
Obfuscated Databases and Group Privacy

Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin

{arvindn,shmat}@cs.utexas.edu

ABSTRACT
We investigate whether it is possible to encrypt a database
and then give it away in such a form that users can still ac-
cess it, but only in a restricted way. In contrast to conven-
tional privacy mechanisms that aim to prevent any access
to individual records, we aim to restrict the set of queries
that can be feasibly evaluated on the encrypted database.

We start with a simple form of database obfuscation which
makes database records indistinguishable from lookup func-
tions. The only feasible operation on an obfuscated record
is to look up some attribute Y by supplying the value of
another attribute X that appears in the same record (i.e.,
someone who does not know X cannot feasibly retrieve Y).
We then (i) generalize our construction to conjunctions of
equality tests on any attributes of the database, and (ii)
achieve a new property we call group privacy. This property
ensures that it is easy to retrieve individual records or small
subsets of records from the encrypted database by identify-
ing them precisely, but “mass harvesting” queries matching
a large number of records are computationally infeasible.

Our constructions are non-interactive. The database is
transformed in such a way that all queries except those ex-
plicitly allowed by the privacy policy become computation-
ally infeasible, i.e., our solutions do not rely on any access-
control software or hardware.

Categories and Subject Descriptors:
E.3[Data Encryption]; H.2.7[Database Administration]:
Security, integrity, and protection

General Terms: Security

Keywords: Database privacy, Obfuscation

1. INTRODUCTION
Conventional privacy mechanisms usually provide all-or-

nothing privacy. For example, secure multi-party computa-
tion schemes enable two or more parties to compute some
joint function while revealing no information about their re-
spective inputs except what is leaked by the result of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’05, November 7–11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0011 ...$5.00.

computation. Privacy-preserving data mining aims to com-
pletely hide individual records while computing global sta-
tistical properties of the database. Search on encrypted data
and private information retrieval enable the user to retrieve
data from an untrusted server without revealing the query.

In this paper, we investigate a different concept of privacy.
Consider a data owner who wants to distribute a database to
potential users. Instead of hiding individual data entries, he
wants to obfuscate the database so that only certain queries
can be evaluated on it, i.e., the goal is to ensure that the
database, after it has been given out to users, can be ac-
cessed only in the ways permitted by the privacy policy.
Note that there is no interaction between the data owner and
the user when the latter accesses the obfuscated database.

Our constructions show how to obfuscate the database
before distributing it to users so that only the queries per-
mitted by the policy are computationally feasible. This con-
cept of privacy is incomparable to conventional definitions
because, depending on the policy, a permitted query may or
even should reveal individual data entries.

For example, a college alumni directory may be obfuscated
in such a way that someone who already knows a person’s
name and year of graduation is able to look up that per-
son’s email address, yet spammers cannot indiscriminately
harvest addresses listed in the directory. Employees of a
credit bureau need to have access to customers’ records so
that they can respond to reports of fraudulent transactions,
yet one may want to restrict the bureau’s ability to compile
a list of customers’ addresses and sell it to a third party.

We develop provably secure obfuscation techniques for
several types of queries. We do not assume that users of the
obfuscated database access it through a trusted third party,
nor that they use trusted or “tamper-proof” access-control
software or hardware (in practice, such schemes are vulnera-
ble to circumvention and reverse-engineering, while trusted
third parties are scarce and often impractical). Our con-
structions are cryptographically strong, i.e., they assume an
adversary who is limited only by his computational power.

We prove security in the standard “virtual black-box”
model for obfuscation proposed by Barak et al. [2]. Intu-
itively, a database is securely obfuscated if the view of any
efficient adversary with access to the obfuscation can be ef-
ficiently simulated by a simulator who has access only to
the ideal functionality, which is secure by definition. The
ideal functionality can be thought of as the desired privacy
policy for the database. One of our contributions is coming
up with several ideal functionalities that capture interesting
privacy policies for databases.

Directed-access databases. Our “warm-up” construc-
tion is a directed-access database. Some attributes of the
database are designated as query attributes, and the rest
as data attributes. The database is securely obfuscated if,
for any record, it is infeasible to retrieve the values of the
data attributes without supplying the values of the query
attributes, yet a user who knows the query attributes can
easily retrieve the corresponding data attributes.

To illustrate by example, a directed-access obfuscation of
a telephone directory has the property that it is easy to
look up the phone number corresponding to a particular
name-address pair, but queries such as “retrieve all phone
numbers stored in the directory” or “retrieve all names”
are computationally infeasible. Such a directory is secure
against abusive harvesting, but still provides useful func-
tionality. Note that it may be possible to efficiently enu-
merate all name-address pairs because these fields have less
entropy than regular cryptographic keys, and thus learn the
entire database through the permitted queries. Because the
database is accessed only in permitted ways, this does not
violate the standard definition of obfuscation. Below, we
give some examples where it is not feasible to enumerate all
possible values for query attributes.

The directed-access property of a single database record
can be modeled as a point function, i.e., a function from
{0, 1}n to {0, 1} that returns 1 on exactly one input x (in
our case, query attributes are the arguments of the point
function). Directed-access obfuscation guarantees that the
adversary’s view of any obfuscated record can be efficiently
simulated with access only to this point function. There-
fore, for this “warm-up” problem, we can use obfuscation
techniques for point functions such as [22]. Informally, we
encrypt the data attributes with a key derived from hashed
query attributes. The only computationally feasible way to
retrieve the data attributes is to supply the corresponding
query attributes. If the retriever does not know the right
query attributes, no information can be extracted at all.

Group-exponential databases. We then consider a more
interesting privacy policy, which requires that computational
cost of access be exponential in the number of database
records retrieved. We refer to this new concept of privacy
as group privacy. It ensures that users of the obfuscated
database can retrieve individual records or small subsets of
records by identifying them precisely, i.e., by submitting
queries which are satisfied only by these records. Queries
matching a large number of records are infeasible.

We generalize the idea of directed access to queries con-
sisting of conjunctions of equality tests on query attributes,
and then to any boolean circuit over attribute equalities.
The user can evaluate any query of the form attribute j1 =
value1 ∧. . .∧attribute jt = valuet, as long as it is satisfied by
a small number of records. Our construction is significantly
more general than simple keyword search on encrypted data
because the value of any query attribute or a conjunction
thereof can be used as the “keyword” for searching the ob-
fuscated database, and the obfuscator does not need to know
what queries will be evaluated on the database.

To distinguish between “small” and “large” queries, sup-
pose the query predicate is satisfied by n records. Our
construction uses a form of secret sharing that forces the
retriever to guess n bits before he can access the data at-
tributes in any matching record. (If n=1, i.e., the record is
unique, the retriever still has to guess 1 bit, but this simply

means that with probability 1
2

he has to repeat the query.)
The policy that requires the retriever to uniquely identify
a single record, i.e., forbids any query that is satisfied by
multiple records, can also be easily implemented using our
techniques. Our construction can be viewed as the non-
interactive analog of hash-reversal “client puzzles” used to
prevent denial of service in network security [21], but, unlike
client puzzles, it comes with a rigorous proof of security.

For example, consider an airline passenger database in
which every record contains the passenger’s name, flight
number, date, and ticket purchase details. In our construc-
tion, if the retriever knows the name and date that uniquely
identify a particular record (e.g., because this information
was supplied in a court-issued warrant), he (almost) imme-
diately learns the key that encrypts the purchase details in
the obfuscated record. If the passenger traveled on k flights
on that date, the retriever learns the key except for k bits.
Since k is small, guessing k bits is still feasible. If, however,
the retriever only knows the date and the flight number, he
learns the key except for m bits, where m is the number of
passengers on the flight, and retrieval of these passengers’
purchase details is infeasible.

A database obfuscated using our method has the group
privacy property in the following sense. It can be accessed
only via queries permitted by the privacy policy. The prob-
ability of successfully evaluating a permitted query is in-
versely exponential in the number of records that satisfy the
query predicate. In particular, to extract a large number of
records from the database, the retriever must know a pri-
ori specific information that uniquely identifies each of the
records, or small subsets thereof. The obfuscated database
itself does not help him obtain this information.

In obfuscated databases with group privacy, computa-
tional cost of access depends on the amount of information
retrieved. Therefore, group privacy can be thought of as a
step towards a formal cryptographic model for “economics
of privacy.” It is complementary to the existing concepts of
privacy, and appears to be a good fit for applications such
as public directories and customer relationship management
(CRM) databases, where the database user may need to ac-
cess an individual record for a legitimate business purpose,
but should be prevented from extracting large subsets of
records for resale and abusive marketing.

While our constructions for group privacy are provably
secure in the “virtual black-box” sense of [2], the cost of
this rigorous security is a quadratic blowup in the size of the
obfuscated database, rendering the technique impractical for
large datasets. We also present some heuristic techniques to
decrease the size of the obfuscated database, and believe
that further progress in this area is possible.

Alternative privacy policies. Defining rigorous privacy
policies that capture intuitive “database privacy” is an im-
portant challenge, and we hope that this work will serve as
a starting point in the discussion. For example, the group
privacy policy that we use in our constructions permits the
retriever to learn whether a given attribute of a database
record is equal to a particular value. While this leaks more
information than may be desirable, we conjecture that the
privacy policy without this oracle is unrealizable.

We also consider privacy policies that permit any query
rather than just boolean circuits of equality tests on at-
tributes. We show that this policy is vacuous: regardless
of the database contents, any user can efficiently extract

the entire database by policy-compliant queries. Therefore,
even if the obfuscation satisfies the virtual black-box prop-
erty, it serves no useful purpose. Of course, there are many
types of queries that are more general than boolean circuits
of equality tests on attributes. Exact characterization of
non-vacuous, yet realizable privacy policies is a challenging
task, and a topic of future research.

Organization of the paper. We discuss related work in
section 2. The ideas are illustrated with a “warm-up” con-
struction in section 3. In section 4, we explain group privacy
and the corresponding obfuscation technique. In section 5,
we generalize the class of queries to boolean circuits over at-
tribute equalities. In section 6, we show that policies which
permit arbitrary queries are vacuous, and give an informal
argument that a policy that does not allow the retriever to
verify his guesses of individual attribute values cannot be re-
alized. Conclusions are in section 7. All proofs will appear
in the full version of the paper.

2. RELATED WORK
This paper uses the “virtual black-box” model of obfusca-

tion due to Barak et al. [2]. In addition to the impossibility
result for general-purpose obfuscation, [2] demonstrates sev-
eral classes of circuits that cannot be obfuscated. We focus
on a different class of circuits.

To the best of our knowledge, the first provably secure
constructions for “virtual black-box” obfuscation were pro-
posed by Canetti et el. [5, 6] in the context of “perfectly
one-way” hash functions, which can be viewed as obfus-
cators for point functions (a.k.a. oracle indicators or delta
functions). Dodis and Smith [15] recently showed how to
construct noise-tolerant “perfectly one-way” hash functions.
which they used to obfuscate proximity queries with “en-
tropic security.” It is not clear how to apply techniques
of [15] in our setting. In section 6, we present strong evi-
dence that our privacy definitions may not be realizable if
queries other than equality tests are permitted.

Lynn et al. [22] construct obfuscators for point functions
(and simple extensions, such as public regular expressions
with point functions as symbols) in the random oracle model.
The main advantage of [22] is that it allows the adversary
partial information about the preimage of the hash function,
i.e., secrets do not need to have high entropy. This feature
is essential in our constructions, too, thus we also use the
random oracle model. Wee [27] proposed a construction for
a weaker notion of point function obfuscation, along with
the impossibility result for uniformly black-box obfuscation.
This impossibility result suggests that the use of random
oracles in our proofs (in particular, the simulator’s ability
to choose the random oracle) is essential.

Many ad-hoc obfuscation schemes have been proposed in
the literature [1, 10, 9, 12, 13, 11]. Typically, these schemes
contain neither a cryptographic definition of security, nor
proofs, except for theoretical work on software protection
with hardware restrictions on the adversary [19, 20].

Forcing the adversary to pay some computational cost for
accessing a resource is a well-known technique for prevent-
ing malicious resource exhaustion (a.k.a. denial of service
attacks). This approach, usually in the form of presenting
a puzzle to the adversary and forcing him to solve it, has
been proposed for combating junk email [16], website me-
tering [17], prevention of TCP SYN flooding attacks [21],

protecting Web protocols [14], and many other applications.
Puzzles based on hash reversal, where the adversary must
discover the preimage of a given hash value where he al-
ready knows some of the bits, are an especially popular tech-
nique [21, 14, 26], albeit without any proof of security. Our
techniques are similar, but our task is substantially harder
in the context of non-interactive obfuscation.

The obfuscation problem is superficially similar to the
problem of private information retrieval [3, 8, 18] and key-
word search on encrypted data [25, 4]. These techniques are
concerned, however, with retrieving data from an untrusted
server, whereas we are concerned with encrypting the data
and then giving them away, while preserving some control
over what users can do with them.

A recent paper by Chawla et al. [7] also considers database
privacy in a non-interactive setting, but their objective is
complementary to ours. Their definitions aim to capture pri-
vacy of data, while ours aim to make access to the database
indistinguishable from access to a certain ideal functionality.

3. DIRECTED-ACCESS DATABASES
As a warm-up example, we show how to construct directed-

access databases in which every record is indistinguishable
from a lookup function. The constructions and theorems in
this section are mainly intended to illustrate the ideas.

Let X be a set of tuples −→x , Y a set of tuples −→y , and
Y∗ = Y ∪{⊥}. Let D ⊆ X ×Y be the database. We want to
obfuscate each record of D so that the only operation that
a user can perform on it is to retrieve −→y if he knows −→x .

We use the standard approach in secure multi-party com-
putation, and formally define this privacy policy in terms of
an ideal functionality. The ideal functionality is an (imagi-
nary) trusted third party that permits only policy-compliant
database accesses. An obfuscation algorithm is secure if any
access to the obfuscated database can be efficiently simu-
lated with access only to the ideal functionality. This means
that the user can extract no more information from the ob-
fuscated database than he would be able to extract had all
of his accesses been filtered by the trusted third party.

Definition 1. (Directed-access privacy policy) For
database D, define the corresponding directed-access func-
tionality DAD as the function that, for any input −→x ∈ X
such that 〈−→x ,−→y1〉, . . . , 〈

−→x ,−→ym〉 ∈ D, outputs {−→y1 , . . . ,−→ym}.

Intuitively, a directed-access database is indistinguishable
from a lookup function. Given the query attributes of an
individual record (−→x), it is easy to learn the data attributes
(−→y), but the database cannot be feasibly accessed in any
other way. In particular, it is not feasible to discover the
value of −→y without first discovering a corresponding −→x .
Moreover, it is not feasible to harvest all −→y values from
the database without first discovering all values of −→x .

This definition does not say that, if set X is small, it is
infeasible to efficiently enumerate all possible values of −→x
and stage a dictionary attack on the obfuscated database.
It does guarantee that even for this attack, the attacker is
unable to evaluate any query forbidden by the privacy policy.
In applications where X cannot be efficiently enumerated
(e.g., X is a set of secret keywords known only to some
users of the obfuscated database), nothing can be retrieved
from the obfuscated database by users who don’t know the
keywords. Observe that −→x can contain multiple attributes,

and thus multiple keywords may be required for access to
−→y in the obfuscated database.

Directed-access databases are easy to construct in the ran-
dom oracle model, since lookup functionality is essentially
a point function on query attributes, and random oracles
naturally provide an obfuscation for point functions [22].
The obfuscation algorithm OBda takes D and replaces every
record 〈−→xi ,

−→yi 〉 ∈ D with

〈hash(ri1 ||
−→xi), hash(ri2 ||

−→xi) ⊕
−→yi , ri1 , ri2〉

where ri1,2 are random numbers, || is concatenation, and
hash is a hash function implementing the random oracle.

Theorem 1. (Directed-access obfuscation is “vir-
tual black-box”) Let OBda be as described above. For any
probabilistic polynomial-time adversarial algorithm A, there
exists a probabilistic polynomial-time simulator algorithm S

and a negligible function ν of the security parameter k such
that for any database D:

|P(A(OBda(D)) = 1) − P(SDAD(1|D|) = 1)| ≤ ν(k)

where probability P is taken over random oracles (imple-
mented as hash functions), as well as the the randomness of
A and S. Intuitively, this theorem holds because retrieving
−→yi requires finding the (partial) pre-image of hash(ri2 ,−→xi).

The standard definition of obfuscation in [2] also requires
that there exist an efficient retrieval algorithm that, given
some −→x ∗, extracts the corresponding −→y from the obfus-
cation OBda(D). Clearly, our construction has this prop-
erty. Someone who knows −→x ∗ simply finds the record(s)
in which the first value is equal to hash(ri1 ||

−→x ∗), computes
hash(ri2 ||

−→x ∗) and uses it as the key to decrypt −→y .

4. GROUP-EXPONENTIAL DATABASES
For the purposes of this section, we restrict our atten-

tion to queries P that are conjunctions of equality tests over
attributes (in section 5, we show how this extends to arbi-
trary boolean circuits over equality tests). For this class of
queries, we show how to obfuscate the database so that eval-
uation of the query is exponential in the size of the answer
to the query. Intuitively, this means that only precise query
predicates, i.e., those that are satisfied by a small number
of records, can be efficiently computed. “Mass harvesting”
queries, i.e., predicates that are satisfied by a large number
of records, are computationally infeasible.

Recall that our goal is to restrict how the database can
be accessed. For some databases, it may be possible to ef-
ficiently enumerate all possible combinations of query at-
tributes and learn the entire database by querying it on ev-
ery combination. For databases where the values of query
attributes are drawn from a large set, our construction pre-
vents the retriever from extracting any records that he can-
not describe precisely. In either case, we guarantee that the
database can be accessed only through the interface permit-
ted by the privacy policy, without any trust assumptions
about the retriever’s computing environment.

In our construction, each data attribute is encrypted with
a key derived from a randomly generated secret. We use a
different secret for each record. The secret itself is split into
several (unequal) shares, one per each query attribute. Each
share is then encrypted itself, using a key derived from the
output of the hash function on the value of the corresponding

query attribute. If the retriever knows the correct value only
for some query attribute a, he must guess the missing shares.
The size of the revealed share in bits is inversely related to
the number of other records in the database that have the
same value of attribute a. This provides protection against
queries on frequently occurring attribute values.

4.1 Group privacy policy
We define the privacy policy in terms of an ideal func-

tionality, which consists of two parts. When given an index
of a particular query attribute and a candidate value, it re-
sponds whether the guess is correct, i.e., whether this value
indeed appears in the corresponding attribute of the original
database. When given a predicate, it evaluates this predi-
cate on every record in the database. For each record on
which the predicate is true, it returns this record’s data at-
tributes with probability 2−q , where q is the total number
of records in the database that satisfy the predicate. if no
more information can be extracted this ideal functionality.

Definition 2. (Group privacy policy) Let X be a set
and Y a set of tuples. Let D be the database 〈ρ1, ρ2, . . . ρN〉
where ρi = {xi1, xi2, . . . , xim,−→yi} ∈ Xm ×Y. Let P : Xm →
{0, 1} be a predicate of the form Xj1 = xj1∧Xj2 = xj2∧. . .∧
Xjt = xjt . Let D[P] = {ρi ∈ D | P(xi1, xi2, . . . , xim) = 1}
be the subset of records on which P is true.

The group-exponential functionality GPD consists of two
functions:
- CD(x, i, j) is 1 if x = xij and 0 otherwise, where 1 ≤ i ≤
N, 1 ≤ j ≤ m.
- RD(P) =

S
1≤i≤N{〈i, γi〉}, where

γi =

8<: −→yi with probability 2−|D[P]| if P(ρi)

⊥ with probability 1 − 2−|D[P]| if P(ρi)
⊥ if ¬P(ρi)

Probability is taken over the internal coin tosses of GPD.

Informally, function C answers whether the jth attribute of
the ith record is equal to x, while function R returns all
records that satisfy some predicate P , but only with proba-
bility inversely exponential in the number of such records.

It may appear that function C is unnecessary. Moreover,
it leaks additional information, making our privacy policy
weaker than it might have been. In section 6, we argue
that it cannot be simply eliminated, because the resulting
functionality would be unrealizable. Of course, there may
exist policies that permit some function C′ which leaks less
information than C, but it is unclear what C′ might be. We
discuss several alternatives to our definition in section 6.

We note that data attributes are drawn from a set of tu-
ples Y because there may be multiple data attributes that
need to be obfuscated. Also observe that we have no re-
strictions on the values of query attributes, i.e., the same
m-tuple of query attributes may appear in multiple records,
with different or identical data attributes.

4.2 Obfuscating the database
We now present the algorithm OBgp, which, given any

database D, produces its obfuscation. For notational conve-
nience, we use a set of random hash functions Hα : {0, 1}∗ →
{0, 1}k. Given any hash function H , these can be imple-
mented simply as H(α||x). To convert the k-bit hash func-
tion output into a key as long as the plaintext to which it is

applied, we use a set of pseudo-random number generators
prgα,β : {0, 1}k → {0, 1}∞ (this implements random oracles
with unbounded output length).

Let N be the number of records in the database. For
each row ρi, 1 ≤ i ≤ N , generate a random N-bit secret
ri = ri1||ri2|| . . . ||riN , where rij ∈R {0, 1}. This secret will
be used to protect the data attribute −→yi of this record. Note
that there is 1 bit in ri for each record of the database.

Next, split ri into m shares corresponding to query at-
tributes. If the retriever can supply the correct value of
the jth attribute, he will learn the jth share (1 ≤ j ≤ m).
Denote the share corresponding to the jth attribute as sij .
Shares are also N bits long, i.e., sij = sij1|| . . . ||sijN .

Each of the N bits of sij has a corresponding bit in ri,
which in its turn corresponds to one of the N records in the
database. For each p s.t. 1 ≤ p ≤ N , set sijp = rip if xij 6=
xpj , and set sijp = 0 otherwise. In other words, the jth
share sij consists of all bits of ri except those corresponding
to the records where the value of the jth attribute is the
same. An example can be found in section 4.4.

The result of this construction is that shares correspond-
ing to commonly occurring attribute values will be missing
many bits of ri, while a share corresponding to an attribute
that uniquely identifies one record will contain all bits of
ri except one. Intuitively, this guarantees group privacy. If
the retriever can supply query attribute values that uniquely
identify a single record or a small subset of records, he will
learn the shares that reveal all bits of the secret ri except
for a few, which he can easily guess. If the retriever can-
not describe precisely what he is looking for and supplies
attribute values that are common in the database, many of
the bits of ri will be missing in the shares that he learns,
and guessing all of them will be computationally infeasible.

Shares corresponding to different query attributes may
overlap. For example, suppose that we are obfuscating a
database in which two records have the same value of at-
tribute X1 if and only if they have the same value of at-
tribute X2. In this case, for any record in the database, the
share revealed if the retriever supplies the correct value of
X1 will be exactly the same as the share revealed if the re-
triever supplies the value of X2. The retriver gains nothing
by supplying X2 in conjunction with X1 because this does
not help him narrow the set of records that match his query.

To construct the obfuscated database, we encrypt each
share with a pseudo-random key derived from the value of
the corresponding query attribute, and encrypt the data at-
tribute with a key derived from the secret ri. More precisely,
we replace each record 〈ρi = xi1, . . . , xim,−→yi 〉 of the original
database with the obfuscated record

〈vi1, wi1, vi2, wi2, . . . , vim, wim, ui, zi〉

where
- vij = H1,i,j(xij). This enables the retriever to verify that
he supplied the correct value for the jth query attribute.
- wij = prg1,i,j(H2,i,j(xij)) ⊕ sij . This is the jth share of
the secret ri, encrypted with a key derived from the value
of the jth query attribute.
- ui = H3,i(ri). This enables the retriever to verify that he
computed the correct secret ri.
- zi = prg2,i(H4,i(ri)) ⊕

−→yi . This is the data attribute −→yi ,
encrypted with a key derived from the secret ri.

Clearly, algorithm OBgp runs in time polynomial in N

(the size of the database). The size of the resulting obfusca-

tion is N2·m. Even though it is within a polynomial factor of
N (and thus satisfies the definition of [2]), quadratic blowup
means that our technique is impractical for large databases.
This issue is discussed further in section 4.5.

We claim that OBgp produces a secure obfuscation of D,
i.e., it is not feasible to extract any more information from
OBgp(D) than permitted by the privacy policy GPD.

Theorem 2. (Group-exponential obfuscation is
“virtual black-box”) For any probabilistic polynomial-
time (adversarial) algorithm A, there exists a probabilistic
polynomial-time simulator algorithm S and a negligible func-
tion ν of the security parameter k s.t. for any database D:

|P(A(OBgp(D)) = 1) − P(SGPD(1|D|) = 1)| ≤ ν(k)

Remark. An improper implementation of the random or-
acles in the above construction could violate privacy un-
der composition of obfuscation, i.e., when more than one
database is obfuscated and published. For instance, if the
hash of some attribute is the same in two databases, then
the adversary learns that the attributes are equal without
having to guess their value. To prevent this, the same hash
function may not be used more than once. One way to
achieve this is to pick Hi(.) = H(ri||.) where ri ∈R {0, 1}k,
and publish ri along with the obfuscation. This is an exam-
ple of the pitfalls inherent in the random oracle model.

4.3 Accessing the obfuscated database
We now explain how the retriever can efficiently evaluate

queries on the obfuscated database. Recall that the privacy
policy restricts the retriever to queries consisting of conjunc-
tions of equality tests on query attributes, i.e., every query
predicate P has the form Xj1 = xj1 ∧ . . .∧Xjt = xjt , where
j1, . . . , jt are some indices between 1 and m.

The retriever processes the obfuscated database record by
record. The ith record of the obfuscated database (1 ≤ i ≤
N) has the form 〈vi1, wi1, vi2, wi2, . . . , vim, wim, ui, zi〉. The
retriever’s goal is to compute the N-bit secret ri so that he
can decrypt the ciphertext zi and recover the value of −→yi .

First, the retriever recovers as many shares as he can from
the ith record. Recall from the construction of section 4.2
that each wij is a ciphertext of some share, but the only way
to decrypt it is to supply the corresponding query attribute
value xij . Let ℓ range over the indices of attributes supplied
by the retriever as part of the query, i.e., ℓ ∈ {j1, . . . , jt}.
For each ℓ, if H1,i,ℓ(xℓ) = viℓ, then the retriever extracts
the corresponding share siℓ = prg1,i,ℓ(H2,i,ℓ(xℓ)) ⊕ wiℓ. If
H1,i,ℓ(xℓ) 6= viℓ, this means that the retriever supplied the
wrong attribute value, and he learns nothing about the cor-
responding share. Let S be the set of recovered shares.

Each recovered share sℓ ∈ S reveals only some bits of ri,
and, as mentioned before, bits revealed by different shares
may overlap. For each p s.t. 1 ≤ p ≤ N , the retriever sets the
corresponding bit rip of the candidate secret ri as follows:

rip =

�
sℓp if ∃sℓ ∈ S s.t. vpℓ 6= H1,1,ℓ(xℓ)
random otherwise

Informally, if at least one of recovered shares sℓ contains
the pth bit of ri (this can be verified by checking that the
value of ℓth attribute is not the same in the pth record of
the database — see construction in section 4.2), then this

bit is indeed to the pth bit of the secret ri. Otherwise, the
retriever must guess the pth bit randomly.

Once a candidate ri is constructed, the retriever checks
whether H3,i(ri) = ui. If not, the missing bits must have
been guessed incorrectly, and the retriever has to try another
choice for these bits. If H3,i(ri) = ui, then the retriever
decrypts the data attribute −→yi = prg2,i(H4,i(ri)) ⊕ zi.

The obfuscation algorithm of section 4.2 guarantees that
the number of missing bits is exactly equal to the number of
records satisfied by the query P . This provides the desired
group privacy property. If the retriever supplies a query
which is satisfied by a single record, then he will only have
to guess one bit to decrypt the data attributes. If a query is
satisfied by two records, then two bits must be guessed, and
so on. For queries satisfied by a large number of records,
the number of bits to guess will be infeasible large.

4.4 Example
Consider a toy airline passenger database with 4 records,

where the query attributes are “Last name” and “Flight,”
and the data attribute (in bold) is “Purchase details.”

Last name Flight Purchase details

Smith 88 Acme Travel, Visa 4390XXXX

Brown 500 Airline counter, cash

Jones 88 Nonrevenue

Smith 1492 Travel.com, AmEx 3735XXXX

Because N = 4, we need to create a 4-bit secret to protect
each data attribute. (4-bit secrets can be easily guessed,
of course. We assume that in real examples N would be
sufficiently large, and use 4 records in this example only to
simplify the explanations.) Let α = α1α2α3α4 be the secret
for the first data attribute, and β, γ, δ the secrets for the
other data attributes, respectively.

For simplicity, we use a special symbol “?” to indicate
the missing bits that the retriever must guess. In the actual
construction, each of these bits is equal to 0, but the retriever
knows that he must guess the ith bit of the jth share if the
value of the jth attribute in the current record is equal to
the value of the jth attribute in the ith record.

Consider the first record. Each of the two query attributes,
“Last name” and “Flight,” encrypts a 4-bit share. The share
encrypted with the value of the “Last name” attribute (i.e.,
“Smith”) is missing the 1st and 4th bits because the 1st and
4th records in the database have the same value of this at-
tribute. (Obviously, all shares associated the ith record have
the ith bit missing). The share encrypted with the value of
the “Flight” attribute is missing the 1st and 3rd bits.

H111(“Smith”), prg1,1,1(H211(“Smith”)) ⊕ (?α2α3?),
H112(“88”), prg1,1,2(H212(“88”)) ⊕ (?α2?α4),
H31(α1α2α3α4), prg2,1(H41(α1α2α3α4)) ⊕ (“Acme. . . ”)
H121(“Brown”), prg1,2,1(H221(“Brown”)) ⊕ (β1?β3β4),
H122(“500”), prg1,2,2(H222(“500”)) ⊕ (β1?β3β4),
H32(β1β2β3β4), prg2,2(H42(β1β2β3β4)) ⊕ (“Airline. . . ”)
H131(“Jones”), prg1,3,1(H231(“Jones”)) ⊕ (γ1γ2?γ4),
H132(“88”), prg1,3,2(H232(“88”)) ⊕ (?γ2?γ4),
H33(γ1γ2γ3γ4), prg2,3(H43(γ1γ2γ3γ4)) ⊕ (“Nonrev. . . ”)
H141(“Smith”), prg1,4,1(H241(“Smith”)) ⊕ (?δ2δ3?),
H142(“1492”), prg1,4,2(H242(“1492”)) ⊕ (δ1δ2?δ4),
H34(δ1δ2δ3δ4), prg2,4(H44(δ1δ2δ3δ4)) ⊕ (“Travel.com. . . ”)

Suppose the retriever knows only that the flight number is

88. There are 2 records in the database that match this pred-
icate. From the first obfuscated record, he recovers ?α2?α4

and from the third obfuscated record, ?γ2?γ4. The retriever
learns which bits he must guess by computing H2i2(“88”) for
1 ≤ i ≤ 4, and checking whether the result is equal to vi2

from the ith obfuscated record. In both cases, the retriever
learns that he must guess 2 bits (1st and 3rd) in order to
reconstruct the secret and decrypt the data attribute.

Now suppose the retriever knows that the flight number
is 88 and the last name is Smith. There is only 1 record
in the database that satisfies this predicate. From the first
part of the first obfuscated record, the retriever can recover
?α2α3?, and from the second part ?α2?α4 (note how the
shares overlap). Combining them, he learns ?α2α3α4, so he
needs to guess only 1 bit to decrypt the data attribute.

It may appear that this toy example is potentially vulnera-
ble to a dictionary attack, since it is conceivable that all com-
binations of last names and flight numbers can be efficiently
enumerated with enough computing power. Note, however,
that this “attack” does not violate the definition of secure
obfuscation because the retriever must supply the name-
flight pair before he can recover the purchase details. There-
fore, the obfuscated database is only accessed via queries
permitted by the privacy policy. In databases where values
are drawn from a large set, even this “attack” is infeasible.

4.5 Efficiency
The algorithm of section 4.2 produces obfuscations which

are a factor of Ω(N) larger than original databases. Thus,
while our results establish feasibility of database obfuscation
and group privacy, they are not directly applicable to real-
world databases. This appears to be a recurring problem in
the field of database privacy: the cryptography community
has very strict definitions of security but loose notions of
efficiency (typically polynomial time and space), whereas the
database community has very strict efficiency requirements
but loose security (typically heuristic or statistical). As a
result, many proposed schemes are either too inefficient, or
too insecure for practical use.

A possible compromise might be to start with a provably
secure but inefficient construction and employ heuristic tech-
niques to improve its efficiency. In this spirit, we now pro-
pose some modifications to reduce the size of the obfuscated
database without providing a security proof. The presenta-
tion is informal due to lack of space; see the full version of
the paper for a more rigorous version.

The obfuscation algorithm is modified as follows. For each
record i, we split ri into N

k
“blocks” of k bits each, padding

the last block if necessary (k is the security parameter).
Instead of generating the bits randomly, we create a binary
tree of depth log N

k
. A key of length k is associated with each

node of the tree, with the property the two “children” keys
are derived from the “parent” key (e.g., using a size-doubling
pseudo-random generator). This is similar to a Merkle tree
in which keys are derived in the reverse direction. The edge
of tree (minus the padding of the last block) is ri.

Let us denote the jth attribute of the ith record by 〈i, j〉.
Say that 〈i, j〉 is entitled to the secret bit ri′j if xij 6= xi′j ,
and 〈i, j〉 is entitled to an entire block B if it is entitled
to each secret bit ri′j in that block. Intuitively, if an en-
tire block is entitled, then we encode it efficiently using the
“reverse Merkle” tree described above; if it is partially enti-
tled, then we fall back on our original construction. Thus,

let Nij be the minimal set of nodes in the tree which are
sufficient for reconstructing all entitled blocks (i.e., every
entitled block has among its parents an element of Nij),
and only these blocks. Then the share sij consists of (a
suitable encoding of) Nij together with the remaining bits
ri′j to which 〈i, j〉 is entitled. These are the entitled bits
from any block which also includes non-entitled bits.

In the worst case, this algorithm does not decrease the
blowup in the size of the obfuscated database. This occurs
when for every query attribute j of every record i, there are
Ω(N) records i′ for which the value of the query attribute
is the same, i.e., xij = xi′j . If we assume a less patholog-
ical database, however, we can get a better upper bound.
If there is a threshold t such that for any (i, j) there are at
most t records i′ for which xij = xi′j , then the size of the
key material (which causes the blowup in the size of the ob-
fuscated database) is O(mNt(k log N

k
)) bits (recall that m

is the number of attributes). This bound is tight only for
small values of t, and the new algorithm does no worse than
the original one even when t = Ω(N). When we consider
that each of the mN entries of the original database is sev-
eral bits long, the size of the obfuscated database could be
acceptably small for practical use.

It must be noted that this obfuscation reveals the size of
the share, and thus, for a given attribute of a given record, it
leaks information about the number of other records whose
attribute value is the same (but not which records they are).
This opens two research questions:
- Is there a provably secure database obfuscation algorithm
that produces obfuscations that are smaller than O(N2).
- Can the heuristic described in this section be improved to
obtain acceptable lower bounds in the worst case?

5. ARBITRARY PREDICATES OVER
EQUALITIES ON ATTRIBUTES

We now consider queries formed by taking an arbitrary
predicate P over m boolean variables b1, b2 . . . bm, and sub-
stituting (Xj = xj) for bj , where Xj is a query attribute,
and xj ∈ X ∪ {∗} is a candidate value for this attribute,
drawn from the domain X of query attribute values. The
special value ∗ denotes that the value of the Xj attribute is
ignored when evaluating the predicate. The class of queries
considered in section 4 is a partial case of this definition,
where P =

V
1≤j≤m

bj . The group-exponential property is
similar to definition 2 except for the domain of P .

Let C be a boolean circuit computing P . We assume that C
is a monotone circuit, i.e., a poly-size directed acyclic graph
where each node is an AND, OR or FANOUT gate. AND
and OR gates have two inputs and one output each, while
FANOUT gates have one input and two outputs. Circuit
C has m inputs, one per each query attribute. Below, we
show how to generalize our obfuscation technique to non-
monotone circuits.

Obfuscation algorithm. The algorithm is similar to the
one in section 4, and consists of generating a random se-
cret to encrypt each data attribute, splitting this secret into
(unequal) shares, and encrypting these shares under the keys
derived from the values of query attributes.

As before, let Hα : {0, 1}∗ → {0, 1}k be a set of ran-
dom hash functions and prgα,β : {0, 1}k → {0, 1}∞ a set of
pseudo-random generators.

For each record ρi in the database, do the following:

• Generate a block of uniformly random bits {rilEt},
where 1 ≤ l ≤ N , E ranges over all edges of the circuit
C, and 1 ≤ t ≤ k, where k is the length of the hash
functions’ output. Denote

riEt = ri1Et||ri2Et|| . . . ||riNEt
−−→rilE = rilE1||rilE2|| . . . ||rilEk

• Then, for each query attribute Xj :

– Output vij = H1,i,j(xij)

– Let Ej be the input edge in the circuit C whose
input is the Xj = xj test. Define the bits of the
corresponding share siljt = rilEjt if xij 6= xlj , and
0 otherwise. Encrypt the resulting share using a
key derived from xij , i.e., output

wij = prg1,i,j(H2,i,j(xij))⊕ (−−→si1j ||
−−→si2j || . . . ||

−−→siNj).

• Let Eout be the output edge in the circuit C. Output
ui = H3,i(riEout0)

• Output zi = prg2,i(H4,i(riEout0)) ⊕
−→yi .

• The previous procedure obfuscated only the output
edge of C. Repeat the following step recursively for
each gate G ∈ C, whose output edge (or both of whose
output edges, for a FANOUT gate) have been obfus-
cated. Stop when all edges have been obfuscated:

– If G is an AND gate, let E0 and E1 be the input
edges and E the output edge. For each l, set
−−→rilE0 = −−→rilE1 = −−→rilE.

– If G is an OR gate, then, for each l, generate
random −−→rilE0 ∈R {0, 1}k and set −−→rilE1 = −−→rilE0 ⊕
−−→rilE .

– If G is a FANOUT gate, let E0 and E1 be the
output edges and E the input edge. For each l,
generate random −−→rilE0 ,

−−→rilE1 ∈R {0, 1}k and out-
put

ζilE0 = H5,i,l,E0(−−→rilE) ⊕−−→rilE0

and

ζilE1 = H5,i,l,E1(−−→rilE) ⊕−−→rilE1

Retrieval algorithm. Let Q be the query predicate in
which specific values of xj or ∗ have been plugged into all
Xj = xj expressions in the leaves of the circuit C.

The retrieval algorithm consists of two functions:
Cob(OBgp(D), x, i, j), which enables the retriever to check
whether the jth query attribute of the ith record is equal to
x, and Rob(OBgp(D),Q, i), which attempts to retrieve the
value of the obfuscated data attribute in the ith record.

Define Cob(OBgp(D), x, i, j) = 1 if H1,i,j(x) = vij and 0
otherwise.

• Evaluate Q(ρi) using Cob. If ¬QOBgp (ρi), then
Rob(OBgp(D),Q, i) =⊥.

• For each l and each circuit edge E, set −−→rilE =?? . . .?
(i.e., none of the bits of the secret are initially known).

• For each query attribute j, let Ej be the input edge of
the circuit associated with the equality test for this at-
tribute. If Q contains this test, i.e., if Q contains Xj =

xj for some candidate value xj (rather than Xj = ∗),
then set (−−→si1j || . . . ||

−−→siNj) = wij ⊕ prg1,i,j(H2,i,j(xij)),
i.e., decrypt the secret bits with the key derived from
the value of the jth attribute.

For each l, if Cob(xij , l, j) = 0, then set −−→rilEj
= −→silj ,

i.e., use only those of the decrypted bits that are true
bits of the secret −−→rilE.

• So far, only the input gates of the circuit have been
visited. Find a gate all of whose input edges have
been visited, and repeat the following step for every
gate until the output edge Eout has been visited.

– If E is the output of an AND gate with inputs E0

and E1, then, for each l, if −−→rilE0 6=?, set −−→rilE =
−−→rilE0 ; if −−→rilE1 6=?, set −−→rilE = −−→rilE1 .

– E is the output of an OR gate with inputs E0

and E1. For each l, if −−→rilE0 6=? and −−→rilE1 6=?, set
−−→rilE = −−→rilE0 ⊕−−→rilE1 .

– E is the output of a FANOUT gate with input
E0. For each l, if −−→rilE0 6=?, set rilE = ζilE0 ⊕
H5,i,l,E0(

−−→rilE0).

• For each l, if rilEout0 =?, this means that the corre-
sponding secret bit must be guessed. Choose random
rilEout0 ∈R {0, 1}.

• If H3,i(riEout0) = ui, this means that the retriever suc-
cessfully reconstructed the secret. In this case, define
Rob(OBgp(D),Q, i) = prg2,i(H4,i(riEout0)) ⊕ zi. Oth-
erwise, define Rob(OBgp(D),Q, i) =⊥.

Theorem 3. The obfuscation algorithm for arbitrary
predicates over equalities on attributes satisfies the virtual
black-box property.

5.1 Obfuscating non-monotone circuits
Given a non-monotone circuit C, let C be the monotone

circuit whose leaves are literals and negated literals formed
by “pushing down” all the NOT gates. Observe that C has
at most twice as many gates as C. Also, C can be considered
a monotone circuit over the 2m predicates X1 = x1, X2 =
x2, . . . , Xm = xm, X1 6= x1, X2 6= x2, . . . Xm 6= xm. Observe
that a predicate of the form Xj 6= xj is meaningful only
when xj = xij for some record i. This is because if xj 6= xij

for any record i, then Xj 6= xj matches all the records.
Hence there exists a circuit C′ (obtained by setting the leaf
in C corresponding to the predicate Xj 6= xj to true) that
evaluates to the same value as C for every record in the
database.

Given that xj = xij for some record i, the predicate
Xj 6= xj is equivalent to the predicate Xj = xij for some
value of i. C can thus be viewed as a monotone circuit over
the m + mN attribute equality predicates X1 = x1, X2 =
x2, . . . , Xm = xm, and Xj = xij for each i and j. It follows
that a database D with N records and m columns can be
transformed into a database D′ with N records and m+mN
columns such that obfuscating D over the circuit C is equiv-
alent to obfuscating D over the monotone circuit C.

6. ALTERNATIVE PRIVACY POLICIES
In general, a privacy policy can be any computable, pos-

sibly randomized, joint function of the database and the

query. Clearly, it may be useful to consider generalizations
of our privacy policies in several directions.

First, we discuss alternatives to definition 2 that may
be used to model the requirement that accessing individ-
ual records should be easy, but mass harvesting of records
should be hard. To motivate this discussion, let us con-
sider a small database with, say, 10 or 20 records. For such
a database, the group-exponential property is meaningless.
Even if all records match the adversary’s query, he can eas-
ily try all 210 or 220 possibilities for the random bits rik

because database accesses are noninteractive.
This does not in any way violate our definition of privacy.

Exactly the same attack is possible against the ideal func-
tionality, therefore, the simulation argument goes through,
showing that the obfuscated database leaks no more infor-
mation than the ideal functionality. It is thus natural to seek
an alternative privacy definition that will make the above at-
tack infeasible when N is small (especially when N < k, the
security parameter).

Our construction can be easily modified to support a wide
variety of (monotonically decreasing) functions capturing
the dependence between the probability of the ideal func-
tionality returning the protected attributes and the number
of records matching the query. For example, the follow-
ing threshold ideal functionality can be implemented using
a threshold (n-t)-out-of-n secret sharing scheme [24].

- CD(x, i, j) is 1 if x = xij and 0 otherwise, where 1 ≤ i ≤
N, 1 ≤ j ≤ m.
- RD(P) =

S
1≤i≤N

{〈i, γi〉}, where

γi =

8<: −→yi if P(ρi) and |D[P]| ≤ t
⊥ if P(ρi) and |D[P]| > t

⊥ if ¬P(ρi)

The adversary can evaluate the query if there are at most t
matching records, but learns nothing otherwise. The details
of the construction are deferred to the full version.

We may also consider which query language should be per-
mitted by the privacy policy. We demonstrated how to ob-
fuscate databases in accordance with any privacy policy that
permits evaluation of some predicate consisting of equality
tests over database attributes. Such queries can be consid-
ered a generalization of “partial match” searches [23], which
is a common query model in the database literature. Also,
our algorithms can be easily modified to support policies
that forbid some attributes from having ∗ as a legal value,
i.e., policies that require the retriever to supply the correct
value for one or more designated attributes before he can
extract anything from the obfuscated database.

It is worth asking if we can allow predicates over primitives
looser than exact attribute equality (e.g., proximity queries
of [15] are an interesting class). We present strong evidence
that this is impossible with our privacy definitions. In fact,
even using ideal functionalities (IF) that are more restrictive
than the one we have used does not seem to help. Recall that
the IF considered in section 4 consists of two functions: CD

(it tells the retriever whether his guess of a particular query
attribute value is correct) and RD (it evaluates the query
with the inverse-exponential probability). We will call this
IF the permissive IF.

We define two more IFs. The strict IF is like the permis-
sive IF except that it doesn’t have the function C. The
semi-permissive IF falls in between the two. It, too,

doesn’t have the function C, but its retrieval function R

leaks slightly more information. Instead of the same symbol
⊥, function R of the semi-permissive IF gives different re-
sponses depending on whether it failed to evaluate the query
because it matches no records (no-matches) or because it
matches too many records, and the probability came out to
the retriever’s disadvantage (too-many-matches).

Define RD(P) as
S

1≤i≤N R∗(P , i), where R∗ is as follows:

• If ¬P(ρi), then R∗(P , i) = φ.

• If P(ρi), then R∗(P , i) = −→yi with probability 2−|D[P]|

and ⊥ with probability 1 − 2−|D[P]|.

Observe that if, for any privacy policy allowing single-
attribute equality tests, i.e., if all queries of the form Xj =
xj are permitted, then the semi-permissive IF can simulate
the permissive IF. Of course, the permissive IF can always
simulate the semi-permissive IF.

We say that a privacy policy leaks query attributes if all
xij can be computed (with overwhelming probability) sim-
ply by accessing the corresponding ideal functionality ID,
i.e., there exists a probabilistic poly-time oracle algorithm
A s.t., for any database D, P(AID,O(i, j) = xij) ≥ 1− ν(k).
Note that the order of quantifiers has been changed: the
algorithm A is now independent of the database. This cap-
tures the idea that A has no knowledge of the specific query
attributes, yet successfully retrieves them with access only
to the ideal functionality. Such a policy, even if securely
realized, provides no meaningful privacy.

We have the following results (proofs omitted):

• If X = {1, 2, . . . M} and queries consisting of con-
junctions over inequalities are allowed, then the semi-
permissive IF leaks query attributes. Each of the xij

can be separately computed by binary search using
queries of the form Xj ≥ xlow ∧ Xj ≤ xhigh.

• If arbitrary PPT-computable queries are allowed, then
even the strict IF leaks query attributes.

Note that a policy does not have to leak all query at-
tributes to be intuitively useless or vacuous. For instance,
a policy which allows the retriever to evaluate conjunctions
of inequalities on the first m − 1 query attributes, and al-
lows no queries involving the last attribute, is vacuous for
the semi-permissive IF. Therefore, we give a stronger crite-
rion for vacuousness, which formalizes the notion that “all
information contained in the IF can be extracted without
knowing anything about the query attributes”. Note that
the definition below applies to arbitrary privacy policies, for
it makes no reference to query or data attributes.

Definition 3. (Vacuous privacy policy) We say that
an ideal functionality ID is vacuous if there exists an ef-
ficient extractor Ext such that for any PPT algorithm A
there exists a simulator S so that for any database D:

|P(AID (1k) = 1) −P(S(Ext
ID(1k))) = 1)| = ν(k)

In other words, we first extract all useful information from
ID without any specific knowledge of the database, throw
away ID, and use the extracted information to simulate ID

against an arbitrary adversary. As a special case, if Ext can
recover the entire database D from ID, then the functional-
ity can be simulated, because the privacy policy is required

to be computable and the simulator is not required to be
computationally bounded (if we consider only privacy poli-
cies which are computable in probabilistic polynomial time,
then we can define vacuousness with a PPT simulator as
well). At the other extreme, the ideal functionality that
permits no queries is also simulatable: Ext simply outputs
nothing. The reader may verify that the IF in the all-but-
one-query-attribute example above is also vacuous.

Theorem 4. The strict ideal functionality that permits
arbitrary queries is vacuous.

Finally, we consider what happens if we use the strict IF
but don’t increase the power of the query language. We
conjecture the existence of very simple languages, including
a language that contains only conjunctions of equality tests
on attributes, which are unrealizable even for single-record
databases in the sense that there is no efficient obfuscation
algorithm that would make the database indistinguishable
from the corresponding IF. This can be seen as justification
for the choice of the permissive, rather than strict IF for our
constructions.

conjecture 1. The strict IF for the following query lan-
guage cannot be realized even for single-record databases:V2k

i=1(X2i−1 = x2i−1 ∨ X2i = x2i) where ∀i xi ∈ {0, 1}.

Note that the only constraint on the database is that its
size should be polynomial in the security parameter k, and
therefore we are allowed to have 2k query attributes.

We expect that a proof of this conjecture will also yield a
proof of the following conjecture:

conjecture 2. The strict IF for a query language con-
sisting of conjunction of equality tests on k query attributes
is unrealizable even for single-record databases.

These conjectures are interesting from another perspec-
tive. They can be interpreted as statements about the im-
possibility of circuit obfuscation in the random oracle model.
They also motivate the question: given a query language, it
is possible to achieve the group-exponential property with
the strict IF provided there exists an obfuscation algorithm
for this query language on a single record? In other words,
given a class of predicates over single records and an ef-
ficient obfuscator for the corresponding circuit class, does
there exist an obfuscator for the entire database that real-
izes the group-exponential ideal functionality for that query
language? We discuss this question in the full version of the
paper.

7. CONCLUSIONS
We introduced a new concept of database privacy, which

is based on permitted queries rather than secrecy of indi-
vidual records, and realized it using provably secure obfus-
cation techniques. This is but a first step in investigating
the connection between obfuscation and database privacy.
While our constructions are secure in the “virtual black-
box” model for obfuscation, the blowup in the size of the
obfuscated database may render our techniques impractical
for large databases. Our query language permits any predi-
cate over equalities on database attributes, but other query
languages may also be realizable. We define group privacy in
terms of a particular ideal functionality, but there may be

other functionalities that better capture intuitive security
against “mass harvesting” queries. In general, investigat-
ing which ideal functionalities for database privacy can be
securely realized is an important topic of future research.
Finally, all proofs in this paper are carried out in the ran-
dom oracle model. Whether privacy-via-obfuscation can be
achieved in the plain model is another research challenge.

8. REFERENCES
[1] D. Aucsmith. Tamper resistant software: an

implementation. In Proc. 1st International Workshop
on Information Hiding, volume 1174 of LNCS, pages
317–333. Springer, 1996.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In Proc.
Advances in Cryptology - CRYPTO 2001, volume 2139
of LNCS, pages 1–18. Springer, 2001.

[3] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway.
Locally random reductions: improvements and
applications. J. Cryptology, 10:17–36, 1997.

[4] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with keyword
search. In Proc. Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of LNCS, pages
506–522. Springer, 2004.

[5] R. Canetti. Towards realizing random oracles: hash
functions that hide all partial information. In Proc.
Advances in Cryptology - CRYPTO 1997, volume 1294
of LNCS, pages 455–469. Springer, 1997.

[6] R. Canetti, D. Micciancio, and O. Reingold. Perfectly
one-way probabilistic hash functions. In Proc. 30th
Annual ACM Symposium on Theory of Computing
(STOC), pages 131–140. ACM, 1998.

[7] S. Chawla, C. Dwork, F. McSherry, A. Smith, and
H. Wee. Towards privacy in public databases. In Proc.
2nd Theory of Cryptography Conference (TCC),
volume 3378 of LNCS, pages 363–385. Springer, 2005.

[8] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan.
Private information retrieval. J. ACM, 45(6):965–981,
1998.

[9] S. Chow, P. Eisen, H. Johnson, and P. van Oorschot.
White-box cryptography and an AES implementation.
In 9th Annual International Workshop on Selected
Areas in Cryptography (SAC), volume 2595 of LNCS,
pages 250–270. Springer, 2003.

[10] S. Chow, P. Eisen, H. Johnson, and P. van Oorschot. A
white-box DES implementation for DRM applications.
In ACM Digital Rights Management Workshop,
volume 2696 of LNCS, pages 1–15. Springer, 2003.

[11] C. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation - tools for software
protection. IEEE Transactions on Software
Engineering, 28(8):735–746, 2002.

[12] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
Report 148, Department of Computer Sciences, The
University of Auckland, July 1997.

[13] C. Collberg, C. Thomborson, and D. Low.
Manufacturing cheap, resilient, and stealthy opaque
constructs. In Proc. 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL), pages 184–196. ACM, 1998.

[14] D. Dean and A. Stubblefield. Using client puzzles to
protect TLS. In Proc. 10th USENIX Security
Symposium, pages 1–8. USENIX, 2001.

[15] Y. Dodis and A. Smith. Correcting errors without
leaking partial information. In Proc. 37th Annual
ACM Symposium on Theory of Computing (STOC),
pages 654–663. ACM, 2005.

[16] C. Dwork and M. Naor. Pricing via processing or
combatting junk mail. In Proc. Advances in
Cryptology - CRYPTO 1992, volume 740 of LNCS,
pages 139–147. Springer, 1993.

[17] M. Franklin and D. Malkhi. Auditable metering with
lightweight security. J. Computer Security,
6(4):237–255, 1998.

[18] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.
Protecting data privacy in private information
retrieval schemes. In Proc. 30th Annual ACM
Symposium on Theory of Computing (STOC), pages
151–160. ACM, 1998.

[19] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM,
43(3):431–473, 1996.

[20] Y. Ishai, A. Sahai, and D. Wagner. Private circuits:
securing hardware against probing attacks. In Proc.
Advances in Cryptology - CRYPTO 2003, volume 2729
of LNCS, pages 463–481. Springer, 2003.

[21] A. Juels and J. Brainard. Client puzzles: a
cryptographic defense against connection depletion. In
Proc. Network and Distributed System Security
Symposium (NDSS), pages 151–165. The Internet
Society, 1999.

[22] B. Lynn, M. Prabhakaran, and A. Sahai. Positive
results and techniques for obfuscation. In Proc.
Advances in Cryptology - EUROCRYPT 2004, volume
3027 of LNCS, pages 20–39. Springer, 2004.

[23] R. Rivest. Partial-match retrieval algorithms. SIAM
Journal of Computing, 5(1):19–50, 1976.

[24] A. Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[25] D. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Proc.
IEEE Symposium on Security and Privacy, pages
44–55. IEEE Computer Society, 2000.

[26] X. Wang and M. Reiter. Defending against
denial-of-service attacks with puzzle auctions. In Proc.
IEEE Symposium on Security and Privacy, pages
78–92. IEEE Computer Society, 2003.

[27] H. Wee. On obfuscating point functions. In Proc. 37th
Annual ACM Symposium on Theory of Computing
(STOC), pages 523–532. ACM, 2005.

