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Abstract

Modern file systems employ complex techniques to en-
sure that they can recover efficiently in the event of a
crash. However, there is little infrastructure for system-
atically testing crash consistency in file systems. We
introduce CrashMonkey, a simple, flexible, file-system-
agnostic test framework to systematically check file sys-
tems for inconsistencies if a failure occurs during a file-
system operation. CrashMonkey is modular and flexible,
allowing the users to easily specify different test work-
loads and custom consistency checks.

1 Introduction

One of the core features a file system provides is keep-
ing data safe in the event of a power loss or a crash [19].
Over the years, a number of techniques, such as journal-
ing [11, 20], soft updates [14], and copy-on-write [12],
have been developed to solve the crash consistency prob-
lem, with new solutions and file systems still being de-
veloped [3, 4, 10, 13, 17]. Such techniques are complex
and their implementation touches most parts of the file
system. As a result, most modifications to the file sys-
tem will impact its crash-consistency guarantees in one
way or another: a famous example is the introduction of
delayed allocation in ext4 causing wide-spread data loss
in the event of a crash [16]. Recently introduced features
such as Direct Access (DAX) [9] also significantly im-
pact file-system crash consistency.

Despite the importance and complexity of crash con-
sistency, there currently does not exist infrastructure to
systematically test the crash consistency of file systems.
While developers run regression test suites (such as xf-
stests [6]) before committing code, these suites do not
systematically test for crash consistency. Part of the rea-
son why is because running crash-consistency tests is
hard; such tests were historically performed by power cy-
cling the server, a slow and inefficient process. A faster
method is to power cycle a virtual machine instead, but
even a virtual machine requires several seconds to boot
up. Another challenge is that many bugs are exposed
only by crashes at specific points in the write path; the
window in which a crash would reveal these bugs is ex-
tremely small. Therefore, just randomly crashing the
system is unlikely to uncover these bugs. As a result, de-

velopers today simply do not include crash-consistency
tests as part of the development cycle. Given the in-
creasing complexity of file systems, this leads to crash-
consistency bugs being discovered only in production.

We introduce CrashMonkey, a framework to system-
atically test the crash consistency of different file sys-
tems. CRASHMONKEY is file-system agnostic, not de-
pending upon the internal features of the file system be-
ing tested. CRASHMONKEY is flexible, allowing the user
to provide custom test workloads, and provide custom
notions of consistency (e.g., specifying whether file con-
tents need to be checked). CRASHMONKEY is efficient: it
does not require the restart of the whole system, and only
remounts the file system during testing.

CRASHMONKEY builds on prior work [18, 21] to pro-
vide these properties. CRASHMONKEY constructs disk
states which may result from a crash during the given test
workload. CRASHMONKEY achieves this by logging all
IO to the disk, so that it knows exactly which blocks are
already on storage at the time of the crash. While respect-
ing write barriers, CRASHMONKEY constructs different
crash states that are the result of blocks being reordered
in the storage stack. CRASHMONKEY then mounts the file
system being tested on the crash state, allowing the file
system to perform recovery operations. CRASHMONKEY

can then inspect the state of the file system and determine
if it has recovered correctly. Constructing and testing
a crash state is orders of magnitude faster than power-
cycling a virtual machine.

A significant challenge in effectively testing crash
consistency is figuring out which crash states to test; for
a workload which writes N blocks to disk, 2N crash states
are possible (in the worst case). Since testing all possible
states is not feasible, we can use file-system domain ex-
pertise to heuristically explore crash states that are likely
to lead to bugs. For example, a crash state where some
of the metadata blocks are lost in the crash is more likely
to lead to bugs than a crash state where some of the data
blocks are lost. The user can also guide CRASHMONKEY

to exercise new and immature features of the file system
such as snapshotting or deduplication.

Our hope is that CRASHMONKEY becomes part of the
workflow for file-system developers, similar to xfstests
today. Rapid file-system development should not pre-
clude testing that file systems ensure the safety of user
data in the event of a crash.
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2 Current Approaches

We briefly discuss current approaches to testing file-
system crash consistency, and the problems and limita-
tions of each approach.

Current Test Frameworks. xfstests is a file-system test
suite that contains a large number of regression tests for
bugs that have been found over the years. xfstests does
contain a few crash-consistency tests [6]; however, the
crash-consistency test cases either randomly crash the
machine or use the device-mapper error device to fail all
writes to specific disk sectors. Thus, xfstests does not
test if a file system remains consistent after a crash oc-
curs midway through a file-system operation.

ZFS runs the file-system back-end in user space, and
kills the file system at random points using kill [15].
While ZFS tests are similar to CRASHMONKEY, they are
specific to the ZFS file system. Modifying an existing
file system, say ext4, to be tested in a similar manner
would require significant engineering effort. In contrast,
CRASHMONKEY is file-system agnostic and can work
without additional effort on new file systems.

The Linux POSIX file-system test suite (fstests) fo-
cuses on file-system correctness and detecting regression
bugs1 [8]. As the name implies, the test suite focuses on
testing the POSIX interface of file systems and does not
test crash consistency.

Block Order Breaker. In previous work with the Uni-
versity of Wisconsin-Madison, we developed the Block
Order Breaker (BOB) [18]. Similar to CRASHMONKEY,
BOB logs IOs to disk and creates different crash states.
However, BOB has a different (and narrower) purpose:
to show that different file systems implement file-system
operations such as append and rename in drastically dif-
ferent ways. As such, BOB does not provide hooks for
the user to provide different workloads or custom tests
for consistency. BOB does not also have to solve the
challenge of finding interesting crash states among the
large number of possibilities.

Replay Framework. The logging and replay frame-
work from Zheng et al. [21] shares our goal of build-
ing a framework to test crash consistency. Their work
is focused on testing whether databases provide ACID
guarantees, while CRASHMONKEY focuses on whether
file systems are consistent after a crash. Their frame-
work works only on iSCSI disks, while CRASHMONKEY

works on any block storage device.

1Unfortunately, it appears this project was abandoned sometime
around 2011

3 Background

The Linux kernel submits IO requests to the block de-
vice in the form of bio structures. The bio structure
contains details about the IO request such as the data
to be written (bi io vec), data location on the device
(bi sector), and flags (bi rw) associated with the re-
quest. The bio flags order the IO request with respect to
other requests submitted to the device. The Forced Unit
Access (FUA) flag indicates that the request should not
complete without making the associated data persistent
on durable media. The flush flag indicates the storage
cache must be flushed prior to writing the bio containing
the flush flag. The sync flag specifies that the process
that issued the bio is waiting for the bio to complete,
and, therefore, indicates the request should be handled
within a reasonable amount of time. The sync flag only
serializes sync flagged bios within a single process.

File systems carefully order bios to ensure the file sys-
tem remains consistent if the system crashes in the mid-
dle of an operation. For example, the ext3 file system
first writes a journal transaction to storage before writ-
ing the commit block [1, 20]. The file system sends a
bio with a flush flag to ensure that the transaction is
persisted before it writes the commit block (with the FUA
flag) to storage. If the file system crashes in the middle
of this operation, it can read the journal and see that there
is an unfinished transaction [5, 20].

At the block device driver level, device drivers often
rearrange bio requests to reduce seek times and improve
performance. Flags like flush and FUA are used to pre-
vent such reordering. The sync flag does not affect this
ordering since it only indicates that the process that is-
sued the request is waiting for the request to finish.

Finally, devices themselves can cache and reorder re-
quests they receive. FUA and flush operations are under-
stood by devices, but sync requests are not. Therefore,
devices could potentially persist sync requests out of or-
der, making sync requests alone incapable of properly
ordering file-system journal writes. Since CRASHMON-
KEY seeks to emulate devices, it ignores ordering restric-
tions arising from sync flags. When constructing crash
states, CRASHMONKEY honors the ordering imposed by
FUA and flush flags.

4 CrashMonkey

We present CRASHMONKEY, a framework to systemati-
cally test file-system crash consistency. CRASHMONKEY

is made up of three parts. The first part consists of the test
workloads and customized validation tests constructed
by the user. The second part is the user-space test har-
ness which directs test execution and interprets and rear-
ranges logged bios. The final part of our framework is a
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Figure 1: CRASHMONKEY Architecture. The figure
shows the major components of the CRASHMONKEY

framework: the test cases, the wrapper device, and the
user-space test harness.

simple kernel block device wrapper which logs all bios
sent to the wrapped device. Figure 1 shows an overall
view of the CRASHMONKEY architecture.

4.1 Anatomy of a Test Case
Listing 1 shows the simple C++ interface all test cases
in our framework will inherit. By forcing all test cases
to inherit from a base class, we establish a set interface
which then allows the test harness to dynamically load
and run tests without recompiling the entire test harness.

The setup() method is responsible for populating the
test device with any files or directories that will be used
in the test. The setup method puts the test file system into
a known good state before the test workload runs.

The run workload() method explicitly defines the
workload being tested. We explicitly define the
workload in each test case because we feel the
check test eval() method, which determines if
workload data is consistent in various test evaluations,
is intimately tied to the workload. If multiple tests have
similar workloads with small differences in parameters,
we encourage test authors to create parameterized library
code or take advantage of C++’s inheritance system to
reduce code duplication. Currently, the harness supports
workloads consisting of any valid set of C++ commands.
In the future we hope to provide users with a library of
utility functions to help create workloads.

4.2 User-Space Test Harness
The user-space test harness contains the bulk of the func-
tionality for CRASHMONKEY. The test harness is meant
to be flexible and easy to add new test cases to. A set of
command line flags change the file system being tested,
the device to test on, and mount options for the file sys-
tem under test. The responsibilities of the test harness
can be split into 3 steps: pre-profiling setup, profiling,

class test_case {

public:

virtual ~test_case () {};

virtual int setup() = 0;

virtual int run_workload () = 0;

virtual int check_test_eval () = 0;

};

Listing 1: interface for individual test cases

and testing (where we evaluate different disk images).
Each of these steps also corresponds to a function de-
fined by the test case interface shown in Listing 1.

Setup. During the setup phase before profiling, the test
harness formats the test device, allows the current test
case to run any pre-profiling setup defined in setup(),
and creates a snapshot of the disk. This stage runs with-
out wrapper module logging. Once the test case has fin-
ished setting things up, we snapshot the disk. This snap-
shot is used to restore the disk to a known state at the
start of each test evaluation.

Profiling. After all the pre-profiling work is completed,
the test harness profiles the workload specified by the
test case. Logging is enabled in the wrapper device and
the test case’s run workload() method is called. The
wrapper module logs all bios sent to the test device dur-
ing workload execution. Once the workload has com-
pleted, logging is disabled and the file system under test
is unmounted. We then transfer all logged data from the
wrapper module to user space through an ioctl inter-
face. In the future, we plan on exploring alternate inter-
faces to transfer data for large workloads.

Constructing Crash States. We construct a crash state
by combining the snapshot of the initial state of the disk
with a subset of the logged bio requests. We start with
the snapshot and then apply different bio requests to the
disk state, such that the ordering rules set by FUA and
flush flags are respected.

To help construct crash states for a sequence of IO re-
quests, we define a disk epoch: a disk epoch consists of
all disk operations up to and including the first flush or
FUA operation in the bio sequence. Disk operations can
therefore be broken down into a series of disk epochs,
each containing some number of bios.

We construct each crash state in the following manner:

• If there are N epochs in the logged IO, we first select
a random epoch X . All IO requests in epochs > X
are dropped.

• For each epoch from 1 to X , we determine if multi-
ple IO requests in the epoch write to the same stor-
age location; if so, we randomly re-order the IO re-
quests within the epoch. If all write requests within
an epoch write to different locations on storage, re-
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arranging them will not have any effect on the final
disk state.

• For the last epoch X , we drop a random subset
of write requests. Thus, we simulate a scenario
where the system crashed in the middle of writing
out epoch X : all previous epochs are fully persisted
(with write requests re-ordered where possible), and
epoch X is partially written to storage.

As with test cases, if users want a more targeted or
robust reordering algorithm, they can easily write their
own C++ module that adheres to our predefined interface
and pass that module to the test harness at runtime.

Selecting Crash States. If the logged IO has N disk
blocks, there are 2N possible crash states if all N blocks
are in the same epoch. The FUA and flush flags con-
strain ordering, and hence reduce the number of possible
crash states. Even so, evaluating all possible crash states
for a large sequence of logged IO requests is impossi-
ble. We need to focus on crash states which may expose
a crash-consistency bug. We believe focusing on file-
system metadata write requests can help find interesting
crash states; in general, states where metadata IO is miss-
ing or re-ordered is more likely to result in inconsistency
than missing data blocks [3]. Fortunately, metadata write
requests are often tagged differently from data write re-
quests by the file system (e.g., the sync flag). We believe
this is a good starting point to identify heuristics for find-
ing interesting crash states.

Evaluating Crash States. Our test evaluations focus
primarily on determining if the file system is consistent
in the generated crash state. However, for file systems
mounted with options which provide data consistency,
we allow users to set a flag denoting that workload data
should also be checked. We first run fsck to examine
(and possibly repair) the file system, and if fsck finds no
errors (or fixes some errors), we run the individual test
case’s check test eval() method to determine if the
data is consistent. Thus the evaluation could yield three
different results: irrecoverable file system (fsck reports
unfixed errors), recovered file system with bad data (user
check fails), and a fully consistent file system (fsck and
user tests pass). If the test harness is simply checking
for file-system consistency, we just run fsck, yielding a
binary result of consistent or not.

User Tests. Custom consistency checks supplied by the
user can test that the file system does not lose data if
there was a crash (since an empty file system is still a
consistent file system). We explain user tests with an
example workload (shown in Listing 2). If the system
crashes after “foo” has been printed, then file1 should
contain A. Similarly, if the crash point represents a point
after printing bar, file2 should contain B. We plan to

write(file1 , A)

printf(foo)

write(file2 , B)

printf(bar)

Listing 2: Example Custom Workload

provide an API in CRASHMONKEY so that users can set
flags in CRASHMONKEY instead of printing to stdout.
For each crash state, CRASHMONKEY would inspect the
flags to determine what data should be available in each
crash state during evaluation.

4.3 Kernel Block Device Wrapper
The kernel block device driver is a simple block device
that logs all bios sent to the device it monitors. The
wrapper device intercepts all bios sent to the disk and
logs the flags, data, and location on disk that bio refer-
ences. The wrapper gets information about device size
and allowed bio flags from the block device it monitors.
By mirroring the accepted bio flags and device size, we
can transparently insert a monitoring device between the
kernel and the original device driver. Neglecting to mir-
ror these flags in the monitoring device could cause some
bios to change flags when they reach the wrapper device,
or, in some cases, reject bios that extend past the end of
the disk the wrapper device presents the system.

Implementing the wrapper device as a kernel module
allows us to dynamically insert it into the kernel, thus
avoiding lengthy kernel re-compilations. Adhering to the
kernel’s block device interface instead of integrating the
wrapper module into a file system also ensures the log-
ging mechanism is file-system agnostic.

4.4 Implementing CrashMonkey

Memory Usage. If CRASHMONKEY simply stores all
logged write requests in kernel memory, the system
could run out of memory when logging large work-
loads. CRASHMONKEY could instead asynchronously
write logged data out to disk. We plan to examine the
device-mapper interface in the Linux kernel as it pro-
vides similar functionality.

Heuristics for Constructing Crash States. Given that
CRASHMONKEY cannot exhaustively evaluate all crash
states, we need heuristics to identify interesting crash
states. These heuristics are likely to be different for dif-
ferent file systems, and hence should not be hard-coded
into CRASHMONKEY. The user should be able to easily
guide the crash state construction of CRASHMONKEY.

Potential Workloads. Workloads that individual test
cases implement should be carefully chosen to exercise
different parts of the file system under test’s underlying
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functionality. Similar to xfstests, some tests could be
common to all file-system types, but other tests should
be tailored to specifically test implementation details of
a specific file system. For example, only tests that write
large amounts of data could detect a potential flaw in the
journaling and recovery logic of ext4 extents.

xfstests provides a good repository of open-source
tests that exercise file-system corner cases; these could
be adapted for CRASHMONKEY. However, we need to be
careful in adopting these tests since many tests may re-
sult in similar IO patterns.

4.5 Challenges
Over the course of this project, we ran into several snags
and pitfalls, both in kernel space and in user space. One
of the biggest challenges of this project has been getting
the kernel block device driver working properly. The
majority of the available material related to the kernel
target version 2.6 of the Linux kernel. Since the re-
lease of the third editions of Understanding the Linux
Kernel and Linux Device Drivers [2, 7], no definitive
guides about writing device drivers or interacting with
newer kernel structures have been made. That, combined
with sparse comments in the kernel code and mislead-
ing function names made it very hard to track down the
generic make requests function(), which silently
removes flags on bios sent to devices that do not sup-
port those flags. This led to significant confusion when
something as simple as appending text into a file on ext4
failed to produce any bios with flush or FUA flags.

In user space, we faced issues in selecting block de-
vices and figuring out to how to snapshot devices. Pre-
liminary traces logged different numbers of bios sent to
block devices backed by LVM, ramdisk, and virtual disks
mounted in a VM. LVM seemed like a prime choice be-
cause of its ability to quickly create writeable snapshots;
however, testing showed that LVM generated more than
double the number of bio requests than a virtual disk did.
Furthermore, the number of bios generated for multiple
runs of the same test varied greatly. We have not yet
identified the root cause of this behavior.

5 Future Work
Parallel Evaluation. Our goal is to optimize CRASH-
MONKEY performance so that we can construct and test
several crash states per minute. Achieving this might be
challenging since evaluating each crash state requires re-
mounting the file system and running the file system’s
recovery methods. We plan on using multiple threads to
achieve the required throughput. One can imagine using
a cluster of machines to do the evaluation as well; each
evaluation is a stand-alone computation that is indepen-
dent of other evaluations.

Constructing Crash States. We plan on improving the
reordering algorithm and heuristics used to create crash
states. Improving the permutation algorithm can help us
improve test evaluation coverage by allowing us to iden-
tify and skip over disk states that represent similar condi-
tions. This allows us to test a wider range of bio request
sequences in the same number of test evaluations.

Application-Level Crash Consistency. Since we al-
low the user to supply custom workloads and consis-
tency checks, the user could use CRASHMONKEY to
test application-level crash consistency, similar to AL-
ICE [18]. However, there is a key difference: ALICE
logs systems calls and constructs possible crash states
based on a specification of the file system; in contrast,
CRASHMONKEY will produce crash states based on the
block IO traffic from the file system. Thus, CRASHMON-
KEY will produce a smaller set of crash states, corre-
sponding more closely to the common case behavior of
the file system; unless we take special efforts, corner-
case file-system behavior (such as low free inode count)
may not be triggered for the application workload. Thus,
CRASHMONKEY may be a useful complement to ALICE
for testing common-case crash behavior of applications.

6 Conclusion

Keeping data safe after a crash is one of the chief re-
sponsibilities of the file system. Unfortunately, due to
increased file system complexity and the rush to sup-
port new features, this core property has been forgot-
ten. Crash consistency is not systematically tested, and
in some cases, not tested at all.

We introduced CRASHMONKEY, a framework for sys-
tematically testing file-system crash consistency. CRASH-
MONKEY works across different file systems and stor-
age devices. CRASHMONKEY allows the user to provide
different test workloads and custom consistency checks.
Our hope is that CRASHMONKEY eventually becomes part
of the workflow for file-system developers. Although
file-system development proceeds at a rapid pace, we be-
lieve crash consistency is too important to not test before
making significant changes to the file system.
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