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An important idea in knowledge representation is that of libraries of reusable knowl-

edge components. The goal of this research is to apply this idea to action description

languages. An action language may be used to specify the effects and preconditions

of actions, and serves to describe “transition systems” — directed graphs with the

vertices representing the states of an action domain and the edges representing the

transitions that are caused by performing actions (or by the passage of time). Many

actions can be described as special cases of other actions. (For example, pushing,

carrying, going can all be described as special cases of moving things around.) How-

ever, descriptions of action domains in existing action languages describe the effects

of all actions from scratch, which leads to common aspects of different domains

getting reinvented over and over.
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In this dissertation we first developed a method for defining actions in terms

of other actions, in the action language C+, a language with a rich set of features for

describing action domains. This provided a theoretical basis for developing a library

of general-purpose action descriptions and influenced the design of the Modular

Action Description (MAD) language [Lifschitz and Ren, 2006], the semantics of

which is based on C+.

We extended the original MAD language in several ways, both in the syntac-

tic dimension and in the semantic dimension, and developed an implementation of

this extended language. The extended semantics not only provides new features but

also addresses some shortcomings of the original semantics, which were identified

during the course of our research. The implemented system was used to develop

a library of basic MAD modules, each describing a group of general commonsense

facts related to actions.

Several action domains from the knowledge representation literature were

formalized using the library of basic action descriptions. The availability of the

library led to the representations being much simpler than before and also enabled

us to recognize structural similarities of seemingly quite different domains.
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Chapter 1

Introduction

Two important lines of research in artificial intelligence are reasoning about actions

and the construction of general-purpose knowledge bases. We would like to bring

these two areas closer together.

The area of reasoning about actions has seen a great deal of progress in

the last twenty years. The tradition has been to try to formalize small exam-

ples very precisely and see where things go wrong. This leads to the invention of

new formalisms that are more and more expressive, capable of capturing informa-

tion that wasn’t possible to represent before. This approach has resulted in the

identification and solving of many important problems. In particular, the frame

problem [McCarthy, 1979] and the ramification problem [Finger, 1986] have been

solved using nonmonotonic formalisms [Shanahan, 1997, Geffner, 1990, Lin, 1995,

McCain and Turner, 1997]. There are several implemented systems with very ex-

pressive input languages, and the ability to solve action problems such as planning

or prediction. These systems have been used to formalize many small- and medium-

sized domains [Lifschitz et al., 2000, Lifschitz, 2000, Campbell and Lifschitz, 2003,
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Akman et al., 2004]. On the other hand, work is still needed to make these systems

“generally” applicable.

John McCarthy’s 1971 Turing Award Lecture was titled “Generality in Ar-

tificial Intelligence.” He later wrote [McCarthy, 1987]:

It was obvious in 1971 and even in 1958 that AI programs suffered from

a lack of generality. It is still obvious, and now there are many more

details. The first gross symptom is that a small addition to the idea

of a program often involves a complete rewrite beginning with the data

structures. Some progress has been made in modularizing data struc-

tures, but small modifications of the search strategies are even less likely

to be accomplished without rewriting.

Another symptom is that no-one knows how to make a general database

of common sense knowledge that could be used by any program that

needed the knowledge. Along with other information, such a database

would contain what a robot would need to know about the effects of

moving objects around, what a person can be expected to know about

his family, and the facts about buying and selling. This doesn’t depend

on whether the knowledge is to be expressed in a logical language or in

some other formalism. When we take the logic approach to AI, lack of

generality shows up in that the axioms we devise to express common

sense knowledge are too restricted in their applicability for a general

common sense database. In my opinion, getting a language for expressing

general common sense knowledge for inclusion in a general database is

the key problem of generality in AI.

The problems of modularity and generality, still very important today, have
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not been well-addressed in the study of reasoning about actions.

In the field of programming languages, widely-used languages such as C++ [Strous-

trup, 2000] and Java [Arnold et al., 2000] support not only modularity in the form

of simple inclusion of modules within each other, but also hierarchies of objects with

inheritance of properties from parents. These languages have many libraries avail-

able for common use. Today’s programmers would find it unimaginable to program

without these features of modularity and generally available libraries.

On the other hand, work on reasoning about actions hasn’t yet evolved out

of that “unimaginable” state. Whenever we describe a new domain we start from

scratch and state axioms that describe all of the effects of actions in detail. How-

ever, different actions in different domains are often related. For example, pushing,

carrying, going are all special cases of moving an object from one place to an-

other. Instead of describing all of their effects separately, it would be much easier

and more convenient to describe the effects of moving once and then just add the

domain-specific effects of each individual action.

The idea of having generally-applicable knowledge modules which can be

used in the creation of more specialized knowledge is not new. Significant attempts

have been made to build large databases of knowledge. The CYC project [Lenat

and Guha, 1990, Matuszek et al., 2006], under development for over 20 years, aims

to create a very large database of commonsense facts. The KM Component Li-

brary [Barker et al., 2001] is a collection of re-usable general purpose knowledge

components. Both projects have their own representation languages and reasoning

mechanisms, which are general in nature. Although these mechanisms can be used

to reason about actions, the focus of the projects has been the development of the

knowledge components, and the recent advances in reasoning about actions have not
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been fully integrated. We would like to apply the idea of libraries of re-usable gen-

eral purpose knowledge components [Barker et al., 2001] to very expressive action

languages.

The first prerequisite to being able to describe actions in terms of other

actions is to develop methods of relating actions to each other. A preliminary step

towards this was proposed in [Clark et al., 1996], where components describing

parts of STRIPS [Fikes and Nilsson, 1971] operators may be combined to form new

operators. We propose a method of relating actions to each other, in the action

language C+ [Giunchiglia et al., 2004]. This language has a rich set of features for

describing action domains and has been applied to many domains [Lifschitz et al.,

2000, Lifschitz, 2000, Campbell and Lifschitz, 2003, Akman et al., 2004].

Our work on describing actions as special cases [Erdoğan and Lifschitz, 2006]

has led to the development of the Modular Action Description (MAD) language [Lif-

schitz and Ren, 2006]. This language allows writing several modules of action de-

scriptions and then combining them, including the ability to build a hierarchy of

action descriptions and inherit properties from parent modules. Its semantics is

based on C+. Having such a language, suitable for describing actions in terms of

others, has enabled us to attempt McCarthy’s idea in a restricted area: making a

general library of commonsense knowledge about actions.

The library we constructed for this dissertation consists of MAD modules,

each describing a group of general commonsense facts related to actions. For ex-

ample, one module describes the effects of the “move” action, including the axiom

“moving an object causes it to be at a new location.” Another module expresses

more general information about locality, such as “an agent must be at the same

location as an object to be able to perform an action on it.”
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The original idea was to write the library in the MAD language, but as we

worked on this, we saw much room for useful enhancements to MAD. Therefore, the

library is actually written in an extended version of the MAD language. We also

developed an implementation of our extended version of MAD in order to test our

library modules and domain formalizations.

In deciding which modules to include in the library, we were guided by

the large number of small domains that have been represented in C+ by other re-

searchers, as well as domains studied in other work on planning and reasoning about

actions. Instead of trying to collect and formalize all actions one may encounter in

a dictionary, we examined these previously-studied domains and factored out the

common aspects, expressing them in a maximally general form. As the library was

developed it became possible to obtain new formalizations of previously-studied

domains by using library modules and only adding domain-specific facts.

Knowledge about actions is a small but important part of commonsense

knowledge, and the research presented here is a small step towards solving the

problem of generality in artificial intelligence. We plan to continue this work by

building the library further, though such a library will remain a work-in-progress

for a long time, due to the vast amount of commonsense knowledge in the world.

The layout of this dissertation is as follows. In the next chapter we provide

some background on the state of the art in reasoning about actions, action languages

and large databases of general-purpose knowledge. In Chapter 3 we review the action

language C+. Chapter 4 is the first chapter with our original work: it discusses our

work on describing actions as special cases of other actions. After presenting that

work which has greatly influenced the design of the MAD language, we take a

step back in Chapter 5 to review the MAD language introduced by Lifschitz and
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Ren [2006]. Chapters 6 and onwards present the rest of our original contributions.

An overview of the enhancements we made to MAD during the course of our research

is presented in Chapter 6.

Chapters 7–11 constitute the central part of this dissertation. The simple

core of a database of action description modules is provided in Chapter 7 and then

we show how some example action domains may be formalized using this core library

in Chapter 8. The following chapters add more modules to the library: A theory

of carriers is presented in Chapter 9, a library module about movement in regions

is added in Chapter 10, and the usage of numbers is highlighted in library modules

about time and resources in Chapter 11.

After the presentation of the library modules and examples, we go into some

more technical issues: Chapter 12 describes further enhancements we made to MAD

and the MAD implementation we developed is covered in Chapters 13 and 14. The

former is about using the system; the latter covers some implementation details.

Finally, in Chapter 15, we conclude and present some ideas for future work.
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Chapter 2

Background

2.1 Reasoning about Actions

Automating the process of commonsense reasoning is among the goals of artificial

intelligence. To accomplish this it is necessary to reason about actions and how

they affect the states of the world. One of the earliest suggestions to dealing with

commonsense reasoning was to use formal logic. Facts about the world can be

represented as logical axioms and deduction methods can be used to reason about

the changes in the states of the world [McCarthy, 1959].

Early research on logical reasoning about actions uncovered many problems.

The “frame problem” [McCarthy, 1979] is the problem of describing what doesn’t

change as the result of an action. For example, when we move a block from one place

to another, the locations of all of the other blocks remain unaffected. Typically an

action changes only a few things which are easy to describe but it is infeasible to write

axioms listing all the things that don’t change. The “ramification problem” [Finger,

1986] is the problem of how to describe the indirect effects of actions. The main

effect of an action is usually easy to describe because that’s what we associate with
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the action. However, there may be many consequences of that main effect which

are not directly related to a specific action. For example, when a box is moved to

a new location, all of the items in the box also end up at that new location. When

there are such indirect effects of an action, the frame problem may become more

difficult. Work on nonmonotonic reasoning and causality has produced formalisms

which can solve both the frame problem [Shanahan, 1997] and the ramification

problem [Geffner, 1990, Lin, 1995, McCain and Turner, 1997]. In particular, very

expressive action description languages have been introduced, incorporating the

solutions to these problems in their design. The development of action languages

will be reviewed in the next section.

With the solution of important representational problems, the field of reason-

ing about actions has reached a certain level of maturity, where many examples can

be studied and formalized successfully. Unfortunately, these examples are typically

quite small and each one is formalized independently of the others. Concentrating

on very small examples was a necessity for the development of precise formalisms

that could solve the problems that arose. However, in order to address the issue of

generality in AI that McCarthy [1987] brings up, we need to be able to go beyond

small examples and extend our formalisms to make use of existing formalizations.

There is ongoing research which aims to develop formalisms which address exactly

this issue. We review some of this work in Section 2.3.

Expressive formalisms allowing re-use of existing action descriptions is only

one half of solving the problem of generality for reasoning about actions. The other

half that is necessary is a database of general-purpose action descriptions which

can be used to quickly and conveniently describe new domains. As part of this

dissertation we built such a database of action descriptions. Other researchers have
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also worked on building databases of general-purpose knowledge, though none of

these projects has focused specifically on reasoning about actions. We review this

work in Section 2.4.

2.2 The Evolution of Action Languages

Action languages are formal models of parts of the natural language that are used

for talking about the effects of actions [Gelfond and Lifschitz, 1998]. They define

“transition systems” — directed graphs with the vertices representing the states

of an action domain and the edges representing the transitions that are caused

by performing actions (or by the passage of time). States are parameterized by

“fluents”—propositions whose values change over time. For example, to represent

whether a door is open or closed in a state, we may use a Boolean-valued fluent

named Open.

One of the earliest systems invented to describe actions, STRIPS [Fikes and

Nilsson, 1971], is closely related to the concept of an action language. The difference

lies in the fact that STRIPS operators act on “world models,” lists of first-order

formulas, instead of states in a transition system. (World models may be incomplete

in the sense that the values of some predicates may not be defined, whereas in a state

of a transition system the values of all fluents are completely defined.) In STRIPS,

preconditions of an action are stated in the form of first order formulas which should

be entailed by the world model right before the action is to be executed, and the

effects are stated as lists of formulas to be added to (those on the “add” list) or

deleted from (those on the “delete” list) the world model right after the execution

of the action. The frame problem is averted by the built-in assumption that the

formulas not included in the delete lists remain true. The expressive capabilities of
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STRIPS are limited. For example, it cannot represent action effects which depend

on the situation (conditional effects), indirect effects of actions (ramifications), or

the concurrent execution of actions. Also, many difficulties arise when trying to

interpret the meaning of STRIPS descriptions because the semantics of the original

language is not clearly defined [Lifschitz, 1987].

Pednault [1987] observed that the expressive power of STRIPS can be en-

hanced by allowing the add and delete lists to be conditional, and introduced the

language ADL [Pednault, 1994]. This idea is shared by the action language A [Gel-

fond and Lifschitz, 1993], which has the same expressive power as the propositional

fragment of ADL. (Although, strictly speaking, ADL also has fluents with non-

Boolean values — “multi-valued” propositional fluents.)

Baral and Gelfond [1997] extended A by allowing concurrent execution of

actions. Some reasoning systems try to deal with concurrency by “serializing” ac-

tions. While this works in some cases, there are situations where it really does

matter whether actions are executed concurrently or in sequence. The example of

the spacecraft Integer in [Lee and Lifschitz, 2003] illustrates this point: applying

forces to the jets of a spacecraft along different axes will lead to the spacecraft being

at different positions depending on whether the forces are applied concurrently or

one after another.

Lin and Reiter [1994] and Baral [1995] observed that state constraints, tra-

ditionally used to represent the indirect effects of actions, actually correspond to

multiple notions. While some constraints are about indirect effects others are about

preconditions for actions, and it is necessary to distinguish between different kinds

of state constraints. The need for causality in describing the indirect effects of ac-

tions was discussed in [McCain and Turner, 1995, Lin, 1995]. They argued that
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the traditional way of representing state constraints as logical implications fails

to capture the directionality of cause and effect. Turner [1997] introduced an ac-

tion language which includes “static causal laws” for specifying causal relationships

between fluents. Static causal laws do not mention actions but are useful for repre-

senting ramifications. As it turns out, such laws can also be used to specify implicit

preconditions for actions (also called qualifications).

The idea of using causality was taken further when McCain and Turner [1997]

introduced a logic of causal theories. These theories are very powerful, with the

ability to express ramifications, qualifications, concurrency and nondeterminism.

Instead of having a built-in assumption to solve the frame problem, it is possible

to specify which fluents obey the “commonsense law of inertia.” Such theories

allow dynamic domains in which some fluents change by themselves (i.e. without

actions occurring). Giunchiglia and Lifschitz [1998] turned causal logic into an

action language, which they called C.

Nonmonotonic causal theories were later extended to allow multi-valued flu-

ents instead of only Boolean fluents, and the action language C+ [Giunchiglia et al.,

2004] was introduced as an extension of C. In addition to multi-valued fluents, C+

introduced many other new features. Action attributes and defeasible causal laws

may be used to make formalizations more “elaboration tolerant” [McCarthy, 2007],

facilitating the modification of action descriptions by simply adding new statements,

instead of changing existing ones. A special kind of fluent, called an “additive flu-

ent” [Lee and Lifschitz, 2003] can be used to correctly calculate the aggregated

effects of concurrent actions on numeric-valued fluents. (This kind of concurrency

needs to be handled in a special manner.)

The Causal Calculator (CCalc)1 is an implementation of a subset of C+

1http://www.cs.utexas.edu/users/tag/cc/
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(its “definite” fragment), which can be used to solve problems related to actions,

such as prediction and plan generation. It has been applied to several challenging

problems in commonsense reasoning [Lifschitz et al., 2000, Lifschitz, 2000, Campbell

and Lifschitz, 2003, Akman et al., 2004], including domains of non-trivial size.

Recently, Lifschitz and Ren [2006] observed the need for an action language

with the ability to refer to existing action descriptions. The Modular Action De-

scription (MAD) language, based on C+, allows action descriptions consisting of a

list of modules, where a module mentioned earlier can be “imported” into a later

module, possibly with some changes.

All of the languages above are action languages focusing on description of

action domains. Even though implementations of them may have ways to represent

certain queries, the languages don’t have a formally defined way of representing

queries. Baral and Gelfond [2000] introduce an action language AL that also has a

history component ALh for representing the happening and observation of actions,

and a query component Lq for representing queries about the properties of the

domain.

2.3 Modularity in Representing Actions

There have been several efforts at enhancing existing formalisms by adding modu-

larity, similar to the emergence of MAD from C+.

A paper by Gelfond [2006] is directed towards “the development and imple-

mentation of a library of knowledge modules needed for axiomatization of journey—a

movement of a group of objects from one place (the origin) to another (the desti-

nation).” Adding modular structure to the logic programming language CR-Prolog

[Balduccini and Gelfond, 2003, Balduccini, 2007] in that paper is similar to adding
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modular structure to C+ in [Lifschitz and Ren, 2006].

The applicability of the object-oriented paradigm to modeling dynamic do-

mains is investigated by Gustafsson and Kvarnström [2004]. Their system is based

on Temporal Action Logic [Doherty and Kvarnström, 2008]. The modularity comes

from classes, associating a set of fluents and axioms with each object of that class.

In contrast, modules in MAD are more general: they are essentially action descrip-

tions, not focused on a particular class or object, though it is possible, in principle,

to make MAD modules which mirror the notion of class.

The idea of adding modularity to logic programming has been explored in

[Calimeri et al., 2004]. They introduce “templates” as generic subprograms with

some predicates used to parameterize the program, which can be viewed as similar to,

but more restricted than, the constant renaming which happens in MAD. However,

their examples are focused on “aggregates” in logic programming, rather than on

commonsense reasoning or actions.

In [Baral et al., 2006], the authors add modularity to answer set programming

by using macros and “ensembles” (groups of macros). Then these macros can be

used by replacing certain terms with others, or adding or removing terms during

macro calls. They say that replacement is inspired by the original work on MAD in

[Lifschitz and Ren, 2006]. The goals of this work are very similar to ours: to enable

the creation of a library of knowledge modules. They provide examples of modules

for planning and reasoning about actions. However, as far as we know, there have

not been any attempts to use this methodology to build a library of knowledge

modules, and currently there is no implementation of their macro call mechanism.
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2.4 Large Databases of General-Purpose Knowledge

There have been several projects to build large-scale knowledge bases [Lenat and

Guha, 1990, Knight and Luk, 1994, Fellbaum, 1998, Barker et al., 2001], though

none of these has focused specifically on reasoning about actions. In this section

we will review two well-known efforts which also provide the ability to reason about

actions: Cyc [Lenat and Guha, 1990] and the KM Component Library [Barker et

al., 2001]. After providing some general information about them we consider their

facilities for reasoning about actions. Another comparison of the representation of

actions in Cyc and KM may be found in [Parmar, 2001].

2.4.1 Cyc

Perhaps the best-known effort to create a very large repository of commonsense

knowledge, the CYC project [Matuszek et al., 2006, Lenat and Guha, 1990] was

begun in 1984 and is still under development. As of March 2005, it contains ap-

proximately three million assertions interrelating over a quarter of a million con-

cepts [Shepard et al., 2005]. The knowledge base is written in the CycL language.

This is a combination of a frame-based language [Minsky, 1975] and a constraint

language. Most of the knowledge is expressed in frames but the constraint language,

based on predicate calculus with higher order extensions, can be used to state things

that are not possible to state with frames or even things about the frames them-

selves. It is reported that the main contribution of the higher-order extensions is

to improve the efficiency of reasoning and that most of them (around 90%) can be

transformed into first-order logic [Ramachandran et al., 2005].

The ontology of Cyc contains units called “events,” which have a starting

time, ending time and duration [Lenat and Guha, 1990]. The class “action” is a
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subclass of event, and actions are defined by what axioms and slots apply to them,

just like any of the other frames in Cyc. For example, preconditions and effects of

an action are represented in the slots of its frame. Events are the things that can

be related to one another by temporal relations. They may be combined to make

scripts. In order to use Cyc to reason about the effects of an event, we need to

assert that the event happened. We can then use Cyc’s inference engine, based on

resolution, to prove or disprove statements related to that event. However, currently,

this mechanism of Cyc does not address the frame problem even in the simple form

that STRIPS uses. For example, we may assert that a plane flight from Austin to

San Jose takes 3 hours and 44 minutes, that San Jose time is two hours behind

Austin time, and that Frank flies from Austin to San Jose, leaving at 9:14 AM. Cyc

will conclude that Frank is in San Jose at 10:58 AM. However, if we ask Cyc if Frank

is in San Jose at 11:00 AM, it won’t be able to prove or disprove it.

In addition to its main inference engine, Cyc also includes a planner [Shepard

et al., 2005], based on the SHOP planner [Nau et al., 1999]. The representation of

actions in this planner is very similar to STRIPS, with preconditions, add and delete

lists. Therefore, reasoning about actions in a way that handles the frame problem

in the built-in way that STRIPS does is possible for Cyc in the context of planning.

However, even in just the planning context, it suffers from the representational

shortcomings it inherits from STRIPS.

Another way to characterize Cyc is to say that it is “semi-formal.” The

syntax of the language used is formally defined, but the semantics is not. Therefore,

the question of whether a reasoning process is “accurate” with respect to Cyc cannot

be answered in a precise mathematical way.
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2.4.2 The KM Component Library

Another project to build a large database of knowledge components is the KM

Component Library [Clark and Porter, 1997, Barker et al., 2001]. The emphasis

of this project is very different from that of Cyc. The goal of the Cyc project

is to collect a very large amount of commonsense facts, whereas the Component

Library focuses on identifying repeated patterns of axioms in large theories and

then abstracting them to form components. These components of axioms usually

correspond to common English words. Another way in which the approach of the

Component Library differs from Cyc is the purpose. Instead of being a knowledge

base itself, the Component Library is intended to be a tool to build knowledge bases,

enabling domain experts to easily and quickly build knowledge bases in their own

fields. To this end the number of components is restricted to a few hundred and

the number of relations between components to less than a hundred [Barker et al.,

2001].

The Component Library is written in the KM language [Clark and Porter,

2001b, Clark and Porter, 2001a], though the authors state that the approach is ap-

plicable to other languages. KM is frame-based but with many extensions. Frames

group axioms in (mainly) first-order logic together. There are two main types of

components in the library : entities (things that are) and events (things that hap-

pen). States and actions are both events. At first reading, it may be unexpected to

see states be events. However, here a state is just a group of axioms representing a

situation affected by actions.

KM has “situations” — representing the state of the world at a particular

moment — to reason about changing states of the world and actions. The semantics

of the situations is based on the Situation Calculus [McCarthy and Hayes, 1969],
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where executing an action leads to a new situation. Unless we “enter” a specific

situation, all the axioms and frames we write are part of the global situation, from

which all the other situations inherit things. In KM frames slots values may be

situation-dependent. Such slots are called “fluents” and there is a special kind of

fluent, called an “inertial fluent,” whose values persist from situation to situation.

(i.e., the values remain the same after execution of an action, unless they are incon-

sistent with the rest of the situation.) By default all slots are inertial fluents.

Actions in KM are represented by a special class called “action” and the

representation of actions is very similar to STRIPS operators (though the inference

mechanism is quite different): actions have preconditions, negated preconditions,

add lists, and delete lists. Unlike STRIPS, actions in KM may have situation-

specific preconditions and effects. These are obtained by writing expressions to

be evaluated in the current situation, instead of just formulas evaluating to true

or false, as in STRIPS. Ramifications are also possible to represent in KM. Since

things are computed upon query, if the value of a fluent is given as an expression to

be evaluated based on the value of different fluents, after an action changes those

fluents, a query about the first will be evaluated based on the new situation. It is

recommended that fluents which are directly affected by actions be declared inertial

fluents so that their values persist from situation to situation when the action doesn’t

affect them, and that fluents indirectly affected not be declared as inertial and that

their values always be expressed in terms of other fluents. However, this assumes

that fluents may be divided into two classes: those which are directly affected and

those that are indirectly affected. Thielscher [1997] demonstrates that this may not

always be the case and it is possible to have a fluent that may be directly affected

sometimes and indirectly affected at other times. This limitation of KM is addressed
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in the action languages C+ and MAD, which we will be using in this dissertation.

Using KM situations, it is possible to simulate action executions or plans

consisting of several action executions (though this may not always be straightfor-

ward since each action would need to provide a situation in which preconditions for

the next action hold). We can then ask questions about what happens at the end or

what holds in situations in-between. But other reasoning abilities such as planning

or postdiction (asking questions about the past, given a history of events which may

be incomplete) aren’t currently available. Especially, projection backwards in time

is not possible since the built-in way to solve the frame problem only projects the

values of inertial fluents to situations forwards in time.

One interesting ability of KM is to reason about different paths of execution

at the same time. This is a capability that is not available in the Causal Calculator.

However, each of these paths is a path of single action execution. No concurrent

execution of actions is allowed in KM.
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Chapter 3

Prerequisites: C+

In this chapter we provide part of the technical background necessary for our work.

The library is written in an enhanced version of the MAD language [Lifschitz and

Ren, 2006], the semantics of which is defined terms of the action language C+ [Giun-

chiglia et al., 2004]. Our review in this chapter introduces C+. A review of MAD

will be given in Chapter 5.

3.1 Multi-valued Signatures

A (multi-valued) signature is a set σ of symbols, called (multi-valued) constants,

along with a non-empty finite set Dom(c) of symbols, disjoint from σ, assigned to

each constant c. The set Dom(c) is the domain of c. A Boolean constant is one

whose domain is the set {f, t} of truth values.

Consider a fixed multi-valued signature σ. An atom is an expression of the

form c = v (“the value of c is v”) where c ∈ σ and v ∈ Dom(c). A formula is a

propositional combination of atoms. If c is a Boolean constant, we will sometimes use

c as a shorthand for the atom c = t, and ¬c as shorthand for c = f . An interpretation
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maps every constant in σ to an element of its domain. An interpretation I satisfies an

atom c = v if I(c) = v. The satisfaction relation is extended from atoms to arbitrary

formulas according to the usual truth tables for the propositional connectives. A

formula which is true under all interpretations is called tautological.

3.2 Action Descriptions

Consider a fixed multi-valued signature with the constants partitioned into three

groups: action constants, simple fluent constants and statically determined fluent

constants. A fluent formula is a formula such that all constants occurring in it are

fluent constants, and an action formula is a formula that contains at least one action

constant and no fluent constants.

An action description is a set of (causal) laws—expressions of the form

caused F if G (3.1)

or

caused F if G after H. (3.2)

where F , G and H are formulas satisfying certain syntactic conditions described

below. Formula F is called the head of the law. A causal law is called definite if its

head is an atom or ⊥. If all the laws in an action description are definite, the action

description is also called definite.

There are three types of causal laws. A static law is an expression of the

form (3.1) in which F and G are fluent formulas. An action dynamic law is an

expression of the form (3.1) in which F is an action formula and G is a formula.

A fluent dynamic law is an expression of the form (3.2) in which F and G are
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fluent formulas, H is a formula, and F does not contain any statically determined

constants. We say that two causal laws are similar if they are of the same type.

Many useful constructs are defined as abbreviations for the basic forms (3.1)

and (3.2) shown above. The reader is referred to [Giunchiglia et al., 2004, Ap-

pendix B] for a detailed list. For instance, law

DriveTo(Fred , Austin) causes Location(Fred ) = Austin

stands for the fluent dynamic law

caused Location(Fred) = Austin if ⊤ after DriveTo(Fred , Austin).

3.3 Transition Systems

According to the semantics of C+, every action description D represents a transition

system TS(D)—a directed graph whose vertices are states, and whose edges are

labeled by events. States and events are interpretations of the fluent constants and

action constants, respectively, that satisfy certain constraints determined by the

causal laws in the action description. Thus to specify a state we assign a value to

each of the fluents, and to specify an event we assign a value to each of the actions.

Actions are usually Boolean, in which case we may view an event as a set of actions

— those that are assigned the value true. If this set is empty, it means no actions are

executed, and if it is a singleton, that means that there is no concurrent execution of

actions in that event. Non-Boolean actions are used to represent action attributes,

of which we will see an example in Section 4.2.

We said in the preceding section that the fluent constants are either sim-
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ple or statically determined. Intuitively, statically determined constants represent

properties that only depend on the values of other fluents in the same state, rather

than being directly affected by actions executed during a transition.

In the next section we use an example to illustrate how a given action de-

scription corresponds to a transition system. The precise semantics is presented in

Appendix A.

3.4 Example: the Suitcase Domain

The suitcase domain from [Lin, 1995] describes the spring-loaded locking mechanism

of a suitcase with two latches, L1 and L2. The latches are either up or down and

it is possible to toggle the position of each latch. The suitcase opens when both

latches are open. The following C+ action description formalizes this domain.

Notation: l ranges over {L1, L2}.

Simple fluent constants: Domains:

Up(l),Open Boolean

Action constants: Domains:

Toggle(l) Boolean

Causal laws:

inertial Up(l),Open

exogenous Toggle(l)

Toggle(l) causes Up(l) if ¬Up(l)

Toggle(l) causes ¬Up(l) if Up(l)

caused Open if
∧

l

Up(l)
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The first causal law is an abbreviation for the fluent dynamic laws

caused Up(l) if Up(l) after Up(l)

caused ¬Up(l) if ¬Up(l) after ¬Up(l)

caused Open if Open after Open

caused ¬Open if ¬Open after ¬Open

It says that in the absence of any actions, the positions of the latches and the status

of the suitcase (open or not) stay the same. The second causal law is an abbreviation

for the pair of action dynamic laws

caused Toggle(l) if Toggle(l)

caused ¬Toggle(l) if ¬Toggle(l)

It expresses that a toggling action may happen or not happen at any time — its

cause is exogenous. The third and fourth causal laws describe the direct effects of

toggling actions and the last law states that the suitcase is open when both latches

are up.

Figure 3.1 shows the transition system represented by this action description.

There is an arc from each state to itself labeled ∅ (meaning no actions are executed)

since all the fluents are inertial. Notice that there are no transitions from the middle

state to any of the states on the left. This is because there are no actions that can

make the suitcase closed once it is open.
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Figure 3.1: The transition system for the suitcase domain
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3.5 The Causal Calculator (CCalc)

The Causal Calculator (CCalc)1 is an implementation of the definite subset of C+

which can be used to solve problems related to actions, including prediction, plan

generation and postdiction. It is based on the idea of converting a problem to a set

of clauses and using satisfiability solvers to find a solution. The idea of satisfiability

planning comes from [Kautz and Selman, 1992]. Later McCain and Turner [1998]

laid the basis for its use in CCalc. There has been some work in extending CCalc

to cover nondefinite descriptions too. In particular, [Doğandağ et al., 2004] defines

a superset of definite action descriptions called “almost definite.” The implemen-

tation in that work has the same input language as CCalc but uses a different

computational mechanism.

Here is a formalization of the suitcase domain in the language of CCalc:

:- sorts

latch.

:- objects

l_1, l_2 :: latch.

:- constants

up(latch), open :: simpleFluent(boolean);

toggle(latch) :: action(boolean).

:- variables

L :: latch.

inertial up(L), open.

exogenous toggle(L).

1http://www.cs.utexas.edu/users/tag/cc/
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toggle(L) causes up(L) if -up(L).

toggle(L) causes -up(L) if up(L).

caused open if [/\L | up(L)].

In contrast to C+, CCalc has a specific syntax for defining multi-valued

signatures (shown as the sort, object and constant declaration sections above). The

causal laws are almost identical to the corresponding laws in C+. One important

difference is that the syntax of input files follows the Prolog tradition of capitalizing

variables, since CCalc is written in Prolog. There are also a few changes due to

being restricted to ASCII (such as using “-” for negation and “[/\L | ... ]” for

finite conjunction over variable L).

CCalc allows declaring and using variables even though they are not part

of C+. Every proposition containing variables is treated as an abbreviation for a

set of C+ propositions. In a step called “grounding,” CCalc replaces each variable

(which is not in the context of a finite disjunction or conjunction) with every object

of the corresponding sort.

The following is a query representing a planning problem for this domain.

Initially both latches are down and the suitcase is closed. The query asks for the

suitcase to be open in the final state.

:- query

maxstep: 0..2;

0: -up(l_1), -up(l_2), -open;

maxstep: open.

Symbols 0: and maxstep: are “time stamps”. The time stamp maxstep:

0..2 instructs CCalc to first try to find a plan of length 0, then 1, then 2, fail if no

plan of these lengths exists.
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CCalc responds as follows:

?- query 0.

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 3 atoms, 1 clauses

% Writing input clauses... done. (0.00 seconds)

% Calling GRASP... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 0 seconds (prep 0 seconds, search 0 seconds)

No solution with maxstep 0.

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 8 atoms, 13 clauses

% Writing input clauses... done. (0.00 seconds)

% Calling GRASP... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 0 seconds (prep 0 seconds, search 0 seconds)

0:

ACTIONS: toggle(l_1) toggle(l_2)

1: up(l_1) up(l_2) open

This output shows that the shortest plan for this query takes one time step.

None of the fluents are true initially, which is shown by the absence of anything after

“0:”. Actions toggle(l_1) and toggle(l_2) are executed concurrently between

times 0 and 1, resulting in both latches being up and the suitcase being open at

time 1.
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Rigid constants in CCalc

One of the C+ abbreviations defined in [Giunchiglia et al., 2004, Appendix B] is for

conveniently postulating that the value of a certain fluent always stays the same:

rigid c

stands for

caused ⊥ if ¬(c = v) after c = v

for all v ∈ Dom(c).

CCalc augments the set of fluent constants by adding rigid constants. The

declaration

:- constants

c :: boolean;

denotes a Boolean-valued fluent constant c whose value will be the same at all times.

If the head of a causal law contains rigid constants, that causal law must not

contain any non-rigid constants.
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Chapter 4

Actions as Special Cases

The heart of every action language is a syntactic mechanism for describing effects of

actions on fluents. When we define, for instance, the Monkey and Bananas domain

in STRIPS, we can specify how pushing the box affects the location of the box by

including appropriate atoms in the description of the operator PushBox (l): we put

At(Box , l′) for every location l′ on its delete list, and At(Box , l) on its add list.

In C+ the same idea can be expressed by the causal law

PushBox (l) causes Loc(Box )= l (4.1)

(quoted from [Giunchiglia et al., 2004], Figure 2, reproduced in Section 4.3 below).

Descriptions like these are common in knowledge representation, but they are

strikingly different from the descriptions of actions that humans give to each other

informally. The dictionary says, for instance, that pushing is moving by steady

pressure. This phrase explains the meaning of the word push not by listing the

effects of this action, but by presenting it as a special case of another action, move,

that is supposed to be already familiar to the reader. Some actions may need to be
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described directly in terms of the changes that they cause; to move, for instance,

means to cause to change position, according to the dictionary. But in most cases

the easiest way to describe an action is to relate it to more basic actions.

Here is one more example of describing one action as a special case of another.

A surgeon may indicate the action he wants to be performed by saying, “Scalpel.”

John McCarthy [1993] explains that in the context of an operation this one word

may mean “Please give me the number 3 scalpel.” The action to be performed is

described as a special case of the basic action give.

In this chapter, we take some steps towards determining how a C+ library

of standard actions can be used when writing action descriptions. Specifically, we

introduce a general form of causal laws for relating special-case actions and fluents

to the library constants. These laws “explicitly define” a constant in terms of other

constants. Therefore, we develop a theory of explicit definitions in C+.

The laws used to define constants in terms of others can be called “bridge

rules” because they provide a connection between the library and the specific domain

description. With the theory of explicit definitions in C+, bridge rules can be used,

in certain cases, to completely eliminate all references to the library and thus obtain

an alternative action description in terms of the domain-specific constants.

The causal laws used in the bridge rules are nondefinite. Since the Causal

Calculator is an implementation of the definite fragment of C+, it will not be possible

to use that system, at least directly, to process action descriptions containing bridge

rules. However, one of the propositions from our theory of explicit definitions shows

that, under certain conditions, bridge rules may be replaced by definite causal laws.

In the rest of the chapter, a specific example is used to illustrate how action

domains can be specified with libraries. First we give a C+ description of the
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action Move that can be included, in principle, in a library of general-purpose action

descriptions. Then we review the formalization of the Monkey and Bananas domain

from [Giunchiglia et al., 2004] and show how to replace some of the C+ laws in that

formalization with a group of C+ laws that characterizes PushBox as a special case

of Move. It turns out that this reformulation is essentially equivalent to the original

formalization. Finally, we demonstrate how this nondefinite reformulation involving

the library may be turned into an equivalent definite action description.

4.1 Explicit Definitions in C+

In classical logic, an explicit definition of a predicate constant P is an axiom of the

form

P (x) ≡ φ(x) (4.2)

where φ is a formula that does not contain P . Such a definition has two properties.

First, due to the equivalent replacement theorem of classical logic, if a theory con-

tains axiom (4.2), any occurrences of P in other axioms may be eliminated. Second,

adding axiom (4.2) to any theory which does not contain P yields a “conservative

extension” of the original theory; any model of the new theory can be turned into a

model of the original theory by dropping the predicate representing P .

Our goal is to develop a similar theory of explicit definitions in C+.

An explicit definition of a multi-valued constant c, in terms of a multi-valued

signature σ which does not contain c, is a set of causal laws of the form

caused c = v ≡ Fv , (4.3)

one for each v ∈ Dom(c), where
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• each Fv is a formula of σ such that

– if c is an action constant then Fv does not contain fluent constants;

– if c is a statically determined fluent constant then Fv does not contain

action constants;

– if c is a simple fluent constant then Fv contains neither action constants

nor statically determined fluent constants;

• the formulas
∨

v∈Dom(c)

Fv

and
∧

v,w∈Dom(c),v 6=w

¬(Fv ∧ Fw)

are tautological.

Intuitively, in view of the second condition, there is exactly one value of c corre-

sponding to any interpretation of σ.

For example, the causal laws

caused Clear =L1 ≡ (Loc(Box )=L2 ∨ Loc(Box )=L3)

caused Clear =L2 ≡ Loc(Box )=L1

caused Clear =L3 ≡ ⊥

provide an explicit definition of the simple fluent constant Clear with domain

{L1, L2, L3}. Intuitively, Clear is the “first” location which is clear of the box.

The concept of an explicit definition in C+, given above, differs from that in

classical logic in two ways. In the case of classical logic a single formula φ suffices to

define P since there are only two truth values. However, since C+ is multi-valued, to

define c we need a formula for each value in the domain of c. Another difference is the
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restriction about the types of constants occurring in formulas Fv. Since language

C+ has three distinct types of constants, only certain constants may be used to

define other constants. These differences notwithstanding, explicit definitions in

C+ are very similar to explicit definitions in classical logic, in that they share the

replacement and conservative extension properties.

The following counterpart of the equivalent replacement theorem from clas-

sical logic allows us to eliminate all occurrences of an explicitly defined constant

except its occurrences in the definition:

Proposition 1 Let F,G be formulas, let D be an action description, and let L,L′

be similar causal laws such that L′ is obtained from L by replacing an occurrence of

F by G. Then the action description

D

L

caused F ≡ G

represents the same transition system as

D

L′

caused F ≡ G.

Proposition 2 below shows that adding an explicit definition of a new constant

yields a “conservative extension.” Let D and D′ be action descriptions such that the

signature of D is a part of the signature of D′. We say that D is a residue of D′ if

restricting the states and events of the transition system for D′ to the signature of D

establishes an isomorphism between the transition system for D′ and the transition

system for D.
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Proposition 2 Let D be an action description of a signature σ, and let c be a

constant that does not belong to σ. If D′ is an action description of the signature

σ ∪ {c} obtained from D by adding an explicit definition of c in terms of σ, then D

is a residue of D′.

For instance, if D is an action description of a signature containing the fluent

constant Loc(Box ), c is Clear , and D′ is obtained from D by adding the explicit

definition of Clear shown above, then the transition system for D′ is isomorphic to

that for D. The latter can be obtained by restricting the states of the transition

system for D′ to the fluent constants other than Clear .

Explicit definitions will play an essential role in relating special-case actions

and fluents to actions and fluents in a general-purpose library. Such definitions

constitute the “bridge rules” providing a connection between the library and the

specific domain description. In such usage, an explicitly defined constant c may

often appear in the heads of causal laws other than the definition, as part of one of

the two action descriptions we wish to connect.

The causal laws used in explicit definitions are nondefinite because their

heads are equivalences. In the general case, there is no known way to express

definitions (with the two properties we would like them to have) using definite laws.

However, if an action description does not refer to such a defined constant c in

the heads of any laws other than the definition itself, then the definition may be

equivalently expressed using definite causal laws:

Proposition 3 Let σ be a signature and c be a constant that does not belong to σ.

Let D be an action description of signature σ ∪ {c} which does not contain c in the

heads of laws. Let D′ be an action description of signature σ∪ {c} obtained from D

by adding an explicit definition (4.3) of c in terms of σ. Then the action description
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of signature σ ∪ {c} obtained from D by adding the rules

caused c = v if Fv (v ∈ Dom(c))

represents the same transition system as D′.

The rest of the chapter focuses on an example of using a library description

of action Move to reformalize the Monkey and Bananas domain from [Giunchiglia

et al., 2004].

4.2 Moving Things

Our “general-purpose” formalization of the action Move is a family of C+ action

descriptions depending on two parameters. For any nonempty finite sets P,L of

symbols, the action description MOVE(P,L) below represents the properties of

moving physical objects (elements of P ) to locations (elements of L).

This formalization uses action attributes, which are represented in C+ as

action constants which are non-Boolean. They have the special value None if the

action of which they are an attribute is not executed.

The signature and the causal laws of MOVE(P,L) are as follows:

Notation: p, p1 range over P ; l ranges over L.

Simple fluent constants: Domains:

Location(p) L

Action constants: Domains:

Move(p) Boolean

Mover(p) P ∪ {None}

Destination(p) L ∪ {None}
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Causal laws:

always Mover(p)=None ≡ ¬Move(p) (4.4)

always Destination(p)=None ≡ ¬Move(p) (4.5)

Move(p) causes Location(p)= l if Destination(p)= l (4.6)

Move(p) causes Location(p1)= l if Mover(p)=p1 ∧ Destination(p)= l (4.7)

nonexecutable Move(p) if Location(p)=Destination(p) (4.8)

nonexecutable Move(p) if Mover(p)=p1 ∧ Location(p1) 6=Location(p) (4.9)

exogenous Move(p) (4.10)

exogenous Mover(p)

exogenous Destination(p)

inertial Location(p) (4.11)

The constants Mover(p) and Destination(p) are used here as attributes of

the action Move(p) in the sense of [Giunchiglia et al., 2004, Section 5.6]. When

the action Move(p) is executed, the value of Mover(p) is the agent executing that

action, and the value of Destination(p) is the location to which p is being moved;

otherwise the value of each attribute is None (“undefined”). Executing Move(p)

causes the location of p and the location of Mover(p) to be equal to Destination(p).

The action is not executable if Destination(p) is the current location of p, and also

if p and Mover(p) are in different places.

Consider, for example, the transition system represented by the action de-

scription

MOVE({Monkey ,Box ,Bananas}, {L1, L2, L3}). (4.12)

(This choice of “actual parameters,” substituted for the “formal parameters” P , L,

corresponds to the use of MOVE in the next section.) This graph has 27 ver-

tices, corresponding to the states—assignments of locations L1, L2, L3 to fluents
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Move(Bananas) = f

Move(Box) = t

Destination(Monkey) = None

Mover(Bananas) = None

Mover(Monkey) = None

Move(Monkey) = f

Destination(Box) = L3

Mover(Box) = Monkey

Destination(Bananas) = None
Location(Box) = L2

Location(Bananas) = L3

Location(Monkey) = L2

Location(Box) = L3

Location(Monkey) = L3

Location(Bananas) = L3

Figure 4.1: An edge of the graph represented by action description (4.12)

Location(Monkey), Location(Box ) and Location(Bananas). Every edge of this graph

is labeled by an event—an assignment of values to the action constants. In one of

these events, for instance, the monkey is moving the box from L2 to L3, where the

bananas are. The corresponding edge of the graph is shown in Figure 4.1. Notice

that even though the action Move(Monkey) is not executed, the execution of action

Move(Box ) with attribute Mover(Box )=Monkey causes the location of the monkey

to change.

4.3 Pushing the Box as a Special Case of Moving

The following action description, MB , was proposed in [Giunchiglia et al., 2004,

Figure 2] as a description of the familiar Monkey and Bananas domain. (Some of

the causal laws are labeled for future reference.)

Notation: x ranges over {Monkey ,Bananas ,Box}; l ranges over {L1, L2, L3}.

Simple fluent constants: Domains:

Loc(x) {L1, L2, L3}
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HasBananas ,OnBox Boolean

Action constants: Domains:

Walk(l),PushBox (l) Boolean

ClimbOn,ClimbOff ,GraspBananas Boolean

Causal laws:

caused Loc(Bananas)= l if HasBananas ∧ Loc(Monkey)= l

caused Loc(Monkey)= l if OnBox ∧ Loc(Box )= l

Walk(l) causes Loc(Monkey)= l

nonexecutable Walk(l) if Loc(Monkey)= l

nonexecutable Walk(l) if OnBox

PushBox (l) causes Loc(Box )= l (4.13)

PushBox (l) causes Loc(Monkey)= l (4.14)

nonexecutable PushBox (l) if Loc(Monkey)= l (4.15)

nonexecutable PushBox (l) if OnBox

nonexecutable PushBox(l) if Loc(Monkey) 6=Loc(Box ) (4.16)

ClimbOn causes OnBox

nonexecutable ClimbOn if OnBox

nonexecutable ClimbOn if Loc(Monkey) 6=Loc(Box )

ClimbOff causes ¬OnBox

nonexecutable ClimbOff if ¬OnBox

GraspBananas causes HasBananas

nonexecutable GraspBananas if HasBananas

nonexecutable GraspBananas if ¬OnBox

nonexecutable GraspBananas if Loc(Monkey) 6=Loc(Bananas)

nonexecutable Walk(l) ∧ PushBox (l)

nonexecutable Walk(l) ∧ ClimbOn

nonexecutable PushBox (l) ∧ ClimbOn

nonexecutable ClimbOff ∧ GraspBananas
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exogenous Walk(l)

exogenous PushBox (l) (4.17)

exogenous ClimbOn

exogenous ClimbOff

exogenous GraspBananas

inertial Loc(x) (4.18)

inertial HasBananas

inertial OnBox

Action PushBox is a special case of Move, in which the object that is being

moved is the box, the mover is the monkey, and the destination may be any one

of the locations L1, L2, L3. On the right margin we assigned numbers to the causal

laws of MB that have counterparts in MOVE(P,L). Our goal is to find a collection

of causal laws (“bridge rules”) relating MB to MOVE(P,L) that will make (4.13)–

(4.18) redundant. Causal laws (4.13) and (4.14), describing the effects of PushBox ,

will become “special cases” of (4.6) and (4.7), which describe the effects of Move.

Causal laws (4.15) and (4.16), describing some of the preconditions of PushBox ,

will become redundant in the presence of the general preconditions (4.8) and (4.9)

of Move. (The other precondition of the action PushBox—the fact that it cannot

be executed if the monkey is on the box—is domain-specific and has no counterpart

in the “library description” MOVE(P,L).) Finally, (4.17) and (4.18) will become

redundant in the presence of (4.10) and (4.11).

Our reformulation MB∗ of MB is defined as follows. Its signature is the

union of the signature of MB with the signature of the instance (4.12) of the “library

description” of Move. Its causal laws are

• the causal laws of MB , except (4.13)–(4.18),
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• the causal laws of (4.12), and

• the following causal laws, connecting (4.12) with MB :

caused Location(p)=Loc(p) (4.19)

caused Move(Box ) ≡
∨

l

PushBox (l) (4.20)

caused ¬Move(p) (p 6=Box ) (4.21)

caused Mover(Box )=Monkey ≡ Move(Box) (4.22)

caused Destination(Box )= l ≡ PushBox (l) (4.23)

where p ranges over {Monkey ,Box ,Bananas}, and l over {L1, L2, L3}.

Laws (4.19)–(4.23) are the bridge rules, connecting the domain-specific de-

scription (MB without laws (4.13)–(4.18)) with the library (4.12). Causal law (4.19)

says that Location is synonymous with Loc. Laws (4.20) and (4.21) tell us that mov-

ing the box amounts to pushing it to some location, and that no object other than

the box is ever moved. According to (4.22), the mover is the monkey whenever the

box is being moved. According to (4.23), the destination is l whenever the box is

pushed to l.

We mentioned earlier that our bridge rules would take the form of explicit

definitions. Specifically, every bridge rule defines a constant from a library instance

in terms of the domain-specific signature. For example, the first, (4.19) is in fact

equivalent to

caused Location(p)= l ≡ Loc(p)= l (l ∈ {L1, L2, L3}) (4.24)

which is an explicit definition of Location in terms of the signature of MB . Upon

inspection of (4.20)–(4.23) we see that they look quite similar to explicit definitions

of the constants from (4.12) in terms of the signature of MB, although they don’t
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exactly match the pattern of definitions as characterized in Section 4.1. It was

more convenient to express these rules as shown. However, using Proposition 1 and

some other propositions which allow for modification of action descriptions while

preserving the corresponding transition systems, it is possible to turn (4.19)–(4.23)

into explicit definitions.

It is interesting to note that the bridge rules are explicit definitions of library

constants in terms of the signature of MB , and not the other way around. This is

somewhat surprising, since we planned to use the library of basic actions to describe

the domain-specific actions as special cases of actions in the library. On the other

hand, the explicit definitions in the bridge rules can be considered as stating exactly

which special case of the library action corresponds to the domain-specific events.

Another way to view this is in analogy with the use of concepts of abstract

algebra in the definition of a specific number system. When we describe the set R

of real numbers as a group relative to addition, with the neutral element 0, we say

essentially that the axioms for groups

∀x, y, z ∈ G x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z,

∀x ∈ G x ⋆ e = x,

∀x ∈ G∃y ∈ G x ⋆ y = e

hold if
G is R,

⋆ is +,

e is 0.

Just like our bridge rules, here we specify how the “library concepts” should be

replaced by special cases.

Action description MB∗ is not exactly equivalent to MB , because its signa-
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ture is different. A state of MB assigns values to the fluent constants

Loc(p),HasBananas ,OnBox ;

a state of MB∗ assigns values to all these constants and also to Location(p). An

event of MB assigns values to the action constants

Walk(l),PushBox (l),ClimbOn ,ClimbOff ,GraspBananas ;

an event of MB∗ assigns values to the all these constants and also to

Move(p),Mover(p),Destination(p).

The proposition below shows, however, that the transition systems represented by

MB and MB∗ are isomorphic to each other. In this sense, our reformulation of MB

based on the “toy library” is adequate.

Proposition 4 MB is a residue of MB∗.

The proof of this proposition, outlined in the appendix, relies on Proposi-

tions 1 and 2. However, note that to use Proposition 2, (i) the extended action

description must contain only explicit definitions, and (ii) the action description

which is a residue must not contain the constants being explicitly defined. We had

stated earlier that it is possible to turn (4.19)–(4.23) into explicit definitions. This

gives us an action description satisfying condition (i). To satisfy the second, we may

modify MB∗ without altering its transition system, by first using Proposition 1 and

the definitions to replace all constants in (4.12) by formulas of the signature of MB.

Whenever we have an action description containing bridge rules that explic-
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itly define all constants from the library (such as MB∗), we may obtain a residue for

it that does not contain the library constants, in two steps. First, we apply Proposi-

tion 1 to turn the causal laws coming from the library into equivalent laws involving

only domain-specific constants. Then the bridge rules will be the only laws referring

to the library. Second, we drop the bridge rules to obtain an action description for

the domain, which doesn’t refer to the library at all. By Proposition 2, this new

description will be a residue. Applying this procedure to MB∗ will yield an action

description which has the same transition system as MB .

4.4 Turning MB
∗ into a Definite Theory

We have shown that the formalization of the Monkey and Bananas domain may be

reformulated using our “toy library” MOVE(P,L), as the nondefinite action descrip-

tion MB∗. As discussed in the introduction to this chapter, from an implementation

point of view it is important to be able to turn a nondefinite action description into

a definite one. Here we show how to do this for MB∗.

The first nondefinite causal law in MB∗ is (4.19), which is equivalent to (4.24).

We would like to use Proposition 3 to make it definite. However, Proposition 3

is not directly applicable because laws (4.6), (4.7) and (4.11) contain Location in

their heads. Therefore we first use Proposition 1 in the presence of (4.19) to replace

Location by Loc in the heads of (4.6), (4.7) and (4.11). Now we may use Proposition 3

to replace (4.19) with the definite causal laws

caused Location(p)= l if Loc(p)= l (l ∈ {L1, L2, L3}).

The remaining nondefinite laws (4.20)–(4.23) contain only action constants.
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They may be transformed into definite laws using Proposition 5 below.

Recall that one of the abbreviated causal laws in the suitcase example on

page 23 stated that the action Toggle(l) was exogenous — its value could be true or

false at any time. A constant c is said to be exogenous in an action description D

if the action description contains the causal laws

caused c=v if c=v

for all values v ∈ Dom(c).

Proposition 5 Let D be an action description and F be a formula such that all

constants in F are action constants which are exogenous in D. Then

D

caused F if G

represents the same transition system as

D

caused ⊥ after ¬F ∧ G.

This proposition is often applicable to a causal law containing only action

constants, such as (4.20)–(4.23), because action constants are usually exogenous. For

instance, in the presence of (4.10), we can replace (4.21) with caused ⊥ if Move(p).
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Chapter 5

Prerequisites: MAD

Our library of action descriptions is written in an extended version of MAD, a

modular action language based on C+. MAD is heavily influenced by our work

on representing actions as special cases, presented in the previous chapter. In this

chapter we review the original syntax and semantics of MAD, which was introduced

in [Lifschitz and Ren, 2006], before presenting our extensions to MAD in the next

chapter.

We begin this chapter with an overview of the syntax of MAD, illustrated by

an example, followed by an overview of the semantics. After that we provide details

on the syntax and semantics of MAD’s distinguishing feature, import statements.

5.1 Syntax Overview

A MAD action description consists of several modules M1; ...;Mn (separated by

semicolons) with the possibility of later modules referring to earlier ones.

The syntax of MAD draws upon that of CCalc and C+. A MAD mod-

ule consists of a name and the following parts: a sort declaration part, an object
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declaration part, a constant declaration part, a variable declaration part, and ax-

ioms. None of the declaration parts or axioms are required in a module, though, if

they appear, it must be in the order given above. In addition, in between any of

these declaration and axiom parts there may be any number of import statements,

referring to other modules (which occur earlier in the sequence of modules). Here

we only consider the simplest kind of imports. The detailed structure of import

statements will be shown in Section 5.4.

Like in CCalc, the declarations serve to specify the signature in which we

write the axioms. The axioms are expressions similar to causal laws in the sense of

C+. The list of axioms can be thought of as a C+ action description (and actually

becomes a C+ action description after grounding the variables).

5.2 Example: the Suitcase Domain

Here is a MAD module which is very similar to the C+ description of the suitcase

domain given in Section 3.4.

module SUITCASE;

sorts

Latch ;

constants

Up(Latch), Open: fluent;

Toggle(Latch) : action;

variables

l : Latch ;

axioms

inertial Up(l), Open;

exogenous Toggle(l);

Toggle(l) causes Up(l) if ¬Up(l);

Toggle(l) causes ¬Up(l) if Up(l);
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Open if ∀l Up(l);

endmodule

All constants (two fluents and one action) in this example are Boolean-valued.

If we wanted to declare a fluent constant with the domain being a sort other than

Boolean, we would specify that by putting that sort in parentheses after the word

fluent in the constant declaration section.

Notice that the module above does not contain an object declaration part.

In this form it does not correspond to any C+ action description. In order for a

MAD action description to have a model, each of the sort names occurring in it

must be characterized by finite, nonempty sets of symbols.

We may add a second module

module TWO LATCHES;

import SUITCASE;

objects

L1, L2: Latch ;

endmodule

which imports module SUITCASE and assigns the set of objects {L1, L2} to the sort

Latch . By concatenating these two modules we may create the action description

SUITCASE; TWO LATCHES

which describes suitcases that have two latches, L1, L2. This two-module action

description is equivalent to the C+ action description we saw in the previous chapter.
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5.3 Semantics Overview

The semantics of MAD is defined by translating MAD into C+. It is composed

of two parts: A MAD action description (possibly containing many modules) is

first turned into a single-module action description which is considered to have the

same meaning. Then this single-module action description is turned into an action

description in C+.

As we did in the review of C+, we use an example to illustrate the process

of turning a MAD action description into a C+ description. The precise semantics

is presented in Appendix B.

Consider turning the two module action description

SUITCASE; TWO LATCHES

into an equivalent single-module action description. Here is the result:

module TWO LATCHES;

sorts

Latch ;

objects

L1, L2: Latch ;

constants

Up(Latch), Open: fluent;

Toggle(Latch) : action;

variables

I1.l : Latch ;

axioms

inertial Up(I1.l ), Open;

exogenous Toggle(I1.l );

Toggle(I1.l) causes Up(I1.l) if ¬ Up(I1.l );

Toggle(I1.l) causes ¬ Up(I1.l) if Up(I1.l );
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Open if ∀I1.lUp(I1.l);

endmodule

The contents of imported module SUITCASE are incorporated into the importing

module TWO LATCHES. During this process, all variables in module SUITCASE

are renamed. Since l is the only variable, all occurrences of it are modified by

appending “I1.” to them. The prefix “I1.” stands for “import number 1” because

it is due to the first (and only) import statement in the action description.

5.4 MAD import Statements

In the previous chapter we showed how it is possible to use explicit definitions to

define fluent and action constants in terms of other fluents and actions, and we

provided an example of how this method can be used to refer to a library action

description from within a domain-specific description. Our work described in that

chapter has influenced the syntax and semantics of MAD import statements pro-

posed by Lifschitz and Ren [2006].

The import statement we saw in the TWO LATCHES module in Section 5.2

was very simple. It only contained the name of the module to be imported. In

general, an import statement can contain, in addition to the name of the module

to be imported, sort renaming clauses and constant renaming clauses. The general

form is

import NAME ;

s1 is s′1;

...

sk is s′k;

c1 · · · is F1;

...
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cl · · · is Fl;

where NAME is a module name, s1, ..., sk, s′1, ..., s
′
k are sort names, c1, ...cl are con-

stant names, and F1, ..., Fl are formulas . The dots after each cj represent the

possibility of having variables as the arguments and domain of constants. There are

some more restrictions on the exact form of the constants and formulas appearing

in is clauses, which are explained in Appendix B. These conditions on the syntax of

constant renaming is clauses are similar to the conditions given in import statements

Section 4.1 for an explicit definition.

For example, here is another version of module TWO LATCHES that has a

more complicated import statement, which may be used to assign different names

to sorts and actions in the imported module:

module TWO LATCHES;

sorts

Lock ;

objects

L1, L2: Lock ;

constants

Right , Left : action;

variables

l : Lock ;

import SUITCASE;

Latch is Lock ;

Toggle(l) is (Right ∧ l = L1) ∨ (Left ∧ l = L2);

endmodule

In the module above we have a new sort Lock (a special kind of latch) with

the two latches being of this sort. We also have two new actions, Right and Left ,
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which we would like to have as short names for toggling locks L1 and L2, respectively,

similar to the surgeon’s “Scalpel” in the introduction of this chapter.

Clauses following the name of the module to be imported are instructions on

how the imported module should be modified before incorporating it into the new

module. The first is statement above is a sort renaming clause. It says that every

occurrence of sort Latch in the module SUITCASE should be replaced by Lock . The

second is statement is a constant renaming clause. It provides an explicit definition

of Toggle in terms of actions Right and Left . It says that the equivalence

I1.T oggle(I1.l) ≡ (Right ∧ I1.l = L1) ∨ (Left ∧ I1.l = L2) (5.1)

should be added to the module and that all occurrences of Toggle should be replaced

by I1.Toggle in order to indicate that Toggle has been defined in terms of other

constants now. (Constants which have not been redefined keep their original names.)

Axioms introduced by importing, such as causal law (5.1), are similar to the

equivalences we saw in bridge rules (4.19)–(4.23) earlier. Like those, the equivalence

has a constant, coming from the “library,” on the left-hand side, and a formula, in

terms of constants from the specific domain, on the right-hand side.

When discussing the equivalences we saw in bridge rules (4.19)–(4.23) earlier,

in Section 4.3, we drew an analogy with the use of concepts of abstract algebra in

the definition of a specific number system. By specifying that the symbols G, ⋆, e

should be replaced by R, +, 0, respectively, we “inherited” the axioms in a modified

form. Similarly, the import statement from the module TWO LATCHES,

import SUITCASE;

Latch is Lock ;

Toggle(l) is (Right ∧ l = L1) ∨ (Left ∧ l = L2);
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tells us that everything called a latch in library module SUITCASE is now a lock,

action Right has all properties that are postulated for the action Toggle(L1) in the

library module SUITCASE, and similarly for the action Left . For example, with

this import the axiom

Toggle(l) causes Up(l) if ¬Up(l);

from module SUITCASE (where l is a variable for latches) has the same effect as if

we had written the axioms

Right causes Up(L1) if ¬Up(L1);

Left causes Up(L2) if ¬Up(L2);

in module TWO LATCHES.

Multiple Imports

In the study of explicit definitions and their use in bridging, we were concerned with

using only one copy of the library about moving. In practice it is essential to be able

to use the same general-purpose action description from the library multiple times

in a new action description. For instance, of the actions in MB , three others besides

PushBox can be expressed as special cases of Move. The actions Walk , ClimbOn

and ClimbOff may be viewed as the monkey moving itself.

MAD includes the capability of importing several copies of the same module

into another module. This is the source of the “I1.” appended to the front of vari-

ables and to constants which have been explicitly defined. The 1 in “I1.” indicates

that the renamed variables and constants come from the first instance imported.
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In the case of more than one copy being imported, variables and constants are re-

named by appending “Im.” where the integer m is the smallest integer which does

not occur in the MAD action description.
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Chapter 6

Enhancing the MAD Language

In the preceding chapter we showed how the MAD language enables us to use import

statements to define fluent and action constants in terms of other fluents and actions.

Our initial plan was to use the MAD language with its import facility for building

a library of general-purpose action descriptions. However as we worked on this, we

identified many new features that we would like to have in our language and also

many ways in which some parts of the language definition should be tweaked. Here

we give an overview of the enhancements that we made to the syntax of the MAD

language. Further enhancements are presented in Chapter 12.

A Note on Fonts

When discussing C+ and MAD in the previous chapters, we used various bold

and italic fonts to write parts of action descriptions. Starting in this chapter we

switch to typewriter font for everything written in our enhanced MAD language,

because now we are showing a language which has an actual implementation. (We

took a similar approach when discussing CCalc, however the implementation of
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the enhanced version of MAD is not implemented in Prolog, and thus does not have

some of the restrictions of CCalc, such as having to use “:-” before declarations

and everything capitalized having to be a variable.)

New Features

Several new features were added to MAD. The full description of what is allowed in

the enhanced syntax is included as Appendix D.

• Built-in sort action: In order to express properties of actions, we extended

MAD with a new, built-in sort, action. All constants declared as actions

become objects of this sort. This sort can then be used as the argument of a

fluent constant. For example, a Boolean fluent constant declared as

constants

Executed(action) : fluent;

may denote whether an action is executed or not.

The original syntax of MAD allows only identifiers as arguments to action or

fluent constants appearing in axioms. This feature also necessitates having

constant arguments which have arguments themselves — action names with

arguments.

In order to postulate axioms about actions in general, not just about specific

actions, we introduced action variables. These may occur in axioms whenever

an action constant may occur.

• Built-in sort explicitAction: MAD and C+ allow concurrent execution of

actions but sometimes we want to prevent concurrency. A convenient way to

express this is to write an axiom such as
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nonexecutable a & a1 if a!=a1

where a and a1 are variables ranging over the declared action names. Axioms

of this form have been used successfully in CCalc, where there are no modules

or is statements. However, in MAD, we can use is statements with constant

renaming clauses, to rename actions. The problem with this is that whenever

an action is renamed in terms of another, the original action name is preserved

(albeit prepended with a prefix of the form “Im .”, where m is an integer)

along with the new name, and the semantics of MAD guarantees that both

the names for the action are assigned the same values (true when executed,

false otherwise). Therefore including this axiom eliminates all models in action

descriptions with at least one action renaming. What we would really like to

accomplish is to prevent the concurrent execution of actions that have not been

renamed. In order to distinguish such “explicitly declared” actions from those

which are “implicitly declared” through renaming statements, we introduced

a new built-in sort explicitAction, the objects of which are all action names

which do not have a prefix of the form “Im.” (after conversion to a single

module). Using variables for explicitAction in the axiom above solves the

problem.

• Sort inclusion declarations: Sometimes it is convenient to define relations be-

tween sorts, such as the subset relation. Sort inclusion declarations serve to

express when every object of a certain sort s1 is also a sort of s2. For example,

inclusions

Agent << Thing;

states that every object of sort Agent is also of sort Thing .
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• Moving sort declarations out of modules: A common problem we ran into

when trying to write modular action descriptions was the need to repeat sort

declarations before importing modules. Imagine we are writing a new module

M (which will import module M ′) and want to refer to some sorts which have

already been declared in M ′. If we don’t need to rename any constants during

the import, it is possible to simply import M ′ at the beginning of module M ,

and refer to the sorts in M ′ afterwards. However, if we need to rename some

constants during the import, we need to declare constants and variables in M

before importing M ′, and for that we need to declare the sorts that will be

used in the constant/variable declarations. This situation forced us to declare

the same sorts in many modules.

To fix this issue, we now move sort and sort inclusion declarations outside

of individual modules, and make them sections on the order of modules. An

action description is a sequence of not just modules but sort declarations,

inclusions and modules. Sorts and sort inclusions are treated as if they are

declared in all the modules following them.

Now, instead of having library modules each with its own sorts and inclusions,

we can have a library “ontology” alongside the library.

• Objects with arguments: We allow objects with arguments. This allows us to

define objects which are associated with other objects. For example,

sorts

Building; Person;

objects

John, Bob : Person;

House(Person) : Building;
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One thing that is important when we have objects with arguments is to make

sure that this doesn’t lead to infinite grounding. For example,

sorts

Person;

objects

John, Bob : Person;

Friend(Person) : Person;

would cause there to be an infinite number of Person objects. In order to

guarantee such things don’t happen, the implementation introduces sort de-

pendencies and certain restrictions on how to declare objects with arguments.

The details of this will be given Chapter 12.

• Integer ranges as built-in sorts and integers as built-in objects: Oftentimes it

is convenient to talk about an “array” of objects which are indexed by an

integer. For example, if we want to formalize a soccer-playing domain, we

might like to write

objects

Player(1..11) : Person;

to declare the players of one team. Or we might want to have a fluents with

integer domains. For example,

sorts

Event;

fluents
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Hour(Event) : 1..24;

Minute(Event) : 1..60;

In order to allow such declarations, we added integer ranges as built-in sorts.

They may appear as arguments for objects/constants and as the domain for

fluents. Variables can have an integer range as their sort too. However, integer

ranges may not be declared as sorts or inclusions, and they can’t be part of a

sort renaming clause in an import statements.

Integers are added as built-in objects and may appear anywhere a declared

object can.

• Basic arithmetic and comparison: Once we have integers, then we can go

beyond simple atomic formulas of the form c=v or c!=v. We can also compare

values of integers. For example,

nonexecutable spend(m) if MyMoney < m;

We enhanced MAD by adding the comparison operator “<” and arithmetic

operators “+” and “*”.

The comparison operator “<” cannot occur in the head of axioms.

The “+” and “*” operators may not appear as arguments to constants or

objects. Instead, they may be used by introducing an additional variable.

E.g.,

value(z)=k if index=x & offset=y & z=x+y;

must be used instead of

value(x+y)=k if index=x & offset=y;
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• Numeric symbols: As in all high-level programming languages, having symbolic

constants is useful. In order to make integer-related descriptions general, we

introduced numeric symbols. For example, we can write

numeric_symbol num_cars=15

...

module TRAFFIC;

objects

Car(1..num_cars) : Vehicle;

This tells the system to treat all occurrences of the string “num_cars” as 15.

With this capability, we can write the library modules using numeric symbols

and the user of the library can create an extra file defining his preferred integer

values for those symbols, to be given to the system in advance of the library

ontology and the library.

• Extra variables in constant renamings: Sometimes it is convenient to allow the

right-hand side of a constant renaming is statement to contain new variables

that do not occur in the left-hand side. For example, if we already have an

action of an object x being moved to a place p, and want to define a new

action of an agent u carrying x to p, we can use the following import section:

import MOVE;

Move(x, p) is Carry(u, x, p);

The intuitive meaning of this is “the action of agent u carrying object x to

place p is synonymous with the action of moving x to p.” Some properties of
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Carry with respect to x and p are inherited from Move but the properties with

respect to u need to be defined additionally.

In the importing of MOVE above, the right-hand side of the is statement

has more variables than the left-hand-side. The variables that do not occur in

the left-hand-side can be thought of as implicitly quantified over the import

statement. In such cases, what is imported is not one copy of Move with the

name I1.Move, but several copies, each with a distinct name. This requires a

change to the semantics, which will be detailed in Chapter 12.

• Separate action and fluent constant declaration sections: Instead of having one

section declaring both action and fluent constants, now we have two sections:

one for actions and one for fluents.

• Sort name predicate shorthand: Sometimes it is convenient to write a formula

stipulating that a variable or object belongs to a certain sort. For example,

we may write

constraint Support(x)=y -> exists c c=y;

where y and c are variables for sorts Supporter and Carrier, respectively,

and the latter is a subsort of the former. The intuitive meaning of this is “the

object y which supports thing x must also be a carrier.”

In order to make such formulas more convenient to express, we allow a short-

hand where sort names appear as unary predicates. Now the axiom above

may be written as:

constraint Support(x)=y -> Carrier(y);
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Such shorthand predicates are easily translatable to CCalc.

• Include statements: The original definition of MAD requires an action descrip-

tion to be a sequence of modules separated by semicolons. In our implemen-

tation we allow include statements (similar to inclusion statements in many

programming languages) in place of modules at the beginning of action de-

scriptions. Such include statements refer to another file containing an action

description, to be inserted in place of the include statements. Inclusions may

also be nested, meaning an included file may have include statements itself.
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Chapter 7

The Core Library

In Chapter 4, we conjectured that a library of standard descriptions for a number of

“basic” actions can facilitate writing, understanding and modifying action descrip-

tions, and illustrated this idea by presenting a toy movement library, and showing

how the action PushBox in the Monkey and Bananas domain can be described as a

special case of the “library action” Move.

In this chapter we present a simple core for a library with which we can

formalize some classic domains from the literature on commonsense reasoning. Later

chapters will add more elaborate modules to the library to expand the scope of

domains we can formalize.

Most of the library modules presented in this chapter are “general” action

descriptions — not about any specific actions. There are also a couple of modules

about specific fluents and actions: one about objects being moved from place to

place, and the other about objects being supported by others.

Recall from Chapter 6 that sort and inclusion declarations now appear out-

side of modules. Any modules following these declarations are treated as if the
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declarations appear in the modules. Because of this we structure our library in two

parts:

• a library “ontology”, specifying all the sorts and inclusion relationships for the

library modules

• the library modules, without any sort or inclusion declarations

In this chapter we’ll show each sort and inclusion declaration from the on-

tology right before the first library module that needs it. Then at the end of the

chapter we’ll present all of the ontology together.

The ontology file must always be included before the library modules. (Usu-

ally by an include command at the beginning of a file.)

Example

Here is an example of a MAD file formalizing the blocks world, which we will study

again in Section 8.1. The first two lines below are instructions to include the file

containing the library ontology and the file with the library modules, which we will

cover in detail in this chapter. The third line says that all occurrences of symbol

“MaxBlocks” should be treated as the integer 3. The module contains an object

declaration part, two import statements referring to library modules, and one axiom.

include "../library-ontology"

include "../library"

numeric_symbol MaxBlocks = 3

module BW_SIMPLE;

objects
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Table : Supporter;

B(1..MaxBlocks) : Thing;

import TOWER;

import NOCONCURRENCY;

axioms

Wide(Table);

7.1 The Library

7.1.1 Modules ACTOR, THEME

The first two modules are about actions in general. They introduce the concepts of

an “actor” (performing agent) for an action and a “theme” (object affected) of an

action. These concepts are necessary to express general principles such as

Normally, to perform an action that affects an object x,

the actor of the action has to be at the same place as x.

In order to express postulates about actions in general, we need to use the

built-in sort, action, which is part of the enhanced version of MAD. All constants

declared as actions automatically become objects of this sort.

We also need a sort that is not built in, to represent the actor or theme. For

this, we add the following declaration to the library ontology:

sorts

Thing;

The intended use for these modules is to be simply imported into action
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descriptions in order to define actors and themes. Ideally, no renaming would be

involved. Instead, the user will add axioms specifying any actor and theme for

domain-specific actions.

An action may be performed by zero or more agents. An agent is not an

actor for an action unless explicitly stated.

module ACTOR;

fluents

Actor(Thing,action): rigid;

variables

x: Thing;

a: action;

axioms

default -Actor(x,a);

The theme of an action is a thing (an object) that the action affects. There

may be zero or more themes for an action. A thing is not a theme for an action

unless explicitly stated.

module THEME;

fluents

Theme(Thing,action): rigid;

variables

x: Thing;

a: action;

axioms

default -Theme(x,a);
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7.1.2 Modules ORDER, ASSIGN

These two modules are about an ordered relation among objects, and variables which

may be assigned a value. They are abstract in the sense that they are not at all what

is evoked by the phrase “commonsense reasoning”. Rather, they are an attempt

to capture pieces of underlying structure that is common to many commonsense

relations and actions. Because of this, both of these modules are very different from

modules ACTOR and THEME because they will almost always be imported with the

constants renamed.

In order to define these relations, we need the following sort declarations:

sorts

Domain;

Range;

Here the words domain and range will be used to describe sets of objects that

a relation may be about, or to describe fluents that may map an object from one set

(the “domain”) to an object from another set (the “range”). The use of Domain here

is unrelated to the formal concept of the domain of a constant c, denoted Dom(c),

in a multi-valued signature (introduced in Section 3.1).

The Less relation is a transitive, irreflexive order relation among objects of

sort Domain. There is no ordering relation among objects, unless explicitly stated

otherwise.

module ORDER;

fluents

Less(Domain, Domain) : staticallyDetermined;

variables
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s, s1, s2: Domain;

axioms

Less(s, s2) if Less(s, s1) & Less(s1, s2);

default -Less(s,s1);

constraint -Less(s,s);

According to module ASSIGN, each object in a given domain takes a value

from a given range. The value remains the same in the absence of any action that

assigns a new value to it.

module ASSIGN;

actions

Assign(Domain, Range);

fluents

Value(Domain) : simple(Range);

variables

x: Domain;

y: Range;

axioms

inertial Value(x);

exogenous Assign(x,y);

Assign(x,y) causes Value(x)=y;

Ideally, we would also add the following axiom to ASSIGN:

Theme(x, Assign(x,y));

Unfortunately, this would be useless with the current semantics of MAD, because
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after an import where action Assign is renamed, it will become

Theme(x, In.Assign(x,y));

but this does not state anything about the theme of the action in terms of which

Assign is renamed. This is one of the shortcomings of the semantics of MAD, and in

the conclusion to this dissertation (in Section 15.2.1) we list developing an improved

semantics to solve this problem among topics for future work.

7.1.3 Module MOVE

In order to describe movement of things, such as pushing the box or walking (moving

one’s self), we need to express where things are located and have actions causing

change in locations. Here we present a module about location and movement.

To represent possible locations, we have the following sort declaration:

sorts

Place;

A thing has exactly one location at a time, which stays the same in the

absence of actions. The effect of moving a thing is to cause it to be at a new place.

Viewed like this, the location of a thing is a value that stays the same and action

of moving assigns a new value to it. Therefore the description of moving imports

module ASSIGN.

Lines beginning with % in MAD are comments.

module MOVE;

actions

Move(Thing,Place);
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fluents

Location(Thing): simple(Place);

variables

x: Thing;

p: Place;

import ASSIGN;

Domain is Thing;

Range is Place;

Value(x) is Location(x);

Assign(x,p) is Move(x,p);

axioms

% Prevent trivial moves

nonexecutable Move(x,p) if Location(x)=p;

7.1.4 Modules MOUNT, TOWER, TOP

In the classic Monkey and Bananas domain the monkey first walks to a new loca-

tion and then needs to climb on the box before being able to grasp the bananas.

Approaching the bananas in the horizontal plane can be accomplished by perform-

ing a single action—walking—which is a special case of moving. Approaching the

bananas in the vertical direction is more of a challenge, because the monkey can’t

float in the air. As a general principle:

Normally, it is impossible for an object not to be supported by anything.

For instance, the monkey is initially supported by the floor; after climbing the box,

he is supported by the box. The box is always supported by the floor. If we adopt

70



the general understanding of “supported” as “held in the current position” then we

can also say that the bananas are supported by the ceiling in the initial state, and

by the monkey in the final state.

Here we present modules for support, for actions that change how things are

supported, and the consequences of being supported.

The following declarations introduce the sort Supporter, which is a supersort

of Thing:

sorts

Supporter;

inclusions

Thing << Supporter;

For example, the ground or the ceiling are not things (which must have a particular

location) but they can still support things.

Fluent Support(x) indicates what thing x rests on (or what holds x in place).

Objects are directly supported by exactly one supporter, and the action Mount(x,s)

changes the supporter of x to become s. Both x and s are themes of this action.

Again (as in module MOVE), this may be viewed simply as assigning a new value to

a variable. Hence the description of mounting imports module ASSIGN.

Even though objects have exactly one direct supporter, many supporters

may indirectly support them (by supporting their direct supporter). The indirect

supporters of a thing are statically determined at each state by what its direct sup-

porters are. A thing cannot be supported by itself, even indirectly. The irreflexive,

transitive relation of indirect support is described by importing ORDER.

Since everything must be supported by a supporter and cycles in the support-

ing graph are prohibited, any action description that imports MOUNT must contain
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a non-Thing object of sort Supporter in order to have possible models. (Without

such special supporters it wouldn’t be possible for all objects to be supported, yet

none of them indirectly be supported by itself. Non-Thing supporters are like root

nodes of a tree of supporting).

module MOUNT;

actions

Mount(Thing,Supporter);

fluents

Support(Thing): simple(Supporter);

Supported(Supporter,Supporter): staticallyDetermined;

variables

x, y: Thing;

s, s1: Supporter;

import ASSIGN;

Domain is Thing;

Range is Supporter;

Value(x) is Support(x);

Assign(x,s) is Mount(x,s);

import ORDER;

Domain is Supporter;

Less(s,s1) is Supported(s,s1);

import THEME;

axioms

Theme(x,Mount(x,s));

Theme(y,Mount(x,y));
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% Prevent trivial mounts

nonexecutable Mount(x,s) if Support(x)=s;

Supported(x,s) if Support(x)=s;

In its general form, module MOUNT allows many things to be held by the

same supporter, such as books held by a shelf. However, sometimes we want to take

the relative size of things and supporters into consideration and not allow multiple

things to be supported by the same supporters. For example, when stacking blocks

on top of each other. And in some cases we may want to allow both situations,

depending on the kind of things/supporters involved, such as allowing a table to

support multiple blocks, but blocks to support only a single other block.

The next module is designed for situations such as the blocks world, where

we are building “towers” of things: each supporter may directly support only one

thing, unless it is specified to be “wide” enough to support many. In addition, the

supporter of a thing cannot be changed if it supports another thing. This prevents

taking a stack of multiple blocks and mounting it somewhere else.

module TOWER;

import MOUNT;

fluents

Wide(Supporter) : rigid;

variables

x, y : Thing;

s : Supporter;

axioms

% Two things cannot be directly on top of the same supporter

% unless it’s Wide
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constraint Support(x)=s & Support(y)=s & -Wide(s) -> x=y;

% We can only mount things which are clear (not under others)

nonexecutable Mount(x,s) if Support(y)=x;

default -Wide(s);

When a thing is held up by another, it is usually at the same location as

its supporter. For example, when the monkey is on the box, it is where the box is.

Module TOP generalizes this consequence of being on a supporter to the case when

the thing is located at a place related to the supporter, but not necessarily at the

location of the supporter. (For example, if the supporter’s dimensions are larger

than the size of locations, it may extend out to a different location.)

Fluent TopLocation(x) is the location of the things whose support is x, if

the supporter is a thing. By default, it’s the same as the location of x.

module TOP;

fluents

Location(Thing): simple(Place);

Support(Thing): simple(Supporter);

TopLocation(Thing): staticallyDetermined(Place);

variables

x, y: Thing;

p: Place;

axioms

default TopLocation(x)=p if Location(x)=p;

Location(x)=p if Support(x)=y & TopLocation(y)=p;
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7.1.5 Modules NOCONCURRENCY, LOCAL

Modules ACTOR and THEME, presented earlier, were about actions in general, instead

of specific actions, but they didn’t express any effects of, or conditions on, the ac-

tions. Here, we present two modules expressing preconditions for actions in general.

The following module can be used if we want to formalize a domain in which

actions cannot be executed concurrently. Here we use a variable for explicitAction

because want to prevent co-occurrences of only actions which have not been re-

named. (Renamed actions are implicitly declared and always co-occur with their

renaming actions.)

module NOCONCURRENCY;

variables

a, a1: explicitAction;

axioms

nonexecutable a & a1 if a!=a1;

The following module states that an action can only be executed locally —

all actors and themes must have the same location when the action is executed. For

example, using this module together with MOUNT would require that, for Mount(x,s)

to be executable, x and s should be at the same location. Such requirements for

locality arise very often in commonsense reasoning. The monkey having to be next

to the box before climbing on it is another example.

module LOCAL;

import ACTOR;

import THEME;
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fluents

Location(Thing): simple(Place);

variables

x, y: Thing;

a: action;

axioms

nonexecutable a

if (Actor(x,a) | Theme(x,a))

& (Actor(y,a) | Theme(y,a))

& Location(x)!=Location(y);

One issue to be careful about when using module LOCAL is to make sure

that the actors/themes have been specified for exactly the same actions. If the ac-

tors/themes have been defined separately for some “equivalent” renamed/renaming

actions, then they won’t have the intended effect because the actions appear to be

different and the locality axiom only considers a single action, not a pair of equiva-

lent actions. This is a shortcoming of the semantics of MAD, and the list of topics

for future work (presented in the conclusion to this dissertation in Section 15.2.1)

includes developing an improved semantics to solve this problem.

7.2 Library Ontology

Here we show the part of the library ontology which includes the sorts and inclusions

than what we have seen in this chapter. (The actual ontology file is larger because

it includes sort and inclusion declarations for library modules we introduce in the

coming chapters.)
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% An ontology of sorts and their inclusion relations for our library

% Some "abstract sorts"

sorts

Domain;

Range;

% A Thing may be supported by another Thing or

% by a Supporter of a different sort, such as Ground

sorts

Thing;

Supporter;

inclusions

Thing << Supporter;

sorts

Place;

Figure 7.1 shows the sorts and subsort relations for the part of the library

ontology seen so far. An arrow pointing from sort s1 to s2 indicates that s2 is a

subsort of s1.

Domain

Range

Supporter

Thing Place

Figure 7.1: Sorts and subsort relations in the core library ontology
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Chapter 8

Formalizing Domains with the

Core Library

In this chapter we present MAD formalizations of a few classic domains from the

knowledge representation literature: the Blocks World, Towers of Hanoi, and Mon-

key and Bananas. Along with each domain formalization, we present sample CCalc

queries we ran for testing, and the results of these queries.

8.1 Blocks World

There are some blocks (of equal size) on a table. The blocks can be arranged into a

set of towers.

The formalization in MAD is below, assuming there are 3 blocks.

The object declaration section here has two new features from the enhanced

version of MAD: objects with arguments, and integer ranges. The declaration here

tells us that B(1), B(2), B(3) are objects of sort Thing. The module TOWER postu-

lates that only things not supporting other things may be mounted, and that two
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things cannot be directly supported by the same supporter unless it is wide. There

is a single domain-specific axiom in the blocks world that states that the Table is

wide: it can support many blocks directly.

The first two lines below are instructions to include the library ontology and

the library modules shown in the previous chapter.

include "../library-ontology"

include "../library"

numeric_symbol MaxBlocks = 3

module BW_SIMPLE;

objects

Table : Supporter;

B(1..MaxBlocks) : Thing;

import TOWER;

import NOCONCURRENCY;

axioms

Wide(Table);

Sample CCalc Query for Blocks World

We asked CCalc to start with blocks arranged into a tower, and find a plan (not

longer than 10 steps) to build a tower in which the blocks are ordered differently.

:- query

maxstep :: 0..10;

0: support(b(1))=b(2),

support(b(2))=b(3),
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support(b(3))=table;

maxstep: support(b(2))=table,

support(b(3))=b(2),

support(b(1))=b(3).

Here is the plan it found:

0: mount(b(1), table)

1: mount(b(2), table)

2: mount(b(3), b(2))

3: mount(b(1), b(3))

8.2 Towers of Hanoi

Another classic domain involving supported objects without movement between

locations is the towers of Hanoi. There are three pegs and a set of disks with

various sizes. The disks are placed on pegs to make towers, with the constraint that

a disk can only have a smaller disk on top of it. Typically the disks are all on one

peg initially and the goal is to move them all, one at a time, to one of the other

pegs.

In our formalization we assume that disks on each peg are always in the

correct order but we don’t specify which disk is on which. We label disks with

distinct positive integers, indicating their size.

The formalization is very similar to the blocks world.

The MAD formalization of this domain with three disks is shown below.

Most of the knowledge is captured by importing library module TOWER. The only

axiom expresses the domain-specific constraint that disks must be stacked in the

order of their size. The operator “<” is only applicable when both sides of it are

numerical.
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include "../library-ontology"

include "../library"

numeric_symbol NumDisks = 3

module TOWERS_OF_HANOI;

import TOWER;

objects

Peg(1..3): Supporter;

D(1..NumDisks) : Thing;

variables

i,j : 1..NumDisks;

import NOCONCURRENCY;

axioms

% A disk can only have a smaller disk on top of it

constraint Support(D(i))=D(j) -> i < j;

Sample CCalc Query for Towers of Hanoi

We asked CCalc to start with all three disks on peg 1, and find a plan (not longer

than 10 steps) to move all disks to peg 3.

:- query

maxstep :: 0..10;

0: support(d(1))=d(2),

support(d(2))=d(3),

support(d(3))=peg(1);

maxstep :

support(d(1))=d(2),
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support(d(2))=d(3),

support(d(3))=peg(3).

Here is the plan it found:

0: mount(d(1), peg(3))

1: mount(d(2), peg(2))

2: mount(d(1), d(2))

3: mount(d(3), peg(3))

4: mount(d(1), peg(1))

5: mount(d(2), d(3))

6: mount(d(1), d(2))

8.3 Monkey and Bananas

There is a monkey in a room and there is a bunch of bananas hanging from the

ceiling, which is too high for the monkey to reach. There is also a box. The monkey

can walk to the box, push it under the bananas and climb on it to reach the bananas.

We describe this domain in three modules. First we describe what goes on

at the floor level of the room, where the monkey can walk or push the box. Then

we describe how the things in the domain are supported. Finally we give the full

description which describes the vertical dimension of the domain.

include "../library-ontology"

include "../library"

module MBF;

% Monkey and Bananas: floor level

% An action may have a theme and may be executed by an agent. To execute

% such an action, an agent has to be at the same place as the theme.
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import LOCAL;

objects

Monkey, Box: Thing;

P1, P2, P3: Place;

actions

Walk(Place); PushBox(Place);

variables

x: Thing;

p: Place;

% Walk is a special case of library action Move.

import MOVE;

Move(Monkey,p) is Walk(p);

% PushBox(p) has all the properties of library action Move(Monkey,p)

import MOVE;

Move(Monkey,p) is PushBox(p);

% PushBox(p) also has all the properties of library action Move(Box,p)

import MOVE;

Move(Box,p) is PushBox(p);

% Actions cannot be executed concurrently.

import NOCONCURRENCY;

axioms
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Actor(Monkey, PushBox(p));

Theme(Box, PushBox(p));

module MBS;

% Monkey and Bananas: how things are supported

import MBF;

objects

Bananas: Thing;

Floor, Ceiling: Supporter;

% TopLocation(x) is the location of the things whose support is x.

import TOP;

actions

ClimbOn; ClimbOff; GetBananas;

variables

x: Thing;

p: Place;

s: Supporter;

% GetBananas is a special case of library action Mount.

import MOUNT;

Mount(Bananas, Monkey) is GetBananas;

% ClimbOn and ClimbOff are special cases of library action MOUNT.

import MOUNT;

Mount(Monkey,Box) is ClimbOn;
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import MOUNT;

Mount(Monkey,Floor) is ClimbOff;

axioms

constraint Support(Box)=Floor;

constraint Support(Monkey)=Floor | Support(Monkey)=Box;

Module MB below contains the full description of monkey and bananas, with

the vertical dimension included. The library ontology declares sort Place, for move-

ment in the horizontal dimension. The new sort Level, declared right before module

MB, provides a vertical counterpart to Place, specific to this domain.

% This sort will be needed for the full description below

sorts

Level;

module MB;

% Monkey and Bananas: full description

import MBS;

objects

Lo, Hi: Level;

fluents

Elevation(Thing): simple(Level);

TopLevel(Thing): staticallyDetermined(Level);

variables

x: Thing;

f: Supporter;
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l: Level;

% To execute an action, an agent has to be at the same level as the theme.

import LOCAL;

Place is Level;

Location(x) is Elevation(x);

% TopLevel(x) is the elevation of the things whose support is x.

import TOP;

Place is Level;

Location(x) is Elevation(x);

TopLocation(x) is TopLevel(x);

axioms

% Normally things are not tall: whatever is supported by x is at the same

% level as x. (The default in module TOP.) The box is an exception.

TopLevel(Box)=Hi;

% Things directly supported by the floor are low and things directly

% supported by the ceiling are high.

Elevation(x)=Lo if Support(x)=Floor;

Elevation(x)=Hi if Support(x)=Ceiling;

Sample CCalc Query for Monkey and Bananas

We asked CCalc to start with the monkey, the bananas and the box all at different

locations, and the bananas hanging from the ceiling, and asked it to find a plan (not

longer than 10 steps) for the monkey to get the bananas.

:- query

maxstep :: 1..10;
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0: location(monkey)=p1,

location(bananas)=p2,

support(bananas)=ceiling,

location(box)=p3;

maxstep: support(bananas)=monkey.

Here’s the plan it found:

0: walk(p3)

1: pushbox(p2)

2: climbon

3: getbananas
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Chapter 9

Extending the Library: Module

CARRIER

9.1 Introduction

In the preceding chapter we showed how the simple library from Chapter 7 could

be used to formalize classic domains from the literature.

In this chapter, we extend the library by adding a module about carriers

— containers that can change their locations along with their contents, or vehicles

that move around along with their passengers and luggage. Then we use the library

to formalize several action domains familiar from the literature on commonsense

reasoning and planning. One of these examples is the briefcase that Ed Pednault

used twenty years ago to carry a book to his office [Pednault, 1988]. Long before that,

a boat was used by missionaries and cannibals to cross the river [Amarel, 1968]. More

recently, passengers took flights on planes to get to their destinations [Gelfond, 2006].

At first glance these domains seem quite different, but when examined carefully a
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common feature shows up: they all have to do with carriers.

Using the library to formalize these domains not only is more natural, leading

to more concise action descriptions, but it also makes it easier for us to recognize

structural similarities between action domains.

In the next section we show the general-purpose library module CARRIER.

This is followed by several sections formalizing diverse domains, illustrating how

using the library simplifies them greatly.

9.2 A New Library Module: CARRIER

The library module CARRIER contains the core knowledge common to the action

domains we formalize in this chapter. (A detailed explanation of the module follows

it.)

We add the following declarations to the library ontology for use in the

module CARRIER.

sorts

Carrier;

Person;

Vehicle;

inclusions

Carrier << Thing;

Person << Carrier;

Vehicle << Carrier;

Sorts Person and Vehicle are described as subsorts of Carrier,and con-

sequently subsorts of Thing. (A person is a carrier because he can carry things

in his hands or pockets. This fact will become essential in some examples.) Sort

Supporter is a supersort of Thing, which makes all carriers also supporters.
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As a result of adding these declarations, the sort and subsort relations in the

library ontology now become as shown in Figure 9.1.

Domain

Range

Supporter

Thing

Carrier

Person Vehicle

Place

Figure 9.1: Sorts and subsort relations in the ontology after adding module CARRIER

The library module CARRIER is shown below (A detailed explanation of the

module follows it.)

module CARRIER;

objects

Ground : Supporter;

actions

Load(Thing, Carrier);

Unload(Thing);

fluents

Big(Carrier),

DriverRequired(Vehicle) : rigid;

TooSmallToSupport(Carrier, Thing),

Holds(Carrier, Thing) : staticallyDetermined;

variables

x,y : Thing;

c : Carrier;
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m,m1 : Person;

v,v1 : Vehicle;

p : Place;

import MOUNT;

Mount(x,c) is Load(x,c);

import MOUNT;

Mount(x,Ground) is Unload(x);

import ORDER;

Domain is Thing;

Less(c,x) is TooSmallToSupport(c,x);

import MOVE;

import TOP;

import LOCAL;

axioms

constraint Support(x)=y -> Carrier(y);

default Big(c);

constraint Support(m)=m1 -> -Big(m);

constraint Support(v)=v1 -> -Big(v);

constraint Support(x)=c -> -TooSmallToSupport(c,x);

TooSmallToSupport(m,v);

nonexecutable Move(v,p) if DriverRequired(v)

& -exists m Support(m)=v;

default DriverRequired(v);
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Holds(c,x) if Supported(x,c);

default -Holds(c,x);

Module CARRIER contains six import statements, referring to five other li-

brary modules: MOUNT, ORDER, TOP, LOCAL, and MOVE. Recall that, very briefly, these

modules can be described as follows:

• MOVE: Introduces a fluent Location(x) (with domain Place) for every object

x of sort Thing and describes action Move for moving a thing to a location.

• MOUNT: Introduces a fluent Support(x) (with domain Supporter) for every

object x of sort Thing and postulates that every object of sort Thing must be

(possibly indirectly) supported by an object of sort Supporter. The action

Mount changes the support of a thing.

• ORDER: Formalizes a transitive, irreflexive order relation Less on objects of

sort Domain.

• TOP: Postulates that every object supported by another is at the same location

as its supporter, by default.

• LOCAL: Postulates that the parties to an action must all be at the same location.

The CARRIER module declares a single object Ground, of sort Supporter.

According to module MOUNT, every Thing must be supported by a Supporter. The

object Ground provides such a domain-independent Supporter.

The two imports of library module MOUNT serve to describe two actions asso-

ciated with carriers, Load and Unload, by renaming action Mount. As a result, the

effects of loading a thing onto a carrier and unloading a thing are reflected in the

support of the thing. The second instance shows that Unload is a special case of

Mount where the support becomes Ground.
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The import of ORDER expresses that the newly introduced fluent TooSmallToSupport

represents a transitive, irreflexive order relation on objects of sort Thing.

The import of MOVE adds knowledge about moving things. Adding TOP re-

flects the fact that a thing supported by a carrier is at the same location as the car-

rier. Adding LOCAL (in conjunction with some axioms imported in module MOUNT—

those specifying themes of the action) restricts the action Load(x,c) to cases where

the thing x is at the same location as the carrier c.

The first axiom restricts the supporting things to be carriers.

The three axioms involving “Big” state that, by default, persons and vehicles

are too big to be supported by objects of the same sort.

The two axioms involving TooSmallToSupport state that a thing can only

be supported by a carrier that is not too small to support it, and that persons are

always too small to support vehicles.

The two axioms involving DriverRequired state that the action of moving

a vehicle v to a place p is not possible if a driver is required for v and there are no

persons which are supported by v. By default, every vehicle requires a driver. This

is what sets vehicles apart from other carriers.

The last two axioms define statically determined fluent Holds, whose value

is always determined by the value of Support, in order to more conveniently talk

about which carriers hold what things.

9.3 Pednault’s Briefcase Domain

The following description of the briefcase domain is from [Pednault, 1988]:

Suppose that we have a world that consists of three objects—a briefcase,

a dictionary, and a paycheck—each of which may be situated in one of
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two locations: the home or the office. Actions are available for putting

objects in the briefcase, and for taking objects out, as well as for car-

rying the briefcase between the two locations. Initially, the briefcase,

the dictionary, and the paycheck are at home; the paycheck is in the

briefcase, but the dictionary is not. The goal is to have the briefcase and

dictionary at the office and the paycheck at home.

We may represent this domain using five fluent constants. Three of them

describe the locations of the briefcase, the dictionary, and the paycheck; the possible

locations are the home and the office. The other two indicate whether the dictionary

or the paycheck are in the briefcase. Out of the 32 combinations of values of these

fluents, only 18 represent possible states of the world, because when the paycheck is

in the briefcase, both have to be at the same place, and similarly for the dictionary.

A description of the briefcase domain in MAD is shown below.

include "../library-ontology"

include "../library"

sorts

Item;

inclusions

Item << Thing;

module BRIEFCASE;

objects

Paycheck, Dictionary : Item;

Briefcase : Carrier;

Home, Office : Place;
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actions

PutIn(Item);

TakeOut(Item);

MoveB(Place);

variables

i : Item;

p : Place;

import CARRIER;

Load(i,Briefcase) is PutIn(i);

Unload(i) is TakeOut(i);

Move(Briefcase,p) is MoveB(p);

import NOCONCURRENCY;

The description declares Item to be a sort, and it postulates that Item is a

subsort of the sort Thing.

Apart from the declarations at the beginning of module BRIEFCASE, all the

core knowledge necessary for the briefcase domain comes from importing the library

module CARRIER, which was described above, in Section 9.2. Therefore no axioms

are needed.

The import statement from module BRIEFCASE

import CARRIER;

Load(i,Briefcase) is PutIn(i);

Unload(i) is TakeOut(i);

Move(Briefcase,p) is MoveB(p);

tells us that the action PutIn(i) has all properties that are postulated for the

action Load(x,c) in the library module CARRIER when the thing x is an item and
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the carrier c is Briefcase, and similarly for the actions TakeOut(i) and MoveB(p).

For example, with this import the axiom

Move(x,p) causes Location(x)=p;

from module CARRIER1 (where x is a variable for things) has the same effect as if we

had written the axiom

MoveB(p) causes Location(Briefcase)=p;

in module BRIEFCASE.

One other assumption about the fluent Location in the module CARRIER is

that it satisfies the commonsense law of inertia—the location of a thing is presumed

to remain unchanged in the absence of information to the contrary. Furthermore,

it is impossible to move a thing to its current location. These assumptions, just as

the assumption about the effect of Move(x,p) on Location(x), are “inherited” by

BRIEFCASE from CARRIER. In the absence of a library of standard action descriptions,

many such axioms would have to be explicitly included in module BRIEFCASE.

The fact that a carrier c is holding a thing x is described in module CARRIER

by the truth-valued fluent Holds(c,x).2 Executing action Load(x,c) makes this

fluent true, and executing Unload(x) makes it false.

According to the axioms of CARRIER, the action Load(x,c) is nonexecutable

if Location(x) is different from Location(c). For instance, the action of putting

the dictionary in the briefcase cannot be executed when the dictionary is at home

and the briefcase is at the office.

1To be precise, this axiom is found in the library module MOVE, which is imported by CARRIER.
2Not to be confused with the use of the relation Holds in the situation calculus.
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Sample CCalc Query for the Briefcase Domain

We asked CCalc to solve the briefcase planning problem:

:- query

maxstep :: 1..10;

0: location(briefcase)=home,

holds(briefcase,paycheck),

location(dictionary)=home,

-holds(briefcase,dictionary);

maxstep:

location(briefcase)=office,

location(dictionary)=office,

location(paycheck)=home.

It determined that the shortest plan consists of 3 actions:

0: takeout(paycheck)

1: putin(dictionary)

2: moveb(office)

In a different test, we instructed CCalc to display the list of all states and all

transitions of the transition system represented by the formalization of the briefcase

domain, and it found 18 states and 60 transitions, as we had expected.

9.4 The Dictionary and Paycheck Disguised as Humans

In this section we formalize two commonsense domains having to do with humans

and vehicles, which are structurally very similar to the briefcase domain discussed

above. One is a simplified version of the familiar missionaries and cannibals puzzle

[Amarel, 1968], in which there are no cannibals—just three persons who want to

cross the river, and a boat that holds two. The second, inspired by [Gelfond, 2006],

involves travel by air.
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Amarel [1968] discusses how the missionaries and cannibals domain may

be represented in different ways, and points out that representing missionaries and

cannibals as named individuals will lead to having more states than a representation

that simply represents the numbers of missionaries and cannibals as two groups.

In this section we present a version with individual missionaries as objects. In

Section 11.4 we present an alternative formalization where we consider just the

number of missionaries on each bank of the river and in the boat.

In the modules MISSIONARIES and AIRTRAVEL below, sort Person is used in

place of sort Item from module BRIEFCASE above. However, there is no need for

sort declarations here, because Person and Vehicle are described in the library

ontology.

include "../library-ontology"

include "../library"

module MISSIONARIES;

objects

Miss(1..3) : Person;

Boat : Vehicle;

Bank1, Bank2 : Place;

actions

Board(Person);

Disembark(Person);

CrossTo(Place);

variables

m : Person;

p : Place;
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import CARRIER;

Load(m,Boat) is Board(m);

Unload(m) is Disembark(m);

Move(Boat,p) is CrossTo(p);

import NOCONCURRENCY;

axioms

% The boat can carry at most two (i.e. not all three)

constraint -forall m Holds(Boat,m);

According to the library module CARRIER, persons are too small to carry

vehicles. So a missionary cannot hold the boat on his back.

include "../library-ontology"

include "../library"

module AIRTRAVEL;

objects

George, Laura : Person;

AirForce1 : Vehicle;

Austin, Lubbock : Place;

actions

Board(Person);

Disembark(Person);

Fly(Place);

variables

m: Person;

p : Place;
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import CARRIER;

Load(m,AirForce1) is Board(m);

Unload(m) is Disembark(m);

Move(AirForce1,p) is Fly(p);

import NOCONCURRENCY;

axioms

% the pilot is disregarded in this formalization

-DriverRequired(AirForce1);

Unlike BRIEFCASE, each of the modules MISSIONARIES and AIRTRAVEL in-

cludes an axiom section, to describe the domain-specific assumptions that are not

covered by the axioms in the imported modules. In MISSIONARIES, the only domain-

specific assumption is that the boat holds two. In AIRTRAVEL, we postulate that

AirForce1 is an exception to the above-mentioned default about vehicles (not be-

cause it is fully automatic, of course, but because our simplified formalization dis-

regards the presence of a pilot).

Sample CCalc Query for the Missionaries Domain

We asked CCalc to solve the missionaries planning problem, where all missionaries

are on Bank1 initially and they are all on Bank2 at the end:

:- query

maxstep :: 8..9;

0: location(miss(1))=bank1,

location(miss(2))=bank1,

location(miss(3))=bank1,

-holds(boat,miss(1)),

-holds(boat,miss(2)),

-holds(boat,miss(3));
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maxstep:

location(miss(1))=bank2,

location(miss(2))=bank2,

location(miss(3))=bank2,

-holds(boat,miss(1)),

-holds(boat,miss(2)),

-holds(boat,miss(3)).

It determined that the shortest plan consists of 9 actions:

0: board(miss(1))

1: board(miss(2))

2: crossto(bank2)

3: disembark(miss(2))

4: crossto(bank1)

5: board(miss(3))

6: crossto(bank2)

7: disembark(miss(3))

8: disembark(miss(1))

Sample CCalc Query for the Airtravel Domain

We asked CCalc to find a plan for the following query. Initially, Laura and

AirForce1 are in Austin with George supported by AirForce1. We wish to have

Laura and AirForce1 in Lubbock, but want to keep George in Austin.

:- query

maxstep :: 1..10;

0: location(laura)=austin,

location(airforce1)=austin,

support(airforce1)=ground,

holds(airforce1,george),

-holds(airforce1,laura);

maxstep:
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location(george)=austin,

location(laura)=lubbock,

location(airforce1)=lubbock,

-holds(airforce1,laura).

It determined that the shortest plan consists of 4 actions:

0: disembark(george)

1: board(laura)

2: fly(lubbock)

3: disembark(laura)

9.5 Takeoff and Landing

Module AIRTRAVEL_AIR is an enhancement of the air travel example that takes into

account the need to take off before flying anywhere and to land after that. It imports

module AIRTRAVEL and declares two additional actions, TakeOff and Land.

The effects of these actions are described here using the fluent Support(x),

declared in the library module MOUNT. Executing action TakeOff changes the value of

Support(AirForce1) to Air; after executing action Land, its value becomes Ground.

Both Ground and Air are objects of sort Supporter. Ground is declared in the

library; Air is specific for the module AIRTRAVEL_AIR.

The file “airtravel” included in the first line below contains the module

AIRTRAVEL shown in the preceding section.

include "airtravel"

module AIRTRAVEL_AIR;

import AIRTRAVEL;
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objects

Air : Supporter;

actions

TakeOff; Land;

variables

x : Thing;

m : Person;

p : Place;

import MOUNT;

Mount(AirForce1, Air) is TakeOff;

import MOUNT;

Mount(AirForce1, Ground) is Land;

axioms

% Must take off before flying

nonexecutable Fly(p) if Support(AirForce1)=Ground;

% Must land before getting in or out

nonexecutable (Board(m) | Disembark(m))

if Support(AirForce1)!=Ground;

% Only the plane can be freely flying

constraint Support(x)=Air -> x=AirForce1;

Sample CCalc Query for the Enhanced Airtravel Domain

We asked CCalc to find a plan for the same query. The length of the shortest plan

increased from 4 to 6 steps:

0: board(laura)

1: disembark(george)

2: takeoff
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3: fly(lubbock)

4: land

5: disembark(laura)

9.6 Pednault’s Briefcase Revisited

The enhacement of Pednault’s example shown below takes into account the fact that

the briefcase doesn’t move to the office by itself; the owner carries it with him. We

assume here that he walks to the office.

include "../library-ontology"

include "../library"

sorts

Item;

inclusions

Item << Thing;

module BRIEFCASE_ED;

objects

Ed : Person;

Paycheck, Dictionary : Item;

Briefcase : Carrier;

Home, Office : Place;

actions

PutIn(Item);

PickUp(Thing);

PutDown(Thing);

Walk(Place);
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variables

i : Item;

x : Thing;

p : Place;

import CARRIER;

Load(x,Ed) is PickUp(x);

Unload(x) is PutDown(x);

Move(Ed,p) is Walk(p);

import CARRIER;

Load(i,Briefcase) is PutIn(i);

Unload(x) is false;

Move(x,p) is false;

import NOCONCURRENCY;

axioms

TooSmallToSupport(Briefcase,Ed);

nonexecutable PutDown(x) if -Holds(Ed,x);

Module CARRIER is imported here twice: first to describe the new actions of

picking up and putting down items, and then, as in BRIEFCASE, to describe putting

an item in the briefcase. (The action of taking an item out of the briefcase is no

longer necessary in the presence of the new action PickUp.) The action MoveB from

the simpler formalization is not available anymore. Instead, Walk is declared to be

an action that changes Ed’s location, and consequently the locations of all things

that Ed carries.

The enhanced formalization of the briefcase domain has two axioms. The

first of them uses the relation TooSmallToSupport between two things, which is

introduced in module CARRIER for the purpose of specifying when a carrier is “too
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small” to hold a thing. This relation is postulated to be false by default, and we have

already seen one exception to this default: humans are too small to hold vehicles.

Now we postulate also that Ed Pednault’s briefcase is too small to enclose its owner.

The second axiom says that Ed can put down a thing only if he is holding it.

Sample CCalc Query for the Briefcase Domain with Ed

We asked CCalc to solve the briefcase planning problem:

:- query

maxstep :: 1..10;

0: location(briefcase)=home,

location(dictionary)=home,

location(ed)=home,

holds(briefcase,paycheck),

-holds(briefcase,dictionary),

-holds(ed,dictionary),

-holds(ed,briefcase);

maxstep:

location(briefcase)=office,

location(dictionary)=office,

location(paycheck)=home.

It determined that the shortest plan consists of 4 actions:

0: putin(dictionary)

1: pickup(briefcase)

2: putdown(paycheck)

3: walk(office)

There is another alternative to the plan above: instead of putting the dictio-

nary in the briefcase, he can simply pick it up and carry it in his other hand.
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Chapter 10

Extending the Library: Module

MOVE IN REGION

10.1 A New Library Module: MOVE IN REGION

Sometimes the concept of location is not enough by itself and we need to talk about

groups of locations. For example, a house consists of many rooms. A room, in

turn, may have multiple locations where objects may be. The library module MOVE

introduced in Section 7.1.3 only dealt with single locations (represented by ontology

sort Place). In this chapter we extend that module by introducing a new library

module for representing movement within regions: MOVE_IN_REGION.

In order to represent such situations, we included the following declarations

in the library ontology, to introduce “regions” which are a supersort of places.

sorts

Region;

inclusions
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Place << Region;

A Region is a (potentially) larger kind of Place. It may contain one or more

Places or other Regions.

As a result of adding these declarations, the sort and subsort relations in the

library ontology now become as shown in Figure 10.1.

Region

Place

Domain

Range

Supporter

Thing

Carrier

Person Vehicle

Figure 10.1: Sorts and subsort relations in ontology after adding MOVE IN REGION

The module MOVE_IN_REGION is an extension of MOVE and ORDER. The notion

of a place being a part of a region, and, by transitivity, being a part of any regions

encompassing that region, is captured by importing ORDER.1 This module restricts

movement: for a thing to be moved from one place to another, both places must

be part of a common region, and the region must be small enough to be “movable”

across.2 The intended usage of this module would redefine both the action Move and

the fluent Movable during importing, to indicate that the region is “movable across

by the action which renames Move.” The example in the next section demonstrates

this usage.

module MOVE_IN_REGION;

1This module is inspired by John McCarthy’s classic Advice Taker paper [McCarthy, 1959]. Our
choice of the word “At” to denote places and regions being part of other regions follows that paper.

2Again, the term “Movable” is inspired by [McCarthy, 1959]. It is a generalization of the two
terms used in that paper: “Walkable” and “Drivable.”
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import MOVE;

fluents

At(Region, Region) : staticallyDetermined;

Movable(Region): rigid;

variables

x: Thing;

p,p1: Place;

r, r1: Region;

import ORDER;

Domain is Region;

Less(r,r1) is At(r,r1);

axioms

nonexecutable Move(x,p) if Location(x)=p1

& -exists r (At(p1,r) & At(p,r)

& Movable(r));

default -Movable(r);

10.2 The Oldest Planning problem in AI: Getting to

the Airport

John McCarthy [1959] explained the fact that he needed a car to get to the air-

port by noting that his home and the airport do not belong to a sufficiently small,

“walkable”, region. They are in the same county, and counties are “drivable”—small

enough to drive across. He could get to the airport by first walking to the car, which

is at his home also (this is possible because his home is walkable) and then driving

his car to the airport.
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In the library module MOVE_IN_REGIONwe generalized this by introducing the

concept of a “movable” region and postulating that the action Move(x,p) is nonex-

ecutable unless place p lies within a movable region that contains Location(x). In

the formalization below, we formalize McCarthy’s example using MOVE_IN_REGION,

along with library module CARRIER from the preceding chapter.

include "../library-ontology"

include "../library"

module AIRPORT;

objects

John : Person;

Car : Vehicle;

Desk, Garage, Airport : Place;

Home, County : Region;

actions

Walk(Place);

Drive(Place);

Board;

Disembark;

fluents

Walkable(Region),

Drivable(Region) : rigid;

variables

p : Place;

r : Region;

import CARRIER;

Load(John,Car) is Board;
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Unload(John) is Disembark;

Move(Car,p) is Drive(p);

import MOVE_IN_REGION;

Move(Car,p) is Drive(p);

Movable(r) is Drivable(r);

import MOVE_IN_REGION;

Move(John,p) is Walk(p);

Movable(r) is Walkable(r);

import NOCONCURRENCY;

axioms

constraint Location(Car)!=Desk;

% Our "geography":

At(Desk, Home);

At(Garage, Home);

At(Home, County);

At(Airport, County);

Walkable(Home);

Drivable(County);

Sample CCalc Query for Getting to the Airport

We asked CCalc to solve the classic planning query: John is at his desk, the car is

in the garage. How can he get to the airport?

:- query

maxstep :: 0..3;

0: location(john)=desk,
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location(car)=garage;

maxstep: location(john)=airport.

It determined that the shortest plan consists of 3 actions:

0: walk(garage)

1: board

2: drive(airport)

10.3 The Logistics Domain

The logistics domain, introduced in [Veloso, 1992], is described as follows3:

There are several cities, each containing several locations, some of which

are airports. There are also trucks, which can drive within a single city,

and airplanes, which can fly between airports. The goal is to get some

packages from various locations to various new locations.

A MAD formalization of this domain is shown below. The condition that

trucks can only drive within a single city is similar to the limitations on walking

and driving in McCarthy’s example, and it is expressed here by importing module

MOVE_IN_REGION.

include "../library-ontology"

include "../library"

sorts

City; Airport;

Truck; Airplane;

Package;

3Taken from the webpage of the first International Planning Competition,
ftp://ftp.cs.yale.edu/pub/mcdermott/ aipscomp-results.html
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inclusions

City << Region;

Airport << Place;

Truck << Vehicle;

Airplane << Vehicle;

Package << Thing;

module LOGISTICS;

actions

Go(Vehicle, Place);

fluents

Drivable(City) : rigid;

variables

p : Place;

c : City;

v : Vehicle;

t : Truck;

a : Airplane;

import CARRIER;

Move(v,p) is Go(v,p);

import MOVE_IN_REGION;

Move(t,p) is Go(t,p);

Movable(c) is Drivable(c);

import NOCONCURRENCY;

axioms

-DriverRequired(v);
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constraint Location(a)=p -> Airport(p);

Drivable(c);

This representation of logistics is abstract, in the sense that it does not

declare objects corresponding to specific vehicles, places and packages. A module

describing a concrete logistics domain would import module LOGISTICS, declare its

objects, and provide axioms describing the At relation between places and cities.

For example,

module LOGISTICS_SPECIFIC;

import LOGISTICS;

objects

T1, T2 : Truck;

A1 : Airplane;

Pack1, Pack2, Pack3, Pack4 : Package;

L1 : Place;

L2, L3 : Airport;

C1, C2 : City;

axioms

At(L1, C1);

At(L2, C1);

At(L3, C2);

Sample CCalc Query for the Logistics Domain

We asked CCalc for a plan to solve the following planning problem: All the pack-

ages are at a certain place, on the ground. The vehicles are at another place, an

airport, in the same city. How can the packages be transported to an airport in

another city?
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:- query

maxstep :: 10..11;

0: location(pack1)=l1,

location(pack2)=l1,

location(pack3)=l1,

location(pack4)=l1,

location(t1)=l2,

location(t2)=l2,

location(a1)=l2;

maxstep:

location(pack1)=l3,

location(pack2)=l3,

location(pack3)=l3,

location(pack4)=l3.

It determined that the shortest plan consists of 11 actions:

0: go(t2, l1)

1: load(pack1, t2)

2: load(pack2, t2)

3: load(pack4, t2)

4: load(pack3, t2)

5: go(t2, l2)

6: load(pack3, a1)

7: load(pack1, a1)

8: load(pack2, a1)

9: load(pack4, a1)

10: go(a1, l3)
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Chapter 11

Extending the Library: Modules

TIME, TRANSFER and BUY

We saw in Chapter 6 that the extended version of MAD treats integers as built-

in objects and can do comparisons on numerical objects. When we have integers

available, it is possible to enhance our action domains in many ways.

Here we present three library enhancements related to integers: one is about

the notion of time, and actions with variable durations; the other two are about

numeric-valued resources and their transfer. They treat the notion of transferring

resources both generally and also in the context of buying and selling.

11.1 A New Library Module: TIME

Library module TIME declares the integer-valued fluent Time to keep track of how

much “time” has gone by in a domain. Unlike most of the fluents we’ve encountered

so far, Time is not inertial. Instead, each action has a duration, which is 1 by

default, and each transition increases the value of Time by the duration of the
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actions executed in that transition. All actions that are concurrently executed need

to have the same duration.

There is also a special action of “waiting” for a certain amount of time. This

allows time to move forward even in the absence of any “real” action.

An important feature of this module is that it uses a numeric symbol named

MaxTime instead of a fixed integer. The value of this symbol is set in a file to be

included before the library. This way, the user of the library module may set a

MaxTime value of his choosing.

module TIME;

actions

Wait(1..MaxTime);

fluents

Time : simple(0..MaxTime);

Duration(action) : rigid(1..MaxTime);

variables

t_s : 1..MaxTime;

t : 0..MaxTime;

a : action;

a_exp : explicitAction;

axioms

a_exp causes Time=t if t=Time+Duration(a_exp);

default Duration(a)=1;

exogenous Wait(t_s);

Duration(Wait(t_s))=t_s;

An interesting result of having time is that actions which might have been

called trivial otherwise now become nontrivial. For example, even if an action has
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no effect in the traditional sense, as a result of executing it time will pass, and

transitions in the transition system will always go to a new state.

11.2 Briefcase with Time and Duration

We may enhance the briefcase domain from Section 9.3 to add time, and conditions

dependent on time. The enhancement shown in module BRIEFCASE_TIME for in-

stance, expresses that Pednault’s office opens at a certain time, and that the action

of going to the office cannot be executed before then.

The file “briefcase” included in the first line below contains the module

BRIEFCASE shown in Section 9.3.

include "briefcase"

module BRIEFCASE_TIME;

import BRIEFCASE;

import TIME;

axioms

nonexecutable MoveB(Office) if Time<4;

Sample CCalc Query for Briefcase with Time

We asked CCalc to solve the briefcase planning problem, assuming that initially

Time=0.

:- query

maxstep :: 1..10;

0: location(briefcase)=home,

holds(briefcase,paycheck),
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location(dictionary)=home,

-holds(briefcase,dictionary),

time=0;

maxstep:

location(briefcase)=office,

location(dictionary)=office,

location(paycheck)=home.

In this formalization, Pednault’s planning problem can be solved in 4 steps

instead of 3. Before executing MoveB(Office), besides taking out the paycheck and

putting in the briefcase, an action of waiting must be executed, waiting for enough

time units so that Time ≥ 4.

0: putin(dictionary)

1: wait(6)

2: takeout(paycheck)

3: moveb(office)

11.3 A New Library Module: TRANSFER

Another phenomenon that becomes a possibility when we have integer-valued con-

stants and arithmetic is domains where certain countable/measurable resources are

transferred around. For example, in the missionaries and cannibals domain, in-

stead of reasoning about specific individuals, we can reason about the number of

missionaries and cannibals on one of the banks or in the boat.

For this, we add the following declarations to our library ontology:

sorts

Resource;

Accumulator;

inclusions
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Accumulator << Thing;

As a result of adding these declarations, the sort and subsort relations in the

library ontology now become as shown in Figure 11.1.

Region

Place

Accumulator

Supporter

Thing

Carrier

Person Vehicle

Domain

Range

Resource

Figure 11.1: Sorts and subsort relations in ontology after adding module TRANSFER

Library module TRANSFER, presented below, formalizes the notion of resource

“accumulators” holding certain amounts of resources.

module TRANSFER;

actions

Transfer(1..MaxAmount, Resource, Accumulator, Accumulator);

fluents

Amount(Resource, Accumulator) : simple(0..MaxAmount);

variables

m,m1 : 0..MaxAmount;

n : 1..MaxAmount;

r : Resource;

x,y : Accumulator;

p : Place;

import LOCAL;
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axioms

exogenous Transfer(n,r,x,y);

inertial Amount(r,x);

nonexecutable Transfer(n,r,x,y) if Amount(r,x) < n;

nonexecutable Transfer(n,r,x,y) if Amount(r,y)=m1

& MaxAmount < m1+n;

Transfer(n,r,x,y) causes Amount(r,x)=m if Amount(r,x)=m1 & m1=m+n;

Transfer(n,r,x,y) causes Amount(r,y)=m1 if Amount(r,y)=m & m1=m+n;

% These will help us say that transfers obey locality

Theme(x, Transfer(n,r,x,y));

Theme(y, Transfer(n,r,x,y));

Numeric-valued fluent Amount represents how much of a certain resource

is held by an accumulator, and the action Transfer is used to represent certain

amounts of a resource being moved from one accumulator to another.

As in module TIME, a numeric symbol (instead of a fixed integer) is used to

specify the upper boundary of an integer range in the library. Here it is MaxAmount.

The axioms specify the preconditions and effects of TRANSFER.

This module has an important limitation due to the MAD language. It

requires that at most a single Transfer action be applied to each resource at a

time. If there are concurrent Transfer actions that act on the same resource, then

the resulting amount will be incorrect, because the causal laws specifying the effect

of the action are written for single actions. This limitation is due to the MAD

language not containing any kind of “additive fluents” [Lee and Lifschitz, 2003]—
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fluents that can be used to correctly calculate the aggregated effects of concurrent

actions on numeric-valued fluents. Enhancing MAD with such fluents is one of those

we list as future work in Section 15.2.1.

11.4 Missionaries as Resources

In the formalization of the missionaries domain presented in Section 9.4, individual

missionaries were all objects. In this variant, we formalize all the missionaries as a

single object — a resource, of which different numbers may be accumulated by the

two banks of the river, or the boat. The actions of boarding and disembarking now

become instances of transferring resources.

The formalization below uses two domain-specific numeric symbols: MaxMiss

indicates the number of missionaries, and MaxBoatCapacity indicates how many

missionaries can fit in the boat at a time.

include "../library-ontology"

include "../library"

sorts

RiverBank;

inclusions

RiverBank << Accumulator;

% Maximum number of missionaries

numeric_symbol MaxMiss=9

% Maximum capacity of the boat

numeric_symbol MaxBoatCapacity=5

module MISSIONARIES;
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objects

M : Resource;

P1, P2 : Place;

Bank1, Bank2 : RiverBank;

Boat : Accumulator;

actions

Board(1..MaxMiss, RiverBank);

Disembark(1..MaxMiss, RiverBank);

CrossTo(Place);

variables

n : 1..MaxMiss;

b : RiverBank;

p : Place;

import TRANSFER;

Transfer(n,M,b,Boat) is Board(n,b);

import TRANSFER;

Transfer(n,M,Boat,b) is Disembark(n,b);

import MOVE;

Move(Boat,p) is CrossTo(p);

import NOCONCURRENCY;

axioms

Location(Bank1)=P1;

Location(Bank2)=P2;

% The boat can carry at most five

constraint -(Amount(M,Boat)=n & MaxBoatCapacity < n);
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nonexecutable CrossTo(p) if Amount(M,Boat)=0;

Using numeric resources instead of individuals allows us to easily state the

axiom about having no more missionaries than the boat capacity. (Recall that when

we formalized the domain using individual missionaries, we relied on the boat capac-

ity (2) and the total number of missionaries (3) being separated by one. Therefore

the axiom in that version stated that “not all missionaries are allowed on the boat

together,” rather than a condition about a specific boat capacity.)

Sample CCalc Query for Missionaries as Resources

We asked CCalc to solve the missionaries problem with 9 missionaries starting out

on Bank1 initially and ending up on Bank2 eventually. (When processing the MAD

description above, the library symbol MaxAmount was set to 9.)

:- query

maxstep :: 6..9;

0: amount(m,bank1)=9,

amount(m,bank2)=0,

amount(m,boat)=0;

maxstep:

amount(m,bank1)=0,

amount(m,bank2)=9,

amount(m,boat)=0.

The shortest plan takes 7 actions:

0: board(5, bank1)

1: crossto(p2)

2: disembark(4, bank2)

3: crossto(p1)
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4: board(4, bank1)

5: crossto(p2)

6: disembark(5, bank2)

11.5 Missionaries and Cannibals

In Section 9.4 we considered a simplified version of the original missionaries and

cannibals domain, with only missionaries, because formalizing both missionaries

and cannibals as individuals becomes quite cumbersome. Now that we can reason

with groups, we present a formalization of the original missionaries and cannibals

puzzle, with 3 missionaries and 3 cannibals.

This formalization is similar to the formalization with only missionaries,

shown in the preceding section, but it differs in a few ways, due to having cannibals.

Actions Board and Disembark have one more argument, because there are now

two kinds of resources, missionaries and cannibals. The axiom about the boat

capacity changes because there may now be passengers of two kinds. We also add the

condition from the original puzzle that the missionaries must never be outnumbered

by the cannibals — or else they’ll be eaten.

include "../library-ontology"

include "../library"

sorts

RiverBank;

inclusions

RiverBank << Accumulator;

% Maximum number of missionaries/cannibals

numeric_symbol MaxMiss=3
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% Maximum capacity of the boat

numeric_symbol MaxBoatCapacity=2

module MC;

objects

M, C : Resource;

P1, P2 : Place;

Bank1, Bank2 : RiverBank;

Boat : Accumulator;

actions

Board(Resource, 1..MaxMiss, RiverBank);

Disembark(Resource, 1..MaxMiss, RiverBank);

CrossTo(Place);

variables

n : 1..MaxMiss;

n1,n2 : 0..MaxMiss;

r : Resource;

b : RiverBank;

p : Place;

import TRANSFER;

Transfer(n,r,b,Boat) is Board(r,n,b);

import TRANSFER;

Transfer(n,r,Boat,b) is Disembark(r,n,b);

import MOVE;

Move(Boat,p) is CrossTo(p);

import NOCONCURRENCY;
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axioms

Location(Bank1)=P1;

Location(Bank2)=P2;

% The boat cannot carry more than its capacity

constraint -(Amount(M,Boat)=n1 & Amount(C,Boat)=n2

& MaxBoatCapacity < n1+n2);

nonexecutable CrossTo(p) if Amount(M,Boat)=0 & Amount(C,Boat)=0;

% Cannibals should never outnumber missionaries

constraint -(Amount(M,b)!=0 & Amount(M,b) < Amount(C,b));

constraint -(Amount(M,Boat)!=0 & Amount(M,Boat) < Amount(C,Boat));

Sample CCalc Query for Missionaries and Cannibals

We asked CCalc to solve the missionaries and cannibals problem with 3 missionaries

and 3 cannibals starting out on Bank1 initially and ending up on Bank2 eventually.

(When processing the MAD description above, the library symbol MaxAmount was

set to 3.)

:- query

maxstep :: 18..19;

0: amount(m,bank1)=3,

amount(c,bank1)=3,

amount(m,bank2)=0,

amount(c,bank2)=0,

amount(m,boat)=0,

amount(c,boat)=0;

maxstep:

amount(m,bank1)=0,

amount(c,bank1)=0,
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amount(m,bank2)=3,

amount(c,bank2)=3,

amount(m,boat)=0,

amount(c,boat)=0.

The shortest plan takes 19 actions:

0: board(c, 2, bank1)

1: crossto(p2)

2: disembark(c, 1, bank2)

3: crossto(p1)

4: board(m, 1, bank1)

5: crossto(p2)

6: disembark(m, 1, bank2)

7: crossto(p1)

8: board(m, 1, bank1)

9: crossto(p2)

10: disembark(m, 1, bank2)

11: crossto(p1)

12: board(m, 1, bank1)

13: crossto(p2)

14: disembark(m, 1, bank2)

15: crossto(p1)

16: board(c, 1, bank1)

17: crossto(p2)

18: disembark(c, 2, bank2)

11.6 A New Library Module: BUY

Buying and selling objects [Lee and Lifschitz, 2006] can also be modeled using re-

sources and the library module TRANSFER. The module below specializes the notion

of transfer to cases where there is a buyer and a seller and commodities are trans-

ferred in exchange for money.

128



For this, we add the following declarations to our library ontology:

sorts

Commodity;

Buyer;

Seller;

inclusions

Commodity << Resource;

Buyer << Accumulator;

Seller << Accumulator;

As a result of adding these declarations, the sort and subsort relations in the

library ontology now become as shown in Figure 11.2.

Region

Place

Domain

Range

Resource Accumulator

Supporter

Thing

Carrier

Person VehicleCommodity

Buyer Seller

Figure 11.2: Sorts and subsort relations in ontology after adding module BUY

module BUY;

objects

Money : Resource;

actions

Buy(Buyer, 1..MaxAmount, Commodity, Seller, 1..MaxAmount);
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fluents

Price(Commodity) : rigid(1..MaxPrice);

variables

n : 1..MaxAmount;

n2 : 1..MaxPrice;

c : Commodity;

b : Buyer;

s : Seller;

x : Thing;

cost : 1..MaxAmount;

import TRANSFER;

Transfer(n,c,s,b) is Buy(b,n,c,s,cost);

import TRANSFER;

Transfer(cost,Money,b,s) is Buy(b,n,c,s,cost);

axioms

nonexecutable Buy(b,n,c,s,cost) if Price(c)=n2 & cost!=n*n2;

One limitation of this formalization comes from the fact that the version

of MAD we used in this dissertation restricts the right-hand side of a constant

renaming is statement to be a single constant, not a complex formula. If we didn’t

have this restriction, we could perform “conditional renamings” of actions: Instead

of having to include the cost of a buying action as an argument, we could reduce the

arguments to action Buy and have the calculation of the cost be part of the second

renaming statement by writing

import TRANSFER;

Transfer(cost,Money,b,s) is Buy(b,n,c,s) & cost=n*Price(c);
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If we were able to write such a renaming statement, the only axiom in the module

could be dropped too.

Another limitation of module BUY is one that it inherits from module TRANSFER:

concurrent transfers are not allowed. As we mentioned in Section 11.3, the solution

to this problem is to enhance MAD with “additive fluents.”

Both of these limitations are listed among topics for future work in Sec-

tion 15.2.1.

11.7 Buying Flowers

Here we formalize a specific example of a buyer, John, buying flowers from a store.

include "../library-ontology"

include "../library"

module BUYING_FLOWERS;

import BUY;

objects

Flowers : Commodity;

Austin : Place;

Store1 : Seller;

John : Buyer;

variables

x : Thing;

import NOCONCURRENCY;

axioms

Location(Store1)=Austin;
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Location(John)=Austin;

inertial Location(x);

Price(Flowers)=2;

Sample CCalc Query about Buying Things

Instead of a planning problem, we asked CCalc to solve a projection query: John

has $10 and there are 10 flowers in the store. If he buys 3 at $2 each, how many

flowers and how much money will he have? (When processing the MAD description

above, the library symbol MaxAmount was set to 10 and MaxPrice was set to 5.)

:- query

maxstep :: 1;

label :: 0;

0: amount(money,john)=10,

amount(money,store1)=3,

amount(flowers,john)=0,

amount(flowers,store1)=10,

buy(john,3,flowers,store1,6).

We only specified the initial state and one action above, instructing CCalc

to find a projection for the next state. It told us that John has 3 flowers and $4 left.

Also, the store’s money increased by $6 and its inventory of flowers decreased by 3.

0: amount(money, john)=10 amount(money, store1)=3

amount(flowers, john)=0 amount(flowers, store1)=10

location(john)=austin location(store1)=austin

ACTIONS: buy(john, 3, flowers, store1, 6)

1: amount(money, john)=4 amount(money, store1)=9

amount(flowers, john)=3 amount(flowers, store1)=7
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location(john)=austin location(store1)=austin
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Chapter 12

Further Enhancements to the

MAD Language

In Chapter 6 we described new features we added to the MAD language. In addition

to those new features, we also restricted the input language of our implementation

in some ways and modified the original semantics of MAD. Here we describe these

enhancements to MAD.

12.1 Changes for Transformation into other Implemented

Languages

In order to implement the MAD language as quickly as possible, we decided to lever-

age the power of CCalc. However, CCalc captures only the “definite” fragment

of action language C+ but constant renaming statements in MAD correspond to

nondefinite causal laws. In some cases, it is possible to use a simple transforma-

tion to turn an action description containing such nondefinite causal laws into one
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which contains only definite laws, though it is not always straightforward to iden-

tify whether a given nondefinite description falls under these cases. Experimenting

with manual transformation of automatically-generated nondefinite CCalc input

into definite form, we noticed that all of our library modules and specific domain

formalizations could be expressed in a form in which this tranformation would be

applicable. Therefore we restricted the input language we use to guarantee that all

nondefinite causal laws will fall under this case, which allowed us to automate the

transformation into a definite action description. We present the restrictions below:

• A single atom instead of a formula in renamings: Here is an example of a

MAD import section, which includes a constant renaming statement, redefin-

ing constant Move in terms of constant Carry.

import MOVE;

Move(x, p) is Carry(u, x, p);

The intuitive meaning of this is “the action of agent u carrying object x to place

p is synonymous with the action of moving x to p.” We refer to the formulas

on either side of the keyword is as the left-hand side and the right-hand side

of the renaming statement.

In the general description of MAD, the left-hand side of a constant renam-

ing statement consists of the constant being renamed but the right-hand side

allows a full formula. There are two problems with this: (i) it is difficult to

check whether the resulting axioms constitute an “explicit definition” of the

renamed constant (as required by MAD), and (ii), the “nondefinite” axioms

corresponding to it are too complex to automatically convert into “definite”

causal laws, as is required by the Causal Calculator. On the other hand, we
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observed that, in practice, all of the renaming statements we encountered in

early versions of the library modules and example domains were writable in

a form in which at most a single atom appeared on the right-hand side. In

such cases, it is possible to apply a simple procedure suggested in Chapter 4

to convert these nondefinite action descriptions into definite ones. Therefore

the right-hand side of a constant renaming statement is now restricted to have

a single atom or the zero-place connective false. The axioms resulting from

such renaming statements are called “semi-definite.” Using this form in MAD

guarantees that the axioms generated from renaming statements are explicit

definitions and it enables us to automatically transform the resulting action

description into the language of CCalc.

• Cases in renaming statements: In the original definition of MAD renaming

statements, all of the arguments to the constant on the left-hand side had

to be variables of the argument sort from the declaration of the constant. If

we wanted to redefine instances of that constant with different parameters

differently, we would need a complex formula on the right-hand side, even if

this formula were reducible to a single atom for each different value tuple of

the arguments. Here is an example of such a complex formula:

import CLIMB;

Climb(u,s) is u=Monkey & ((s=Box & ClimbOn)

| (s=Floor & ClimbOff));

The intuitive meaning of the constant renaming statement above is “the action

of Climb is always executed by the monkey and is synonymous with action

ClimbOn if climbing onto the box, or with action ClimbOff if climbing onto

the floor.”
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Since the restriction described in the preceding bullet allows only single con-

tants on the right-hand side, we needed a way to conveniently differentiate

between different “cases” of argument values. Therefore we allow the right-

hand side to be broken up into several “case statements,” with each case hav-

ing a condition formula without any constants, and a single atom (or false)

redefining the renamed constant. The example can be written as

import CLIMB;

Climb(x,s) is

case x=Monkey & s=Box : ClimbOn;

case x=Monkey & s=Floor : ClimbOff;

Note that both cases say that “x=Monkey”. To make expressing this a little

more convenient we allow objects, and also variables of subsorts of the sort

expected by the constant, as arguments to constants on the left-hand side of

a renaming statement. The example above is now written as

import CLIMB;

Climb(Monkey,s) is

case s=Box : ClimbOn;

case s=Floor : ClimbOff;

We will say more about the precise semantics of case statements in the next

section.

12.2 Modifications to the Semantics of MAD

In Chapter 5 we described how imported modules are incorporated into later ones

that refer to them. During this process, whenever a constant is redefined, the
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imported copy is renamed by prepending a prefix of the form “In.” to it.1 The

result of applying this process repeatedly is a single-module action description, which

corresponds to an action description in C+.

As we mentioned in Chapter 6, one of the enhancements we made to the

original syntax of MAD, the ability to have more variables on the right-hand side

of a constant renaming clause, requires a modification of the import semantics. In

addition, as we worked on writing modules in the MAD language, we identified some

more problematic issues in the proposed semantics of import statements. These

issues become important when there are multiple levels of imports. (Which may

explain why they weren’t noticed during the initial design of MAD.)

Here are the changes to the semantics that were made as a result of our early

attempts at writing modules:

• When a constant renaming statement has variables on its right-hand-side that

don’t appear on its left-hand side, the renamed version of the constant on the

left-hand side must be given extra arguments.

Consider the following example of this kind of renaming statement,

sorts

Agent;

Thing;

Place;

module MOVE;

actions

Move(Thing,Place);

1Here I stands for import and n will be an integer depending on the number of imports that
have been processed so far.
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module CARRY;

actions

Carry(Agent,Thing,Place);

variables

u : Agent;

x : Thing;

p : Place;

import MOVE;

Move(x, p) is Carry(u, x, p);

The intuitive meaning of this is “the action of agent u carrying object x to

place p is synonymous with the action of moving x to p.” Without any change

to the semantics, this import statement adds the axiom

I1.Move(x, p) <-> Carry(u, x, p);

Now, imagine having two agents, Alice and Bob. Then, the equivalence above

would entail

I1.Move(x, p) <-> Carry(Alice, x, p);

I1.Move(x, p) <-> Carry(Bob, x, p);

and hence

Carry(Alice, x, p) <-> Carry(Bob, x, p);

This is clearly not what we want. In order to distinguish between actions

executed by different agents u, the renamed constant I1.Move should get a

third argument, of the sort of variable u above. The action declaration of
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I1.Move becomes

action

I1.Move(Thing,Place,Agent);

and the equivalence axiom becomes

I1.Move(x, p, u) <-> Carry(u, x, p);

Now, Alice and Bob can carry objects independently.

In addition to the declaration of the constant changing, all of occurrences of

this constant need to be changed, adding new variables to occurrences in the

axioms. This involves declaring new variables, in order to ensure the new

arguments in the constant occurrences are not the same as other variables in

the formula.

• If a constant c being renamed is given extra arguments (as in the bullet above),

then these new arguments should be propagated down to all constants renamed

in terms of c, and this propagation should be repeated recursively for all those

constants too.

The change to semantics from the preceding bullet solved the issue of Alice

and Bob carrying things independently. However, the same problem can still

occur if we rename action Move in two steps. (Using two levels of imports.)

Consider modifying the example above by adding another module in between

MOVE and CARRY:

sorts

Agent;

Thing;
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Place;

module MOVE;

actions

Move(Thing,Place);

module TAKE;

actions

Take(Thing,Place);

variables

u : Agent;

x : Thing;

import TAKE;

Move(x, p) is Take(x, p);

module CARRY;

actions

Carry(Agent,Thing,Place);

variables

u : Agent;

x : Thing;

p : Place;

import TAKE;

Take(x, p) is Carry(u, x, p);
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The first import introduces the axiom

I1.Move(x, p) <-> Take(x, p);

The second import changes the declaration of Take and introduces the axiom

I2.Take(x, p, u) <-> Carry(u, x, p);

In addition, the occurrence of Take in first axiom is modified:

I1.Move(x, p) <-> I2.Take(x, p, u); (12.1)

But this is not enough to ensure independence of Alice and Bob carrying

things, because, similarly to the example above, but in two steps, we get

Carry(Alice, x, p) <-> Carry(Bob, x, p);

The solution to this problem is to propagate any additional arguments to

all constants which have been renamed in terms of constants receiving new

arguments. This way, I1.Move would get an additional agent argument as

an effect of the constant renaming in the second import, and axiom (12.1)

becomes:

I1.Move(x, p, u) <-> I2.Take(x, p, u);

• When constants in an imported module are being renamed, a prefix “In.”

should be prepended not only to constants being renamed in the current import,

but also to constants with at least one prefix “Im.”
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Another problem arises with multiple levels of imports, when the same module

is imported more than once with different renamings. Consider modifying the

example above, where there are two levels of imports, by adding a second

import statement in the last module:

sorts

Agent;

Thing;

Place;

module MOVE;

actions

Move(Thing,Place);

module TAKE;

actions

Take(Thing,Place);

variables

u : Agent;

x : Thing;

import TAKE;

Move(x, p) is Take(x, p);

module CARRY;

actions

Carry(Agent,Thing,Place);

Transfer(Agent,Thing,Place);
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variables

u : Agent;

x : Thing;

p : Place;

import TAKE;

Take(x, p) is Carry(u, x, p);

import TAKE;

Take(x, p) is Transfer(u, x, p);

In accordance with the new semantics in the preceding bullets, the import of

MOVE into TAKE introduces the axiom

I1.Move(x, p) <-> Take(x, p); (12.2)

into module TAKE.

The first import of TAKE introduces the axiom

I2.Take(x, p, u) <-> Carry(u, x, p); (12.3)

and also brings in the modified version of (12.2):

I1.Move(x, p, u) <-> I2.Take(x, p, u); (12.4)

The second import of TAKE introduces the axiom

I3.Take(x, p, u) <-> Transfer(u, x, p); (12.5)
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and also brings in the modified version of (12.2):

I1.Move(x, p, u) <-> I3.Take(x, p, u); (12.6)

Now, since the renaming works by prefixing “In.” to the constant renamed in

the immediate import, the two imported versions of action Take have different

prefixes. However, the action I1.Move, in terms of which these actions are

defined, (and whose name resulted from the renaming in the first import in

the action description) has not been renamed during the two imports of TAKE.

Thus axioms (12.4) and (12.6) entail

I2.Take(x, p, u) <-> I3.Take(x, p, u);

and, along with (12.3) and (12.5), entail

Carry(x, p, u) <-> Transfer(x, p, u);

The solution to this problem is to rename any constants whose names include

at least one prefix “In.” (The string of prefixes in every constant name will

provide a complete description of the path that the name followed in the

sequence of imports.) With this change, axiom (12.4) becomes

I2.I1.Move(x, p, u) <-> I2.Take(x, p, u);

and axiom (12.6) becomes

I3.I1.Move(x, p, u) <-> I3.Take(x, p, u);
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The actions Carry and Transfer are now independent, as should be.

• Case statements in renamings:

One of the enhancements we made to the original syntax of MAD is for import

sections with case statements. A renaming clause with case statements is of

the form

c(t1, ..., tn) is

case F1 : F ′
1 ;

...

case Fk : F ′
k ;

default : F ′
k+1 ;

where c is the constant being renamed, t1, ..., tn are variables of the mod-

ule where the import occurs, and n, k ≥ 0. Each variable must be of the sort

declared for the corresponding argument of c and all variables must occur at

most once. Each Fi must have no constants and should not contain any vari-

ables other than those in t1, ..., tn. Each F ′
i must be a single constant with

the same domain as c, or an object from the domain of c. The last case, with

“default” stands for the case where Fk+1 is the zero-place connective ⊤. If

c is Boolean-valued, this last case may be omitted and it is treated as if F ′
k+1

were ⊥.

The equivalence introduced by such a renaming statement is (assuming this is

the mth import in the action description)

Im.c(t1, ..., tn) ≡
k∧

i=1

(
i−1∧

j=1

¬Fj ∧ Fi ⊃ F ′
i ) (12.7)
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For each value of t1, ..., tn, the formula on the right-hand side will be logi-

cally equivalent to exactly one F ′
i . This equivalence guarantees an “explicit

definition” of each instance of Im.c.

Recall that, the enhancements to the syntax relax the requirement of having

t1, ..., tn be variables of sorts matching the declaration of constant c. Instead,

we may have objects of the declared sort, or variables which belong to a

subsort of the sort required by the declaration. In such cases, all instances

of the constant which do not match this restricted form should be equivalent

to ⊥. In other words, the above equivalence (12.7) is modified to be

Im.c(v1, ..., vn) ≡ ((G1∨...∨Gn) ⊃ ⊥)∧
k∧

i=1

(¬(G1∨...∨Gn)∧
i−1∧

j=1

¬Fj∧Fi ⊃ F ′
i )

(12.8)

where v1, ..., vn are variables of the sort required by the declaration of c, and

Gi stands for

– vi 6= ti if ti is an object,

– ¬Sortti(vi), if ti is a variable, where Sortti is the “sort name predicate”

of the sort of variable ti.

This covers all instances of c which are not covered by t1, ..., tn.
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Chapter 13

Using the MAD Implementation

As part of this dissertation, we developed an implementation of the MAD language,

with the extensions described in Chapters 6 and 12. This implementation was used

constantly to test all our formalizations in MAD. Such tests serve to increase our

confidence both in the adequacy of the formalizations and in the soundness of the

implementation of MAD.

In this chapter we explain how one may obtain, set up, and use the MAD

implementation. A detailed description of the allowed input may be found in Ap-

pendix D.

A note about fonts

In the scope of this chapter, things written in typewriter font indicate input that

should appear exactly as shown. Things written in italics refer to an element of

input which has already been explained or is about to explained.
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13.1 Obtaining MAD and System Requirements

MAD can be downloaded from its homepage:

http://www.cs.utexas.edu/~tag/mad/

The latest version available is MAD version 0.4.

The software is written in the C programming language. In order to build

MAD from source, one needs a C compiler, a Lex-like lexical analyzer generator,

and a Yacc-like parser generator.

We have tested our software on Unix/Linux-like systems and used the fol-

lowing programs to build MAD from source:

• GCC, the GNU Compiler Collection

• flex, The Fast Lexical Analyzer

• bison, the GNU parser generator

More specifically, we have successfully tested MAD with the following com-

binations:

• Debian GNU/Linux (sid), gcc 4.2.3, flex 2.5.35, bison 2.3

• SunOS 5.9, gcc 4.2.2, flex 2.5.33, bison 2.0
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13.2 Building and Running MAD

13.2.1 Building the Code

As mentioned in the first section, we used the tools gcc, flex and bison on Unix/Linux

systems.1 Once these are installed, to build the program from source, simply run

the command make at the shell prompt. This will produce an executable named

mparse.

13.2.2 Running the Program

mparse is a program which parses its MAD input and processes the import state-

ments, building internal data structures corresponding to each module in the input,

finally printing these processed modules to an output file.

The programs expects to be called as follows:

mparse [−i] input file1 input file2 ... input filen [−o output file]

where the arguments within square brackets are optional. If no output file is speci-

fied, the output is written to a file named mparse.output.

When more than one input file is specified, mparse treats them as if they

were all concatenated in one big file. The optional switches -i and -o may occur in

any place in the command line, not just at the beginning or the end. However, the

-o switch must be followed by an output file.

1If the user wishes to replace gcc, flex, or bison with other software that accomplishes the same
job, he will need to change the makefile.
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13.2.3 MAD Output: CCalc Input

By default, mparse automatically generates a CCalc input file corresponding to the

final module in the MAD action description.

It is important to note the following: CCalc doesn’t allow identifiers to have

free capitalization, so the output of mparse will turn all letters in identifiers into

their lower-case form. The program will print a warning message if two identifiers

become the same when converted to lower-case.

13.2.4 Other Forms of Output

If the program is called with the -i (interactive) option, then after parsing, instead

of directly generating CCalc code, the user is asked to choose among different

options to view the resulting modules:

1. Print modules parsed: prints the data structures built for all of the modules,

with the import statements processed.

2. Print last module: prints only the data structures built for the last module in

the MAD description, with the axioms grounded.

3. Print last module as CCalc input: like the preceding option, but prints the

module in CCalc format.

4. Quit without printing anything.
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13.3 Using MAD with CCalc

13.3.1 Running CCalc on MAD Action Descriptions

We don’t explain the details of running CCalc here. For that, the reader is referred

to the CCalc homepage:

http://www.cs.utexas.edu/~tag/cc/

As explained in the preceding section, the MAD executable mparse can turn

a given MAD action description into a CCalc input file, albeit with the identifiers

turned into all-lower-case words. Therefore, when writing a CCalc query to be

used with the given file, one must write all identifiers as all-lower-case.

In the course of developing an action description, it is often the case that

a user first runs mparse on a MAD description, prepares a set of CCalc queries,

loads both of them into CCalc and tests them, only to find that he has to go back

to make some changes to the MAD description, and tests with the same queries. In

order not to change any files other than the MAD input file, we recommend using

the CCalc include statement

:- include ’ccalc-input-filename’.

at the beginning of files containing queries. This is the approach we have taken

in the examples provided as part of the MAD distribution. Each CCalc query file,

(e.g. bw-queries) begins with a CCalc include statement specifying the name of

the file we expect mparse will generate (e.g. bw.cc). Then, when running mparse

we use the -o option to tell it to generate an output file with this name (e.g. mparse
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bw -o bw.cc).

13.3.2 Issues to Watch Out for when Running MAD with CCalc

• The CCalc file generated by mparse includes a show specification which hides

certain constants from the output. Those hidden are the renamed constants

beginning with an import prefix of the sort “In.” and also the constants

“Actor” and “Theme” which are declared in the MAD library. (These will be

hidden even if the user declares them himself, without reference to the library.)

• One must make sure that there are no similar identifiers with different capi-

talization. In MAD, P2 and p2 are different identifiers because MAD is case-

sensitive. But during the automatic conversion of MAD files into CCalc

input, they’ll both turn into p2. The MAD executable mparse will give a

warning in such cases but will still print out a CCalc input file. (If one uses

such a problematic file with CCalc, such errors are very hard to figure out

because CCalc won’t complain even if the same identifier is declared as both

an object and a variable.)

13.4 Debugging Action Descriptions

Common Errors in Formalizing Action Domains

Often the first attempt to formalize an action domain is not successful and running

CCalc yields no solution. In such cases the first thing to do is to run two simple

queries to check whether the transition system corresponding to the description has

any valid states and transitions.

% Tests whether the transition system has any valid states
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:- query

maxstep :: 0;

label :: 0.

% Tests whether the transition system has any valid transitions

:- query

maxstep :: 1;

label :: 1.

If the first query succeeds but the second fails, this means that even though

there are causally explained states in the transition system, no causally explained

transition exists. This is most often because an action instance has no cause spec-

ifying whether it should be executed or not. Usually we make action constants

exogenous and don’t specify any further cause for them. So a common mistake is

to forget to make an action constant exogenous.

A related mistake occurs when we import another module and define a new

action in terms of one from the imported module. If the old action was declared to

be exogenous we usually won’t specify that the new one is exogenous too, because

that follows from the two actions being equivalent. However, if the equivalence does

not cover all instances of the new action, then a cause must be explicitly specified for

these other instances. For example, the following action description snippet declares

a new sort Container which is a subsort of the library sort Thing, and a new action

PutIn is defined in terms of library action Mount.

inclusions

Agent << Thing;

Container << Thing;
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module CONTAINER;

constants

PutIn(Thing, Container) : action;

variables

x : Thing;

c : Container;

import MOUNT;

Mount(x,c) is

case -Agent(x) : PutIn(x,c);

Here the import statement specifies that the two actions are equivalent only when

their first arguments are not of library sort Agent. So, even though action Mount

is exogenous, instances of PutIn where the first argument is an Agent don’t inherit

this property.

13.4.1 Typical Mistakes when Using Library Modules

• Using module LOCAL for actions which don’t have any Actor or Theme defined.

• Forgetting to include module TOP for domains which have both a concept

of support and a concept of locations involved, or forgetting to define a

TopLocation value for all Things.
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Chapter 14

Implementation Details

Our implementation of MAD that allows us to perform various kinds of reason-

ing (such as planning, prediction, postdiction) about action descriptions written in

MAD. The implementation makes use of the Causal Calculator (CCalc) which is

a system that can reason with the “definite” fragment of language C+.

The system takes as input the library of basic action descriptions along with

a domain-specific action description. It first turns this set of modules into an equiv-

alent single-module description by eliminating import statements and incorporating

their contents, with appropriate modifications, into the importing module, accord-

ing to the semantics given in [Lifschitz and Ren, 2006] and modified as shown in

Chapter 12. A module without import sections is essentially a C+ description. How-

ever, this description generally contains “nondefinite” axioms that CCalc cannot

handle. Therefore we need to apply a further transformation, based on the meth-

ods outlined in Chapter 4, which turns the description into an equivalent definite

description. The final output is an action description which can be fed into CCalc.

In this chapter we briefly describe various aspects of the implementation.
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14.1 Implementing Import Unrolling

The fundamental feature of MAD is the ability to import earlier modules into newer

ones. In the original semantics of MAD, the process of incorporating a module

imported into another consists of merging declarations and axiom sections of the

two modules. Constant renaming statements turn into equivalence axioms, and an

appropriate prefix “Im.” is prepended to all occurrences of the redefined constant.

No other record of renaming statements is kept, other than the equivalence axiom.

After making the semantics modifications dealing with multiple levels of im-

ports (described in Chapter 12), it became necessary for the importing procedure α

to add a “hidden” section to modules in order to properly propagate the renamings

down to the previously-imported modules. This new section contains an ordered

(newer-to-older) list of renamings carried out to obtain the current form of the

module. Such “hidden” sections provide necessary information during a sequence

of imports, though they do not have any effect as long the module in which they

appear is not imported further. Therefore, they may be disregarded after turning

an action description into a single module.

14.2 Making Nondefinite Action Description Definite

As mentioned earlier in this chapter, the semantics of MAD describes how to turn

a MAD action description into a family of action descriptions in C+. Even with the

restrictions to the input language listed in Chapter 12 (such as import statements

allowing only a single constant on the right-hand side, instead of a full formula),

these action descriptions may still be “semi-definite,” and thus not acceptable by

CCalc, which requires a definite action description. Fortunately, for semi-definite
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action descriptions, where the semi-definite axioms arise purely from explicit defi-

nitions, there exists a procedure which can convert this semi-definite description to

a definite one.

14.2.1 Replacing Renamed Constants

Consider the renaming statement

import MOVE;

Move(x, p) is Carry(u, x, p);

This would turn into the following C+ axiom (expressed in the language of MAD):

In.Move(x, p, u) <-> Carry(u, x, p);

This axiom constitutes an explicit definition of In.Move(x, p, u) in terms

of Carry(u, x, p). It is semi-definite because an equivalence between two atoms

appears in the “head” part of the axiom. By Proposition 1 in Chapter 4, in the

presence of such an axiom expressing equivalence, we may replace any other occur-

rence of In.Move(x, p, u) by Carry(u, x, p) without changing the meaning of

the action description. On the other hand, by Proposition 3 of Chapter 4 if the

action description does not contain any other occurrences of constant In.Move(x,

p, u), then we can replace its explicit definition by the following definite axiom:

In.Move(x, p, u) if Carry(u, x, p);

This axiom is definite because there is only a single constant in the “head” (the part

before the if).

The procedure below takes a semi-definite action description obtained from

a MAD action description, and converts it into a definite action description. The
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semi-definite action description obtained from processing a MAD action description

is assumed to contain an ordered (newer-to-older) list of renamings carried out to

obtain the current form of the module. (Our implementation produces this list

during the process of incorporating import sections, and adds it to each processed

module as a “hidden” section. These “hidden” sections provide information which

is necessary to properly propagate the renamings down to the previously-imported

modules, as required by the new semantics.)

Algorithm 1 Takes a semi-definite action description obtained from a MAD action
description and converts it into a definite action description

1: Reverse the renaming list so that the oldest renaming appears first.
2: for all renamings in the renaming list do

3: Use equivalence axiom corresponding to renaming, to replace occurrences of
the renamed constant in heads of non-equivalence axioms

4: Replace the equivalence axiom for the renamed constant by a definite law
5: end for

The soundness (in terms of preserving the meaning of the action description)

of the algorithm above is guaranteed by Propositions 1 and 3 of Chapter 4. The

statement on line 3 depends on Proposition 1 and the statement on line 4 depends

on Proposition 3.

14.2.2 Multi-Sorted Unification

In order to carry out the algorithm above, where occurrences of a renamed con-

stant in the heads of laws are replaced by another constant from the equivalence

axiom, we need to determine if the constant in the head matches the constant in

the equivalence axiom. And since both the constant in the head and the constant

in the equivalence axiom are written in a schematic form (using variables) we need

to perform unification to determine which instances to replace.

159



The basic unification algorithm [Robinson, 1965] works on non-sorted vari-

ables/objects. However, MAD is a sorted language so our unification algorithm

accounts for sorted variables/objects, along with integers and integer ranges.

Similar to standard unification, we begin by “standardizing apart” the vari-

ables in the two terms we wish to unify. After that, this is how we unify arguments

of constant terms:

• if both are objects, they must be the same.

• if one argument is a variable and the other an object, then the object must be

of the sort of the variable.

• if the two arguments are both variables, then they must be of the same sort,

or must have a common subsort. In the latter case, a new variable of the

common subsort will be used for replacement.

• if both arguments are integers, they must be the same.

• if one argument is an integer and the other is an integer range, then the integer

must lie within the range.

• if the two arguments are both integer ranges, then they must overlap. The

intersection range is will be used for replacement.

14.3 Grounding

After making the action description definite, one more significant step is needed

before a file in the language of CCalc can be produced. MAD has the built-in

sort explicitAction, which doesn’t exist in CCalc. This poses a problem for

grounding (the process of eliminating variables, whereby all axioms with variables
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are replaced by possibly many copies, each with a different assignment of values to

the variables), since we want variables of the sort explicitAction to be replaced by

only explicitly declared actions. In order to bypass this problem, our implementation

grounds the action description itself. (This grounding is very fast compared to the

grounding in CCalc and thus does not bring any performance penalty.)

14.3.1 Grounding Argumented Objects

In order to do grounding of variables in the axioms, we need to have a list of all

objects belonging to each sort. One challenging aspect of grounding is how to handle

objects with arguments. Without arguments, at the end of the action description

we would have a list of objects and we cound simply go down the list of objects and

assign each one to its sort (and supersorts). However, when an object declaration

has an argument, in order to know what objects that corresponds to, we need to

know all objects that belong to the sort of any arguments. For example, with the

declarations

sorts

Building; Person;

objects

John, Bob : Person;

House(Person) : Building;

we need to know what the objects of sort Person are before we can know the

objects of sort Building.

The approach we take is to make a forest of “sort dependencies.” Sort de-

pendencies work as follows:

• if we have a pair of object declarations
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objects

a(s1, s2) : s

b(s4, s5) : s3

then this will add edges “s → s1,” “s → s2,” “s3 → s4,” “s3 → s5,” to the

sort dependency forest.

• if we also have an inclusion “s3 << s” then this means that all objects of s3

are also objects of s, so everything that s3 depends on must also be depended

on by s. The forest will get the additional edges “s → s4”, “s → s5”.

In order to make a list of objects of each sort, we have a procedure that

takes a sort and discovers all of the objects of that sort. If the sort has “sort

dependencies”, then the procedure recursively calls itself on all of the dependencies.

This ensures that he object lists are built in the right order. (Built-in sorts Boolean

and integer ranges have their objects built before any other declared sorts.)

No cycles are allowed in the sort dependency forest because if there is a cycle

in the sort dependency graph, then that would mean that a sort can have an infinite

number of objects. (Because whenever there’s a new object of sort s, that will lead

to a new object of some sort that is depended upon by s, and then there will be yet

another object of sort s due to the cycle. This process will repeat forever.)

The implementation keeps track of the sort dependency forest as it reads in

the input and reports an error when it detects a cycle.

14.3.2 Grounding Integers

Since integer ranges are built-in sorts and integers are built-in objects, they must

be taken into account whenever we make a list of objects of all sorts. Every integer
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range that occurs in an action description is turned into a built-in sort and all of

the integers that fall within that range are listed as objects of that sort.

14.4 Automatic Translation into the Language of CCalc

Once grounding is done, the final step of producing an input file for CCalc consists

of making a few simple syntactic changes to conform to the syntax of CCalc.

The process of conversion to CCalc format turns all MAD identifiers into

their lower-case equivalents. Therefore two identifiers which differ only in capital-

ization turn into the same identifier in CCalc format. The system prints out a

warning message in such cases.

Changes to CCalc for Better Output

In the process of implementation we made minor changes to CCalc code too.

• CCalc normally shows values of all constants at each time step. Since we

are usually only interested in explicitly declared (i.e. not renamed) constants,

we generate a CCalc show command that suppresses all constants that begin

with In..

• The CCalc show command didn’t originally affect action constants so we

modified CCalc so that our suppression of implicitly declared constants covers

action constants too.

• In addition to suppressing implicitly declared constants, we also suppress some

library fluents which take actions as arguments (and hence have unwieldly

looking implicitly declared constants as arguments.)

163



Chapter 15

Conclusion

15.1 Summary of Contributions

Our goal in the research presented here was to investigate the applicability of general-

purpose knowledge libraries to the area of action languages. Our main contributions

to that end can be listed as follows:

• We developed a theory of explicit definitions in action language C+, and

demonstrated that such definitions allow us to represent actions (and fluents)

as special cases of other actions (and fluents). This provided us with a theo-

retical basis for the idea of having libraries of actions and then using them to

describe special cases in specific domains. The MAD language was introduced

by [Lifschitz and Ren, 2006] as a modular language, with semantics based on

our work about explicit definitions.

• We extended this language in several ways, both in the syntactic dimension

and in the semantic dimension. The extended semantics not only provides

new features but also addresses some shortcomings of the original semantics,
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which were identified during the course of our research.

• We designed and implemented a software system that processes action descrip-

tions written in our extended version of MAD. The system turns a modular

action description for MAD into a nonmodular description suitable to be given

to CCalc. This implementation allowed us to test our formalizations and in-

crease our confidence in the soundness of our modules.

• We developed a library of basic action description modules which were then

used to successfully formalize several classic domains from the literature. Using

such a library allowed us to abstract out the common aspects of different

domains, making the formalizations much simpler.

• We developed a theory of carriers as a new library module and used it to

formalize several more domains from the literature. Using the library helped

us recognize structural similarities in domains that may seem quite different

at first glance: objects as diverse as briefcases, cars, trucks, boats, airplanes,

and even humans, could all be represented using the library module CARRIER.

• We developed a library module MOVE_IN_REGION for representing movement

between places which may be part of larger regions.

• We enhanced MAD with the capability to represent numbers and used this new

feature to develop library modules about time and resources. These modules

were used to enhance existing formalizations or re-write them in more flexible

ways.
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15.2 Future Work

15.2.1 Specific Topics for Future Work

The following is a list of topics that would improve upon the contents of this disser-

tation:

• When we rename constants, the current semantics indicates this by introducing

an equivalence between the two constants. This is enough for ensuring that

the two action occurrences are equivalent — the actions always occur together.

However, when one of the actions appears as an argument to a fluent such

as Duration then the equivalence does not have the effect of making both

actions have the same duration. Differentiating between the equivalence of

action occurrences and the equivalence of action names would be a very useful

extension. (It would also allow us to treat concurrency without using explicit

actions.)

• Language C+ has an unless clause which can be used to make causal laws

defeasible. Ideally, all causal laws in our library should be defeasible, but in

order for this to happen, we need to investigate how to make unless work in

a modular way.

• In some domains we need not only numbers, but also the ability to count things

having a certain property. For example, in the missionaries domain, we may

want to talk about both individual missionaries and the total number on a

bank. For this, we need to have a way to count individuals. Having the ability

to count will also enable us to represent domains where numeric resources are

affected concurrently (such as multiple purchases increasing the total amount

of money in a store) — domains where additive fluents are needed.
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• The implemented version of MAD used in this dissertation restricts the right-

hand side of a constant renaming statement to be a single constant, prohibiting

complex formulas. This prevents us from being able to express certain “con-

ditional renamings” where a renamed constant is redefined in terms of more

than one constant in the importing module. The original MAD language al-

lows such complex formulas but they lead to nondefinite axioms that cannot

be handled by the current implementation. More work is needed to explore

how these axioms may be processed automatically.

• After our implementation processes the modular action description to turn it

into a single module in C+, we can use reasoning engines other than CCalc. In

particular, answer set programming is sufficiently close to C+ that we believe

a practical automated translation will be possible, enabling us to use logic

programming systems such as Smodels.

15.2.2 The Big Picture

Knowledge about actions is a small but important part of commonsense knowledge,

and the research presented here is a small step towards solving the problem of

generality in artificial intelligence. We plan to continue this work by building the

library further, though such a library will remain a work-in-progress for a long time,

due to the vast amount of commonsense knowledge in the world.

In deciding which modules to include in the library, we will continue to

be guided by the large number of small domains that have been represented in

C+ by other researchers, as well as domains studied in other work on planning

and reasoning about actions. As the library grows, we hope that it will enable us

to tackle more small domains with ease and slowly move up to larger and larger
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domains.

Another resource to draw upon when building the library will be previ-

ous work on hierarchical libraries of components, such as the KM component Li-

brary [Barker et al., 2001]. We will benefit from such work in deciding which modules

to add to our library and what sorts of axioms these modules should encode. The de-

signers of the KM Component library also take inspiration from linguistic resources

such as dictionaries and thesauri to decide which components to encode, to repre-

sent general and intuitive concepts useful for knowledge representation. Choosing

good names for our components will become more important as the library grows,

because it will be crucial in helping users find the right modules for their purposes.
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Appendix A

Technical Review of C+

The semantics of C+ is defined in terms of nonmonotonic causal theories [Giunchiglia

et al., 2004]. Our review in this chapter introduces nonmonotonic causal theories,

followed by the semantics of C+.

A.1 Nonmonotonic Causal Theories

Consider a multi-valued signature as described in Section 3.1.

An causal theory is a set of (causal) rules—expressions of the form

F ⇐ G

where F and G are formulas.

The reduct T I of a causal theory T relative to an interpretation I is the set

of the heads of all rules in T whose bodies are satisfied by I. If I is the unique

model of T I , then it is a model of T .
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A.2 Semantics of C+

We mentioned in Section 3.3 that every C+ action description represents a transition

system—a directed graph whose vertices are states, and whose edges are labeled by

events.

The transition system TS(D) represented by an action description D (with

signature σ) is defined in terms of an infinite sequence D0, D1, . . . of causal theories.

For any nonnegative integer m, the causal theory Dm is defined as follows.

The signature σm of Dm consists of the pairs i : c such that

• i ∈ {0, . . . ,m} and c is a fluent constant of D, or

• i ∈ {0, . . . ,m − 1} and c is an action constant of D.

The domain of i : c is the same as the domain of c. The expression i : F denotes the

result of inserting i : in front of every occurrence of every constant in a formula F .

Causal theory Dm characterizes histories of length m over action description

D. Intuitively, if c is a fluent constant, i : c represents the value of c at time i; if c

is an action constant, i : c represents the value of c between times i and i + 1.

The rules of Dm are:

i : F ⇐ i : G

for every static law (3.1) in D and every i ∈ {0, . . . ,m}, and for every action dynamic

law (3.1) in D and every i ∈ {0, . . . ,m − 1};

i + 1 : F ⇐ (i + 1 : G) ∧ (i : H)
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for every fluent dynamic law (3.2) in D and every i ∈ {0, . . . ,m − 1};

0 : c = v ⇐ 0 : c = v

for every simple fluent constant c and every v ∈ Dom(c).

The transition system TS(D) is completely characterized by the first two

members D0, D1 of the sequence of causal theories corresponding to D, as follows:

• A state in TS(D) is an interpretation s of the fluent constants such that the

corresponding interpretation 0 : s of the signature of D0 is a model of D0.

• A transition in TS(D) is a triple 〈s, e, s′〉 where s and s′ are interpretations

of the fluent constants and e is an interpretation of the action constants, such

that the corresponding interpretation (0 : s)∪ (0 : e)∪ (1 : s′) of the signature

of D1 is a model of D1.
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Appendix B

Technical Review of MAD

B.1 Syntax of MAD import Statements

Recall from Section 5.4 that the general form of a MAD import statement is

import NAME ;

s1 is s′1;

sk is s′k;

c1 · · · is F1;

...

cl · · · is Fl;

(B.1)

where NAME is a module name, s1, ..., sk, s′1, ..., s
′
k are sort names, c1, ...cl are con-

stant names, and F1, ..., Fl are formulas . The dots after each cj represent the

possibility of having variables as the arguments and domain of constants.

The general syntax of contant renaming is clauses in MAD has the form

c(x1, . . . , xp) = y is F
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where c is a constant, x1, . . . , xp and y are variables (y must be of the same sort

as constant c) and F is a formula. If c is a Boolean constant, then “= y” may be

dropped. It is required that

• the variables to the left of is be pairwise distinct,

• every free variable of F occur to the left of is,

• the formula

∀x1 . . . xp∃y′∀y(F ≡ y = y′)

be universally valid.

The last condition above expresses that, given specific values for x1 . . . xp (i.e.,

the constant c has been “grounded”), formula F must be satisfied for exactly one

value of y. This condition is similar to the final condition given in Section 4.1 for an

explicit definition. That condition stated that, for (4.3) to be an explicit definition

of c in terms of σ, exactly one value of c should correspond to any interpretation of

σ. Here, the role of σ is played by the constants occurring in F .

B.2 Semantics of MAD

The semantics of MAD is defined by translating MAD into C+. It is composed

of two parts: A MAD action description (possibly containing many modules) is

first turned into a single-module action description which is considered to have the

same meaning. Then this single-module action description is turned into an action

description in C+.
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Generation a single-module action description

Turning a MAD action description into an equivalent single-module is accomplished

by three auxiliary functions:

• α(M, IS ,m), takes an import statement IS of the form (B.1) such that NAME

is the name of M and turns the module M mentioned in it into a specialized

form, by modifying it according to sort and constant renaming clauses in the

import statement. (The parameter m is a positive integer, which we will

explain below.) It modifies M by:

– replacing every occurrence of each of the sort names si is by s′i (i =

1, ..., k),

– prepending “Im .” to every occurrence of every variable name and to

every occurrence of each of the constant names cj (j = 1, ..., l),

– inserting the equivalences

Im.cj · · · ≡ Fj , (j = 1, ..., l)

corresponding to the constant renaming clauses from (B.1), at the begin-

ning of the axiom part.

(The conditions on constant renaming clauses guarantee that the equivalences

generated by α are explicit definitions of the constants cj .)

An important detail is that all of the variables in a module are renamed so that

variable names are always local to a module. Function α is only applicable if

the module mentioned contains no import statements itself.

• β(M,M ′), merges one module M with a second module M ′ that does not
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contain import statements. It simply combines the declarations and the ax-

ioms, merging repeated declarations. It is undefined if there are mismatched

declarations (such as the same identifier declared as a sort in one module and

an object in the other).

• γ(M1; ...;Mn), takes a MAD action description M1; ...;Mn and uses α and β to

eliminate the first import statement in the action description. By γ(M1; ...;Mn)

we denote the action description obtained by replacing Mi, the first module

in M1; ...;Mn that contains an import statement, with

β(M,α(Mj , IS ,m))

where

– IS is the first import statement in Mi,

– M is the module obtained from Mi by dropping IS,

– Mj is the module that IS refers to,

– m is the smallest positive integer such that the string “Im.” does not

occur in M1; ...;Mn.

Each application of γ decreases the number of import statements by 1. Re-

peated application of γ eventually removes all import statements by incorporating

imported modules into later modules. The last module in the resulting action de-

scription contains the effects of all incorporations and is taken as the single-module

action description equivalent to the original description.
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Turning a single-module MAD description into a C+ description

Given a single-module action description M we can turn it into a C+ action de-

scription using a function U that assigns a finite nonempty set of symbols to each

sort name s in M , with the constraint that U(s) must contain all of the objects

declared to be of sort s (and no other names declared in M). The resulting C+

action description MU is defined as follows:

• The signature of MU contains all the constants from the constants declaration

of M , with the variables of sort s replaced by all possible elements of U(s).

• The axioms of MU are the axioms of M , with the variables of sort s replaced by

all possible elements of U(s) and quantifiers are replaced by finite conjunctions

or disjunctions.

For example, if we define U(Latch) = {L1, L2} for the module TWO LATCHES

from Section 5.2, then the corresponding C+ action description TWO LATCHESU

will represent exactly the transition system in Figure 3.1.
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Appendix C

Proofs of Propositions

We begin by proving several lemmas about causal theories, since the semantics of

an action description is defined in terms of a causal theory. These lemmas are then

used in the proofs of Propositions 1–5.

C.1 Some Properties of Causal Theories

The following is a counterpart of Proposition 2 for causal theories. It is a restatement

of Proposition 1 from [Turner, 2004].

Lemma 1 Let T be a causal theory containing a rule of the form

F ≡ G ⇐ ⊤.

The causal theory obtained by replacing an occurrence of F by G in any other rule

of T has the same models as T .

Since Propositions 2 and 3 are about explicit definitions in C+, we define

the counterpart of this concept for causal theories. An explicit definition of a multi-
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valued constant c, in terms of a multi-valued signature σ which does not contain c,

is a set of causal laws of the form

c = v ≡ Fv ⇐ ⊤, (C.1)

one for each v ∈ Dom(c), where

• each Fv is a formula of σ, and

• the formulas
∨

v∈Dom(c)

Fv

and
∧

v,w∈Dom(c),v 6=w

¬(Fv ∧ Fw)

are tautological.

The following is a counterpart of Proposition 2 for causal theories.

Lemma 2 Let T be a causal theory of a signature σ, and let c be a constant that

does not belong to σ. If T ′ is a causal theory of the signature σ ∪ {c} obtained

from T by adding an explicit definition of c in terms of σ, then X 7→ X|σ is a 1-1

correspondence between the models of T ′ and the models of T .

Proof: Let the set of formulas in the heads of rules (C.1) be called C. The task of

proving that X 7→ X|σ is a 1-1 correspondence between the models of T ′ and the

models of T can be divided into three parts.

Part I: Showing that if X is a model of T ′ then X|σ is a model of T .

Assume that X is a model of T ′. Then X |= (T ′)X , and consequently X |=

TX . Since T doesn’t contain c, X |= TX|σ . Since TX|σ doesn’t contain c, it follows
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that X|σ |= TX|σ .

We also need to show that X|σ is the unique model of TX|σ . Let Y be any

model of TX|σ . Define a new interpretation Y ′ of the signature σ ∪ {c} such that

Y ′|σ = Y and Y ′(c) is v ∈ Dom(c) for which Y satisfies Fv . (Under the assumptions

of the theorem, such a v is unique.) Clearly, Y ′ satisfies TX|σ because Y does. Also,

Y ′ was defined in a way that ensures it satisfies C. Therefore Y ′ is a model of

(TX|σ ∪C) = (T ′)X . Since X is the unique model of (T ′)X , it follows that Y ′ = X,

and Y = Y ′|σ = X|σ. Thus X|σ is a model of T .

Part II: Showing that every model of T can be represented in the form X|σ ,

where X is a model of T ′.

Let Y be a model of T . Define a new interpretation X of the signature σ∪{c}

such that X|σ = Y and X(c) is v ∈ Dom(c) for which Y satisfies Fv. Clearly, X

satisfies T Y because Y does. Also, X is defined to satisfy C. Therefore X is a model

of (T Y ∪ C) = (T ′)X . Now we need to show that X is the unique model of (T ′)X .

Let X ′ be any model of (T ′)X . Then X ′ satisfies (T ′)X = T Y ∪ C. Since T

doesn’t contain c, X ′|σ satisfies T Y . But Y is the unique model of T Y so X ′|σ =

Y = X|σ . Since X ′ satisfies C,

X ′ |= c = X ′(c) ≡ FX′(c)

so that X ′ |= FX′(c). Then Y |= FX′(c). By the choice of X(c), Y |= FX(c). It

follows that X(c) = X ′(c). We have shown that X ′ = X, so X is the unique model

of (T ′)X , and therefore a model of T ′, such that X|σ = Y .

Part III: Showing that no model of T can be represented in the form X|σ ,

where X is a model of T ′, in more than one way.
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Let X and Z be models of T ′ such that X|σ = Z|σ. Then X is the unique

model of (T ′)X and Z is the unique model of (T ′)Z . Since the bodies of rules in

T ′ don’t contain c, (T ′)Z = (T ′)X . So Z is the unique model of (T ′)X . Therefore

Z = X.

The following is a counterpart of Proposition 3 for causal theories.

Lemma 3 Let σ be a signature and c be a constant that does not belong to σ. Let

T be a causal theory of signature σ ∪ {c} which does not contain c in the heads of

rules. Let T ′ be a causal theory of signature σ ∪ {c} obtained from T by adding an

explicit definition (C.1) of c in terms of σ. Then the causal theory T ′′ of signature

σ ∪ {c} obtained from T by adding the rules

c = v ⇐ Fv (v ∈ Dom(c))

has the same models as T ′.

Proof: Left to right: Let X be a model for T ′. Then X is the unique model of

TX ∪ (T ′ \ T )X . Since X is a model of (T ′ \ T )X , X |= FX(c) and, for all w 6= X(c),

X 6|= Fw. Therefore, (T ′′ \ T )X = {c = X(c)} and X is a model for (T ′′ \ T )X .

Consequently, X is a model for (T ′′)X . We need to show that it is the unique

model.

Let Y |= (T ′′)X . Since (T ′′ \ T )X = {c = X(c)}, Y (c) = X(c). Since (C.1) is

an explicit definition, for some w ∈ Dom(c), Y |= Fw and, for all x 6= w, Y 6|= Fx.

Take the interpretation Y ′ of σ ∪ {c} such that Y ′|σ = Y |σ and Y ′(c) = w. Then

Y ′ |= (T ′\T )X and Y ′ |= TX (since Y |= TX and TX doesn’t contain c). By the fact

that X is the unique model of (T ′)X , Y ′ = X. So Y |σ = Y ′|σ = X|σ. Consequently,

Y = X.
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Right to left: Let X be a model for T ′′. Then X is the unique model of

TX ∪ (T ′′ \ T )X . Since (C.1) is an explicit definition, (T ′′ \ T )X is a singleton,

{c = X(c)}. Consequently X |= FX(c) and for all w 6= X(c), X 6|= Fw. Then

X |= (T ′ \ T )X and X is a model for (T ′)X . We need to show that it is the unique

model.

Let Y |= (T ′)X . Take the interpretation Y ′ of σ ∪ {c} such that Y ′|σ = Y |σ

and Y ′(c) = X(c). Then Y ′ |= TX (since Y |= TX and TX doesn’t contain c) and

Y ′ |= (T ′′\T )X . Since X is the unique model of (T ′′)X , Y ′ = X so Y |σ = Y ′|σ = X|σ .

Since X satisfies only FX(c) among formulas Fv (v ∈ Dom(c)) and these formulas

don’t contain c, Y also satisfies only FX(c). Since Y |= (T ′ \ T )X , Y (c) = X(c).

To prove Proposition 3 we will also need the following modification of Lemma 3.

Lemma 4 Let σ be a signature and c be a constant that does not belong to σ. Let

T be a causal theory of signature σ ∪ {c} which does not contain c in the heads of

rules. Let T ′ be a causal theory of signature σ ∪ {c} obtained from T by adding an

explicit definition (C.1) of c in terms of σ and the rules

c = v ⇐ c = v (C.2)

Fv ⇐ Fv (C.3)

for all v from Dom(c). Then the causal theory T ′′ of signature σ∪{c} obtained from

T by adding rules (C.2), (C.3) and

c = v ⇐ Fv (v ∈ Dom(c))

has the same models as T ′.
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The proof is very similar to that of Lemma 3. (Instead of constructing Y ′,

we can simply use Y .)

The other lemmas that we need are related to the concept of strong equiva-

lence, which was originally introduced for logic programs in [Lifschitz et al., 2001]

and was extended to causal theories in [Turner, 2004]; also see [Sergot and Craven,

2005].

Causal theories T1 and T2 of the same signature σ are equivalent if they have

the same models. They are strongly equivalent if, for every causal theory T of a

signature σ′ containing σ, the theories T1 ∪ T and T2 ∪ T of the signature σ′ are

equivalent.

Lemma 5 Let T1 and T2 be causal theories with a common signature, such that for

any interpretation J of their signature, T J
1 is equivalent to T J

2 . Then T1 and T2 are

strongly equivalent.

This lemma is slightly weaker than Theorem 1 from [Turner, 2004], which

gives a complete characterization of strong equivalence in terms of pairs of interpre-

tations.

Proof: Let T be a causal theory. For any interpretation J of the signature of T ,

J is a model of T1 ∪ T

iff J is the unique model of T J
1 ∪ T J

iff J is a model of T J
1 ∪ T J

and for any model I of T J
1 ∪ T J , I = J

iff J is a model of T J
2 ∪ T J

and for any model I of T J
2 ∪ T J , I = J
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iff J is the unique model of T J
2 ∪ T J

iff J is a model of T2 ∪ T.

Lemma 6 Let F be a formula of the signature σ. The causal theory T consisting

of rules of the form

a ⇐ a

for all atoms a of σ, is strongly equivalent to the theory obtained from T by adding

the rule

F ⇐ F.

Proof: Call the second theory T ′. By Lemma 5, all we need to check is that, for

any interpretation J of T , T J and (T ′)J are equivalent. Note that due to the form

of the rules in T , for any interpretation J of σ, T J is satisfied only by J . Similarly,

(T ′)J is also satisfied by J only.

The following is a counterpart of Proposition 5 for causal theories.

Lemma 7 Let F be a formula of a signature σ and G be a formula of a signature

σ′ containing σ. Let T be the causal theory of consisting of the rules

a ⇐ a

for all atoms a of σ. Then

T

F ⇐ G
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is strongly equivalent to

T

⊥ ⇐ ¬F ∧ G.

Proof: Call the first theory T1, the second T2. By Lemma 5, all we need to check is

that, for any interpretation J of σ′, T J
1 and T J

2 are equivalent. Due to the form of

the rules in T , for any interpretation I of σ′, if I satisfies T J , then I|σ = J |σ and

consequently I |= F iff J |= F . It follows that

I |= T J
1

iff I |= T J and (I |= F if J |= G)

iff I |= T J and (J |= F if J |= G)

iff I |= T J and J |= G ⊃ F

iff I |= T J and J 6|= ¬F ∧ G

iff I |= T J
2 .

C.2 Proofs of Propositions 1–5

Proposition 1 Let F,G be formulas, let D be an action description, and let L,L′

be similar causal laws such that L′ is obtained from L by replacing an occurrence of

F by G. Then the action description

D

184



L

caused F ≡ G

represents the same transition system as

D

L′

caused F ≡ G.

Proof: Let the first action description be A and the second A′. Since the transition

systems TS(A) and TS(A′) are characterized by A0, A1 and A′
0, A′

1, it suffices to

show that Am has the same models as A′
m. First, note that, due to its form, the last

law in A and A′ above must be an action dynamic law or a static law. The causal

theories Am and A′
m will contain rules

i : F ≡ i : G ⇐ ⊤

where i ranges over {0, . . . ,m − 1} or {0, . . . ,m}, depending on whether the causal

law is an action dynamic law or a static law. Theory A′
m can be obtained from Am

by replacing some formulas of the form i : F by i : G. Therefore, by Lemma 1, the

theories Am and A′
m have the same models.

Proposition 2 Let D be an action description of a signature σ, and let c be a

constant that does not belong to σ. If D′ is an action description of the signature

σ ∪ {c} obtained from D by adding an explicit definition of c in terms of σ, then D
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is a residue of D′.

Proof: Action description D is a residue of D′ if the mapping

s 7→ s|σ (C.4)

is a 1-1 correspondence between the states of TS (D′) and the states of TS (D), and

the mapping

〈s0, e, s1〉 7→ 〈s0|σ, e|σ , s1|σ〉 (C.5)

is a 1-1 correspondence between the transitions of TS (D′) and the transitions of

TS (D).

Since the semantics of an action description D is characterized in terms of the

corresponding causal theories D0 and D1, to prove that (C.4) is a 1-1 correspondence

between the states of TS (D′) and the states of TS (D) we need to check that

0:s 7→ 0:(s|σ) (C.6)

is a 1-1 correspondence between the models of D′
0 and the models of D0, and to

prove that (C.5) is a 1-1 correspondence between the transitions of TS (D′) and the

transitions of TS (D) we need to check that

0:s0 ∪ 0:e ∪ 1:s1 7→ 0:(s0|σ) ∪ 0:(e|σ) ∪ 1:(s1|σ) (C.7)

is a 1-1 correspondence between the models of D′
1 and the models of D1.

First consider the case when the explicitly-defined constant c is a simple

fluent constant. For every simple fluent constant d from σ∪{c}, by R(d) we denote
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the set of rules

0 : d = v ⇐ 0 : d = v

for all v ∈ Dom(d). Clearly D′
m is obtained from Dm by adding the rules

i : c = v ≡ i : Fv ⇐ ⊤ (v ∈ Dom(c)) (C.8)

where i ranges over {0, . . . ,m} and the rules

0 : c = v ⇐ 0 : c = v (v ∈ Dom(c)), (C.9)

that is, R(c). Note first that dropping the rules R(c) from D′
m does not change the

set of models. Indeed, according to Lemma 1, in the presence of (C.8) the rules R(c)

can be replaced by

0 : Fv ⇐ 0 : Fv (v ∈ Dom(c)). (C.10)

Since all constants occurring in Fv are simple fluent constants from σ, Dm contains

the rules R(d) for all such constants d. By Lemma 6, in the presence of these rules

(C.10) can be dropped.

To conclude the proof for the case when c is a simple fluent constant, it

remains to observe that rules (C.8) can be viewed as an explicit definition of i : c in

terms of i : σ. By Lemma 2, (C.6) is a 1-1 correspondence between the models of

D0 and the models of D′
0, and (C.7) is a 1-1 correspondence between the models of

D1 and the models of D′
1.

When the constant c is a statically determined fluent constant or an action

constant, the proof is similar but simpler, since there are no rules (C.9), so we don’t

need to use Lemma 6.
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Proposition 3 Let σ be a signature and c be a constant that does not belong to σ.

Let D be an action description of signature σ ∪ {c} which does not contain c in the

heads of laws. Let D′ be an action description of signature σ∪ {c} obtained from D

by adding an explicit definition (4.3) of c in terms of σ. Then the action description

of signature σ ∪ {c} obtained from D by adding the rules

caused c = v if Fv (v ∈ Dom(c))

represents the same transition system as D′.

Proof: First consider the case when the explicitly-defined constant c is a simple

fluent constant. Call the second action description D′′. The difference between D′
m

and D′′
m is that the former includes rules

i : c = v ≡ i : Fv ⇐ ⊤ (v ∈ Dom(c)) (C.11)

whereas the latter includes

i : c = v ⇐ i : Fv (v ∈ Dom(c)), (C.12)

where i ranges over {0, . . . ,m}. In addition to these, both contain Dm and the rules

0 : c = v ⇐ 0 : c = v (v ∈ Dom(c)) (C.13)

because c is a simple fluent constant. Since Fv contains only simple fluent constants

in σ, causal theories D′
m and D′′

m will contain rules of the same form as (C.13) for
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any fluent constants in 0 : Fv. Therefore, using Lemma 6, we may add the rules

0 : Fv ⇐ 0 : Fv (v ∈ Dom(c)) (C.14)

to D′
m and D′′

m without changing their models.

By one application of Lemma 4 and m − 1 applications of Lemma 3, causal

theories D′
m and D′′

m have the same models.

When the constant c is a statically determined fluent constant or an action

constant, the proof is similar but simpler, since there are no rules (C.13), so we

don’t need to use Lemma 6 or Lemma 4.

Proposition 4 MB is a residue of MB∗.

The proof uses the concept of strong equivalence of action descriptions. Two

action descriptions D and D′ of the same signature are equivalent if TS (D) =

TS (D′). They are strongly equivalent if for any action description D′′ (of a possibly

larger signature), action descriptions D ∪D′′ and D′ ∪D′′ are equivalent. A similar

definition appears in Section 5 of [Sergot and Craven, 2005].

The lemma below refers to the following explicit definitions of constants

in (4.12).

caused Location(p)= l ≡ Loc(p)= l (C.15)

caused Move(Box )= true ≡
∨

l0∈L

PushBox (l0)(C.16)

caused Move(Box )=false ≡ ¬
∨

l0∈L

PushBox (l0)(C.17)

caused Move(p)= true ≡ ⊥ (p 6= Box )(C.18)
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caused Move(p)=false ≡ ⊤ (p 6= Box ) (C.19)

caused Mover(Box )=Monkey ≡
∨

l0∈L

PushBox (l0) (C.20)

caused Mover(Box )=None ≡ ¬
∨

l0∈L

PushBox (l0) (C.21)

caused Mover(Box )=Bananas ≡ ⊥ (C.22)

caused Mover(Box )=Box ≡ ⊥ (C.23)

caused Mover(p)=None ≡ ⊤ (p 6= Box ) (C.24)

caused Mover(p)=Monkey ≡ ⊥ (p 6= Box ) (C.25)

caused Mover(p)=Bananas ≡ ⊥ (p 6= Box ) (C.26)

caused Mover(p)=Box ≡ ⊥ (p 6= Box ) (C.27)

caused Destination(Box )= l ≡ PushBox (l) ∧
∧

l0 ∈ L}

l0 < l

¬PushBox (l0) (C.28)

caused Destination(Box )=None ≡ ¬
∨

l0∈L

PushBox (l0) (C.29)

caused Destination(p)= l ≡ ⊥ (p 6= Box ) (C.30)

caused Destination(p)=None ≡ ⊤ (p 6= Box ) (C.31)

(In formulas (C.28) and (C.29), L stands for {L1, L2, L3} and the relation < on this

set is defined by L1 < L2 < L3.)

Lemma 8 MB∗ is strongly equivalent to the action description which consists of

MB and (C.15)–(C.31).

The proof of this lemma is given by a long series of strongly equivalent

transformations. We do not include them here.

Proposition 4 may be derived from the lemma by applying Proposition 2 to
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each of the constants in (4.12).

Proposition 5 Let D be an action description and F be a formula such that all

constants in F are action constants which are exogenous in D. Then

D

caused F if G

represents the same transition system as

D

caused ⊥ after ¬F ∧ G.

Proof: Let the first action description be A and the second A′. Let σ be the set of

constants occurring in F . Causal theory Am will contain

i : F ⇐ i : G

and A′
m will contain

⊥ ⇐ ¬i : F ∧ i : G

where i ranges over {0, . . . ,m− 1}. Due to the requirement that constants in F are

action constants which are exogenous, both Am and A′
m will contain rules of the

form

i : a ⇐ i : a

for all atoms a of σ, where i ranges over {0, . . . ,m − 1}. By Lemma 7, the theories
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Am and A′
m have the same models.
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Appendix D

Input Language of the MAD

Implementation

A MAD input file contains an action description, along with comments.

D.1 Comments

A comment in the input begins with the character % and lasts until the end of the

line (i.e. until a newline character). Everything in the comment is ignored by the

parser.

D.2 Include Statements

An input file may contain one or more “include” statements before the action de-

scription. These statements specify (within quotes) names of other files containing

action descriptions. They are treated as if the contents of the included files appear

in place of the include statements. For example, to include a file named library
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(located in the same directory) before an action description, we can write the fol-

lowing:

include "library"

action description which may refer to modules from included file

If the filename specifies just a simple filename, the file is expected to be in

the directory in which the program is executed. If a relative path to a file is given,

this is interpreted as relative to the directory in which the program is executed.

If the included file does not contain a complete action description, an error

will occur.

Include statements can only appear at the start of a file, and the final include

statement in a file must be followed by an action description.

Include statements may be nested in the sense that a file which is referred

to in an include statement may contain an include statement itself.

D.3 Identifiers and Keywords

Identifiers must begin with a letter. The letter may be followed by a combination

of letters, numbers, or “_”. In grep-like regular expression notation, we may write

this as

Identifier: [a-zA-Z][a-zA-Z0-9_]*

(Note for those familiar with the semantics of MAD: this notation allows

Iinteger to appear in an identifier, though any appearance of a “.” will cause a

syntax error.)
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The following words are keywords of the language and may not appear as

identifiers:

include, module, import, is, case, numeric_symbol, sorts, inclusions,

objects, actions, fluents, variables, action, explicitAction,

simple, staticallyDetermined, rigid, axioms, if, after, constraint,

default, exogenous, causes, nonexecutable, always, may, cause,

inertial, exists, forall, true, false, Boolean

D.4 Action Descriptions

An action description is composed of a series of four basic components:

• numeric symbol declarations

• sort declarations,

• inclusion declarations,

• modules,

which may be interleaved. These components are described below.

D.5 Numeric Symbol Declarations

A sort declaration is of the form

numeric_symbol id=int

where id is an identifier and int is an integer.
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The purpose of such declarations is to have symbolic names for integers.

Any occurrence of id occurring after the above numeric symbol declaration will be

treated as an occurrence of int.

Identifiers declared as numeric symbols may only occur in places where inte-

gers are allowed.

D.6 Sort Declarations

A sort declaration is of the form

sorts

s1 ;

...

sn ;

where 1 ≤ n, and each si is an identifier or the keyword Boolean.

A sort may not be declared more than once.

D.6.1 Built-in Sorts: Boolean, and Integer Ranges “m..n”

The keyword Boolean is a built-in sort name, declared implicitly. (Later, in the

section about objects, we will see that this built-in sort contains two built-in objects,

true and false.)

An expression of the form “m..n”, where m and n are integers, represents

the set of integers between m and n inclusively. Such integer ranges are built-in

sorts in MAD (with the integers as built-in objects belonging to those sorts) and

they are considered to be declared implicitly.
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Declaring Boolean is allowed but a warning is given. Declaring integer ranges

as sorts is prohibited.

Definition: We call the keyword Boolean, integer ranges of the form “m..n”,

and sort names si declared as above simple sort names.

D.7 Inclusion Declarations

An inclusion declaration is of the form

inclusions

i1 ;

...

in ;

where 0 ≤ n, and each ii is an inclusion expression, as defined below.

An inclusion expression is of the form

s1 << s2 << . . . << sn

where (n > 1), s1 is a simple sort name other than an integer range, and s2, . . . , sn

are sort names other than Boolean.

The reason that the keyword Boolean or an integer range cannot appear as a

supersort (on the right of <<) is that such an appearance would lead to these built-in

sorts having objects other than their built-in objects.

We may think of the sort and inclusion declarations as forming a forest, with

the sorts as vertices and each << relation standing for an edge from the right-hand
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sort to the left-hand sort.

Inclusions leading to cycles in the sort inclusion forest are prohibited. (At-

tempting to make such declarations will cause the system to give an error message.)

D.8 Modules

A MAD module is of the form

module module-name ;

module-body

where module-name is an identifier. The module-body consists of an ordered se-

ries of sections, any of which may appear at most once. These are, in order, ob-

ject declarations, action constant declarations, fluent constant declarations, variable

declarations, and axioms. In addition, the module-body may contain any number of

import declarations in before or after (but not within) these sections.

Each module in an action description must have a unique name.

D.9 Object Declarations

An object declaration is of the form

objects

o spec1 ;

...
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o specn ;

where 0 ≤ n, and each o speci is an object specification, as defined below.

An object specification is of the form

o1, . . . , om : sort

where 1 ≤ m, each oi is an identifier, possibly followed by a parenthesized list of

arguments, and sort is a sort name other than Boolean. Any arguments following

oi must be a simple sort name.

Example. Here is an example object declaration, assuming sorts Person,

and Object have been declared:

objects

Player(1..10) : Person;

Hat(Person) : Object;

The keywords true and false are built-in objects, of sort Boolean, declared

implicitly in every module. These objects cannot be declared explicitly. Also, no

other objects may be declared to be of sort Boolean.

Integers are also built-in objects, and every integer is considered to be de-

clared implicitly, so that it can be used in formulas, as will be seen below.

We may think of the sort declarations, inclusion declarations, and object

declarations as forming a “sort dependency” forest. The vertices are sorts. Each

object oi specified above adds an edge for every argument it has. The edge points
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from sort to the argument. Inclusions of the form “s1 << s2” add edges from s2 to

all of the sorts which s1 already points to.

Example. The example object declaration above adds the edges

Person→ 1..10

Object → Person

to the sort dependency forest.

Cycles in the sort dependency forest are prohibited. (Attempting to make any

declarations which result in a cycle will cause the system to give an error message.)

An object may not be declared more than once, except when the re-declaration

is part of an imported module. (See the section on import declarations below.) The

re-declaration must match the original declaration, i.e., the two declarations must

assign the same sort to the object.

D.10 Action Constant Declarations

An action constant declaration is of the form

actions

c1 ;

...

cn ;

where 1 ≤ n, and each ci is an identifier, possibly followed by a parenthesized
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list of arguments. An action constant argument is a simple sort name. No domain

is specified when declaring an action because all actions are Boolean-valued.

Example. Here is an example action constant declaration, assuming sorts

row, column, and color have been declared:

actions

Paint_square(row, column, color);

The arguments of an action constant being declared may not contain the

keyword action. (Otherwise, imagine two actions a(action) and b. When we

ground, we would get b, a(b), a(a(b)), etc., never ending.)

An action constant may not be declared more than once, except when the

re-declaration is part of an imported module. (See the section on import declara-

tions below.) The re-declaration must match the original declaration, i.e., the two

declarations must assign the same arguments.

D.11 Fluent Constant Declarations

A fluent constant declaration is of the form

fluents

c spec1 ;

...

c specn ;
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where 1 ≤ n, and each c speci is a fluent constant specification, as defined below.

A fluent constant specification is of the form

c1, . . . , cm : kind(domain)

where 1 ≤ m, and each ci is an identifier, possibly followed by a parenthesized

list of arguments. A fluent constant argument is a simple sort name or the keyword

action. The kind may be one of the keywords simple, staticallyDetermined, or

rigid, indicating, respectively, a simple fluent, statically determined fluent or rigid

fluent. The domain is a simple sort name.

When declaring simple fluents, statically determined fluents or rigid con-

stants, it is also possible to omit the parenthesized domain, in which case it is

implicitly assumed to be (Boolean).

Example. Here are some example fluent constant declarations assuming

sorts row, column, and color have been declared:

fluents

Game_started: rigid;

Square_color(row, column) : simple(color);

A fluent constant may not be declared more than once, except when the

re-declaration is part of an imported module. (See the section on import declara-

tions below.) The re-declaration must match the original declaration, i.e., the two
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declarations must assign the same arguments, the same kind and the same domain

to the fluent constant.

D.12 Variable Declarations

A variable declaration is of the form

variables

v spec1 ;

...

v specn ;

where 0 ≤ n, and each v speci is a variable specification, as defined below.

A variable specification is of the form

v1, . . . , vm : sort

where 1 ≤ m, each vi is an identifier, and sort is a simple sort name, the key-

word action or the keyword explicitAction.

A variable may not be declared more than once in the same module.

Each variable is local to the module in which it is declared. To use the same

identifier as a variable in another module, one has to declare it anew in the latter

module (and may declare it as belonging to a different sort).

Variables for actions are different from other variables, because in some con-

texts they are treated as the action atom and in others as the name of the action.

For example, given two action variables a and a1, the axiom
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nonexecutable a & a1 if a!=a1

may be used to express that two actions are not executable concurrently unless they

are the same action. In the first two occurrences, the variables are treated as the

action atoms and the latter occurrences on either side of the inequality sign are

treated as the names of the actions.

D.13 Axioms

An axioms section is of the form

axioms

axiom1 ;

...

axiomn ;

where 0 ≤ n, and each axiomi is an axiom, as defined below.

The axiom section of a MAD action description is different from the decla-

ration sections we described above, in that the previous sections serve to declare

identifiers whereas this section uses these identifiers. From now on, whenever we

refer to a constant/object/variable, we mean an identifier which was declared as

such in a prior section of the action description.

Axioms in MAD are like causal laws in C+. They are composed of formulas

and certain keywords such as caused, if, after, etc. We will show the exact

forms of acceptable axioms below, but first we need to define what we mean by a

valid formula. Formulas are defined recursively, using terms and logical connectives.

Therefore, to describe what a valid formula is, we need to first define what a term
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is.

D.13.1 Terms

A term may be

• a constant (followed by a parenthesized list of arguments if so declared)

• a variable

• an object (followed by a parenthesized list of arguments if so declared)

• an integer

• term + term

• term * term

The parenthesized list of arguments following a constant/object must match the

arguments listed in the declaration of the constant/object, i,e. the arguments in

the constant/object term must be objects/variables of the sort declared for the

corresponding argument, or a action constant if the corresponding argument was

declared as an action.

Since a constant declaration allows only simple sort names or action as ar-

guments, and object declarations only allow simple sort names as arguments, we

would normally expect no non-action constants to be allowed as arguments of a

constant/object term. However, the system allows such arguments as shorthand for

the value the constant has (at that time instant). In other words, an argument for

a constant/object term may be a constant term, provided that the latter’s domain

matches the sort of the former’s argument declaration. Formulas with such short-
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hand notation are expanded to a certain longhand form. The exact details will be

given after formulas are defined.

The last two items above, expressions for arithmetic operations (addition and

multiplication) may not appear as arguments to constants/objects. Furthermore,

each of the terms in these expressions must be “numerical,” meaning an integer,

a constant with an integer range domain, a variable with an integer range sort, or

another validly formed arithmetic expression.

D.13.2 Formulas

A formula is built from terms and connectives in one of the following ways:

1. zero-place connective true

2. zero-place connective false

3. a Boolean constant term

4. an action variable

5. sort-name ( variable )

6. Boolean ( variable )

7. action ( variable )

8. term = term

9. term != term

10. term < term

11. ( formula )
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12. -formula

13. formula & formula

14. formula | formula

15. formula -> formula

16. formula <-> formula

17. exists variable formula

18. forall variable formula

Items (12) through (16) correspond to the usual logical connectives: (in

descending order of precendence) negation, conjunction, disjunction, implication

and equivalence. All of the binary connectives are left-associative.

Quantifiers exists and forall have lower precedence than the logical con-

nectives, so, for example, assuming Q1, Q2 are quantifiers, v1, v2 are variables, and

F,G are formulas,

Q1v1 F connective Q2v2 G

will be parsed as

Q1v1 (F connective Q2v2 G)

and not as

(Q1v1 F ) connective (Q2v2 G)

Items (5) is shorthand for a quantified formula

exists new-variable-of-sort variable=new-variable-of-sort
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and is called a “sort name formula.”1 Items (6) and (7) are similar — they are sort

name formulas for built-in sort Boolean and for actions.

In items (8) and (9), there are some additional constraints that are checked:

• if one of the terms is an action variable or an explicit action variable, then

the other term must be an action variable or an explicit action variable or a

Boolean action constant.

• if both of the terms are constants, they must have the same domain

• if one of the terms is a constant and the other is an object/variable, the sort

of the object/variable must be the same as the domain of the constant.

In item (10), each term must be numerical, meaning an integer, a constant

with an integer range domain, a variable with an integer range sort, or an arithmetic

operator term as given in the definition of a term (addition and multiplication).

As mentioned above in the description of terms, MAD also allows having

constants as arguments to constant terms, even where a non-action sort is expected.

This is shorthand for the value of that constant at the time. For example,

Square_color(row_of(queen), column)

is valid shorthand if the domain of row_of matches the first argument declaration

of Square_color. This would be expanded by using a new variable, say r, from the

domain of row_of. The minimal formula F in which this term appears would be

expanded to

F ′ & row_of(queen)=r

1A sort name formula like (5) corresponds to the English sentence “variable is of sort sort-name .”
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where F ′ is obtained by replacing that occurrence of row_of(queen) by r in F .

Note that such shorthands may be nested too.

IMPORTANT: This shorthand is only allowed in formulas appearing as parts

of axioms, not in terms appearing as parts of import declarations. (We will describe

import declarations below.)

D.13.3 Axioms

An axiom is built from formulas and terms in one of the following ways: (The parts

within square brackets are optional)

1. formula [if formula] [after formula]

2. formula causes formula [if formula]

3. default formula [if formula] [after formula]

4. exogenous constant [if formula]

5. inertial fluent-constant [if formula]

6. constraint formula [after formula]

7. nonexecutable formula [if formula]

8. always formula

9. rigid fluent-constant

10. formula may cause formula [if formula]

Recall, from the paper “Nonmonotonic Causal Theories”[Giunchiglia et al.,

2004], that
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• an action formula is a formula with no fluent constants and at least one action

constant,

• a fluent formula is a formula with no action constants.

In items (2) and (10) the first formula has to be an action formula and the

second should be an action formula or a fluent formula.

In item (7) the first formula has to be an action formula.

All of the axioms listed above may be seen as special cases of item (1).2 Let

us rewrite this general form as

F [if G] [after H]

where F ,G and H are formulas. An axiom of this form must satisfy the following

conditions in order to be valid:

• F must be such that the axiom is definite, i.e. F is either

– the zero-place connective false

– a single atomic formula3 with at most one constant

– the negation of an atomic formula with exactly one Boolean constant

• if there is no H part and F is a fluent formula, then G must be a fluent formula

• if there is an H part,

– F and G must be fluent formulas

2The details of how items (2)-(10) may be seen as abbreviations of (1) can be found in Appendix
B of [Giunchiglia et al., 2004].

3Items (1)-(4) and (7) in the description of formulas above.
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– F must not contain any statically determined fluents or rigid constants.

• if F contains a rigid constant, the axiom must not contain any non-rigid con-

stants.

The axioms listed in this section cover all of the abbreviations from Appendix

B of [Giunchiglia et al., 2004], with the exception of abbreviations (15)-(17) there,

which involve the unless construct.

D.14 Import Declarations

An import declaration is of the form

import module-name ;

sort-renaming-clause1 ;

...

sort-renaming-clausen ;

constant-renaming-clause1 ;

...

constant-renaming-clausem ;

where each (n,m ≥ 0).

An import declarations section of a MAD action description is similar to the

axioms section in that all of the identifiers used must have been declared prior to

this section. On the other hand, an import section implicitly declares any identifiers

from the module it imports.

In the following sections on sort and constant renaming clauses, we will refer

to the module being imported as M1 and the module importing it as M2.
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D.14.1 Sort Renaming Clauses

A sort renaming clause is of the form

s1 is s2

where s1 is a sort which has been declared prior to M1 and s2 is a sort declared

prior to M2. Neither of these two sorts may be Boolean or an integer range.

(If s2 were Boolean or an integer range, then any objects declared to be of

sort s1 in M1 would become objects of this built-in sort which has all of its objects

predefined.)

A sort may not be renamed more than once in the same import. (i.e. it may

not appear on the left hand side of more than one sort renaming clause.)

D.14.2 Constant Renaming Clauses

There are two kinds of constant renaming clauses, depending on whether the con-

stant being renamed is Boolean-valued or not.

Boolean constant renaming clauses

If the constant being renamed is Boolean-valued, a renaming clause is of the

form

c(v1, ..., vn) is boolean-const-renaming-rhs 1

or

c(v1, ..., vn) is

case formula1 : boolean-const-renaming-rhs 1 ;

...
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case formulak : boolean-const-renaming-rhs k ;

[default : boolean-const-renaming-rhs k+1 ;]

where c is a constant of M1, v1, ..., vn are variables/objects of M2 or integers, n ≥ 0,

k ≥ 1. Each variable/object must be of the sort declared for the corresponding

argument, or a subsort of that sort, and all variables must occur at most once.

Any object appearing as an argument must be “fully instantiated”, meaning it can-

not have any variable arguments itself. Each formulai must have no constants and

should not contain any variables other than v1, ..., vn. The part within square brack-

ets is optional. If not included, it is filled in to have boolean-const-renaming-rhs k+1

be false.

In this clause boolean-const-renaming-rhs i is one of

• a Boolean constant term

• a-Boolean-constant-term = true

• a-Boolean-constant-term = false

• true = a-Boolean-constant-term

• false = a-Boolean-constant-term

• -a-Boolean-constant-term

• true

• false

The constant term may not have any other constants appearing as shorthand.

(i.e., when viewed as a formula, this term must not be expandable to one in which

more than one constant occurs.)
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Nonboolean constant renaming clauses

If the constant being renamed is not Boolean-valued, a renaming clause is of

the form

c(v1, ..., vn) is nonboolean-const-renaming-rhs 1

or

c(v1, ..., vn) is

case formula1 : nonboolean-const-renaming-rhs 1 ;

...

case formulak : nonboolean-const-renaming-rhs k ;

default : nonboolean-const-renaming-rhs k+1 ;

where c is a constant of M1, v1, ..., vn are variables of M2, n ≥ 0, k ≥ 1. Each

variable must be of the sort declared for the corresponding argument (It cannot be

a variable of a subsort of the argument declaration), and all variables must occur

at most once. Each formulai must have no constants and should not contain any

variables other than v1, ..., vn.

In this clause nonboolean-const-renaming-rhs i is one of

• a constant term with the same domain as c

• an object which belongs to the domain of c

Additional constraints on constant renaming clauses
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There are also some additional constraints depending on the kind of constant

appearing on the left hand side of the is keyword:

• if it’s an action constant, any constant on the right hand side of is must be

an action constant.

• if it’s a statically determined fluent constant, any constant on the right hand

side of is must be a fluent constant.

• if it’s a simple fluent constant, any constant on the right hand side of is must

be a simple fluent constant.

• if it’s a rigid constant, any constant on the right hand side of is must be a

rigid constant.

The same constant may not be renamed more than once in the same import

declaration.
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