
In AAMAS Autonomous Robots and Multirobot Systems Workshop (ARMS13),
Saint Paul, MN, USA, May 2013.

Improving Efficiency of Leading a Flock in Ad

Hoc Teamwork Settings

Katie Genter1, Noa Agmon2, and Peter Stone1

1 University of Texas at Austin, Austin TX 78701, USA
{katie, pstone}@cs.utexas.edu

2 Bar Ilan University, Ramat Gan, 52900, Israel
agmon@cs.biu.ac.il

Abstract. Designing robots that can influence their teammates to be-
have in a particular manner is desirable — especially if the robots are
able to do this without prior coordination or explicit communication. In
this paper, we examine an aspect of the problem of leading teammates
in an ad hoc teamwork setting. Specifically, we consider how to best uti-
lize ad hoc agents to lead a flock to a desired orientation. Specifically,
we extend upon recent work [4] by presenting a more efficient search
methodology for determining how the ad hoc agents should orient them-
selves to optimally influence a flock.

1 Introduction

Robots are being designed to work in various cooperative domains by an ever
increasing number of parties. Hence, it is important that these robots be capable
of reasoning about ad hoc teamwork [10]. Robots that can reason about ad hoc
teamwork can cooperate within a team without needing explicit communication
and without needing to previously coordinate behaviors with their teammates.

Consider a platoon of robots attempting to travel from the parking lot at
a local park to a bridge that needs to be repaired. The terrain between the
parking lot and the bridge is varied, and the straight line path between the two
locations will be difficult for the robots to traverse. Now consider that most
of the robots that will be traveling from the parking lot to the bridge have a
very simple method of planning a path to travel: they generally head directly
towards their goal location but will adopt the orientation of any teammates
within close proximity. If allowed to traverse from the parking lot to the bridge
on their own, these simple robots will need to traverse steep inclines and very
dense brush. However, consider if a few more sophisticated robots were included
in the platoon that could observe the path planning method used by the simple
robots and had some previous knowledge about the terrain of the park. These
more sophisticated robots could then influence the simpler robots to alter their
path (since the simpler robots adopt the orientation of any teammates within
close proximity) such that the worst of the steep inclines and dense brush would
be avoided. This would allow the entire platoon to reach the bridge in less time



2

and with less damage to the robots. Note that the more sophisticated robots can
not just plan optimally for themselves, as doing so may not influence the simpler
robots to take a path that avoids the worst of the steep inclines and dense bush.

In this example, the more sophisticated robots influenced — or led — the
simpler robots to adopt a better path from the parking lot to the bridge. One
aspect of ad hoc teamwork involves this idea of leading teammates to perform
desired actions or adopt particular behaviors. In particular, this paper builds
upon our recent work concentrated on leading flocking agents [4].

Flocking is a behavior found in various species in nature including flocks of
birds, schools of fish, and swarms of insects. In each of these cases, the animals
follow a simple local behavior rule that results in a stable, well defined group
behavior. Research on flocking behavior can be found in various disciplines such
as physics [13], graphics [9], biology [1, 2], and distributed control theory [6, 7,
11]. The main focus of each of these research directions is to characterize the
resulting group behavior. In this paper we consider the problem of leading a
team of flocking agents in an ad hoc teamwork setting. Specifically, we are given
a team of flocking agents following a known, well-defined rule characterizing the
flock’s behavior and we wish to examine to what extent it is possible to influence
the flock.

The ad hoc teamwork perspective of this problem is highlighted by two facts.
Firstly, we are unable to explicitly control the behavior of the flocking agents,
thus we can only attempt to influence them implicitly using the behavior of the
ad hoc agents. The flock does not know that the ad hoc agents are different than
any other members of the flock, and hence each ad hoc agent is able to influence
the flock the same as any other member of the flock. Secondly, all agents —
both flocking and ad hoc — act as one team, and their only desire is to optimize
team utility. The ad hoc agents cannot communicate with the flocking agents,
but they can coordinate actions among themselves.

This paper is based upon work presented at AAMAS’13 [4], and extends
upon the work presented in that paper. In the AAMAS’13 paper we presented
a specification for the flocking problem as a new scenario for studying ad hoc
teamwork and an initial theoretical and empirical analysis. Specifically, we set
bounds on the extent of influence the ad hoc agents can have on the team when
all the agents have zero velocity, and we provided an empirical evaluation of the
suggested solution using our custom-designed simulator FlockSim.

One of the main contributions of this paper is a new search methodology
for determining how the ad hoc agents should orient themselves to optimally
influence a flock. This search methodology is much more efficient than the one
presented in our AAMAS’13 work. Another major contribution of this paper is
a discussion regarding how the ad hoc agents can improve their leading behavior
when they are able to move with non-zero velocity. A review of the problem
definition and important concepts from our AAMAS’13 work is presented in
Section 2. The improved search methodology for determining how the ad hoc
agents should orient themselves to optimally influence a flock is presented in
Section 3, while the discussion of improvements in the ad hoc agents’ leading



3

behavior when they are able to move with non-zero velocity is given in Section
4. Section 5 situates this research in the literature, and Section 6 concludes.

2 Problem Definition

In recent work [4], we introduced a flocking model that was initially inspired by
Vicsek et al. [13]. For clarity, we summarize the important points that will be
utilized in this paper in this section.

In our flocking model, n agents which are visually indistinguishable inhabit
some environment where each agent ai moves with some velocity vi. At each
time step t, each agent ai has a position pi(t) = (xi(t), yi(t)) in the environment
and an orientation θi(t). Each agent’s position pi(t) at time t is updated after
its orientation is updated, such that

xi(t) = xi(t − 1) + vi cos(θi(t))

yi(t) = yi(t − 1) − vi sin(θi(t))

We let Ni(t) be the set of ni(t) ≤ n agents (including agent ai) at time
t which are visible to agent ai. An agent is visible to agent ai if its position
is located within a visibility cone of angle α centered on orientation θi(t) and
extending from agent ai for an unlimited distance (see Figure 1 for an example).
We say that angle α defines the visibility cone for each agent. Under our flocking
model, the global orientation of agent ai at time step t + 1, θi(t + 1), is set to
be the average orientation of all agents in Ni(t) (including itself) at time t.

ai

aj

α

θi(t)

Fig. 1: Angle α defines the visibility cone for agent ai. Agent aj is visible to agent ai.

A border agent is an ad hoc agent that is located within the visibility cone
of the flocking agents, on the edge of the visibility cone that is farthest to the
target. A border influence orientation is a flocking agent orientation at which an
ad hoc agent is a border agent. See Figure 2 for an example with a border agent.

The n agents that comprise the flock consist of k ad hoc agents and m flocking

agents, where k+m = n. Note that the k ad hoc agents and m flocking agents are
visually indistinguishable. The ad hoc agents {a0, . . . , ak−1} are agents whose



4

Visibility cone

Border influence orientation

Border agent

Target heading

a1

a2

a0

Target orientation (θ∗)

Fig. 2: An example of a border agent (a0) and the resulting border influence orientation
of the flocking agent (a2).

behavior we can control directly, while the flocking agents {ak, . . . , an−1} are
agents that we cannot directly control. In this paper, we make the simplification
that although we can have many flocking agents, they all must have the same
position p(t) in the environment.

An x-step plan specifies the orientations that each ad hoc agent {a0, a1, . . . ak−1}
will align to at each time step when given exactly x time steps in which to act.

3 Backward Search Approach

In recent work [4], we present a forward search approach for determining how
the ad hoc agents should orient themselves to optimally influence the flocking
agents. The forward search works as follows. Beginning at the initial flocking
orientation, we consider each possible border influence orientation. If the border
influence orientation is reachable from the initial flocking orientation, then we
consider each possible border influence orientation from this orientation. If the
border influence orientation is not reachable from the initial flocking orientation,
then we turn to the farthest reachable orientation and then determine if the
border influence orientation is now reachable (and repeat this process until the
border influence orientation is reachable). We repeat this entire process until
the target is within reach, and we select the plan that reaches the target in the
fewest number of steps.

This forward search approach works in a very intuitive manner, but it re-
quires checking 2k possible combinations of the number of ad hoc agents influ-
encing the flocking agents at each time step. For example, with three ad hoc
agents, the following eight combinations of targets must be checked at each time
step: [a0, a1, a2], [a0, a1], [a0, a2], [a0], [a1, a2], [a1], [a2], []. Hence, in this section we
present a more efficient backward search approach for determining how the ad
hoc agents should orient themselves to optimally influence the flocking agents.



5

Initial After Step 1 After Step 2 After Step 3

b

d e

c

a

Fig. 3: Example showing how the backward search works. Each black dot represents
an ad hoc agent, where the ad hoc agents’ orientations (for those within the flocking
agent’s visibility cone) are represented by lines, while each angle represents the visibility
cone of a flocking agent. Each arrow represents a possible step in the backward search
— the letters labelling each arrow are referenced in the paragraph that explains the
backward search. Each search terminates in the initial configuration. Note that the
best flocking sequence (shown by larger arrows) takes 2 steps.

To assist in understanding how the backward search approach works, consider
the example provided in Figure 3. Each possible step in Figure 3 is labeled with
a letter, which we use to refer to the steps as we explain how the backward
search approach works. We start by considering the farthest orientations from the
target orientation at which the flocking agents can be and still reach the target
orientation in one step when influenced by various numbers of ad hoc agents
(a and b). We add each of the orientations from which the target orientation
is reachable to a separate list. Then, while none of the orientations in the front
of the lists are reachable from the initial orientation, we consider the farthest
orientations from the orientation at the front of each list that the flocking agent
can be and still reach the orientation at the front of the list in one step when
influenced by various amounts of ad hoc agents (d). We continue this process
until an orientation at the front of a list is reachable from the flocking agents’
initial orientation (c and e). We then know the orientations in this list are the
desired orientations for the flocking agents at each time step. A list of necessary
ad hoc agent orientations is also built during this search.

Algorithm 1 uses such a backward search approach to calculate and return the
number of steps needed to reach θ∗ and the necessary orientations for each of the
ad hoc agents for each of these steps. Throughout the algorithm, element.get(x)
returns the 0-indexed x item in element (where element is a list object), ele-
ment.add(y) adds item y to the end of element, element.add(x,y) adds item y at
index x of the element, element.add(empty, x, y) adds a list containing x at index



6

0 and y at index 1 to element, element.remove(x) removes the item at index x of
element, element.size() returns the number of items contained in element, and
last is the index of the last item of the element. The variables used throughout
Algorithm 1 are defined in Table 1. Remember that although the ki(t) ad hoc
agents are located at many arbitrary locations, the mi(t) flocking agents are
located at a single position pi and begin with identical orientations.

Variable Definition

adHocOrient the orientation the ad hoc agents must adopt at this time step in order
for the flocking agents to reach target from current

bestAHPlan the ad hoc agent plan that uses the least number of time steps to reach
θ
∗

bestFSeq the flocking sequence of orientations that uses the least number of time
steps to reach θ

∗

ccw whether the flocking agents are rotating counter-clockwise

current the orientation the flocking agents are currently oriented towards

currentAHPlan the plan containing the orientations for each ad hoc agent at each time
step so far

currentFSeq the sequence of orientations for the flocking agents at each time step
so far

initFOrient the initial orientation of the flocking agents

maxSteps the maximum number of steps a plan can be

numAH the number of ad hoc agents within the flocking agents’ visibility cone

m the number of flocking agents

target the orientation the flocking agents should be oriented towards on the
next time step

k the number of ad hoc agents

Table 1: Variables used in Algorithm 1.

In the worst case, line 4 of Algorithm 1 executes maxSteps times, line 5
executes k2 times, line 8 executes k times, line 16 executes k times, and line 22
executes k times. Hence, lines 5-25 execute at most maxSteps ∗ (2k2) times. To
compare, the main part of the forward search presented in [4] executed at most
(2k)(k + 1)(maxSteps) times.

The backward search presented here is much more efficient than the forward
search presented in [4]. We ran tests to record the time required for both a
forward search and a backward search on 100 runs, where the same randomiza-
tion seed was used for both searches. For these experiments, v = 0, α = 90◦,
θ∗ = 270◦, the initial flocking orientation is 90◦, and the ad hoc agents and flock-
ing agents are placed randomly in a 950 by 500 environment. When run with
teams composed of one to four ad hoc agents and one to two flocking agents
on a Dell Precision-T3500 desktop computer, an optimal plan is found in 0.013
seconds on average by the forward search and in 0.005 seconds on average by
the backward search. Hence, the backward search presented in this paper is 2.6
times faster than the forward search presented in [4] for the experimental setup
just described.

Although the backward search presented here is more efficient, there are in-
deed benefits to utilizing a forward search. One such benefit becomes clear when
we consider ad hoc agents with non-zero velocities. In this case, if a backward



7

Algorithm 1 plan, steps = calcPlan()

1: target← θ∗

2: currentFSeq← empty list
3: currentAHPlan← empty list
4: while no plan ∈ currentFSeq is reachable by initFOrient ∨ larger than maxSteps

do

5: for j = 0 to currentFSeq.size() do

6: if currentFSeq.size() > 0 then

7: target← currentFSeq.get(j).get(0)
8: for i = 1 to k do

9: if ccw then

10: current← target− numAHπ

numAH+m

11: else

12: current← target + numAHπ

numAH+m

13: if i == numAH ∧ target == θ∗ then

14: currentFSeq.add(empty, current, target)
15: currentAHPlan.add(empty list of lists)
16: for each ad hoc agent x in the flocking agents’ visibility cone when facing current

do

17: currentAHPlan.get(last).get(x).add(adHocOrient)
18: else if i == numAH then

19: currentFSeq.add(currentFSeq.get(j))
20: currentFSeq.get(last).add(0, current)
21: currentAHPlan.add(currentAHPlan.get(j))
22: for each ad hoc agent x in the flocking agents’ visibility cone when facing current

do

23: currentAHPlan.get(last).get(x).add(adHocOrient)
24: currentFSeq.remove(j)
25: currentAHPlan.remove(j)
26: bestFSeq← currentFSeq.get(k), where currentFSeq.get(k).get(0) is reachable by initFOrient
27: bestAHPlan← currentAHPlan.get(k)
28: return bestAHPlan



8

search is used, we are unable to determine exactly where each ad hoc agent will
be in the final steps of the plan, because the earlier steps of the plan will not
have been determined when we are determining the later steps. We consider one
solution to this problem later in this paper, but utilizing a forward search makes
planning for ad hoc agents with non-zero velocities easier and more intuitive.
Nonetheless, the efficiency gained by using a backward search such as described
here is necessary as we continue to scale our work up to utilize more ad hoc
agents.

Theorem 1. Given θ∗ and assuming the mi(t) flocking agents are influenced

only by the ki(t) ad hoc agents and the mi(t) flocking agents at time t, then if

θ∗ is reachable, the ad hoc agents are guaranteed to lead the flocking agents to

θ∗ in the least number of time steps possible when the ad hoc agents determine

their plan based on Algorithm 1.

Proof Sketch: Line 4 ensures that the search will stop once one or more plans in
currentFSeq are reachable by initFOrient.

Throughout the first iteration of line 4, the target will equal θ∗. If it is possible
to reach θ∗ from initFOrient in some number of steps less than maxSteps, then
at least one orientation will be found on the first iteration of line 4 from which
θ∗ can be reached.

During subsequent iterations of line 4, target will be set to be some orienta-
tion that is closer to initFOrient than θ∗. During each iteration, if it is possible
to reach θ∗ from initFOrient in some number of steps less than maxSteps, then
at least one orientation will be found on the each iteration of line 4 from which
target can be reached. Hence, each iteration of line 4 will result in at least one
flocking sequence being improved such that the orientation at the front of the
sequence is closer to initFOrient than the value that was previously at the front
of the flocking sequence (and that is now the second orientation in the flocking
sequence).

If it is possible to reach θ∗ from initFOrient in some number of steps less
than maxSteps, one flocking sequence must eventually be improved such that
the element at the front of the flocking sequence is reachable from initFOrient.
We know this flocking sequence is optimal length, since if an optimal flocking
sequence of lesser length existed, it would have been discovered on a previous
iteration of line 4. �

4 Utilizing Ad Hoc Agents with Non-zero Velocity

In the previous section we showed how the backward search approach utilized
in Algorithm 1 can be used to calculate the necessary orientations for each ad
hoc agent to orient the flocking agent towards a target orientation θ∗. However,
in the previous section we only considered ad hoc agents with zero velocity —
in other words, stationary ad hoc agents. In this section we consider how using
ad hoc agents with non-zero velocity can improve the ad hoc agents’ ability to
influence the flocking agents to turn towards θ∗.



9

For some configurations of ad hoc agents and flocking agents, ad hoc agents
with non-zero velocity can influence the flocking agents to reach their target
orientation in fewer time steps than ad hoc agents with zero velocity. We state
this in Theorem 2.

Theorem 2. Non-stationary ad hoc agents can have additional influence on

the flocking agents compared to stationary ad hoc agents; specifically, the added

velocity can influence the flocking agents to reach θ∗ quicker.

Proof. We prove this via an existence proof - consider the example presented
in Figure 4. The ad hoc agents’ positions are represented by black dots, the ad
hoc agents’ orientations (for those within the flocking agent’s visibility cone)
are represented by lines, the flocking agent is represented by the vertex of its
visibility cone, and any movement to occur before the next step is represented
by arrows.

Three steps are required for the flocking agent to reach θ∗ when stationary
ad hoc agents are utilized. However, when the ad hoc agents have non-zero
velocities, an additional ad hoc agent is able to enter the flocking agent’s visibility
cone for the second time step. The two ad hoc agents are then able to influence
the flocking agent to turn to θ∗ on the second time step in the non-stationary ad
hoc agents case. Hence, in this case the added velocity did influence the flocking
agent to reach θ∗ quicker. ⊓⊔

��
��
��
��

��

�
�
�
�

����
��
��
��

��

��
��
��
��

��

�
�
�
�

�
�
�
�

��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

����
��

����
�
�
�
�

��
��
��
��

��
��
��
��

Non−Stationary
Ad Hoc Agents

Stationary

Agents

After Second StepAfter First StepInitial After Third Step

Fig. 4: The existence proof example presented in the proof for Theorem 2. In this
example, the initial flocking orientation is 90◦ and θ∗ = 270◦.

In some cases, ad hoc agents with non-zero velocity actually have less in-
fluence over the flocking agents than ad hoc agents with zero velocity. This
statement may seem counter-intuitive. However, an example of such a case is
provided in Figure 5 as part of the proof sketch for Theorem 3.



10

Theorem 3. Non-stationary ad hoc agents can influence the flocking agents to

reach θ∗ slower than stationary ad hoc agents.

Proof Sketch: We argue this via an existence proof - consider the example pre-
sented in Figure 5. The ad hoc agents’ positions are represented by black dots,
the ad hoc agents’ orientations (for those within the flocking agent’s visibility
cone) are represented by lines, the flocking agent is represented by the vertex of
its visibility cone, and any movement to occur before the next step is represented
by arrows.

Two steps are required for the flocking agent to reach θ∗ when stationary
ad hoc agents are utilized. When the ad hoc agents have non-zero velocities,
however, one of the ad hoc agents that is within the flocking agent’s visibility
cone after the first step in the stationary ad hoc agents case is not within the
flocking agent’s visibility cone in the non-stationary ad hoc agents case. This is
because its velocity in the first step carried it outside the visibility cone for the
second step. This led to three steps being required to turn the flocking agent to θ∗

in the non-stationary ad hoc agents case. Hence, in this case the added velocity
caused the optimal plan to influence the flocking agent to reach θ∗ slower. �

��
��
��
��

��

�
�
�
�

����

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�
�

��

��
��
��
��

��

����

��
��
��
��

��

��

��
��
��
��

��
��
��
��
���������� ������

������
������
������

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�� ����

�� ��

��

Stationary
Agents

Non−Stationary
Ad Hoc Agents

Initial After First Step After Second Step After Third Step

Fig. 5: The existence proof example presented in the proof for Theorem 3. In this
example, the initial flocking orientation is 90◦ and θ∗ = 270◦.

Of course, if non-stationary ad hoc agents are able to choose their velocity,
they can do no worse than stationary ad hoc agents because they could choose
to adopt a velocity of zero and hence perform the same as the stationary ad hoc
agents.



11

4.1 Altering Ad Hoc Agent Behavior

The backward search approach presented in Algorithm 1 finds optimal plans for
ad hoc agents with zero velocities. In this subsection, we present a methodology
to alter ad hoc agent plans output from Algorithm 1 such that they can be used
by ad hoc agents with non-zero velocities.

Ad hoc agents with non-zero velocities may move such that they are not
within the flocking agents’ visibility cone at time steps when they would have
been had they been stationary. Likewise, ad hoc agents with non-zero velocities
may move such that they are within the flocking agents’ visibility cone at time
steps when they would not have been had they been stationary. To make the
output plan from Algorithm 1 usable for ad hoc agents with non-zero velocities,
we run an alteration method over the output plan. This alteration method keeps
the same desired sequence of orientations for the flocking agents, but recalculates
the ad hoc agent orientations as needed to account for the possibility of more
or less ad hoc agents being within the flocking agents’ visibility cone during
some time steps. Note that in some cases, the alteration method may not be
able to alter the ad hoc agent behavior such that the flocking agents will still be
influenced as they would have been had the ad hoc agents been stationary.

4.2 Replanning Ad Hoc Agent Behavior

In some cases, the alteration method discussed above results in ad hoc agents
with non-zero velocities influencing the flocking agents to their target orientation
quicker than ad hoc agents with zero velocities. However, now that we are dealing
with ad hoc agents with non-zero velocities, we can purposely use their movement
to influence the flocking agents to their target orientation quicker. In this section,
we present two plan repair methods that can improve upon the ad hoc plans
found by Algorithm 1 and altered using the method described above.

The ad hoc agent orientations (and hence direction of movement) are set by
Algorithm 1 (and altered as described above) at each time step such that the ad
hoc agents within the flocking agents’ visibility cone guide the flocking agent to
the desired orientation at the next time step. The ad hoc agents that are outside
of the flocking agents’ visibility cone, however, do not influence the flocking
agents’ orientation at the next time step. Hence, how we set their orientations
has no influence on the flocking agents, since these ad hoc agents are not visible
to the flocking agents. As such, we can set the orientations of these ad hoc agents
such that they move in a particular direction or towards a particular point and
potentially have more influence over the flocking agents at a future step.

The first plan repair method calls for at least one ad hoc agent to be in
the flocking agents’ visibility cone during at least one time step when it was
not under the stationary plan. Having an additional ad hoc agent inside the
visibility cone of the flocking agents allows the ad hoc agents to more strongly
influence the flocking agents towards the target orientation θ∗. The second plan
repair method calls for at least one ad hoc agent that was a border agent at a
particular time step to move such that the border influence orientation of the



12

flocking agent can be closer to θ∗. Allowing the flocking agents to be oriented
closer to θ∗ could allow the flocking agent to be influenced (in this step or a
future step) to orient to θ∗ in one fewer step than before.

It is possible that not all plans returned by Algorithm 1 will be able to be
repaired to an optimal plan using the plan repair methods presented above.
If our goal is to minimize the number of steps required to orient the flocking
agents to θ∗, we may need to consider other plans that were found by Algorithm
1 but pruned out. Often Algorithm 1 finds multiple minimal-step plans, but
it picks only one to return. We believe it is sufficient to consider repairing all
the minimal-step plans found by Algorithm 1 — and that no better plan could
be found by considering repairing any longer plans found by Algorithm 1. This
notion is stated as Conjecture 1.

Conjecture 1. Running the two plan repair methods described above on all the
minimal size plans returned by Algorithm 1 will obtain an optimal plan.

We believe Conjecture 1 to be true because any X + 1-step plans must have
an unnecessary step.

If we assume Conjecture 1 is true, then it is natural to consider whether all of
the minimal size plans returned by Algorithm 1 must be considered or whether
it is sufficient to consider just one of the minimal size plans. Additionally, if it
is sufficient to consider just one minimal size plan — can any minimal size plan
be repaired to an optimal plan or can only some minimal size plans be repaired
to an optimal plan? These are all currently open questions.

5 Related Work

Although there has been much work in the field of multiagent teamwork, there
has been relatively little work towards getting agents to collaborate towards a
common goal without pre-coordination. This paper contributes towards answer-
ing the ad hoc teamwork challenge [10]. Most prior multiagent teamwork re-
search requires explicit coordination protocols or communication protocols (e.g.
SharedPlans, STEAM, and GPGP) [5, 12, 3]. However, our work is different in
that we do not assume that any protocol is known by all agents.

Han, Li and Guo study how one agent can influence the direction in which
an entire flock of agents is moving [6]. Similarly to our work, in their work each
agent follows a simple control rule based on its neighbors. However, unlike our
work they only consider one ad hoc agent with unlimited, non-constant velocity.
This allows their ad hoc agent to move to any position in the environment within
one time step, which is rather unrealistic.

Reynolds introduced the original flocking model when he presented three
flocking behaviors — collision avoidance, velocity matching, and flock centering
[9]. His work was focused on creating graphical models that looked and behaved
like real flocks, and hence did not consider adding controllable agents to the flock
like we do.



13

Vicsek et al. considered just the flock centering aspect of Reynolds’ model
[13]. Hence, they use a model where all of the particles move at a constant
velocity and adopt the average direction of the particles in their neighborhood.
However, like Reynolds’ work, they were only concerned with simulating flock
behavior and not with adding controllable agents to the flock.

Jadbabaie, Lin, and Morse build on Vicsek et al.’s paper [7]. They use a
simpler direction update than Vicsek et al. and they show that a flock with a
controllable agent will eventually converge to the controllable agent’s heading.
Like us, they show that a controllable agent can be used to influence the behavior
of the other agents in a flock. However, they are only concerned with getting
the flock to converge eventually, whereas we would like to do so as quickly as
possible. Su, Wang, and Lin also present work that is concerned with using a
controllable agent to make the flock converge eventually [11].

Jones et al. perform an empirical study of dynamically formed teams of
heterogeneous robots in a multirobot treasure hunt domain [8]. They assume
that all of the robots know they are working as a team and that all of the robots
can communicate with one another, whereas in our work we do not assume that
the teammates realize they are working on a team with the ad hoc agents.

6 Conclusions

In this paper, we build on our recent work [4] by continuing to consider the prob-
lem of leading a flock to a desired orientation using ad hoc agents. This paper’s
main contributions are (1) a more efficient search methodology for determining
how the ad hoc agents should orient themselves to optimally influence a flock
and (2) a preliminary look into how the ad hoc agents can improve their leading
behavior when they are able to move with non-zero velocity.

Although we did consider the non-stationary ad hoc agent case in this work,
there is much more to be studied with regard to this case. As noted in this paper,
if we have a minimal ad hoc agent plan for stationary agents, it remains to be
seen whether only this minimal plan must be repaired, whether all minimal plans
originally found must be repaired, or even whether all plans originally found must
be repaired, in order to obtain an optimal plan for non-stationary ad hoc agents.
Additionally, the non-stationary ad hoc agent case is just an initial step towards
solving the general case of non-stationary ad hoc and flocking agents. As such,
we do plan to continue extending the work presented here towards this general
case.

References

1. W. Bialeka, A. Cavagnab, I. Giardinab, T. Morad, E. Silvestrib, M. Vialeb, and
A. Walczak. Statistical mechanics for natural flocks of birds. Proceedings of the

National Academy of Sciences, 109(11), 2012.
2. H. H. Charlotte K. Hemelrijk. Some causes of the variable shape of flocks of birds.

PLoS ONE, 6(8), 2011.



14

3. K. S. Decker and V. R. Lesser. Readings in agents. chapter Designing a family of
coordination algorithms, pages 450–457. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

4. K. Genter, N. Agmon, and P. Stone. Ad hoc teamwork for leading a flock. In
AAMAS’13, May 2013.

5. B. J. Grosz and S. Kraus. Collaborative plans for complex group action. AIJ,
86(2):269 – 357, 1996.

6. J. Han, M. Li, and L. Guo. Soft control on collective behavior of a group of
autonomous agents by a shill agent. Systems Science and Complexity, 19:54–62,
2006.

7. A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Control,
48(6):988 – 1001, June 2003.

8. E. Jones, B. Browning, M. B. Dias, B. Argall, M. M. Veloso, and A. T. Stentz.
Dynamically formed heterogeneous robot teams performing tightly-coordinated
tasks. In ICRA’06, pages 570 – 575, 2006.

9. C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. SIG-

GRAPH, 21:25–34, August 1987.
10. P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein. Ad hoc autonomous

agent teams: Collaboration without pre-coordination. In AAAI’10, 2010.
11. H. Su, X. Wang, and Z. Lin. Flocking of multi-agents with a virtual leader. IEEE

Transactions on Automatic Control, 54(2):293–307, Feb 2009.
12. M. Tambe. Towards flexible teamwork. JAIR, 7:83–124, 1997.
13. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Sochet. Novel type of phase

transition in a system of self-driven particles. PHYS REV LETT., 75:1226, 1995.


