
Lecture Notes on Mathematical Logic

Vladimir Lifschitz

January 16, 2009

These notes provide an elementary, but mathematically solid, introduc-
tion to propositional and first-order logic. They contain many exercises.

Logic is the study of reasoning. The British mathematician and philoso-
pher George Boole (1815–1864) is the man who made logic mathematical.
His book The Mathematical Analysis of Logic was published in 1847.

Logic can be used in programming, and it can be applied to the analysis
and automation of reasoning about software and hardware. This is why
it is sometimes considered a part of theoretical computer science. Since
reasoning plays an important role in intelligent behavior, logic is closely
related to artificial intelligence.

The short book by the German philosopher Gottlob Frege (1848–1925)
with the long title Ideography, a Formula Language, Modeled upon that of
Arithmetic, for Pure Thought (1879), introduced notation that is somewhat
similar to what is now called first-order formulas. Frege wrote:

I believe that I can best make the relation of my ideography to
ordinary language clear if I compare it to that which the micro-
scope has to the eye. Because of the range of its possible uses
and the versatility with which it can adapt to the most diverse
circumstances, the eye is far superior to the microscope. . . But,
as soon as scientific goals demand great sharpness of resolution,
the eye proves to be insufficient.

. . . I am confident that my ideography can be successfully used
wherever special value must be placed on the validity of proofs, as
for example when the foundations of the differential and integral
calculus are established.

In logic and in linguistics, we distinguish between two languages: the
one that is the object of study and the one that we use to talk about that

1

object. The former is called the object language; the latter is the metalan-
guage. In Sections 1 and 2 below, the object language is the formal language
of propositional formulas; in Section 3, we turn to first-order formulas. The
metalanguage is the usual informal language of mathematics and theoretical
computer science, which is a mixture of the English language and mathemat-
ical notation. The importance of distinguishing between the object language
and the metalanguage was emphasized by the mathematician and logician
Alfred Tarski (1902–1983), who taught logic at Berkeley since 1942.

1 Syntax and Semantics of Propositional Formulas

Propositional Formulas

A propositional signature is a set of symbols called atoms. (In examples, we
will assume that p, q, r are atoms.) The symbols

∧ ∨ → ↔ ¬ ⊥ ⊤

are called propositional connectives. Among them, the symbols ∧ (con-
junction), ∨ (disjunction), → (implication) and ↔ (equivalence) are called
2-place, or binary connectives; ¬ (negation) is a 1-place, or unary connective;
⊥ (false) and ⊤ (true) are 0-place.

Take a propositional signature σ which contains neither the proposi-
tional connectives nor the parentheses (,). The alphabet of propositional
logic consists of the atoms from σ, the propositional connectives, and the
parentheses. By a string we understand a finite string of symbols in this
alphabet. We define when a string is a (propositional) formula recursively,
as follows:

• every atom is a formula,

• both 0-place connectives are formulas,

• if F is a formula then ¬F is a formula,

• for any binary connective ⊙, if F and G are formulas then (F ⊙ G) is
a formula.

For instance,
¬(p → q)

and
(¬p → q) (1)

2

are formulas; the string
¬p → q (2)

is not a formula. But very soon (see next page) we are going to introduce a
convention according to which (2) can be used as an abbreviation for (1).

Properties of formulas can be often proved by induction. One useful
method is strong induction on length (number of symbols). In such a proof,
the induction hypothesis is that every formula which is shorter than F has
the property P that we want to prove. From this assumption we need to
derive that F has property P also. Then it follows that all formulas have
property P .

In another useful form of induction, we check that all atoms and 0-place
connectives have property P , and that the property is preserved when a new
formula is formed using a unary or binary connective. More precisely, we
show that

• every atom has property P ,

• both 0-place connectives have property P ,

• if a formula F has property P then so does ¬F ,

• for any binary connective ⊙, if formulas F and G have property P

then so does (F ⊙ G).

Then we can conclude that property P holds for all formulas. This is called
“structural induction.”

For instance, it is not difficult to prove, using either form of induction,
that the number of left parentheses in any formula is equal to the number
of right parentheses. (Do it!)

Problem 1.1 In any prefix of a formula, the number of left parentheses
is greater than or equal to the number of right parentheses. (A prefix of a
string a1 · · · an is any string of the form a1 · · · am where 0 ≤ m ≤ n.)

Problem 1.2 Every prefix of a formula F

• is a string of negations (possibly empty), or

• has more left than right parentheses, or

• equals F .

3

Problem 1.3 No formula can be represented in the form (F ⊙ G), where
F and G are formulas and ⊙ is a binary connective, in more than one way.

By representing a formula in the form ¬F or (F ⊙G) we start “parsing”
it. The assertion of the previous problem shows that a formula can be parsed
in only one way.

From now on, we will abbreviate formulas of the form (F ⊙G) by drop-
ping the outermost parentheses in them. We will also agree that ↔ has a
lower binding power than the other binary connectives. For instance,

p ∨ q ↔ p → r

will be viewed as shorthand for

((p ∨ q) ↔ (p → r)).

Finally, for any formulas F1, F2, . . . , Fn (n > 2),

F1 ∧ F2 ∧ · · · ∧ Fn

will stand for
(· · · (F1 ∧ F2) ∧ · · · ∧ Fn).

The abbreviation F1 ∨ F2 ∨ · · · ∨ Fn will be understood in a similar way.

Semantics of Propositional Formulas

The symbols f and t are called truth values. An interpretation of a propo-
sitional signature σ is a function from σ into {f, t}. If σ is finite then an
interpretation can be defined by the table of its values, for instance:

p q r

f f t
(3)

The semantics of propositional formulas that we are going to introduce
defines which truth value is assigned to a formula F by an interpretation I.

As a preliminary step, we need to associate functions with all unary
and binary connectives: a function from {f, t} into {f, t} with the unary
connective ¬, and a function from {f, t} × {f, t} into {f, t} with each of the
binary connectives. These functions are denoted by the same symbols as
the corresponding connectives, and defined by the following tables:

x ¬(x)

f t

t f

4

x y ∧(x, y) ∨(x, y) → (x, y) ↔ (x, y)

f f f f t t

f t f t t f

t f f t f f

t t t t t t

For any formula F and any interpretation I, the truth value F I that is
assigned to F by I is defined recursively, as follows:

• for any atom F , F I = I(F),

• ⊥I = f, ⊤I = t,

• (¬F)I = ¬(F I),

• (F ⊙ G)I = ⊙(F I , GI) for every binary connective ⊙.

If F I = t then we say that the interpretation I satisfies F (symbolically,
I |= F).

Exercise: Find a formula F of the signature {p, q, r} such that (3) is the
only interpretation satisfying F .

If the underlying signature is finite then the set of interpretations is finite
also, and the values of F I for all interpretations I can be represented by a
finite table. This table is called the truth table of F . For instance, the
exercise above can be stated as follows: Find a formula with the truth table

p q r F

f f f f

f f t t

f t f f

f t t f

t f f f

t f t f

t t f f

t t t f

Exercise: prove that for any formulas F1, . . . , Fn (n ≥ 1) and any inter-
pretation I,

(F1 ∧ · · · ∧ Fn)I = t iff F I
1 = · · · = F I

n = t,

(F1 ∨ · · · ∨ Fn)I = f iff F I
1 = · · · = F I

n = f.

In the following two problems, we assume that the underlying signature
is finite: σ = {p1, . . . , pn}.

5

Problem 1.4 For any interpretation I, there exists a formula F such that
I is the only interpretation satisfying F .

Without the assumption that the underlying signature is finite, the as-
sertion of Problem 1.4 would be incorrect. (Prove it!)

Problem 1.5 For any function α from interpretations to truth values, there
exists a formula F such that, for all interpretations I, F I = α(I).

Propositional formulas and truth tables were introduced in 1921 by
the American mathematician and logician Emil Post (1897–1954). Post
is known, along with Alan Turing, as one of the creators of theoretical com-
puter science.

Tautologies

A propositional formula F is a tautology if every interpretation satisfies F .
It is easy to check, for instance, that each of the formulas

(p → q) ∨ (q → p),
((p → q) → p) → p,

(p → (q → r)) → ((p → q) → (p → r))

is a tautology. (Do it!)

Equivalent Formulas

A formula F is equivalent to a formula G (symbolically, F ∼ G) if, for every
interpretation I, F I = GI . In other words, the metalanguage expression
F ∼ G means that formula F ↔ G is a tautology.

Here are several exercises related to the equivalence of propositional for-
mulas.

(a) Conjunction and disjunction are associative:

(F ∧ G) ∧ H ∼ F ∧ (G ∧ H),
(F ∨ G) ∨ H ∼ F ∨ (G ∨ H).

Does equivalence have a similar property?

(b) Conjunction distributes over disjunction:

F ∧ (G ∨ H) ∼ (F ∧ G) ∨ (F ∧ H);

6

disjunction distributes over conjunction:

F ∨ (G ∧ H) ∼ (F ∨ G) ∧ (F ∨ H).

Do these connectives distribute over equivalence?

(c) De Morgan’s laws

¬(F ∧ G) ∼ ¬F ∨ ¬G,

¬(F ∨ G) ∼ ¬F ∧ ¬G

show how to transform a formula of the form ¬(F ⊙G) when ⊙ is conjunc-
tion or disjunction. Find similar transformations for the cases when ⊙ is
implication or equivalence.

(d) Implication distributes over conjunction:

F → (G ∧ H) ∼ (F → G) ∧ (F → H).

Find a similar transformation for (F ∨ G) → H.

(e) To simplify a formula means to find an equivalent formula that is shorter.
Simplify the following formulas:

(i) F ↔ ¬F ,

(ii) F ∨ (F ∧ G),

(iii) F ∧ (F ∨ G),

(iv) F ∨ (¬F ∧ G).

(v) F ∧ (¬F ∨ G).

(f) For each of the formulas

p ∧ q, p ∨ q, p ↔ q, ¬p,⊤

find an equivalent formula that contains no connectives other than → and ⊥.

(g) For each of the formulas

p → q, p ∧ q

find an equivalent formula that contains no connectives other than ↔ and ∨.

7

Adequate Sets of Connectives

Problem 1.6 For any formula, there exists an equivalent formula that
contains no connectives other than → and ⊥.

In this sense, {→,⊥} is an “adequate” set of connectives.
Similarly, we can check that then each of the sets

{∧,¬}, {∨,¬}, {→,¬}

is adequate, under the assumption that the underlying signature is non-
empty.

Problem 1.7 Any propositional formula equivalent to ⊥ contains at least
one of the connectives ⊥, ¬.

This fact shows that the set {∧,∨,→,↔,⊤} is not adequate.

Disjunctive and Conjunctive Normal Forms

A literal is an atom or the negation of an atom. A simple conjunction is
a formula of the form L1 ∧ · · · ∧ Ln (n ≥ 1), where L1, . . . , Ln are literals.
A formula is in disjunctive normal form if it has the form C1 ∨ · · · ∨ Cm

(m ≥ 1), where C1, . . . , Cm are simple conjunctions.

Problem 1.8 If the underlying signature is non-empty then any formula
is equivalent to a formula in disjunctive normal form.

A simple disjunction is a formula of the form L1∨· · ·∨Ln (n ≥ 1), where
L1, . . . , Ln are literals. A formula is in conjunctive normal form if it has the
form D1 ∧ · · · ∧ Dm (m ≥ 1), where D1, . . . ,Dm are simple disjunctions.

Problem 1.9 Let F be a formula in disjunctive normal form. Show that
¬F is equivalent to a formula in conjunctive normal form.

Problem 1.10 If the underlying signature is non-empty then any formula
is equivalent to a formula in conjunctive normal form.

Satisfiability and Entailment

A set Γ of formulas is satisfiable if there exists an interpretation that satisfies
all formulas in Γ, and unsatisfiable otherwise. It is easy to check that a non-
empty finite set {F1, . . . , Fn} is unsatisfiable iff the conjunction ¬(F1 ∧ · · · ∧
Fn) of its elements is a tautology. (Do it!)

8

Problem 1.11 Let Γ be a set of literals. Show that Γ is satisfiable iff there
is no atom A for which both A and ¬A belong to Γ.

For any atom A, the literals A, ¬A are said to be complementary to each
other. Thus the assertion of the last problem can be expressed as follows:
A set of literals is satisfiable iff it does not contain complementary pairs.

A set Γ of formulas entails a formula F (symbolically, Γ |= F), if every
interpretation that satisfies all formulas in Γ satisfies F also. Note that the
notation for entailment uses the same symbol as the notation for satisfaction
introduced earlier, the difference being that the expression on the left is an
interpretation (I) in one case and a set of formulas (Γ) in the other. The
formulas entailed by Γ are also called the logical consequences of Γ.

Exercise: Prove that F1, . . . , Fn |= G iff (F1 ∧ · · · ∧ Fn) → G is a tau-
tology. (In the first of these expressions, we dropped the braces { } around
F1, . . . , Fn.)

It is easy to check that for any set Γ of formulas and any formula F ,
Γ |= F iff the set Γ ∪ {¬F} is unsatisfiable. (Do it!)

2 Formal Proofs in Propositional Logic

In this section we study two deductive systems for propositional logic. Gen-
erally, a deductive system is a collection of axioms and inference rules. A
“derivation” in a deductive system shows how a formula can be derived from
a set of hypotheses using the postulates (axioms and inference rules) of the
system.

Deductive System H

The first deductive system to be discussed here is a “Hilbert-style” sys-
tem, and we will denote it by H. David Hilbert (1862–1943) was a German
mathematician and logician, one of the most influential mathematicians of
his time.

The derivable objects of H are propositional formulas that contain no
connectives other than → and ⊥, and in the discussion of H below all
formulas are assumed to be in this class. (We know from Problem 1.6 that
{→,⊥} is an adequate set of connectives.)

The set of axioms of H consists of the formulas of the following three
forms:

H1. F → (G → F).

9

H2. (F → (G → H)) → ((F → G) → (F → H)).

H3. ((F → ⊥) → ⊥) → F.

Each of the expressions H1, H2, H3 is an “axiom schema” that represents
infinitely many axioms of the system H, called the instances of the schema.
For example, if p and q are atoms then the formula

(p → q) → ((⊥ → ⊥) → (p → q))

is an instance of the axiom schema H1.
The only inference rule of H is modus ponens:

F F → G

G
.

The two expressions above the horizontal bar show the form of the premises
to which the rule can be applied, and the expression under the bar shows
the form of the conclusion that is derived by the rule. An instance of the
rule is obtained from it by substituting formulas for the symbols F and G.
For example,

p p → (q → p)

q → p

is an instance of modus ponens whose second premise is an instance of H1.
Let Γ be a set of formulas, called hypotheses. In the system H, a deriva-

tion from Γ is a list F1, . . . , Fn (n ≥ 1) of formulas such that, for every i ≤ n,
formula Fi

• is a hypothesis, or

• is an instance of one of the axiom schemas H1, H2, H3, or

• for some j, k < i, can be derived from Fj and Fk by modus ponens.

A derivation whose last formula is F is said to be a derivation of F .
If there exists a derivation of F from Γ in the system H then we say

that F is derivable from Γ in H and write Γ ⊢H F . A derivation from the
empty set of hypotheses is called a proof. If there exists a proof of F in the
system H then we say that F is provable in H and write ⊢H F . For other
deductive systems, the terminology and notation are similar.

For instance, the following list of formulas is a derivation of p from ⊥:

1. ⊥ — hypothesis
2. ⊥ → ((p → ⊥) → ⊥) — H1

3. (p → ⊥) → ⊥ — from 1, 2
4. ((p → ⊥) → ⊥) → p — H3

5. p — from 3, 4

10

The comments appended at the end of every line explain why this list of
formulas is indeed a derivation. We have shown that

⊥ ⊢H p. (4)

Problem 2.1 ⊢H p → p.

Problem 2.2 ⊢H ⊥ → p.

Problem 2.3 For any set Γ of formulas and any formulas F and G, if
Γ ⊢H F and Γ, F ⊢H G then Γ ⊢H G.

For instance, for any formula G, from

⊥ → p ⊢H G

we can conclude that ⊢H G.

Problem 2.4 For any set Γ of formulas and any formulas F and G, if
Γ, F ⊢H G then Γ ⊢H F → G.

This fact is known as the deduction theorem for the system H. It allows
us, for instance, to derive the assertion of Problem 2.2 from (4). The de-
duction theorem (for first-order logic) was first proved by the French math-
ematician Jacques Herbrand (1908–1931). The converse of the deduction
theorem is true as well. (Prove it!)

As an exercise on the use of the deduction theorem, prove that

F → ⊥ ⊢H F → G.

Problem 2.5 (F → ⊥) → G ⊢H (G → ⊥) → F .

Problem 2.6 F → G, (F → ⊥) → G ⊢H G.

Soundness and Completeness of H

Problem 2.7 For any set Γ of formulas and any formula F , if Γ ⊢H F then
Γ |= F .

In particular, if ⊢H F then F is a tautology. The assertion of Problem 2.7
expresses the soundness of deductive system H.

Problem 2.8 Let A1, . . . , An be the atoms that occur in a formula F , and
let I be an interpretation. Define the formulas A′

1, . . . , A
′

n, F ′ as follows:

A′

i =

{

Ai, if I |= Ai,
Ai → ⊥, otherwise;

11

F ′ =

{

F, if I |= F ,
F → ⊥, otherwise.

Show that A′

1, . . . , A
′

n ⊢H F ′.

Problem 2.9 If F is a tautology then ⊢H F .

More generally, for any set Γ of formulas and any formula F , if Γ |= F

then Γ ⊢H F . This fact expresses the completeness of H. The completeness
of a formal system for propositional logic was first proved by Emil Post in
1921.

The soundness and completeness theorems for H show that the relations
|= and ⊢H are equivalent to each other.

Deductive System N

The second deductive system is the “natural deduction” system N.
A sequent is an expression of the form

Γ ⇒ F (5)

(“F under assumptions Γ”) or
Γ ⇒ (6)

(“assumptions Γ are contradictory”), where Γ is a finite set of formulas. If Γ
is written as {G1, . . . , Gn}, we will usually drop the braces and write (5) as

G1, . . . , Gn ⇒ F (7)

and (6) as
G1, . . . , Gn ⇒ . (8)

Intuitively, a sequent (7) is understood as the formula

(G1 ∧ · · · ∧ Gn) → F (9)

if n > 0, and as F if n = 0; (8) is understood as the formula

¬(G1 ∧ · · · ∧ Gn) (10)

if n > 0, and as ⊥ if n = 0.
The derivable objects of N are sequents that contain no connectives other

than
∧, ∨, →, ¬ .

12

The axioms of N are sequents of the forms

F ⇒ F

and
⇒ F ∨ ¬F.

The latter is called the law of excluded middle.
In the list of inference rules below, Γ, ∆, ∆1, ∆2 are finite sets of formu-

las, and Σ is a formula or the empty string. All inference rules of N except
for the two rules at the end are classified into introduction rules (the left
column) and elimination rules (the right column); the exceptions are the
contradiction rule (C) and the weakening rule (W):

(∧I) Γ ⇒ F ∆ ⇒ G
Γ,∆ ⇒ F ∧ G

(∧E) Γ ⇒ F ∧ G
Γ ⇒ F

Γ ⇒ F ∧ G
Γ ⇒ G

(∨I) Γ ⇒ F
Γ ⇒ F ∨ G

Γ ⇒ G
Γ ⇒ F ∨ G

(∨E) Γ ⇒ F ∨ G ∆1, F ⇒ Σ ∆2, G ⇒ Σ
Γ,∆1,∆2 ⇒ Σ

(→I)
Γ, F ⇒ G

Γ ⇒ F → G
(→E) Γ ⇒ F ∆ ⇒ F → G

Γ,∆ ⇒ G

(¬I) Γ, F ⇒
Γ ⇒ ¬F

(¬E) Γ ⇒ F ∆ ⇒ ¬F
Γ,∆ ⇒

(C) Γ ⇒
Γ ⇒ F

(W) Γ ⇒ Σ
Γ,∆ ⇒ Σ

System N is sound and complete:

(a) a sequent Γ ⇒ F is provable in N iff Γ entails F ;

(b) a sequent Γ ⇒ is provable in N iff Γ is unsatisfiable.

To prove a formula F in System N means to prove the sequent ⇒ F .
Assertion (a) above shows that a formula is provable in N iff it is a tautology.

Natural deduction was invented by the German logician Gerhard Gentzen
(1909–1945).

13

A1. p → (q → r)
1. A1 ⇒ p → (q → r) — axiom Assume p → (q → r).

Now our goal is
to prove
(p ∧ q) → r.

A2. p ∧ q

2. A2 ⇒ p ∧ q — axiom Assume p ∧ q.
Now our goal is
to prove r.

3. A2 ⇒ p — by (∧E) from 2 From the second
assumption, p.

4. A1, A2 ⇒ q → r — by (→ E) from 3, 1 Consequently, by the
first assumption, q → r.

5. A2 ⇒ q — by (∧E) from 2 On the other hand,
from the second
assumption, q.

6. A1, A2 ⇒ r — by (→ E) from 5, 4 Consequently r.

7. A1 ⇒ (p ∧ q) → r — by (→ I) from 6 Thus we proved
(p ∧ q) → r

8. ⇒ (p → (q → r)) → ((p ∧ q) → r) — by (→ I) from 7 and consequently
we are done.

Figure 1: A proof of (p → (q → r)) → ((p ∧ q) → r)

In proofs in system N, it is convenient to denote the “assumptions”
appearing in sequents to the left of ⇒ by A1, A2, Figure 1 shows a proof
of the formula

(p → (q → r)) → ((p ∧ q) → r)

written in this manner, with the corresponding “informal proof” to the right
of the bar. Figure 2 is a proof of

(¬p → q) → (¬q → p)

in N, again with an “English translation.”
As an exercise, find a proof of each of the formulas

(p → (q → r)) → ((p → q) → (p → r)),
(p → q) → (¬q → ¬p)

in System N, and show also the corresponding informal proof.

14

A1. ¬p → q

1. A1 ⇒ ¬p → q — axiom Assume ¬p → q.
Now our goal is
to prove ¬q → p.

A2. ¬q

2. A2 ⇒ ¬q — axiom Assume ¬q.
Now our goal is
to prove p.

3. ⇒ p ∨ ¬p — axiom Consider two cases.
A3. p

4. A3 ⇒ p — axiom Case 1: p.

This case is trivial.
A4. ¬p

5. A4 ⇒ ¬p — axiom Case 2: ¬p.

6. A1, A4 ⇒ q — by (→ E) from 5, 1 Then, by the first
assumption, q.

7. A1, A2, A4 ⇒ — by (¬E) from 6, 2 This contradicts the
second assumption,

8. A1, A2, A4 ⇒ p — by (C) from 7 so that we
can conclude p also.

9. A1, A2 ⇒ p — by (∨E) from 3, 4, 8 Thus, in either case, p.

10. A1 ⇒ ¬q → p — by (→ I) from 9 We have proved
¬q → p

11. ⇒ (¬p → q) → (¬q → p) — by (→ I) from 10 and consequently
we are done.

Figure 2: A proof of (¬p → q) → (¬q → p)

Do the same for the formulas in the following problems:

Problem 2.10 ((p ∧ q) ∨ r) → (p ∨ r).

Problem 2.11 (p → q) ∨ (q → p).

3 First-Order Logic

Predicate Formulas

“Predicate formulas” generalize the concept of a propositional formula de-
fined in Section 1.

15

A predicate signature is a set of symbols of two kinds—object constants
and predicate constants—with a nonnegative integer, called the arity, as-
signed to every predicate constant. A predicate constant is said to be propo-
sitional if its arity is 0. Propositional constants are similar to atoms in
propositional logic. A predicate constant is unary if its arity is 1, and bi-
nary if its arity is 2. For instance, we can define a predicate signature

{a, P,Q} (11)

by saying that a is an object constant, P is a unary predicate constant, and
Q is a binary predicate constant.

Take a predicate signature σ that does not include any of the following
symbols:

• the object variables x, y, z, x1, y1, z1, x2, y2, z2, . . .,

• the propositional connectives,

• the universal quantifier ∀ and the existential quantifier ∃,

• the parentheses and the comma.

The alphabet of predicate logic consists of the elements of σ and of the
four groups of additional symbols listed above. A string is a finite string of
symbols in this alphabet.

A term is an object constant or an object variable. A string is called an
atomic formula if it is a propositional constant or has the form

R(t1, . . . , tn)

where R is a predicate constant of arity n (n > 0) and t1, . . . , tn are terms.
For instance, if the underlying signature is (11) then P (a) and Q(a, x) are
atomic formulas.

We define when a string is a (predicate) formula recursively, as follows:

• every atomic formula is a formula,

• both 0-place connectives are formulas,

• if F is a formula then ¬F is a formula,

• for any binary connective ⊙, if F and G are formulas then (F ⊙ G) is
a formula,

16

• for any quantifier K and any variable v, if F is a formula then KvF

is a formula.

For instance, if the underlying signature is (11) then

(¬P (a) ∨ ∃x(P (x) ∧ Q(x, y)))

is a formula.
When we write predicate formulas, we will drop some parentheses and

use other abbreviations introduced in Section 1. A string of the form
∀v1 · · · ∀vn (n ≥ 0) will be written as ∀v1 · · · vn, and similarly for the ex-
istential quantifier.

An occurrence of a variable v in a formula F is bound if it occurs in a
part of F of the form KvG; otherwise it is free in F . For instance, in the
formula

∃yP (x, y) ∧ ¬∃xP (x, x) (12)

the first occurrence of x is free, and the other three are bound; both occur-
rences of y in (12) are bound. We say that v is free (bound) in F if some
occurrence of v is free (bound) in F . A formula without free variables is
called a closed formula, or a sentence.

Representing English Sentences by Predicate Formulas

Before we continue the study of the syntax of predicate logic, it is useful to
get some experience in translating sentences from English into the language
of predicate formulas. The translation exercises below are different from the
other problems in that they are not precisely stated mathematical questions:
there is no way to prove, in the mathematical sense, that a translation is
adequate (at least until the semantics of predicate logic is defined). There
is sometimes no clear-cut difference between good and bad translations; it
may happen that one translation is somewhat less adequate than another
but still satisfactory.

In these translation exercises, the underlying signature is (11). We will
think of object variables as ranging over the set ω of nonnegative integers,
and interpret the signature as follows:

• a represents the number 10,

• P (x) represents the condition “x is a prime number,”

• Q(x, y) represents the condition “x is less than y.”

17

As an example, the sentence All prime numbers are greater than x can
be represented by the formula

∀y(P (y) → Q(x, y)). (13)

In the following two problems, represent the given English sentences by
predicate formulas.

Problem 3.1 (a) There is a prime number that is less than 10. (b) x equals
0. (c) x equals 9.

Problem 3.2 There are infinitely many prime numbers.

Substitution

Let F be a formula and v a variable. The result of the substitution of a
term t for v in F is the formula obtained from F by replacing each free
occurrence of v by t. When we intend to consider substitutions for v in a
formula, it is convenient to denote this formula by an expression like F (v);
then we can denote the result of the substitution of a term t for v in this
formula by F (t). For instance, if we denote formula (12) by F (x) then F (a)
stands for

∃yP (a, y) ∧ ¬∃xP (x, x).

Let F (x) be formula (13) proposed above as a translation for the condi-
tion “all prime numbers are greater than x.” A formula of the form F (t),
where t is a term, usually expresses the same condition applied to the value
of t. For instance, F (a) is

∀y(P (y) → Q(a, y)),

which means that all prime numbers are greater than 10; F (z2) is

∀y(P (y) → Q(z2, y)),

which means that all prime numbers are greater than z2. There is one
exception, however. The formula F (y), that is,

∀y(P (y) → Q(y, y)),

expresses the (incorrect) assertion “every prime number is less than itself.”
The problem with this substitution is that y, when substituted for x in F (x),
is “captured” by a quantifier. To express the assertion “all prime numbers

18

are greater than y” by a predicate formula, we would have to use a bound
variable different from y and write, for instance,

∀z(P (z) → Q(y, z)).

To distinguish “bad” substitutions, as in the last example, from “good”
substitutions, we introduce the following definition. A term t is substitutable
for a variable v in a formula F if

• t is a constant, or

• t is a variable w, and no part of F of the form KwG contains an
occurrence of v which is free in F .

For instance, a and z2 are substitutable in (13) for x, and y is not substi-
tutable.

Semantics of Predicate Formulas

The semantics of propositional formulas described in Section 1 defined which
truth value F I is assigned to a propositional formula F by an interpretation
I. Our next goal is to extend this definition to predicate formulas. First we
need to extend the definition of an interpretation to predicate signatures.

An interpretation I of a predicate signature σ consists of

• a non-empty set |I|, called the universe of I,

• for every object constant c of σ, an element cI of |I|,

• for every propositional constant R of σ, an element RI of {f, t},

• for every predicate constant R of σ of arity n > 0, a function RI from
|I|n to {f, t}.

For instance, the second paragraph of the section on representing En-
glish sentences by predicate formulas can be viewed as the definition of an
interpretation of signature (11). For this interpretation I,

|I| = ω,

aI = 10,

P I(n) =

{

t, if n is prime,
f, otherwise,

QI(m,n) =

{

t, if m < n,
f, otherwise.

(14)

19

The semantics of predicate logic introduced below defines the truth value
F I only for the case when F is a sentence. As in propositional logic, the
definition is recursive. For propositional constants, there is nothing to define:
the truth value RI is part of the interpretation I. For other atomic sentences,
we can define

R(t1, . . . , tn)I = RI(tI1, . . . , t
I
n).

(Since R(t1, . . . , tn) is a sentence, each term ti is an object constant, and
consequently tIi is part of I). For propositional connectives, we can use the
same clauses as in propositional logic. But the case of quantifiers presents
a difficulty. One possibility would be to define

∃wF (w)I = t iff, for some object constant c, F (c)I = t

and similarly for the universal quantifier. But this formulation is unsatis-
factory: it disregards the fact that some elements of the universe |I| may
be not represented by object constants. For instance, in the example above
10 is the only element of the universe ω for which there is a corresponding
object constant in signature (11); we expect to find that

(∃xQ(x, a))I = t

(there exists a number that is less than 10) although

Q(a, a)I = f

(10 does not have this property). Because of this difficulty, some additional
work is needed before we define F I .

Consider an interpretation I of a predicate signature σ. For any ele-
ment ξ of its universe |I|, select a new symbol ξ∗, called the name of ξ. By
σI we denote the predicate signature obtained from σ by adding all names
ξ∗ as additional object constants. For instance, if σ is (11) and I is (14)
then

σI = {a, 0∗, 1∗, 2∗, . . . , P,Q}.

The interpretation I can be extended to the new signature σI by defining

(ξ∗)I = ξ

for all ξ ∈ |I|. We will denote this interpretation of σI by the same symbol I.

20

We will define recursively the truth value F I that is assigned to F by I for
every sentence F of the extended signature σI ; that includes, in particular,
every sentence of the signature σ. For any propositional constant R, RI is
part of the interpretation I. Otherwise, we define:

• R(t1, . . . , tn)I = RI(tI
1
, . . . , tIn),

• ⊥I = f, ⊤I = t,

• (¬F)I = ¬(F I),

• (F ⊙ G)I = ⊙(F I , GI) for every binary connective ⊙,

• ∀wF (w)I = t iff, for all ξ ∈ |I|, F (ξ∗)I = t,

• ∃wF (w)I = t iff, for some ξ ∈ |I|, F (ξ∗)I = t.

As in propositional logic, we say that I satisfies F , and write I |= F , if
F I = t.

Problem 3.3 Show that interpretation (14) satisfies ∃xQ(x, a).

Problem 3.4 Let F (x) be formula (13). Show that, for every n ∈ ω, (14)
satisfies F (n∗) iff n < 2.

Satisfiability

If there exists an interpretation satisfying a sentence F , we say that F is
satisfiable. A set Γ of sentences is satisfiable if there exists an interpretation
that satisfies all sentences in Γ.

In each of the following problems, determine whether the given set of
sentences is satisfiable. We assume that P and Q are predicate constants;
their arities will be every time clear from the context.

Problem 3.5 (a) P (a), ∃x¬P (x). (b) P (a), ∀x¬P (x).

Problem 3.6 ∀x∃yP (x, y), ∀x¬P (x, x).

Entailment

A set Γ of sentences entails a sentence F , or is a logical consequence of Γ
(symbolically, Γ |= F), if every interpretation that satisfies all sentences in
Γ satisfies F .

As an exercise, determine whether the sentences

∃xP (x), ∃xQ(x)

21

entail
∃x(P (x) ∧ Q(x)).

A sentence F is logically valid if every interpretation satisfies F . This
concept is similar to the notion of a tautology.

The universal closure of a formula F is the sentence ∀v1 · · · vnF , where
v1, . . . , vn are all free variables of F . About a formula with free variables
we say that it is logically valid if its universal closure is logically valid. A
formula F is equivalent to a formula G (symbolically, F ∼ G) if the formula
F ↔ G is logically valid.

Problem 3.7 For each of the formulas

P (x) → ∃xP (x),
P (x) → ∀xP (x)

determine whether it is logically valid.

Function Symbols and Equality: Syntax

Predicate logic as defined at the beginning of this section is somewhat more
restricted than what is usually called “first-order logic,” and now our goal is
to remove these restrictions. First, we will generalize the notion of a term.
In addition to object constants and object variables, we will allow terms to
be formed using symbols for functions, “function constants.” Second, we
will add the equal sign to the language, and equalities will be included as a
new kind of atomic formulas.

Our most general notion of a signature is defined as follows. A sig-
nature is a set of symbols of two kinds—function constants and predicate
constants—with a nonnegative integer, called the arity, assigned to each
symbol. An object constant is a function constant of arity 0. A function
constant is unary if its arity is 1, and binary if its arity is 2. Propositional
constants, as well as unary and binary predicate constants, are defined as
above. Terms are defined recursively, as follows:

• every object constant is a term,

• every object variable is a term,

• for every function constant h of arity n (n > 0), if t1, . . . , tn are terms
then so is h(t1, . . . , tn).

22

In first-order logic, there are three kinds of atomic formulas: proposi-
tional constants, strings of the form R(t1, . . . , tn) where R is a predicate
constant of arity n (n > 0) and t1, . . . , tn are terms, and strings of the form
(t1 = t2) where t1, t2 are terms. Given this set of atomic formulas, the
definition of (first-order) formulas is the same as the definition of predicate
formulas at the beginning of this section.

For any terms t1 and t2, t1 6= t2 stands for the formula ¬(t1 = t2).
The definitions of free and bound occurrences of a variable in a formula

remain the same as before. (Note that these concepts apply to a formula, but
not to a term. Sometimes, all variables occurring in a term are considered
its “free variables.”) The substitution of a term for a variable is also defined
as before. The definition of a substitutable term, in the presence of function
symbols, is stated as follows: A term t is substitutable for a variable v

in a formula F if, for each variable w occurring in t, no part of F of the
form KwG contains an occurrence of v which is free in F .

Function Symbols and Equality: Semantics

To generalize the notion of an interpretation to arbitrary signatures, we need
to say how one is allowed to interpret a function constant of arity n > 0.
Such a symbol can be interpreted as any total function of n variables whose
arguments and values come from the universe of the interpretation. Thus
an interpretation I of a signature σ consists of

• a non-empty set |I|, called the universe of I,

• for every object constant c of σ, an element cI of |I|,

• for every function constant h of σ of arity n > 0, a function hI from
|I|n to |I|,

• for every propositional constant R of σ, an element RI of {f, t},

• for every predicate constant R of σ of arity n > 0, a function RI from
|I|n to {f, t}.

As an example, consider the signature of first-order arithmetic

{a, s, f, g}, (15)

where a is an object constant (intended to represent 0), s is a unary function
constant (for the successor function), and f , g are binary function constants
(for addition and multiplication). Since this signature includes no predicate

23

constants, its only atomic formulas are equalities. The intended interpreta-
tion I of (15) is defined as follows:

|I| = ω,

aI = 0,
sI(n) = n + 1,
f I(m,n) = m + n,

gI(m,n) = m · n.

(16)

Problem 3.8 Represent the following English sentences by first-order for-
mulas:

• There exists at most one x such that P (x).

• There exists exactly one x such that P (x).

• There exist at least two x such that P (x).

• There exist at most two x such that P (x).

• There exist exactly two x such that P (x).

Now let us go back to the semantics of first-order logic. For the definition
of F I to be applicable in the presence of function constants of arity > 0, we
need to extend the notation tI from object constants to arbitrary variable-
free terms of the signature σI , and to add a clause for equality. The value
tI assigned by I to t is defined recursively by the formula

h(t1, . . . , tn)I = hI(tI1, . . . , t
I
n).

The additional clause in the definition of satisfaction reads as follows:

• (t1 = t2)
I = t iff tI

1
= tI

2
.

The definitions of satisfaction and of all other semantic concepts intro-
duced above for formulas of a predicate signature apply to formulas with
function constants and equality without any changes.

Problem 3.9 For each of the following sentences determine whether it is
satisfiable:

• a = b,

• ∀xy(x = y),

• ∀xy(x 6= y).

24

Natural Deduction in First-Order Logic

In the first-order version of deductive system N, the derivable objects are
sequents

Γ ⇒ F and Γ ⇒

where F and the elements of Γ are formed using the connectives ∧,∨,→,¬
and the quantifiers ∀,∃. In addition to the axiom schemas of propositional N
(Section 2), the first-order version includes

⇒ t = t

where t is a term. The additional inference rules of the system are:

(∀I)
Γ ⇒ F (v)

Γ ⇒ ∀vF (v)
(∀E)

Γ ⇒ ∀vF (v)
Γ ⇒ F (t)

where v is not a free variable where t is substitutable
of any formula in Γ for v in F (v)

(∃I)
Γ ⇒ F (t)

Γ ⇒ ∃vF (v)
(∃E)

Γ ⇒ ∃vF (v) ∆, F (v) ⇒ Σ
Γ,∆ ⇒ Σ

where t is substitutable where v is not a free variable
for v in F (v) of any formula in ∆,Σ

(Repl)
Γ ⇒ t1 = t2 ∆ ⇒ F (t1)

Γ,∆ ⇒ F (t2)

Γ ⇒ t1 = t2 ∆ ⇒ F (t2)

Γ,∆ ⇒ F (t1)

where t1 and t2 are substitutable for v in F (v).

This formal system is sound and complete: if a sequent can be proved
using the axioms and inference rules shown above then it is logically valid,
and the other way around. The completeness of a formal system for first-
order logic was first proved by Kurt Gödel (1906–1978) in 1930. Gödel was
a member of the Institute for Advanced Study since 1940. His other well-
known result, Gödel’s incompleteness theorem, is related to the problem of
formalizing the arithmetic of natural numbers, and it is not discussed in
these notes.

25

In each of the following problems, prove the given formula in System N.
(If the formula is an equivalence, rewrite it first as a conjunction of two
implications.)

Problem 3.10 (P (a) ∧ ∀x(P (x) → Q(x))) → Q(a).

Problem 3.11 P (a) → ¬∀x¬P (x).

Problem 3.12 ∀xyP (x, y) → ∀xP (x, x).

Problem 3.13 ∀xP (x) ↔ ∀yP (y).

Problem 3.14 ∀xP (x) ∧ ∀xQ(x) ↔ ∀x(P (x) ∧ Q(x)).

Problem 3.15 ∀xP (x) ∨ Q ↔ ∀x(P (x) ∨ Q).

Problem 3.16 (P (a) ∨ P (b)) → ∃xP (x).

Problem 3.17 (∃xP (x) ∧ ∀x(P (x) → Q(x))) → ∃xQ(x).

Problem 3.18 ∃xP (x) ↔ ∃yP (y).

Problem 3.19 ¬∃xP (x) ↔ ∀x¬P (x).

Problem 3.20 ∃x(P (x) ∧ Q) ↔ ∃xP (x) ∧ Q.

Problem 3.21 ∃x(P (x) ∨ Q(x)) ↔ ∃xP (x) ∨ ∃xQ(x).

Problem 3.22 x = y → f(x, y) = f(y, x).

Problem 3.23 ∀x∃y(y = f(x)).

Problem 3.24 ∃y(x = y ∧ y = z) → x = z.

Problem 3.25 (∃xP (x) ∧ ∃x¬P (x)) → ∃xy(x 6= y).

Problem 3.26 ∀x(x = a → P (x)) ↔ P (a).

Problem 3.27 ∃x(x = a ∧ P (x)) ↔ P (a).

26

