
In Proceedings of the Ninth International Conference on Swarm Intelligence (ANTS14),
Brussels, Belgium, September 2014.

Influencing a Flock via Ad Hoc Teamwork

Katie Genter and Peter Stone

The University of Texas at Austin, Austin, TX, USA,
{katie,pstone}@cs.utexas.edu

Abstract. Flocking is an emergent behavior in which each individual
agent follows a simple behavior rule that leads to a group behavior that
appears cohesive and coordinated. In our work, we consider how to in-
fluence a flock using a set of ad hoc agents. Ad hoc agents are added to
the flock and are able to influence the flock to adopt a desired behavior
by acting as part of the flock. Specifically, we first examine how the ad
hoc agents can behave to quickly orient a flock towards a target head-
ing when given knowledge of, but no direct control over, the behavior of
the flock. Then we consider how the ad hoc agents can behave to herd
the flock through turns quickly but with minimal agents being separated
from the flock as a result of these turns. We introduce an algorithm
which the ad hoc agents can use to influence the flock. We also present
detailed experimental results for our algorithm, concluding that in this
setting, short-term lookahead planning improves significantly upon base-
line methods and can be used to herd a flock through turns quickly while
maintaining the composition of the flock.

1 Introduction

Consider a flock of migrating birds that is flying directly towards a dangerous
area, such as an airport or a wind farm. It will be best for both the flock and the
humans in the area if the path of the migratory birds is altered slightly such that
the flock will avoid the dangerous area and reach their destination only slightly
later than originally expected. However, there is no way to directly control the
birds’ flight. Rather, we must alter the environment so as to induce the flock to
alter their path as desired.

The above scenario is a motivating example for our work on influencing a
flock using ad hoc teamwork. We assume that each bird in the flock dynamically
adjusts its heading based on that of its immediate neighbors. We assume further
that we control one or more ad hoc agents — perhaps in the form of robotic birds
or ultralight aircraft1 — that are perceived by the rest of the flock as one of their
own. It is through these ad hoc agents that we alter the birds’ environment so
as to induce them to alter their path. We are interested in how best to do so.

Flocking is an emergent behavior found in different species in nature including
flocks of birds, schools of fish, and swarms of insects. In each of these cases, the
animals follow a simple local behavior rule that results in a group behavior that

1 www.operationmigration.org

2

appears well organized and stable. Research on flocking behavior has appeared in
various disciplines such as physics [15], graphics [11], biology [3], and distributed
control theory [7, 8, 13] but the research has focused mainly on characterizing
the emergent behavior.

In this work, we are given a team of flocking agents following a known, well-
defined rule characterizing their flocking behavior, and we wish to examine how
the ad hoc agents should behave. Specifically, this paper addresses two questions:
How should ad hoc agents behave so as to (1) orient the rest of the flock towards
a target heading as quickly as possible and (2) herd the rest of the flock through
turns quickly but without compromising the composition of the flock?

The remainder of this paper is organized as follows. Section 2 situates our
research in the literature. Section 3 introduces our problem and necessary termi-
nology. The main contribution of this paper is the 1-step lookahead algorithm for
influencing a flock to travel in a particular direction; this algorithm is presented
in Section 4. We present the results of running experiments using this algorithm
in the MASON simulator [10] in Section 5 and then Section 6 concludes.

2 Related Work

Reynolds introduced the original flocking model that we use in this work [11]. His
work focused on creating a computer model of flocking that looked and behaved
like a real flock of birds. Reynolds’ model consists of three simple steering be-
haviors that determine how each agent maneuvers based on the behavior of the
agents around it (henceforth called neighbors): Separation steers the agent such
that it avoids crowding its neighbors, Alignment steers the agent towards the
average heading of its neighbors, and Cohesion steers the agent towards the av-
erage position of its neighbors. Vicsek et al. considered just the Alignment aspect
of Reynolds’ model in physics work that studied the emergence of self-ordered
motion in flocking [15]. Some related research has also considered how different
information provided to the flocking agents affects their behavior. Turgut et al.
considered how noise in heading measurements, the number of neighbors, and
the range of communication affect the self-organization of flocking robots [14].
However, none of these lines of research considered how to influence the flock to
adopt a particular behavior by introducing additional agents into the flock.

Jadbabaie et al. considered the impact of adding a controllable agent to
a flock [8]. They used the Alignment aspect of Reynolds’ model and showed
that a flock with a controllable agent will always converge to the controllable
agent’s heading. Su et al. also presented work that is concerned with using a
controllable agent to make the flock converge [13]. [2] used the same model as
[14] and extended it to include informed agents that guide the flock by their
preference for a particular direction. Our work is different from these three lines
of research in that while they influence the flock to converge to a target heading
eventually, we influence the flock to converge quickly.

Couzin et al. considered how grouping animals make informed unanimous
decision [3]. They showed that only a very small proportion of informed agents

3

is required, and that the larger the group the smaller the proportion of in-
formed individuals needed to orient the group. Cucker and Huepe proposed two
Laplacian-based models for a consensus term that balances the trade-off between
an informed individuals preference to go in a particular direction and the desire
for social interaction [4]. Ferrante et al. utilized communication for coordinating
movement of a flock towards a common goal [5]. Specifically, informed robots
communicated the goal direction while uniformed robots communicated the av-
erage of messages received from their neighbors. Yu et al. proposed an implicit
leadership algorithm that allows all agents to follow a single rule and reach a
common group decision without any complex coordination methods [16]. How-
ever, none of these lines of research consider how to control some agents from
the perspective of knowing and planning for how the other agents will react.
Instead, each agent behaves in a fixed way that is pre-decided or based on its
type.

Han et al. studied how one agent can quickly influence the direction in which
an entire flock of agents is moving [7]. In their work each agent follows a simple
control rule based on its neighbors, but they only consider one ad hoc agent
with unlimited, non-constant velocity. This allows their ad hoc agent to move to
any position in the environment within one time step, whereas in our work we
assume the agents have bounded velocity.

In our previous work, we considered the problem of leading a flock of agents
to a desired orientation using ad hoc agents [6]. In that work we set bounds
on the extent to which both stationary and non-stationary ad hoc agents could
influence an otherwise stationary team to orient to a desired orientation. The
work presented in this paper is substantially different in that we consider a
completely non-stationary flock and we present a more advanced algorithm for
the ad hoc agents.

Overall, to the best of our knowledge, the work presented in this paper is the
first that uses knowledge of how other agents will react to design controllable
agents with bounded velocities to influence a flock in motion to converge quickly
to a desired heading.

3 Background and Problem Definition

In this section we introduce the concept of ad hoc teamwork and define our
problem.

3.1 Ad Hoc Teamwork

Ad hoc teamwork is a relatively new multiagent systems research area [1, 9, 12]
that examines how an agent ought to act when placed on a team with other
agents such that there was no prior opportunity to coordinate behaviors. As
agents and robots are used with increasing frequency in various cooperative do-
mains, designing agents capable of reasoning about ad hoc teamwork is becom-
ing increasingly important. Ad hoc agents can cooperate within a team without

4

using explicit communication or previously coordinating behaviors among team-
mates. One aspect of ad hoc teamwork involves leading teammates. Consider a
case in which we want to influence a given team of agents to alter their actions
in order to maximize the team utility. One way of doing so is by adding one or
more agents to the team in order to lead them to perform the desired actions.

3.2 Problem Definition

=++ ≈

Fig. 1: An example showing
how an agent’s new velocity
vector is calculated. The black
dot without an arrow repre-
sents the agent in question,
the dots with arrows represent
the agent’s neighbors and their
velocity vectors, and the dot-
ted circle represents the bound-
ary of the agent’s neighborhood.
The agent’s new velocity vec-
tor is calculated as shown at the
bottom of the figure.

In this work we use a simplified version of
Reynolds’ Boid algorithm for flocking [11].
Specifically, similarly to other studies such as
[8, 15], we only consider the Alignment aspect
of Reynolds’ model. We assume that each agent
calculates its orientation for the next time step
to be the average heading of its neighbors.
Throughout this paper, an agent’s neighbors are
the agents located within some set radius of the
agent. An agent is not considered to be a neigh-
bor of itself, so an agent’s current heading is not
considered when calculating its orientation for
the next time step. In order to calculate its ori-
entation for the next time step, each agent com-
putes the vector sum of the velocity vectors of
each of its neighbors and adopts a scaled version
of the resulting vector as its new orientation.
Figure 1 shows an example of how an agent’s
new velocity vector is calculated. At each time
step, each agent moves one step in the direction
of its current vector and then calculates its new
heading based on those of its neighbors, keeping
a constant speed.

Over time, agents behaving as described above will naturally gather into one
or more groups, and these groups will each travel in some direction. However,
in this work we add a small number of ad hoc agents to the flock. These ad hoc
agents attempt to influence the flock to travel in a pre-defined direction — we
refer to this direction as θ∗. This paper addresses two questions: how to orient
the flock to a target heading and how to herd a flock through turns. Hence,
throughout this paper we consider two specific cases. In the Orient case, the
ad hoc agents attempt to influence the flock to travel towards θ∗. In the Herd

case, the ad hoc agents attempt to influence the flock to travel as a cohesive unit
through multiple turns — this can be thought of as influencing the flock towards
a frequently changing θ

∗.
Note that the challenge of designing ad hoc agent behaviors in a dynamic

flocking system is difficult because the action space is continuous. Hence, in our
work we make the simplifying assumption of only considering a limited number
(numAngles) of discrete angle choices for each ad hoc agent.

5

3.3 Simulation Environment

We situate our research on flocking using ad hoc teamwork within the MASON
simulator [10]. Pictures of the Flockers domain are shown in Figure 2. Each agent
points and moves in the direction of its current velocity vector.

(a) (b) (c) (d)

Fig. 2: Images of (a) the start of an Orient trial, (b) the end of an Orient trial,
(c) the start of a Herd trial, and (d) the end of a Herd trial (the black line shows
the approximate path that the flock travelled to reach their current location) in the
MASON Flockers simulation environment. The grey agents are ad hoc agents while
the black agents are other members of the flock.

Videos showing the simulator in action in both cases are available on our
web page2. Our experimental setup using the MASON simulator is described in
much more detail in Section 5.2.

4 1-Step Lookahead Behavior

As specified in Section 3, the variable under our control is the heading of each
ad hoc agent at every time step of the simulation.

In this section we present Algorithm 1, a 1-step lookahead algorithm for de-
termining the individual behavior of each ad hoc agent. This behavior considers
all of the influences on neighbors of the ad hoc agent, such that the ad hoc
agent can determine the best orientation to adopt based on this information.
The 1-step lookahead behavior is a greedy, myopic approach for determining the
best individual behavior for each ad hoc agent, where ‘best’ is defined as the
behavior that will exert the most influence on the next time step.

Note that if we only considered the current orientations of the neighbors
(instead of the influences on these neighbors) when determining the next orien-
tation for the ad hoc agent to adopt, we would only be estimating the state of
each neighbor and hence the resulting orientation adopted by the ad hoc agent
would not be ‘best’.

The variables used throughout Algorithm 1 are defined in Table 1. Two func-
tions are used in Algorithm 1: neighbor.vel returns the velocity vector of neighbor
while neighbor.neighbors returns a set containing the neighbors of neighbor. Note

2 http://ants14-flocking.blogspot.com/

6

that Algorithm 1 is called on each ad hoc agent at each time step, and that the
neighbors of the ad hoc agent at that time step are provided as a parameter to
the algorithm. The output from the algorithm is the orientation that, if adopted
by this ad hoc agent, is predicted to influence its neighbors to face closer to θ

∗

than any of the other numAngles discrete ad hoc orientations considered.

Algorithm 1 bestOrient = 1StepLookahead(neighOfAH)

1: bestOrient← (0, 0)
2: bestDiff←∞
3: for each ad hoc agent orientation vector ahOrient do

4: nOrients← ∅
5: for n ∈ neighOfAH do

6: nOrient← (0, 0)
7: for n’ ∈ n.neighbors do

8: if n’ is an ad hoc agent then

9: nOrient← nOrient + ahOrient
10: else

11: nOrient← nOrient + n’.vel
12: nOrient← nOrient

|n.neighbors|

13: nOrients← {nOrient} ∪ nOrients
14: diff← average difference between the vectors of nOrients and θ∗

15: if diff < bestDiff then

16: bestDiff← diff
17: bestOrient← ahOrient
18: return bestOrient

Variable Definition

bestDiff the smallest difference found so far be-
tween the average orientation vectors of
neighOfAH and θ∗

bestOrient the vector representing the orientation
adopted by the ad hoc agent to obtain
bestDiff

neighOfAH the neighbors of the ad hoc agent
nOrient the predicted next step orientation vec-

tor of neighbor n of the ad hoc agent if
the ad hoc agent adopts ahOrient

nOrients a set containing the predicted next step
orientation vectors of all of the neigh-
bors of the ad hoc agent, assuming the
ad hoc agent adopts ahOrient

Table 1: Variables used in Algorithm 1.

Conceptually, Algorithm 1 is con-
cerned with how the neighbors of the
ad hoc agent are influenced if the
ad hoc agent adopts a particular ori-
entation at this time step. Figure 3
presents a pictorial explanation of the
calculation of nOrient (lines 6-12 in
Algorithm 1). In the figure, nOrient,
the predicted next step orientation
vector of neighbor n of the ad hoc
agent, is calculated to be the average
of n’s neighbors (both marked n’) as
shown below the diagram. In the ex-
ample shown, n is the only neighbor of the ad hoc agent, so nOrients would only
contain this one nOrient. However, numAngles ad hoc agent orientations would
be considered by Algorithm 1, resulting in numAngles different nOrient vectors
competing to be bestOrient.

Now let us walk through the algorithm in more detail. Algorithm 1 considers
each of the numAngles discrete ad hoc agent orientation vectors. For each orien-
tation vector, we consider how each of the neighbors of the ad hoc agent will be
influenced if the ad hoc agent adopts that orientation vector (lines 3-13). Hence,
we consider all of the neighbors of each neighbor of the ad hoc agent (lines 7-11)
— if the neighbor of the neighbor of the ad hoc agent is an ad hoc agent, we
assume that it has the same orientation as the ad hoc agent (even though, in
fact, each ad hoc agent orients itself based on a different set of neighbors, line

7

9), whereas if it is not an ad hoc agent, we calculate its orientation vector based
on its current velocity (line 11). Using this information, we calculate how each
neighbor of the ad hoc agent will be influenced by averaging the orientation
vectors of the each neighbor’s neighbors (lines 12-13). We then pick the ad hoc
agent orientation vector that results in the least difference between θ

∗ and the
neighbors’ current orientation vectors (lines 14-18).

���� �
�
�
�

����
����

��
��
��
��

nn’ n’

,) = nOrient = average(

Fig. 3: Diagram illustrating how nOrient is calcu-
lated in Algorithm 1. Each agent is shown as a dot
with an arrow pointing towards its heading. The
ad hoc agent is the agent with the larger dot. The
dotted circles represent the neighborhood of the
agent at the center of the circle.

If we assume that there
are numAgents of agents in
the flock, we can calculate the
worst-case complexity of Algo-
rithm 1 as follows. Line 3 ex-
ecutes numAngles times, line
5 executes at most numAgents
times, and line 7 executes at
most numAgents. Hence, the
complexity for Algorithm 1 is
O(numAngles ∗ numAgents2).

Results regarding how Al-
gorithm 1 performs in both the
Orient case and the Herd case
can be found in Section 5.

5 Experiments

In this section we describe our experiments testing the ad hoc agent behavior
presented in Section 4 against a baseline method. We describe experiments for
both the Orient case and the Herd case.

5.1 Baseline Ad Hoc Agent Behavior

In this subsection we describe the Face Desired Orientation heuristic behavior,
which serves as our baseline for comparison. When following this behavior, the
ad hoc agents always orient towards θ

∗. Note that under this behavior the ad
hoc agents do not consider their neighbors or anything about their environment
when determining how to behave.

This behavior is modeled after work by Jadbabaie et al. [8]. They show that a
flock with a controllable agent will eventually converge to the controllable agent’s
heading. The Face Desired Orientation ad hoc agent behavior is essentially the
behavior described in their work, except that in our experiments we include
multiple controllable agents facing θ

∗.

5.2 Experimental Setup

We utilize the MASON simulator [10] for our experiments in this paper. The
MASON simulator was introduced in Section 3.3, but in this section we present

8

the details of the environment that are important for completely understanding
and replicating our experimental setup.

The baseline experimental settings for variables are given in Table 2 for both
the Orient case and the Herd case. We chose for 10% of the flock to be ad hoc
agents as a trade-off between providing enough ad hoc agents to influence the
flock and keeping the ad hoc agents few enough to require intelligent behavior
in order to influence the flock effectively.

Variable Orient Default Herd Default

toroidal domain yes no
domain height 150 300
domain width 150 300
units moved by each agent per time step 0.7 0.2
number of agents in flock (numAgents) 200 200
% of flock that are ad hoc agents 10% 10%
neighborhood for each agent (diameter) 20 20

Table 2: Experimental settings for variables in the Orient and Herd cases. Italicized
values were default settings for the simulator.

For the Orient case, the domain is toroidal. This means that agents that
move off one edge of our domain reappear on the opposite edge moving in the
same direction. However, for the Herd case we removed the toroidal nature of
the domain so as to make the domain more realistic. Hence, if agents move off
one edge of our domain in the Herd case, they will not reappear.

For the Orient case, agents are initially randomly placed with random ini-
tial headings throughout the domain. For the Herd case, agents are initially
randomly placed within a square in the top left of the domain, where this square
occupies 4% of the domain. Agents are assigned random headings that are within
90 degrees of the initial θ∗ for the Herd case.

We only consider numAngles discrete angle choices for each ad hoc agent. In
all of our experiments, numAngles is 50, meaning that the unit circle is equally
divided into 50 segments beginning at 0 radians and each of these orientations
is considered as a possible orientation for each ad hoc agent. numAngles=50
was chosen after some experimentation using the Orient case in which numAn-
gles=20 resulted in a higher average number of steps for the flock to converge to
θ
∗ and numAngles=100 did not require significantly fewer steps for convergence.

In our experiments, we conclude that the flock has converged to θ
∗ when

every agent (that is not an ad hoc agent) is facing within 0.1 radians of θ∗. Other
stopping criteria, such as when 90% of the agents are facing within 0.1 radians
of θ∗, could have also been used. We tested this alternate stopping criteria in
the Orient case, but found that using it did not qualitatively alter the results.

In all of our Orient experiments, we run 50 trials for each experimental
setting. In ourHerd experiments we run 100 trials for each experimental setting.
In the Orient case we use the same 50 random seeds for each set of experiments
for the purpose of variance reduction, where in the Herd case we use the same
100 random seeds. The random seeds are used to determine the exact placement
and orientation of all of the agents at the start of a simulation run.

9

5.3 Orient Experimental Results

Figure 4 shows the number of time steps needed for the flock to converge to
θ
∗ for the baseline algorithm and the 1-step lookahead algorithm presented in
Algorithm 1 using the experimental setup described in Section 5.2 as well as a
few variants on this baseline setup. In order to further investigate the dynamics
of this domain, in one variant we alter the percentage of the flock that are ad
hoc agents while in the other variant we alter the number of agents in the flock.
Note that although multiple metrics will be used to judge performance in the
Herd case, only time to convergence is used in this case since in a toroidal world
agents can not become permanently separated from the flock unless they are also
travelling towards θ∗.

200 Agents,
10% Ad Hoc

300 Agents,
10% Ad Hoc

100 Agents,
10% Ad Hoc

200 Agents,
20% Ad Hoc

200 Agents,
5% Ad Hoc

0

10

20

30

40

50

60

70

80

Ti
m
e
St
ep

s
Re

qu
ire

d
fo
r C

on
ve

rg
en

ce

34

26

66

16

68

26
18

58

12

49

Time Steps Required
Face Desired Orientation
1-Step Lookahead

Fig. 4: Results from experiments using the experimental setup described in Section 5.2
as well as four variants on this experimental set-up. The results shown in the figure are
averaged over 50 trials and the error bars represent the 95% confidence interval.

The results shown in Figure 4 clearly show that the 1-Step Lookahead Be-
havior performs significantly better than the baseline method in all of our exper-
iments except when the flock size was decreased from 200 agents to 100 agents.
In this experiment, although our algorithm did perform better than the baseline,
we believe it did not significantly improve over the baseline because the agents
were too sparse in the environment to have a strong effect on each other.

Altering the percentage of ad hoc agents in the flock clearly alters the amount
of agents we can control, which affects the amount of influence we can exert over
the flock. Hence, as can be seen in Figure 4, flocks with higher percentages of ad
hoc agents will, on average, converge to θ

∗ in fewer time steps than flocks with
lower percentages of ad hoc agents.

5.4 Herd Experimental Results

In our Herd experiments, we started all of the agents in a square occupying 4%
of the domain in the upper left corner (see Figure 2.c for a picture representing
a sample starting configuration). Then the ad hoc agents influenced the flock
to travel downward for 300 time steps, then rightward for 300 time steps, then
downward for 300 time steps, then leftward for 300 time steps, and finally down-
ward — this path represented the path a flock might need to take to avoid an
obstacle in its path.

10

Start

DANGER

Fig. 5: Diagram show-
ing the approximate path
along which the flock is
influenced to travel. The
dashed line shows the
path if turns were in-
stantaneous, and two arcs
are shown at each turn
to show what the path
looks like when 100 or
200 time steps are used
to turn. The square shows
the flock’s starting area.

Different numbers of time steps were used by the
ad hoc agents to influence the flock to turn in these
four turns. The ad hoc agents were always influenc-
ing the flock to orient towards θ∗, so during the turns
the value of θ∗ was interpolated linearly between the
values of θ∗ on the surrounding straightaways accord-
ing to the number of time steps allowed for the turn.
Hence, θ∗ changed more rapidly when fewer time steps
were allowed.

Figure 5 depicts the approximate path along which
the flock is influenced to travel, including a depiction
of how turns of different lengths affect this path. We
maintain approximately the same time to complete
all four turns by shortening the straightaway times
depending on the amount of time allocated to turn-
ing. Flocks that are influenced by the ad hoc agents to
turn quicker will inherently have the opportunity to
finish their last turn quicker (as can be seen in Figure
5). Hence, steps-optimal represents the minimal num-
ber of time steps that could be spent by an agent to
complete the four required straightaways and turns.

In the Herd experiments, we consider three metrics when determining how
much controllability the ad hoc agents exerted on the flock: (1) the average total
number of time steps required for the flock to converge to facing downward at the
end of the path (steps-converge), (2) the difference between steps-converge and
steps-optimal (diff), and (3) the average number of agents that become separated
from the flock and do not return to the flock before the flock converges to facing
downward at the end of the path (lost). We also report the number of trials in
which at least one agent was separated from the flock and did not return before
the flock converged to facing downward at the end of the path, as this makes
lost easier to interpret.

Table 3 shows results of both the baseline algorithm and the 1-step lookahead
algorithm using the experimental setup described above for the Herd case. As
can be seen in the table, usage of the 1-step lookahead algorithm results in
significantly better steps-converge and diff than the baseline algorithm for each
of the turn times tested in the experiment. On average, flocks that are influenced
to turn quicker are more likely to have a greater average diff. Additionally, note
that given this experimental setup, the ad hoc agents would do best to use
around 30 time steps to influence the flock through each turn, as steps-converge
is least when 30 time steps are used for each turn.

Experiments were run in which the percentage of ad hoc agents in the flock
was altered to 5% of the flock and 20% of the flock. Results were comparable
to those presented in Table 3, but did differ in two significant ways. First, when
20% of the flock consisted of ad hoc agents, no agents were lost during our
experiments. Second, when 20% of the flock consisted of ad hoc agents, turns

11
Steps-Converge Steps-Optimal Diff Lost Times Lost

10 Steps to Turn - Baseline 1243.0 (4.6) 1205 38.0 17.0 1
30 Steps to Turn - Baseline 1242.3 (2.6) 1215 27.3 17.0 1
50 Steps to Turn - Baseline 1245.8 (2.2) 1225 20.8 0 0
100 Steps to Turn - Baseline 1261.0 (1.6) 1250 11.0 17.0 1
200 Steps to Turn - Baseline 1301.9 (1.0) 1300 1.9 17.0 1
10 Steps to Turn - 1-Step Lookahead 1237.0 (5.4) 1205 32.0 13.5 2
30 Steps to Turn - 1-Step Lookahead 1236.5 (4.6) 1215 21.5 17.0 1
50 Steps to Turn - 1-Step Lookahead 1238.6 (3.0) 1225 13.6 17.0 1
100 Steps to Turn - 1-Step Lookahead 1254.5 (1.3) 1250 4.5 0 0
200 Steps to Turn - 1-Step Lookahead 1300.6 (0.6) 1300 0.6 17.0 1

Table 3: Results for the baseline algorithm and the 1-step lookahead algorithm when
using the experimental setup described for the Herd case. The numbers in parentheses
show the 95% confidence interval.

lasting 10 steps had the least steps-converge but were still able to maintain the
consistency of the flock. When only 5% of the flock consisted of ad hoc agents,
more ad hoc agents were lost on quicker turns — specifically, 22 out of 100 runs
lost some agents when turns lasted for 10 time steps, and on average 63.7 out
of 200 agents were lost on these runs. When 5% of the flock consisted of ad hoc
agents, turns lasting about 50 steps were best in terms of steps-converge.

Experiments were also run in which only one of the 200 agents was an ad
hoc agent. Hence, one ad hoc agent was attempting to influence the entire flock
through the series of four turns. In these experiments, we found that when using
the 1-step lookahead algorithm, a neighborhood of 2000 in diameter was sufficient
to not lose any agents on any of our 100 runs and it also obtained steps-optimal.
We also tested a neighborhood of 200 in diameter, and in this experiment 86 of
the 100 trials lost at least one agents (and in fact, all 86 lost all of the other
199 agents in the flock). Likewise, it is interesting to consider that the baseline
algorithm was not able to maintain the consistency of the flock even with a 2000
diameter neighborhood, instead losing all of the other 199 agents in all 100 runs.

6 Conclusion

In this work, we set out to determine how ad hoc agents should behave in order
to orient a flock towards a target heading as quickly as possible and to herd
a flock around turns quickly but while still maintaining the flock. Our work is
situated in a limited ad hoc teamwork domain, so although we have knowledge
of the behavior of the flock, we are only able to influence them indirectly via
the behavior of the ad hoc agents within the flock. This paper introduces an
algorithm that the ad hoc agents can use to influence the flock — a greedy
lookahead behavior. We ran extensive experiments using this algorithm in a
simulated flocking domain, where we observed that in such a setting, a greedy
lookahead behavior is an effective behavior for the ad hoc agents to adopt.

There are plenty of avenues for extensions to this work. We could consider
other types of algorithms for the ad hoc agents, such as deeper lookahead searches
or algorithms in which the ad hoc agents coordinate their behaviors. Addition-
ally, as this work focused on a limited version of Reynolds’ flocking model in
which agents calculate their next heading to be the average heading of their
neighbors, a promising direction for future work is to extend the algorithms pre-

12

sented in this work to Reynolds’ complete flocking model in which agents also
consider separation and cohesion when calculating the next heading.

7 Acknowledgements

This work has taken place in the Learning Agents Research Group (LARG) at UT
Austin. LARG research is supported in part by NSF (CNS-1330072, CNS-1305287),
ONR (21C184-01), and AFOSR (FA8750-14-1-0070).

References

1. M. Bowling and P. McCracken. Coordination and adaptation in impromptu teams.
In AAAI, pages 53–58, 2005.

2. H. Celikkanat and E. Sahin. Steering self-organized robot flocks through externally
guided individuals. Neural Computing & Applications, 19(6):849–865, Sep 2010.

3. I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and
decision-making in animal groups on the move. Nature, 433(7025):513–516, Feb
2005.

4. F. Cucker and C. Huepe. Flocking with informed agents. MathematicS In Action,
1(1):1–25, 2008.

5. E. Ferrante, A. E. Turgut, N. Mathews, M. Birattari, and M. Dorigo. Flocking in
stationary and non-stationary environments: A novel communication strategy for
heading alignment. In PPSN, pages 331–340. Springer-Verlag, 2010.

6. K. Genter, N. Agmon, and P. Stone. Ad hoc teamwork for leading a flock. In
AAMAS, May 2013.

7. J. Han, M. Li, and L. Guo. Soft control on collective behavior of a group of
autonomous agents by a shill agent. Systems Science and Complexity, 19:54–62,
2006.

8. A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Control,
48(6):988 – 1001, Jun 2003.

9. E. Jones, B. Browning, M. B. Dias, B. Argall, M. M. Veloso, and A. T. Stentz.
Dynamically formed heterogeneous robot teams performing tightly-coordinated
tasks. In ICRA, pages 570 – 575, 2006.

10. S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. Mason: A multi-
agent simulation environment. Simulation: Transactions of the Society for Model-

ing and Simulation International, 81(7):517–527, 2005.
11. C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. SIG-

GRAPH, 21:25–34, Aug 1987.
12. P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein. Ad hoc autonomous

agent teams: Collaboration without pre-coordination. In AAAI, 2010.
13. H. Su, X. Wang, and Z. Lin. Flocking of multi-agents with a virtual leader. IEEE

Transactions on Automatic Control, 54(2):293–307, Feb 2009.
14. A. Turgut, H. Celikkanat, F. Gokce, and E. Sahin. Self-organized flocking in mobile

robot swarms. Swarm Intelligence, 2(2-4):97–120, 2008.
15. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Sochet. Novel type of phase

transition in a system of self-driven particles. Physical Review Letters, 75(6), 1995.
16. C.-H. Yu, J. Werfel, and R. Nagpal. Collective decision-making in multi-agent

systems by implicit leadership. In W. van der Hoek, G. A. Kaminka, Y. Lesprance,
M. Luck, and S. Sen, editors, AAMAS, pages 1189–1196, 2010.

