ALIGNMENT-FREE PHYLOGENETIC RECONSTRUCTION

Sebastien Roch (UW-Madison)

with: Constantinos Daskalakis (MIT)

theoretical analysis of phylogenetic reconstruction methods

- setup
 - sequence s_a¹,..., s_a^k for each species
 - trees on n leaves: T_n
 - estimator:

$$\Psi_n: \left\{ \left(s_a^i \right)_{i=1}^k \right\}_{a \in L} \mapsto T \in \mathbf{T}_n$$

- how to compare different methods?
 - computational efficiency
 - statistical consistency (& rate)

 $P[\text{correct reconstruction}] \rightarrow 1$ as the sequence length goes to infinity under a statistical model of sequence evolution

substitution-only model of sequence evolution

- Example: Jukes-Cantor model
 - phylogeny: T
- ...AACTAAGGTCGCAGGGCCAAATG... number of species: n number of states: r (=4) r G $M_e = e^{\mu_e t_e Q}$ †_{ra} <u>µ/3</u> G \mathbf{t}_{rc} G ۵ μ/3 μ/3 μ/3 \mathbf{t}_{ab} <u>μ/3</u> **†**_{a3} b G С С <u>μ/3</u> †_{c4} †_{c5} **†**_{b2} **†**_{b1} 3 5 **2** 1 Α C G

pre-processing: aligning sequence data

• data - n DNA sequences

Homo sapiens	ACAA <mark>TGGAG</mark> A
Pan	ACAATAAGCAAA
Gorilla	ATCAAAAGCGG

• multiple alignment - insert gaps

					1
	1	234	5	67	890
Homo sapiens Pan	A- A-	-CAA	rG(rA-	GAG	
Gorilla	A	CAA-	-A-	-AG	ČGG-

issues with alignment

• **dimensionality curse** : takes time O(kⁿ)

issues with alignment (cont'd)

• evolutionary scenario - not taken into account

 statistical viewpoint - hard to control biases created by alignment

literature overview

- empirical work
 - issues with multiple alignment
 Loytynoja & Goldman, Science (2008); Wong et al, Science (2008)
 - alignment-free methods E.g. Hohl & Ragan, Syst Biol (2007) and refs therein
 - *joint estimation of alignment and phylogeny* Suchard & Redelings, Bioinformatics (2006); Liu et al, Science (2009); etc

• theoretical work

- word statistics E.g. Reinert et al., J Comput Biol (2000) and refs therein
- consistent estimation under TKF (?) Thatte, Math Biosci (2006)
- sequence-length requirements Erdos et al, Rand Struct Algor (1999); etc

alignment-free reconstruction

- theoretical result [Daskalakis-R., Annals of Applied Probability, 2013]
 we develop a computationally efficient, statistically consistent approach to reconstruct a species tree under the TKF indel process
 - does not require alignment
 - also give sequence-length requirements similar to substitution-only case
 - based on a probabilistic analysis of the indel process

indel process (a la TKF)

• mutations - rate matrix Q (per site; independently)

• **deletions** - rate μ (per site; independently)

ACAATXGAGAAA

• **insertions** - rate λ (per site; independently); insertion state is uniform

distance matrix: substitution-only case

1 2 3 4 5 6 7 8 9 0

• data - n aligned sequences

Homo sapiens Pan Gorilla ACATGAGAAA ATATAAGAAA ACACAAGGGA

- p'(a,b): proportion of sites that disagree between sequences a and b
 - example: p'(Homo sapiens, Pan) = 0.2
- CFN formula map {A,G} to +1 and {C,T} to -1 and let p'(a,b) be the corresponding proportion of disagreements

$$D'(a,b) = -\frac{1}{2}\log(1-2p'(a,b)) = -\frac{1}{2}\log\left(\frac{1}{k}\sum_{i=1}^{k}s_{a}^{i}s_{b}^{i}\right)$$

Expectation = exp(-2\mu t)

 goal - find a distance for TKF model (that avoids the theoretical problems of edit distance and k-mer count distances)

no need for alignment: displacements are concentrated

- single channel consider a path of length t
 - each site survives with probability

$$\exp(-\mu t)$$

- so number of surviving sites is

$$k \exp(-\mu t) \pm \sqrt{k}$$

- similar argument for insertions implies total length is $k \pm \sqrt{k}$
- ALSO applies to site locations

alignment-free comparison

• looking from a distance - divide the sequences into blocks

 reconstructed blocks may be off but only by a negligible fraction

block-wise statistics

- single block consider a block of length K
 - we use the agglomerated statistic

$$R_a^x = \sum_{i \in a} s_a^i$$

- divide into contributions from jointly surviving sites and inserted sites $R_a^x R_b^x = \left(JS_a^x + I_a^x\right)\left(JS_b^x + I_b^x\right)$
- jointly surviving sites contribute

$$K\exp(-2\mu t - 2qt) \pm K$$

- inserted sites contribute

 $0 \pm K$

new distance: averaging over blocks

• L blocks are roughly independent

$$\frac{1}{L}\sum_{x}R_{a}^{x}R_{b}^{x} = \frac{1}{L}\sum_{x}\left(JS_{a}^{x} + I_{a}^{x}\right)\left(JS_{b}^{x} + I_{b}^{x}\right)$$

- insertions contribute on average 0
- jointly surviving sites contribute on average

$$K\exp(-2\mu t - 2qt)$$

• variance is roughly

$$K^2/L << K^2$$
 if $L = \omega(1)$

• so a consistent time estimator (at least proportional to time) is

$$-\frac{1}{2}\log\left(\frac{1}{L}\sum_{x}R_{a}^{x}R_{b}^{x}\right) \xrightarrow{L,k\to\infty} (\mu+q) t$$

summary

Theorem 1 (Consistency). Assume that $0 < t_e$, $\eta_e < +\infty$, for all $e \in E$. Moreover, assume that the indel rates satisfy $\lambda_e < \mu_e$ for all $e \in E$. Under these assumptions, there exists an algorithm solving the phylogenetic reconstruction problem (that is, returning the correct tree) with probability of failure approaching 0 as the sequence length at the root of the tree goes to $+\infty$.

Theorem 2 (Main Result: Two-State Ultrametric Case). Assume there exist constants $0 < f, g < +\infty$, independent of n, such that all branch lengths t_e , $e \in E$, satisfy $f < t_e < g$. Moreover, assume that $\eta_e = \eta$, for all $e \in E$, where η is bounded between two constants $\underline{\eta} > 0$ and $\overline{\eta} < +\infty$ independent of n, and that the indel rates satisfy $\lambda_e = \lambda, \ \mu_e = \mu$, for all $e \in E$, and $\lambda < \mu = O(1/\log n)$. Under the assumptions above, there exists a polynomial-time algorithm solving the phylogenetic reconstruction problem (that is, returning the correct tree) with probability of failure $O(n^{-\beta'})$, if the root sequence has length $k_r = \operatorname{poly}_{\beta'}(n)$.

thank you