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Abstract. Robotic soccer is a challenging research domain which in-
volves multiple agents that need to collaborate in an adversarial envi-
ronment to achieve speci�c objectives. In this paper, we describe CMU-
nited, the team of small robotic agents that we developed to enter the
RoboCup-97 competition. We designed and built the robotic agents, de-
vised the appropriate vision algorithm, and developed and implemented
algorithms for strategic collaboration between the robots in an uncertain
and dynamic environment. The robots can organize themselves in forma-
tions, hold speci�c roles, and pursue their goals. In game situations, they
have demonstrated their collaborative behaviors on multiple occasions.
The robots can also switch roles to maximize the overall performance
of the team. We present an overview of the vision processing algorithm
which successfully tracks multiple moving objects and predicts trajec-
tories. The paper then focusses on the agent behaviors ranging from
low-level individual behaviors to coordinated, strategic team behaviors.
CMUnited won the RoboCup-97 small-robot competition at IJCAI-97 in
Nagoya, Japan.

1 Introduction

As robots become more adept at operating in the real world, the high-level issues
of collaborative and adversarial planning and learning in real-time situations are
becoming more important. An interesting emerging domain that is particularly
appropriate for studying these issues is Robotic soccer, as �rst proposed by [9]
and actively pursued within the RoboCup initiative [7, 1]. Although realistic
simulation environments exist [10, 11] and are useful, it is important to have
some physical robotic agents in order to address the full complexity of the task.

Robotic soccer with real robots is a challenging domain for many reasons. The
fast-paced nature of the domain necessitates real-time sensing coupled with quick
behaving and decision making. Furthermore, the behaviors and decision making
processes can range from the most simple reactive behaviors, such as moving
directly towards the ball, to arbitrarily complex reasoning procedures that take
into account the actions and perceived strategies of teammates and opponents.
Opportunities, and indeed demands, for innovative and novel techniques abound.

One of the advantages of Robotic Soccer is that it enables the direct compari-
son of di�erent systems: they can be matched against each other in competitions.
In particular, the system described here was designed speci�cally for RoboCup97



in which several robotic teams competed on an \even playing �eld." [6]. The
scienti�c opportunities involved in this e�ort are enormous. Our particular sci-
enti�c focus is on multiagent systems coupled with collaborative and adversarial
learning in an environment that requires real-time dynamic planning.

This paper describes the overall architecture of our robotic soccer system.
The combination of robust hardware, real-time vision, and intelligent control
represented a signi�cant challenge which we were able to successfully meet. The
work described in this paper is fully implemented as our CMUnited-97 RoboCup
team. CMUnited-97 won the RoboCup-97 small-robot competition at IJCAI-97
in Nagoya, Japan. Our team scored a total of thirteen goals and only su�ered
one. Figure 1 shows a picture of our robotic agents.

Fig. 1. The CMUnited-97 robot team that competed in RoboCup-97.

The speci�c contributions of the CMUnited-97 robot team, as presented in
this paper, include:

{ The complete design and development of robots with robust navigation and
communication hardware.

{ Reliable perception through the use and extension of a Kalman-Bucy �lter.
Sensing through our vision processing algorithm allows for (i) tracking of
multiple moving objects; (ii) and prediction of object movement, particularly
the ball, even when inevitable sharp trajectory changes occur.

{ Multiagent strategic reasoning. Collaboration between robots is achieved
through: (i) a 
exible role-based approach by which the task space is de-
composed and agents are assigned subtasks; (ii) a 
exible team structure
by which agents are organized in formations, homogeneous agents 
exibly
switch roles within formations, and agents switch formations dynamically;
and (iii) alternative plans allowing for collaboration (e.g. passing or shoot-
ing), are controlled by pre-de�ned metrics for real-time evaluation.



2 Overall Architecture

The architecture of our system addresses the combination of high-level and low-
level reasoning by viewing the overall system as the combination of the robots,
a vision camera over-looking the playing �eld connected to a centralized inter-
face computer, and several clients as the minds of the small-size robot players.
Figure 2 sketches the building blocks of the architecture.
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Fig. 2. CMUnited-97 Architecture with Global Perception and Distributed Reaction.

The complete system is fully autonomous consisting of a well-de�ned and
challenging processing cycle. The global vision algorithm perceives the dynamic
environment and processes the images, giving the positions of each robot and
the ball. This information is sent to an o�-board controller and distributed to
the di�erent agent algorithms. Each agent evaluates the world state and uses its
strategic knowledge to decide what to do next. Actions are motion commands
that are sent by the o�-board controller through radio communication. Com-
mands can be broadcast or sent directly to individual agents. Each robot has an
identi�cation binary code that is used on-board to detect commands intended
for that robot.

The fact that perception is achieved by a video camera that over-looks the
complete �eld o�ers an opportunity to get a global view of the world state.
Although this setup may simplify the sharing of information among multiple
agents, it presents a challenge for reliable and real-time processing of the move-
ment of multiple moving objects { in our case, the ball, �ve agents on our team,
and �ve agents on the opposing team (see Section 3).

The robots are built using two coreless DC motors (di�erential drive) with
built-in magnetic encoders. The various speed and acceleration values are ob-
tained by two specialized motion control processors (PID) which are controlled
by a 8-bit micro-controller. The robots are equipped with an on-board two-way
radio link, which allows for data exchange with an o�-board processing unit.
This wireless communication link also enables sending and receiving data to and
from other robots at speeds of up to 40 Kbit/s.



One of the interesting characteristics of our robots is that the core electronics
is separated from the outside frame. The robot dimensions are as follows:

{ Length: limited by the size of the circuit board, which is 9.4cm; actual total
length depends on the frame.

{ Width: limited by the size of the wheels and motors' axis, which is 9.4cm.
{ Frame: we have three sizes of frames, namely a base frame { 12cm � 12cm,
the elongated frame { 18cm � 10cm, and a wide frame { 15cm � 12cm.

{ Height: 12 cm; Weight: 1.5 lb

The base frame allows for various con�gurations of the �nal external frame.
The frames are articulated at the edges and made of perforated steel strips and
sheets. The 
exible frame structure allows for the easy access to the components
and easy use of variations of frames, as a function of the purpose of the robots.

Around 60% of the robot weight is made up by the battery packs. The on-
board electronics include an 8-bit micro-controller, an on-board memory of 512
bytes RAM, and 2 Kbyte EEPROM, and a half-duplex FM 418 MHz radio.

The dimensions of the circuit boards could be adapted to �t di�erent shapes
and sizes of the main frame. More and smaller boards can be stacked inside the
main frame, making it possible to incorporate other components if required.

We created a command server for handling commands from the individual
o�-board robot reasoning processes. The radio control processor is connected
to the server computer via one serial link. Thus individual \brains" from net-
worked machines must communicate to their robot \bodies" through the server
computer. One of the command server's roles is to collect and translate these
commands and to send them to the radio control processor.

3 Real-Time Perception for Multiple Agents

The vision requirements for robotic soccer have been examined by di�erent re-
searchers [12, 13]. Systems with on-board and o�-board types have appeared in
recent years. All have found that the reactiveness of soccer robots requires a
vision system with a high processing cycle time. However, due to the rich vi-
sual input, researchers have found that dedicated processors or even DSPs are
often needed [2, 12]. We currently use a frame-grabber with frame-rate transfer
from a 3CCD camera. A 166MHz Pentium processor is dedicated to the vision
processing.

3.1 Color-based Detection

The RoboCup rules specify well de�ned colors for di�erent objects in the �eld
and these are used as the major cue for object detection. Our vision-processing is
therefore color based. Teammates and opponents are identi�ed by blue and yel-
low circles. We add an additional pink patch for each of our robots to determine
teammate orientation. The ball is an orange golf ball (see Figure 1).



Noise is inherent in all vision systems. False detections in the current system
are often of a magnitude of 100 spurious detections per frame. The system elim-
inates false detections via two di�erent methods. First, color patches of size not
matching the ones on the robots are discarded. This technique �lters o� most
\salt and pepper" noise. Second, by using a minimum-distance data association
mechanism, all false detections are eliminated.

3.2 Data Association

The color-based detection algorithm returns an unordered list of robots for each
frame. To be able to control the robots, the system must associate each detected
robot in the �eld with a robot identi�cation.

Each of the robots is �tted with the same color tops and no attempts are
made to di�erentiate them via color hue. Experience has shown that, in order
to di�erentiate �ve di�erent robots by hue, �ve signi�cantly di�erent hues are
needed. However, the rules of the RoboCup game eliminate green (�eld), white
(markings), orange (ball), blue and yellow (team and opponent) from the list of
possibilities. Furthermore, inevitable variations in lighting conditions over the
area of the �eld and noise in the sensing system are enough to make a hue-based
detection scheme impractical.

With each robot �tted with the same color, visually, all robots on the same
team appear identical to the visual system. Data association addresses the prob-
lem of retaining robot identi�cation in subsequent frames. We devised an algo-
rithm to retain association based on the spatial locations of the robots.

We assume that the starting positions of all the robots are known. This can be
done trivially by specifying the location of the robots at the start time. However,
as subsequent frames are processed, the locations of the robots change due to
robot movements (due to controlled actions or adversarial pushes). Association
can be achieved by making two complementary assumptions: 1) Robot displace-
ments over consecutive frames are local; 2) The vision system can detect objects
at a constant frame rate. By measuring the maximum robot velocity, we know
that in subsequent frames, the robot is not able to move out of a 3cm radius
circular region. This knowledge provides the basis of our association technique.

These assumptions provide the basis to the minimum distance scheme that
we devised to retain association between consecutive frames. During consecutive
frames, association is maintained by searching for objects within a minimum
displacement. Current robot positions are matched with the closest positions
from the previous frame. Our greedy algorithm searches through all possible
matches, from the smallest distance pair upwards. Whenever a matched pair is
found, it greedily accepts it as a matching pair.

Due to noise, it is possible for the detection system to leave a robot unde-
tected. In this case, the number of robots detected on the past frame is larger
than the number of robots in the current frame. After the greedy matching pro-
cess, the remaining unmatched positions from the past frame will be carried
over to the current frame. The robots corresponding to the unmatched loca-
tions will be assumed to be stationary. Note that if the missing rate of the



detection algorithm were high and frequent, this minimum distance association
technique would easily lose the robots. However, this greedy algorithm was used
in RoboCup-97 successfully, showing its reliability when combined with our ac-
curate and robust vision detection system.

3.3 Tracking and Prediction

In the setting of a robot soccer game, the ability to merely detect the locations
of objects on the �eld is often not enough. Like for real soccer players, it is often
essential for robots to predict future locations of the ball (or of the other players).
We have used an Extended Kalman-Bucy �lter (EKF) [5] for ball movement
prediction. The EKF is a recursive estimator for a possibly non-linear system. It
involves a two-step iterative process, namely update and propagate. The current
best estimate of the system's state and its error covariance is computed on each
iteration. During the update step, the current observations are used to re�ne the
current estimate and recompute the covariance. During the propagate step, the
state and covariance of the system at the next time step are calculated using the
system's equations. The process then repeats, alternating between the update
and the propagate steps.

We capture the ball's state with �ve variables: the ball's x and y location,
the ball's velocities in the x and y direction and a friction parameter (�k) for
the surface. The system is represented by the following non-linear di�erence
equations:
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The equations model the ball with simple Newtonian dynamics, where �k
is a friction term which discounts the velocity at each time step, and �t is the
time-step size.

The prediction equations are:

xk+n = xk + _xk ��t � �kn
yk+n = yk + _yk ��t � �kn

�kn =

�
1 if �k = 1
(1� (�k)n)=(1� �k) otherwise

The prediction equations are derived by solving the recursive equation ob-
tained by substituting the value of xk+i where i decreases from n to 1. We
are only interested in the predicted spatial location of the ball thus we do not
explicitly calculate the predicted velocity.

Through a careful adjustment of the �lter parameters modelling the system,
we were able to achieve successful tracking and, in particular prediction of the
ball trajectory, even when sharp bounces occur.



Our vision processing approach worked perfectly during the RoboCup-97
games. We were able to detect and track 11 objects (5 teammates, 5 opponents
and a ball) at 30 frames/s. The prediction provided by the EKF allowed the goal-
keeper to look ahead in time and predict the best defending position. During the
game, no goals were su�ered due to miscalculation of the predicted ball position.

4 Multiagent Strategy Control

We achieve multiagent strategy through the combination of accurate individual
and collaborative behaviors. Agents reason through the use of persistent reactive
behaviors that are developed to aim at reaching team objectives.

4.1 Single-agent Behaviors

In order to be able to successfully collaborate, agents require robust basic skills.
These skills include the ability to generate a path to given location, and the
ability to handle the ball, namely to direct the ball in a given direction, and
to intercept a moving ball. All of these skills must be executed while avoiding
obstacles such as the walls and other robots.

Non-holonomic path generation

The non-holonomic path planning problem has been addressed by many re-
searchers, e.g., [8, 4]. However, most of the algorithms deal with static worlds
and generate pre-planned global paths. In the robot soccer domain, this is not
possible as the domain is inherently dynamic and response times need to be very
high. Furthermore, the world dynamics include also possible interference from
other robots (e.g., pushing), making precisely mapped out paths ine�ective and
unnecessary.

We devised and implemented a reactive controller for our system, which is
computationally inexpensive, deals with dynamic environments, and recovers
from noisy command execution and possible interferences. A reactive controller
also has possible disadvantages, as it may generate sub-optimal paths, due to
local minima. We introduced a failure recovery routine to handle such failures.

The navigational movement control for our robots is hence done via reac-
tive control. The control rules described below are inspired by the Braitenburg
vehicle [3]. The Braitenburg love vehicle de�nes a reactive control mechanism
that directs a di�erential-drive robot to a certain target. A similar behavior
is required in the system; however, the love vehicle's control mechanism is too
simplistic and, in some start con�gurations, tends to converge to the goal very
slowly. We devised a modi�ed set of reactive control formulae that allows for
e�ective adjustment of the control trajectory:

(v; _�) =

�
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4
or j�j > 3�
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(0; sgn(�) � �0) otherwise



where v and _� are the desired translational and rotational velocities, respectively,
� is the direction of the target relative to the robot (�� < � < �), �0 is the in-
place rotational velocity, and � and � are the base translational and rotational
velocities, respectively. The translational and rotational velocities can be trans-
lated to di�erential drive parameters via a simple, invertible linear transform.
This set of control formulae di�ers from the love vehicle in that it takes into
account the orientation of the robot with respect to the target and explicitly
adds rotational control. This set of control rules implicitly allows for heading
independence, i.e., the control rules allow for both forward and backward move-
ments, whichever one is most e�cient to execute. Figure 3 shows an actual run
of the reactive control algorithm described above.

Fig. 3. Sample trace of the execution of the reactive control algorithm. The target
point is marked with a cross.

Ball handling

If a robot is to accurately direct the ball towards a target position, it must be
able to approach the ball from a speci�ed direction. Using the ball prediction
from the vision system, the robot aims at a point on the far side of the target
position. The robots are equipped with two methods of doing so:

{ Ball collection: Moving behind a ball and knocking it towards the target.
{ Ball interception: Waiting for the ball to cross its path and then inter-
cepting the moving ball towards the target.

When using the ball collection behavior, the robot considers a line from the
target position to the ball's current or predicted position, depending on whether
or not the ball is moving. The robot then plans a path to a point on the line and
behind the ball such that it does not hit the ball on the way and such that it
ends up facing the target position. Finally, the robot accelerates to the target.
Figure 4(a) illustrates this behavior.

When using the ball interception behavior (Figure 4(b)), on the other hand,
the robot considers a line from itself to the target position and determines where
the ball's path will intersect this line. The robot then positions itself along this
line so that it will be able to accelerate to the point of intersection at the same
time that the ball arrives.

In practice, the robot chooses from between its two ball handling routines
based on whether the ball will eventually cross its path at a point such that the
robot could intercept it towards the goal. Thus, the robot gives precedence to the
ball interception routine, only using ball collection when necessary. When using
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Fig. 4. Single-agent behaviors to enable team collaboration (a) Ball collection (aiming
for a pass or to the goal); (b) Ball interception (receiving a pass).

ball collection, it actually aims at the ball's predicted location a �xed time in the
future so as to eventually position itself in a place from which it can intercept
the ball towards the target.

Obstacle avoidance

In the robotic soccer �eld, there are often obstacles between the robot and its
goal location. Our robots try to avoid collisions by planning a path around
the obstacles. Due to the highly dynamic nature of this domain, our obstacle
avoidance algorithm uses closed-loop control by which the robots continually
replan their goal positions around obstacles. In the event that an obstacle blocks
the direct path to the goal location, the robot aims to one side of the obstacle
until it is in a position such that it can move directly to its original goal. Rather
than planning the entire path to the goal location at once, the robot just looks
ahead to the �rst obstacle in its way under the assumption that other robots
are continually moving around. Using the reactive control described above, the
robot continually reevaluates its target position. For an illustration, see Figure 5.
The robot starts by trying to go straight towards its �nal target along line a.

Line a

Robot

Intermediate
Target

Final Robot Target

Obstacle

Fig. 5. Obstacle avoidance through dynamic generation of intermediate targets.

When it comes across an obstacle within a certain distance of itself and of line a,
it aims at an intermediate target to the side, and slightly beyond the obstacle.
The robot goes around the obstacle the short way, unless it is at the edge of the



�eld. Using reactive control, the robot continually recomputes line a until the
obstacle is no longer in its path. As it comes across further obstacles, it aims
at additional intermediate targets until it obtains an unobstructed path to the
�nal target.

Even with obstacle avoidance in place, the robots can occasionally get stuck
against other robots or against the wall. Particularly if opponent robots do
not use obstacle avoidance, collisions are inevitable. When unable to move, our
robots identify the source of the problem as the closest obstacle and \unstick"
themselves by moving away. Once free, normal control resumes.

4.2 Multiagent Behaviors

Although the single-agent behaviors are very e�ective when just a single robot
is on the �eld, if all �ve robots were simultaneously chasing the ball and trying
to shoot it at the goal, chaos would result. In order to achieve coordinated
multiagent behavior, we organize the �ve robots into a 
exible team structure.

The team structure, or formation, de�nes a set of roles, or positions with as-
sociated behaviors. The robots are then dynamically mapped into the positions.
Each robot is equipped with the knowledge required to play any position in each
of several formations.

The positions indicate the areas of the �eld which the robots should move to
in the default situation. There are also di�erent active modes which determine
when a given robot should move to the ball or do something else instead. Finally,
the robot with the ball chooses whether to shoot or pass to a teammate using a
passing evaluation function.

These high-level, multiagent behaviors were originally developed in simu-
lation and then transferred over to the robot-control code. Only the run-time
passing evaluation function was rede�ned. Further details, particularly about
the 
exible team structures, are available in [14].

Positions, Formations, and Active Modes

Positions are de�ned as 
exible regions within which the player attempts to
move towards the ball. For example, a robot playing the \right-wing" (or \right
forward") position remains on the right side of the �eld near the opponents' goal
until the ball comes towards it. Positions are classi�ed as defender, mid�elder,
forward based on the locations of these regions. They are also given behavior
speci�cations in terms of which other positions should be considered as potential
pass-receivers.

At any given time each of the robots plays a particular position on the �eld.
However, each robot has all of the knowledge necessary to play any position.
Therefore the robots can|and do|switch positions on the 
y. For example,
robots A and B switch positions when robot A chases the ball into the region
of robot B. Then robot A continues chasing the ball, and robot B moves to the
position vacated by A.

The pre-de�ned positions known to all players are collected into formations,
which are also commonly known. An example of a formation is the collection



of positions consisting of the goalkeeper, one defender, one mid�elder, and two
attackers. Another possible formation consists of the goalkeeper, two defenders
and two attackers. For illustration, see Figure 6.
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Fig. 6. Two di�erent de�ned formations. Notice that several of the positions are reused
between the two formations.

As is the case for position-switches, the robots switch formations based on
pre-determined conditions. For example, if the team is losing with very not much
time left in the game, the robots would switch to a more o�ensive formation. On
the other hand, if winning, they might choose a defensive formation. The precise
conditions for switching positions and formations are decided upon in advance,
in what we call a \locker-room agreement," [14] in order to eliminate the need
for complex on-line negotiation protocols.

Although the default action of each robot is to go to its position and face
the ball, there are three active modes from which the robot must choose. The
default position-holding behavior occurs when the robot is in an inactive state.
However, when the ball is nearby, the robot changes into an active state. In the
active state, the robot moves towards the ball, attempting either to pass it to
a teammate or to shoot it towards the goal based on an evaluation function
that takes into account teammate and opponent positions. A robot that is the
intended receiver of a pass moves into the auxiliary state in which it tries to
intercept a moving ball towards the goal. Our current decision function sets the
robot that is closest to the ball into the active state; the intended receiver robot
(if any) into the auxiliary state; and all other robots into the inactive state.

Run-time Evaluation of Collaborative Opportunities

One of CMUnited-97's main features is the robots' ability to collaborate by
passing the ball. When in active mode, the robots use an evaluation function
that takes into account teammate and opponent positions to determine whether
to pass the ball or whether to shoot. In particular, as part of the formation
de�nition, each position has a set of positions to which it considers passing. For
example, a defender might consider passing to any forward or mid�elder, while
a forward would consider passing to other forwards, but not backwards to a
mid�elder or defender.



For each such position that is occupied by a teammate, the robot evaluates
the pass to that position as well as evaluating its own shot. To evaluate each
possible pass, the robot computes the obstruction-free-index of the two line seg-
ments that the ball must traverse if the receiver is to shoot the ball (lines b and
c in Figure 7). In the case of a shot, only one line segment must be considered
(line a). The value of each possible pass or shot is the product of the relevant
obstruction-free-indices. Robots can be biased towards passing or shooting by
further multiplying the values by a factor determined by the relative proximities
of the active robot and the potential receivers to the goal. The robot chooses
the pass or shot with the maximum value. The obstruction-free-index of line
segment l is computed by the following algorithm (variable names correspond to
those in Figure 7):

1. obstruction-free-index = 1.
2. For each opponent O:

{ Compute the distance x from O to l and the distance y along l to l's
origin, i.e. the end at which the ball will be kicked by the robot (See
Figure 7).

{ De�ne constantsmin-dist andmax-denominator. Opponents farther than
min-dist from l are not considered. When discounting obstruction-free-

index in the next step, the y distance is never considered to be larger
than max-denominator. For example, in Figure 7, the opponent near the
goal would be evaluated with y = max-denominator, rather than its
actual distance from the ball. The reasoning is that beyond distance
max-denominator, the opponent has enough time to block the ball: the
extra distance is no longer useful.

{ if x < min-dist and x < y,
obstruction-free-index *= x=MIN (max-demoninator,y).

3. return obstruction-free-index.

Thus the obstruction-free-index re
ects how easily an opponent could inter-
cept the pass or the subsequent shot. The closer the opponent is to the line and
the farther it is from the ball, the better chance it has of intercepting the ball.

The Goalkeeper

The goalkeeper robot has both special hardware and special software. Thus,
it does not switch positions or active modes like the others. The goalkeeper's
physical frame is distinct from that of the other robots in that it is as long as
allowed under the RoboCup-97 rules (18cm) so as to block as much of the goal
as possible. The goalkeeper's role is to prevent the ball from entering the goal.
It stays parallel to and close to the goal, aiming always to be directly even with
the ball's lateral coordinate on the �eld.

Ideally, simply staying even with the ball would guarantee that the ball would
never get past the goalkeeper. However, since the robots cannot accelerate as fast
as the ball can, it would be possible to defeat such a behavior. Therefore, the
goalkeeper continually monitors the ball's trajectory. In some cases it moves to
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Fig. 7. Run-time pass evaluation is based on position of opponents.

the ball's predicted destination point ahead of time. The decision of when to
move to the predicted ball position is both crucial and di�cult, as illustrated in
Figure 8. Our goalkeeper robot currently take into account the predicted velocity
and direction of the ball to select its moves.
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Fig. 8. Goalkeeping.

5 Discussion and Conclusion

CMUnited-97 successfully demonstrated the feasibility and e�ectiveness of teams
of multiagent robotic systems. Within this paradigm, one of the major challenges
was to \close the loop," i.e., to integrate all the di�erent modules, ranging from
perception to strategic multiagent reasoning. CMUnited is an example of a fully
implemented multiagent system in which the loop is closed. In addition, we
implemented interesting strategic behaviors, including agent collaboration and
real-time evaluation of alternative actions.



It is generally very di�cult to accumulate signi�cant scienti�c results to test
teams of robots. Realistically, extended runs are prohibited by battery limita-
tions and the di�culty of keeping many robots operational concurrently. Fur-
thermore, we only had the resources to build a single team of �ve robots, with
one spare so far. Therefore, we o�er a restricted evaluation of CMUnited based
on the results of four e�ective 10-minute games that were played at RoboCup-
97. We also include anecdotal evidence of the multiagent capabilities of the
CMUnited-97 robotic soccer team. Table 1 shows the results of the games at
RoboCup-97.

Opponent Score

NAIST, Institute of Science and Technology, Japan 5-0
MICROB, University of Paris VI , France 3-1
University of Girona, Catalonia, Spain 2-0

NAIST, Japan (�nals) 3-0

TOTAL 13-1

Table 1. The scores of CMUnited's games in the small robot league of RoboCup-97.
CMUnited-97 won all four games.

In total, CMUnited-97 scored thirteen goals, allowing only one against. The
one goal against was scored by the CMUnited goalkeeper against itself, though
under an attacking situation from France. We re�ned the goalkeeper's goal be-
havior, as presented in this paper, following the observation of our goalkeeper's
error.

As the matches proceeded, spectators noticed many of the team behaviors
described in the paper. The robots switched positions during the games, and
there were several successful passes. The most impressive goal of the tournament
was the result of a 4-way passing play: one robot 1 passed to a second robot 2,
which passed back to robot 1; then robot 1 passed to a third robot 3, which shot
the ball into the goal.

In general, the robots' behaviors were visually appealing and entertaining to
the spectators. Several people attained a �rst-hand appreciation for the di�culty
of the task as we let them try controlling a single robot with a joystick program
that we developed. All of these people (several children and a few adults) found
it quite di�cult to maneuver a single robot well enough to direct a ball into
an open goal. These people in particular were impressed with the facility with
which the robots were able to autonomously pass, score, and defend.

We are aware that many issues are clearly open for further research and
development. We are currently systematically identifying them and addressing
them towards our next team version. In particular, we are planning on enhancing
the robot's behaviors by using machine learning techniques. We are currently
developing techniques to accumulate and analyze real robot data.
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