07], respectively.
The agent selects from five actions at each timest&euf r al ,
West, East, Sout h, Nort h}. West and East modify: by -
0.001 and +0.001 respectively, while South and North mogify
by -0.001 and +0.001 respectivély.The force of gravity adds
—0.025(cos(3z)) and —0.025(cos(3y)) on each time step ta
andy, respectively. The goal state region is definediby 0.5
andy > 0.5.

This task is more difficult than the 2D task because of the in-
creased state space size and additional actions. Furtrergiace
the agent can affect its acceleration in only one of the tvazis
dimensions at any given time, one cannot simply “factors fhriob-
lem into the simpler 2D task. While data gathered from the&ikt

2Both Mountain Car tasks are deterministic, as is Fitted4%. To
introduce randomness and allow multiple learning trialseveach
domain is initializedx (andy in 3D) in the start state is perturbed
by a random number i-0.005, 0.005].

SAvailable at http://rlai.cs.ual berta.ca/ RLR/
Mount ai nCar Best Sel | er. ht mi

4Although we call the agent’s vehicle a “car;” it does not tbut
simply accelerates in the four cardinal directions.

3D Mountain Car

Mountain Height
(PO o e
NP OOUIFUIN

Figure 2: In 3D Mountain Car the 2D curve becomes a 3D sur-
face. The agent starts at the bottom of the hill with no kinetc
energy and attempts to reach the goal area in the Northeast
corner.

should be able to help an agent learn the 3D task, we do expsct t
some amount of learning will be required after transfer.

3.3 Learning Mountain Car

Our experiments used Fittedi®ax to learn policies in the Moun-
tain Car tasks. We began by replicating the methods andtresul
applying Fitted RMAX to 2D Mountain Car task as reported in the
literature [5]. To apply Fitted R4aX to 3D Mountain Car, we first
scaled the state space so that each dimension ranges owarithe
interval, effectively scaling the state space to a unit hgplee. We
sampled a finite state space from this hypercube by applygrga
where each position state variable can be one of 8 valuegasid
velocity state variable can be one of 9 values. The 3D versfon
Mountain Car has 2 of each type of state variable; we obtained
sampleX of 8% x 92 = 5184 states that approximated the original
state space stat¢. For any statex € X and actiona € A, Fit-
ted RMAX estimatesl’(x, a) using a probability distribution over
observerds;, a, r;, s;) instances in the data available for actioan
Each instance is given a weightw; depending on the Euclidean
distance fronx to s; and on themodel breadthparamete, ac-
cording to the following formula:

s\ 2
w; o 67(¥) .
Intuitively, b controls the degree of generalization used to estimate
T(X,a) from nearby data. In 3D Mountain Car experiments, we
used a parameter &f= 0.1. In theory, all instances that share the
actiona could be used to help approximatewhere each instance
¢'s contribution is modified byw; (i.e., a Gaussian weighting that
exponentially penalizes distance froon To reduce the computa-
tional cost of the algorithm, for a given statewe computed the
weights for the nearest instances first. Once an instancsighiv
failed to increase the cumulative weight by at least 40%, gve i
nored the remaining instances’ contribution as negligiBlimally,
when the accumulated weight failed to reach a thresholdOpfnle
used Fitted RvAX s exploration strategy of assuming an optimistic
transition to a maximum-reward absorbing state.

Changing the learning parameters for FittethRx outlined above
affect three primary aspects of learning:

e How accurately the optimal policy can be approximated.

e How much computation is required when performing dy-
namic programming.

For this work, it was most important to find settings which al-
lowed the agent to learn a reasonably good policy in relgtiiesv
episodes so that we could demonstrate the effectivenessviof
BREL on sample complexity. We do not argue that the above pa-
rameters are optimal. They could be tuned to emphasize atmg of
above goals, such as achieving higher performance in the lim
preliminary results (not shown), we compared using FittedAx
and to using model-freegreedy Sarsa(). ® Fitted RmAX learned

to consistently find the goal state with roughly two ordersnaig-
nitude less data than Sarsa, although learning with FittadAR
takes substantially more computational resources thasaSar

4. MODEL TRANSFER

Model-based algorithms learn to estimate the transitiomleho
of an MDP, predicting the effects of actions. The goal of $fan
for model-based RL algorithms is to allow the agent to buildrs
a model from data gathered both in a previous task, as wefl as i
the current task. To help frame the exposition, we note thasfer
methods must typically perform the following three steps:

| Use the source task agent to record some information during
after, or about, learning. Successful TL approaches imrclud
recording learned action-value functions or higher-lexetl
vice about high-value policies.

I Transform the saved source task information so that itiepp
to the target task. This step is most often necessary if the
states and actions in the two tasks are different, as caeside
in this paper.

Il Utilize the transformed information in the target tas8uc-
cessful approaches include using source task informadion t
initialize the learner’s action-value function, givingwck
about actions, and suggesting potentially useful seqsence
of actions (i.e.pptions.

Section 4.1 introduceBMBREL, a novel transfer method, which
accomplishes these steps. Section 4.2 gives an overvieweof t
method details howIMBREL is used in the Mountain Car domain
with Fitted RMAX, our chosen model-based RL algorithm.

4.1 Instance-Based Model Transfer

This section provides an overview giMBREL. In order to
transfer a model, our method takes the novel approach of-tran
ferring observed instances from the source task. The tuiplése
form (s, a,r,s’), describe experience the source task agent gath-
ered while interacting with its environment (Step 1). Ongatdage
of this approach as compared to transferring an actioneviaioc-
tion or a full environmental model (e.g., the transition dtian)
is that the source task agent is not tied to a particular iegral-
gorithm or representation: whatever RL algorithm thatdeawill
necessarily have to interact with the task and collect égpee.
This flexibility allows a source task algorithm to be seledbased
on characteristics of the task, rather than on demands trfethsfer
algorithm.

To translate a source task tuple into an appropriate taagktti-
ple (Step Il) we utilizenter-task mapping§20], which have been

5Specifically, we used a CMAC [1] function approximator with 1
4-dimensional linear tilings, which is analogous to howdbiand

e How many samples are needed to accurately approximate thesutton [15] used 14 2-d dimensional linear tile codings feitt 2D

best policy, given the representation.

task.

Algorithm 1 TIMBREL Overview

1: Learn in the source task, recordifig a, r, s') transitions.

2: Provide recorded transitions to the target task agent.

3: while training in the target tastto

4: if the model-based RL algorithm is unable to accurately es-
timate somel’(x, a) or R(X, a) then

5: while T'(x, a) or R(X, a) does not have sufficient dada

6: Locate one or more saved instances that, according to

the inter-task mappings, are near the cursent to be
estimated.
if no such unused source task instances éxest

exit the while starting on line 5

© o

ate to the target task.
Add the transformed instance to the current model for
X, a.

10:

successfully used in past transfer learning research wfggeow
pairs of tasks are related via an action mapping and a state va
able mapping. This pair of mappings identifies source tatkra
which have similar effects as target task actions, and alwap-
ping of target task state variables into source task stateblas.
When learning in the target taskiMBREL specifies when to use
source task instances to help construct a model of the ttaglt
(Step 1l1). Briefly, when insufficient target task data exit esti-
mate the effect of a particulax (a) pair, instances from the source
task are transformed via an action-dependant inter-tagipimg,
and are then treated as a previously observed transititwe itatget
task model. TheaIMBREL method is summarized in Algorithm 1.
Notice thatTiIMBREL performs the translation of data from the
source task to the target task (line 10) on-line while leagrihe tar-
get task. While the translation step of transfer algorittisnsore
commonly performed off-line before training in the targesk, this
just-in-time approach is appropriate because of how thepmgp
are utilized. In the following section, we detail how thereunt state
x that is being approximated will affect how the source task-sa
ple is translated. By only transferring instances that bellimme-
diately used in the target task, the amount of computati@iee
is limited. Furthermore, this method will minimize the nuenkof
source instances that must be reasoned over in the targettaie!
by only transferring necessary source task data.

4.2 TIMBREL Implementation

In this section we detail howIMBREL is used to transfer be-
tween tasks in the Mountain Car domain when using FitteadAR-
as the underlying RL algorithm. AlthoughMBREL is a domain-
independent transfer method which is designed to be cobipati
with multiple model-learning RL algorithms, we will grouralr

exposition in the context of Fitted RAx and Mountain Car. Through-

out this section we use the subscfijtb denote actions, states, and
state variables in the source task, and the subsEript the target
task.

The core result of this paper is to demonstrate transferdssiw
the standard 2D Mountain Car task and the 3D Mountain Car task
After learning the 2D taskTIMBREL must be provided an inter-
task mapping between the two tasks. The action mapping,
maps a target task action into a source task actiopiar) = as,

Usex, a, the saved source task instance, and the map-
pings to translate the saved instance into one appropri-

Inter-task Mapping for Mountain Car
Action Mapping State Variable Mapping

X a(Neutral) = Neutral Xs(z)=x

X a(North) = Right Xs(£) =2
X a(East) = Right or

X 4(South) = Left Xs(y) ==z

X a(West) = Left Xs(y) =

Table 1: This table describes the mapping used byIMBREL to
construct target task instances from source task data.

autonomously in this domain with relatively little overldeaNote
that the state variable mapping is defined so that eitheratfyett
task state variablesc(and) or (y and y) are mapped into the
source task. As we will discuss, the unmapped target tasé sta
variables will be set by the state variables’ values in theest that

we wish to approximate.

As discussed in Section 2, Fitted X approximates transi-
tions from a set of sample statesc X for all actions. When the
agent initially encounters the target task, no target tastances are
available to approximat€. Without transfer, Fitted ReaX would
be unable to approximaté(xr, ar) for any x and would set the
value ofQ(sr, ar) to an optimistic value R,...) to encourage ex-
ploration. InsteadTIMBREL is used to generate target instances to
help approximatd’(xr, ar).

TIMBREL provides a set of source task instances, as well as the
inter-task mappings, and must construct one or more taagt t
tuples, 6r,ar,, st), to help approximatd’(Xr,ar). The goal
of transfer is to find some source task tupe, @s, r, s5) where
as = Xa(ar) andss is “near” st (line 6). Once we identify such
a source task tuple, we can then asé to convert the tuple into a
transition appropriate for the target task (line 10), angliti help
approximatel” (line 11).

As an illustrative example, consider the case when the agent
wants to approximaté (X, ar), wherexr = (xr, yr, &T, yr) =
(—0.6,—0.2,0,0.1) andar = East. TIMBREL considers source
task transitions that contain the action Rights is defined so
that either ther or y state variables can be mapped from the tar-
get task to the source task, which means that we should @nsid
two transitions selected from the source task instances fift
tuple is selected to minimize the Euclidean distanf¥s:r, xs)
and D(&r, &s), where each distance is scaled by the range of the
state variable. The second tuple is chosen to mininhizgr, xs)
andD(yr, &s).

Continuing the example, suppose that the first source tqué tu
selected was

((=0.61, 0.01), Right —1, (—0.59, 0.02)).

If the inter-task mapping were defined so that bothitledy state
variables simultaneously, the inverse inter-task mappmgd be
used to convert the tuple into

({(=0.61,—-0.61,0.01,0.01), East —1,
(—0.59, —0.59,0.02,0.02)).
However, this point is not near the curreait we wish to approx-
imate. Instead, we recognize that this sample was selemed f

the source task to be nearxe andir, and transform the tuple,
assuming thayr andyr are kept constant. With this assumption,

andXs maps a target task state variable into a source task statewe form the target task tuple

variable: Xs(s¢;,m)) = s¢,s). In this work we assume that the
inter-task mapping in Table 1 is provided to the agent, bheiot
work [19] has demonstrated that the same mapping may besigarn

((—0.61, y1,0.01, §1), East —1, (—0.59, yr, 0.2, 1)) =
((—0.61,—0.2,0.01,0), East —1, (—0.59, —0.2, 0.02, 0)).

The analogous step is then performed for the second selsmiece
task tuple; we transform the source task tuple witiwhile assum-
ing thatzt andzt are held constant. Finally, both transferred in-
stances are added to the approximatioff'¢f, a).

TIMBREL thus transfers pairs of source task instances to help
approximate the transition function. Other model-leagmimethods
may need constructed trajectories instead of individustiaimces,
butTIMBREL is able to generate trajectories as well. Over time, the
learner will approximatéd’(xr, ar) for different values ofX, a) in
order to construct a model for the target task environmemy A
model produced via this transfer may be incorrect, depgndm
how representative the saved source task instances are tfrget
task (as modified by). However, our experiments demonstrate
that using transferred data may allow a model learner toym®a
model that is more accurate than if the source data wereégnor

As discussed in Section 3.3, Fitted\Nx uses the distance be-
tween instances and to calculate instance weights. When an in-
stance is used to approximatethat instance’s weight is added to
the total weight of the approximation. If the total weight &m ap-
proximation does not reach a threshold value of 1.0, an agtitn

value (Rmq) is used because not enough data exists for an accu-

rate approximation. When usingMBREL, the same calculation is
performed, but now instances from both the source task agdtta
task can be used.

As the agent interacts with the target task, more transiteme
recorded and the approximations of the transition funaicdiffer-
ent X, a) pairs need to be recalculated based on the new informa-
tion. Each time an approximation needs to be recomputetbdFit
R-maXx first attempts to use only target task data. If the number of
instances available (where instances are weighted bydtstamce
from x) does not exceed the total weight threshold, source task dat
is transferred to allow an approximation B{xr, ar). This pro-
cess is equivalent to removing transferred source taskidatethe
model as more target task data is observed and thereforesate
model’s accuracy to improve over time. Again, if the totaige
from source task and target tasks instances for an apprtedra
does not reach 1.®,,... is assigned to the model far

As a final implementation note, consider what happens when
somex maps to arss that is not near any experienced source task
data. If there are no source task transitions ngait is possible
that using all available source task data will not producaeu-
rate approximation (recall that instance weights are pitaptal to
the square of the distance from the instance)toTo avoid a sig-
nificant reduction in performance with limited improveméngp-
proximatingT’, we imposed a limit of 20 source task tuples when
approximating a particular point (line 5). This threshokh&s a
similar purpose as the 10% cumulative weight thresholdudised
in Section 3.3.

5. TRANSFER EXPERIMENTS

In order to test the efficacy of transfer, we conducted anmxpe
ment to measure the learning speed of Fitted &% in the Moun-
tain Car domain both with and withomtMBREL. To transfer from
2D Mountain Car into the more complex 3D Mountain Car, we first
allow Fitted RMAX to train for 100 episodes in the 2D task while
recording all observeds, a,r, s’) transitions. The agent’s learn-
ing parameters were set so that the agent thoroughly exbtbee
source task state space and only discovered the goal neamdrof
learning®

5We experimented with 5 different parameter settings faeHiR-

MAX in the 2D Task. Recall that every episode lasts 500 time steps

if the goal is not found. When learning 2D Mountain Car, thertg
experienced 48,669 source task transitions during 100egss

3D Mountain Car

-250

Average Reward (steps)

-500

x Transfer
g o No Transfer|
2]

0 200

600 800 1000 1200 1400

Training Time (Episodes)

400

Figure 3: This figure shows that TIMBREL significantly im-
proves the speed of Fitted RwAx on the 3D Mountain Car.
The average performance is plotted every 10 episodes, along
with the standard error.

Roughly 100 preliminary experiments were run on the 3D task,
each lasting a few hundred episodes, in order to selectdHRrte
MAX settings for the non-transfer learner, which were disaigse
Section 3.3. We ran 10 trials of Fitted®ax without transfer and
10 trials with transfer, each of for 1,500 episodes. Aftariténg,
we averaged each set of 10 independent learning curvesubut d
to the low number of trials, the learning curves were quitsyo
To improve the clarity of our results, we also smoothed the tw
summary learning curves by averaging over groups of 10 dpso
Figure 3 shows the summary of our two sets of experimentagalo
with the standard error at each point. We ran paired t-testh®
151 graphed points and found that every difference wasttatily
significant p < 1.7 x 10~%), which confirms that utilizing transfer
between our pair of Mountain Car tasks yield a significantaadv
tage for Fitted RwAX.

Our algorithm and implementation have been designed to-mini
mize the sample complexity. However, it is worth noting ttegre
is a significant difference in the computational complexifythe
transfer and non-transfer methods. Every time the trarsjent
needs to use source task data to estirfiatie must locate the most
relevant data and then insert it into the model. Additiopathe
transfer agent has much more data available initially, g its
dynamic programming step is significantly slower than tha-no
transfer agent. These factors cause the transfer leamiaig to
take roughly twice as much wall clock time as the non-trantsfe
als. While our code could be better optimized, using thetauidil
transferred data will always slow down the agent, relativearn
agent that is not using transfer, but is running for the sanmeler
of episodes. However, in many domains a tradeoff betweempaem
tational and sample complexity is highly advantageous,isate
of the benefits inherent to model-based reinforcement ilegurn

Also note that the transfer and non-transfer learning cude
not end at the same performance. We do not claim that transfer
has produced a superior asymptotic performance, howesesiLise
neither learning curve has fully converged. We expect thehon-
transfer Fitted RwAx agents would reach the same, or perhaps
superior, performance. However, these results do denatastrat
transfer can provide a significant speed advantage.

6. CONCLUSION AND FUTURE WORK

In this paper we have introducedMBREL, which we believe
to be the first transfer method compatible with model-baséd r
forcement learning. We demonstrate that when learning 3Drivio
tain Car with Fitted RMAX, TIMBREL can significantly reduce the
sample complexity and demonstrated how transfer is afiebye
changes to the source task’s reward and transfer functions.

There are a number of research directions suggested bydhis w
When learning the 2D source task in this paper, we explici#y
the parameters to maximize exploration. It would be infdivea
to study how transfer efficacy changes when the amount obexpl
ration is decreased in the source task. This is an issuedelat
but distinct from, discovering how the target task perfanceis
affected when the number of source task episodes changeasalA fi
question left for future work is whether one could deternifrasl-
lecting additional samples in the source task would helml¢ae
target, which could help reduce the total amount of dataireduio
learn both tasks.

We predict thatriMBREL will work, possibly with minor mod-
ifications, in other model-based RL algorithms. In the fature
would like to experiment with other model-based RL algarith
such as RvAx, to see if transfer is as effective as in Fitted R-

MAX, and see if our methods need to be modified to accommodate

the different model representation. Additionally, we imdeo ap-

ply TIMBREL to more complex domains that have continuous state
variables; we expect that transfer will provide even morneefie as
task difficulty increases.

Acknowledgments
We would like to thank the anonymous reviewers for helpfuheo

ments and suggestions. This research was supported inart b
DARPA grant HR0011-04-1-0035, NSF CAREER award 11S-023769

and NSF award EIA-0303609.

7. REFERENCES

[1] J. S. Albus Brains, Behavior, and RoboticByte Books,

Peterborough, NH, 1981.

[2] R. E. Bellman.Dynamic ProgrammingPrinceton University
Press, 1957.

R. I. Brafman and M. Tennenholtz. R-Max — a general
polynomial time algorithm for near-optimal reinforcement
learning.Journal of Machine Learning Researc$1213-231,
2002.
R. H. Crites and A. G. Barto. Improving elevator
performance using reinforcement learning. In D. S.
Touretzky, M. C. Mozer, and M. E. Hasselmo, editors,
Advances in Neural Information Processing Systenmages
1017-1023, Cambridge, MA, 1996. MIT Press.
N. K. Jong and P. Stone. Model-based exploration in
continuous state spaces.The Seventh Symposium on
Abstraction, Reformulation, and Approximatjauly 2007.
M. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time. IfProc. 15th International
Conf. on Machine Learningpages 260-268. Morgan
Kaufmann, San Francisco, CA, 1998.
N. Kohl and P. Stone. Machine learning for fast quadrgbed
locomotion. InThe Nineteenth National Conference on
Artificial Intelligence pages 611-616, July 2004.
[8] Y. Liu and P. Stone. Value-function-based transfer for

reinforcement learning using structure mappingPtoc. of

(3]

[4]

(5]

(6]

[7]

the 21st National Conf. on Artificial Intelligencéuly 2006.

[9] A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte,
B. Tse, E. Berger, and E. Liang. Inverted autonomous
helicopter flight via reinforcement learning. linternational
Symposium on Experimental Robotiz804.

[10] A.Y. Ngand M. Jordan. PEGASUS: A policy search method
for large MDPs and POMDPs. Proceedings of the 16th
Conference on Uncertainty in Atrtificial Intelligenc2000.

[11] M. L. PutermanMarkov Decision Processes: Discrete

Stochastic Dynamic Programmindohn Wiley & Sons, Inc.,

1994.

J. Ramon, K. Driessens, and T. Croonenborghs. Transfer

learning in reinforcement learning problems through parti

policy recycling. InProc. of The 18th European Conf. on

Machine Learning2007.

G. Rummery and M. Niranjan. On-line Q-learning using

connectionist systems. Technical Report

CUED/F-INFENG-RT 116, Engineering Department,

Cambridge University, 1994.

M. Saggar, T. D'Silva, N. Kohl, and P. Stone. Autonomous

learning of stable quadruped locomotion. In G. Lakemeyer,

E. Sklar, D. Sorenti, and T. Takahashi, editors,

RoboCup-2006: Robot Soccer World Cupvlume 4434,

pages 98-109. Springer Verlag, Berlin, 2007.

S. Singh and R. S. Sutton. Reinforcement learning with

replacing eligibility tracesMachine Learning22:123-158,

1996.

V. Soni and S. Singh. Using homomorphisms to transfer

options across continuous reinforcement learning domains

In Proc. of the Twenty First National Conf. on Artificial

Intelligence July 2006.

P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement

learning for RoboCup-soccer keepawagaptive Behavigr

13(3):165-188, 2005.

R. S. Sutton and A. G. Bartintroduction to Reinforcement

Learning MIT Press, 1998.

M. E. Taylor, G. Kuhimann, and P. Stone. Autonomous

transfer for reinforcement learning. Trhe Seventh

International Joint Conference on Autonomous Agents and

Multiagent System$/1ay 2008.

M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via

inter-task mappings for temporal difference learnidgurnal

of Machine Learning ResearcB(1):2125-2167, 2007.

M. E. Taylor, S. Whiteson, and P. Stone. Transfer via

inter-task mappings in policy search reinforcement leagni

In The Sixth International Joint Conference on Autonomous

Agents and Multiagent Systeniday 2007.

G. Tesauro. TD-Gammon, a self-teaching backgammon

program, achieves master-level plaleural Computation

6(2):215-219, 1994.

L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Usingvack

to transfer knowledge acquired in one reinforcement learni

task to another. IfProceedings of the Sixteenth European

Conference on Machine Learning005.

[24] C. J. C. H. WatkinsLearning from Delayed RewardBhD
thesis, King's College, Cambridge, UK, 1989.

[25] W. Zhang and T. G. Dietterich. A reinforcement learning
approach to job-shop scheduling.Rnoceedings of the
International Joint Conference on Atrtificial Intelligence
1995.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

