
SIAM J. COMPU’E
Vol. 21, No. 4, pp. 755-780, August 1992

1992 Society for Industrial and Applied Mathematics
009
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Abstract. A new approach to Buss’s NC algorithm [Proc. 19thACMSymposium on Theory ofComputing,
Association for Computing Machinery, New York, 1987, pp. 123-131] for evaluation of Boolean formulas is
presented. This problem is shown to be complete for NC over AC reductions. This approach is then used
to solve the more general problem of evaluating arithmetic formulas by using arithmetic circuits.
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1. Introduction. In this paper we consider the parallel complexity of the Boolean
and arithmetic formula-value problems. The Boolean formula-value problem is that of
determining the truth value of an infix Boolean formula (with connectives {A, V,-})
given the truth assignments of the variables in the formula. Since it is easy to substi-
tute values for the variables, we can reduce this problem to that of solving the Boolean
sentence-value problem (BSVP), i.e., the Boolean formula-value problem restricted to
the case in which the formula contains constants and operators, but no variables. The
goal is to obtain a bounded fan-in Boolean circuit of small depth that solves the BSVP for
all inputs of a given size. We assume that each gate takes unit time for its computation
and that there is no propagation delay along wires. This is the standard circuit model
(see, e.g., [sa76], [co85], [kr90]). In this model the time taken by a circuit to compute the
values of its outputs when given values to its inputs is equal to the depth of the circuit.
Hence, a circuit of small depth corresponds to a computation that can be performed
quickly in parallel.

A natural extension to the Boolean formula-value problem is the problem of evalu-
ating an arithmetic formula over a more general algebra. In this paper we consider this
problem over semi-rings, rings, and fields. The problem is basically the same as BSVP
given an arithmetic formula over an algebra and the value ofeach variable in the formula,
determine the value of the formula. We use the arithmetic-Boolean circuits of von zur
Gathen [jg86] as our model, and we use the corresponding arithmetic complexity theory.
Once again, the goal is to obtain a circuit of small depth that solves this problem for all
inputs of a given depth. We assume that each arithmetic gate has unit delay, so that the
time required by the circuit to perform a computation is equal to its depth.

An additional property that we desire in the family of circuits we construct is that
it be uniform, i.e., that a description of the circuit for evaluating formulas of size n can
be obtained easily when the value of n is known; the family is logspace uniform if the
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description of the nth circuit can be provided by a deterministic Turing machine oper-
ating in space O(log n). The class NCk for k >_ 2 is the class of problems that have
a logspace-uniform family of circuits of depth O(logk n) and polynomial size, where n
is the size of the input; for NC a stronger notion of uniformity is usually used [ru81].
The class NC is the class of problems that have a logspace-uniform family of circuits of
polylog depth and polynomial size; this class is generally considered to characterize the
class of problems with feasible parallel algorithms. Let P be the class of problems solv-
able in sequential polynomial time. An important open question in parallel complexity
theory is whether NC equals P or whether NC equals P. For more on parallel circuit
complexity see, e.g., [co85], [kr90], [ru81].

Simple fan-in arguments show that any circuit for formula evaluation must have
depth at least logarithmic in the size of the formula. Early work on BSVP was done by
Spira [sp71], who showed that any sentence of size n can be restructured into a formula
of depth O(log n) and size O(n2). Brent [br74] used a restructured circuit of logarithmic
depth and linear size to evaluate a given arithmetic formula. These results gave hope
of obtaining a logarithmic-depth circuit for formula evaluation by finding a logarithmic-
depth circuit for performing the appropriate restructuring. However, direct implemen-
tation of these algorithms seems to require 9t(log2 n) depth for the restructuring. This
result placed BSVP in NC.

The BSVP can be shown to be in NCz through the use of other techniques. Lynch
[ly77] showed that parenthesised context-free languages can be recognized in determin-
istic log space (LOGSPACE). Since the set of true Boolean sentences is an instance of
these languages, this immediately implied the same space bound for BSVP. The result of
Borodin [bo77], that LOGSPACE c_ NC, once again placed this problem in NC. The
logarithmic-time tree-contraction algorithm of Miller and Reif [mr85] for arithmetic ex-
pression evaluation on a PRAM again translates into an NC2 algorithm on arithmetic
circuits.

The first sub-NC algorithm for BSVP was devised by Cook and Gupta [gu85]
and independently by Ramachandran [ra86]. Their circuit family for the problem was
log space uniform and had a depth of O(log n log log n), and this gave new hope that
the problem had an NC algorithm. Cook and Gupta also showed that parenthesis
context-free grammars can be recognized in depth O(log n log log n), while Ramachan-
dran showed that arithmetic formulas over semi-rings can be evaluated within the same
time bound.

Recently, Buss [bu87] devised an alternating log-time algorithm for both BSVP and
the recognition problem for parenthesis context-free grammars. Since alternating log
time is equivalent to NC [ru81] under a strong notion of uniformity, this finally settled
the question ofwhether BSVP is in NC1. Buss’s algorithm was based on converting the
sentence into PLOF form (post-fix longer operand first) and then playing a two-person
game on it. The game simulated the evaluation of the sentence and could be played in
log-time on an alternating Turing machine. Buss also showed that his result is optimal
in a very strong sense--he showed that BSVP is complete for alternating log-time under
reductions from any level of the log-time hierarchy.

Dymond [dy88] extended Buss’s result for parenthesis grammars to show that all
input-driven languages can be recognized in NC1. His technique generalizes the game
described by Buss.

Very recently, Muller and Preparata [mp88] devised log-depth circuits to solve for-
mula evaluation for semi-rings. Their approach is based on using a universal evaluator
to evaluate an infix formula where, for each operator, the longer operand occurs before
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the shorter.
There are a number of reasons why the formula-value problem is interesting. The

BSVP is the analogue of the circuit-value problem for which each gate has fan-out 1.
The circuit-value problem is log space complete for P and hence is not in NC unless P
equals NC. The BSVP, on the other hand, is clearly in NC and is, therefore, a natural
candidate for an NCl-complete problem. Also, propositional formulas are fundamental
concepts in logic, and the complexity of evaluating them is of interest.

In this paper, we present a simple NC algorithm for BSVP that incorporates Buss’s
original ideas into a two-person pebbling game similar to that introduced by Dymond and
Tompa [dt85]. This algorithm is designed to give insight into the mechanism of Buss’s
algorithm. We show that our result is optimal by proving that the problem is complete for
NC under AC reductions. We then proceed to use our evaluation technique to place
the general arithmetic-formula evaluation problem over rings, fields, and semi-rings in
arithmetic NCx.

This paper is organized as follows. The relevant background is given in 2. In 3 we
describe an NC algorithm that translates Boolean sentences into PLOF sentences. In
4 an NC algorithm for the PLOF sentence-value problem is given. This finishes the
proof that BSVP is in NC. Some completeness results for BSVP are given in 5. In 6
we generalize the technique of 4 to obtain an arithmetic NC algorithm for arithmetic-
formula evaluation (over rings, fields, and semi-rings).

2. Background.

2.1. Boolean circuit complexity. All unreferenced material in this section is
from [co85], and we refer the reader to that paper for a more in-depth discussion of
Boolean circuit complexity.

DEFINITION. ABoolean circuit t on n inputs andm outputs is a finite directed acyclic
graph with each node labeled from {zl,...,z,, 0, 1,-, V,A}. Nodes labeled zi are in-
put nodes and have indegree 0. Nodes with indegree 1 are labeled -, and those with
indegree 2 are labeled either V or A, where each edge into the node is associated with
one argument of the function corresponding to the label. There is a sequence of m >_ 1
nodes in c designated as output nodes. In practice, the nodes of c are called gates.

DEFINITION. For a circuit c, the complexity of c, designated c(c), is the number of
nodes in c. The depth of c, designated d(c), is the length of the longest path from some
input node to some output node.

We also assign to each gate in our Boolean circuits a gate number. We assume that in
a given circuit c, each gate has a unique gate number and all gate numbers are between
0 and c(t)() (i.e., their binary encoding is O(log c(c))). Furthermore, we assume that
all gates in a Boolean circuit are on a path from some input to an output. When the
inputs are assigned values from {0, 1}, each output takes on a unique value. A circuit
c on n inputs and m outputs computes a function f {0, 1} {0, 1}" in the obvious
way. We are interested in computing more general functions, namely those of the form
f {0, 1}* {0, 1}*. We need circuit families for this.

DEFINITION. A circuitfamily (cn) is a sequence of Boolean circuits such that the nth
circuit in the family has n inputs and h(n) outputs, where h(r) n().

Notice that arbitrary circuit families are very powerful (they can even recognize non-
recursive languages). Therefore, we restrict ourselves to uniform circuit families. The
strength of the Turing machines used to generate the circuits determines the uniformity
condition on the circuit family. We note that all of our Turing machines are assumed to
be multi-tape.
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DEFINITION. Let a be a Boolean circuit. Let g be a gate in a and p {/, r}*. Then
g(p) is the gate reached when p is followed (as a path) toward the inputs of c by starting
at g. For example, g(1) is g’s left input. We make the convention that if g is an input gate,
then g(1) g(r) g.

DEFINITION [ru81]. For a circuit family (an), the extended-connection language LEC
consists of 4-tuples (, g, p, y), where {0, 1}* ( is n in binary), g {0, 1}* (g is a
gate number), y {z,...,,, 0, 1,-, v, A} t_J {0, 1}*, and IPl <- log c(a,) such that if
p e then y is the label of the gate numbered g; otherwise, y is the gate number of g(p).
(a,) is U uniform if there is a deterministic linear-time Turing machine recognizing
LEC.

Here LEC encodes local connection information in c,, that is, connections that are
within distance log c((n).

Note. The time bound in Ruzzo’s original definition of UE uniformity is iven as
O(logc(c,)). However, since the length of the input to the Turin machine is also
O(log c(c,)), our definition is equivalentmwe prefer to use the size of the input to the
machine in the definition.

DEFINITION. For all k > 0, define NCk as the class of functions computable by a
UE-uniform circuit family (Cn/such that c(cn) n(1) and d(a,) O(logk n). NC
J>0 NC

We use UE uniformity in our definition of NC instead of the more common UE.
uniformity. Ruzzo shows that NCk (k >_ 1) is the same under both definitions. The ad-
vantage of using UE uniformity is that the uniformity condition can be checked with the
generally more familiar deterministic Turing machine (DTM) instead of an alternating
Turing machine (ATM). The disadvantage is that ATMs are more powerful than DTMs
and it may be easier to check the uniformity with an ATM.

Ruzzo [ru81] developed a Turing machine characterization of uniform Boolean cir-
cuits by showing that ATMs are basically uniform circuits.

PROPOSITION 2.1 [ru81]. A problem is in NCk ifand only if it is solvable by an ATM
in time O(logk n) and space O(log n).

Notice that in Proposition 2.1 the standard textbook definition of a Turing machine
does not make sense because the time bound is sublinear (and, thus, not all of the input
can be accessed on a single path of the computation). Therefore, we adopt the random-
access multi-tape model described by Chandra, Kozen, and Stockmeyer [cks81]. This
machine has a special index tape onto which the address of the input tape cell that needs
to be accessed is written (in binary). The input head can then read the value of the
input specified by this address. A further complication arises because circuit families are
defined as computing multiple-valued functions (that is, the corresponding circuits may
have more than one output gate), whereas Turing machines recognize sets of predicates.
We make the convention that a Turing machine M is said to compute a function f if the
predicate

Ay(c, i, z) de__f the ith symbol of f(z) is c

is recognized by M.
Following Ruzzo [ru81], we also make a number of assumptions (without loss of

generality) about ATMs. First, every configuration of an ATM has at most 2 successors.
Second, all accesses to the ATM’s input tape are performed at the end of the compu-
tation. This is easily accomplished by having the ATM guess the input and in parallel
verify it (by looking at the input tape) and continue with the computation. Finally, we



OPTIMAL FORMULA EVALUATION ALGORITHM 759

make the convention that deterministic configurations are considered to be existential
with one successor.

NG is considered to be a very fast complexity class, and many problems have been
shown to be in NG. Sum and product of 2 n-bit integers, sum of n n-bit integers, and
sorting of n n-bit integers are all in NG [sa76]. Because of their shallow depth, NG
circuits can always be converted into equivalent circuits with fan-out 1, polynomial size,
and O(log n) depth. In this form, they can be expressed as formulas.

COROLLARY 2.2. NC is the class of languages recognized by uniform log-depth for-
mula families. The nth member of the family recognizes all strings in the language of
length n.

A generalization of the uniform Boolean circuit families are the unbounded fan-in
uniform circuit families [csv82]. These circuit families are allowed arbitrary fan-in at the
A and V gates. We need a new uniformity condition.

DEFINITION. The direct connection language for an unbounded fan-in family of cir-
cuits (c,) (denoted LDC) is given by the set of 3-tuples (, g, y), where , g {0, 1}*,
y {Xl,’",Xn,0, 1,-, V,A} U {0, 1}* such that ify {0, 1}* then y is an input to g;
otherwise, y is g’s label. (c,,) is UDL uniform if LDC can be recognized by a DTM in
linear space (i.e., O(log c(c)) space).

We define a hierarchy of unbounded fan-in circuits by the following.
DEFINITION. For all k > 0, AC is the class of problems solvable by an unbounded

fan-in UDL-uniform circuit family {c,), where c(Cn) nO(I) and d(c,,) O(logk n).
AC U>o AC-

Once again we can characterize this hierarchy by using alternating Turing machines:
PROPOSITION 2.3 [CO85]. For all k > O, ACk is the class ofproblem solvable by an

ATM in space O(log n) and alternation depth O(logk n).
The definitions above suffice to define ACk when k > 0. However, we are interested

in AC because we wish to show that BSVP is complete for NC under AC reductions.
The uniformity condition is too strong in the circuit definition. The ATM definition
(Proposition 2.3) would have to place further resource restrictions on the machine since a
straightforward extension of the proposition would imply AC NL (nondeterministic
log space).

Immerman [im89] proposed defining ACk (k > 0) in terms of a CRAM (a CRCW
PRAM that is strengthened slightly to allow a processor to shift a word left or right by
log n bits in unit time). This modification does not affect ACk when k > 0. Immerman
also gave a number of other characterizations of AC, including first-order expressible
properties and inductive definitions for which the depth of the induction is constant, and
showed that all these characterizations are equivalent.

An alternate definition was proposed by Buss [bu87]. The log time hierarchy (de-
noted LH) introduced by Sipser [si83] is the class of problems solvable by an ATM in log
time and O(1) alternations. Buss proposed LH as the definition of uniform AC.

Recently Barrington, Immerman, and Straubing [bis88] showed that all 4 of the
above characterizations give the same class, thus suggesting that these may be the ap-
propriate definition. We would like a circuit definition of AC. We begin by defining an
appropriate uniformity condition.

DEFINITION [ru81]. (a,) is UD uniform if its direct connection language, LDC, can
be recognized by a DTM in linear time (i.e., O(log c(c,)) time).

Finally, AC is the class of problems solvable by an unbounded fan-in UD-uniform
circuit family (c,) that has constant depth and n() size. This definition is consistent
with the others due to the following.
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THEOREM 2.4. Uo-uniform AC LH.
The proof of Theorem 2.4 requires the following lemma.
LEMMA 2.5. IfL LH, then there is an ATMM that accepts L and there are c, k N

so thatfor all n and all z in {0, 1}* with Iz] n, and all configurations 7 with 171 <- c log
every computation ofM with input z starting in 7 terminates within c log n steps and at most
k alternations.

To handle the time constraint, we incorporate a clock into the ATM that times the
computation. When the clock runs out, the ATM automatically rejects. Because the
clock can count in unary, this at most doubles the running time. For the bound on the al-
ternations, we can use the finite state of the machine to count the number of alternations
that have occurred.

Proof (Theorem 2.4). (c_) An ATM M on input z guesses the output gate (say g)
of clx I, If g is "A" ("V"), then M enters a universal (existential) state. M now guesses
an input gate to g. If this gate is an input to the circuit, then M directly checks its cor-
responding input and accepts or rejects appropriately. Otherwise, it recursively applies
this procedure to this new gate. All guesses about the circuit are verified by checking for
the appropriate membership in LDC. Since (a,) is constant depth and M uses at most
2 alternations to simulate each step of the circuit, M is in LI-I.

(_) Let L E LH. Let M be a log time ATM recognizing L, and let c, k E N, as in
Lemma 2.5. We define a UD-uniform family of circuits (ai) that simulate M and have
depth k.

The gates of a, are labeled by a 3-tuple (7, t, p), where
1. 7 is a configuration of M (on inputs of length n).
2. t {A,V,I,I, 0, 1},where

(a) t =/x if 7 is an universal configuration.
(b) t V if 7 is an existential configuration.
(c) t 1 if 7 is an input configuration and M in configuration 7 accepts if

zi 1, where is on the index tape.
(d) t I if 7 is an input configuration and M in configuration 7 accepts if

z 0, where is on the index tape.
(e) t 0 if 7 is a rejecting configuration.
(f) t I if 7 is an accepting configuration.

3. p {1, r}*, where [Pl < c log r.
There is exactly one gate for every possible triple (7, t, p). The output gate is the

gate labeled (70, to, A), where 70 is the initial configuration, to is the type of 70, and A is
the empty string. The input gates are the triples (7, t, p) of type t equal to I, I, 0 or 1;
these are identified with the inputs z, , 0 and 1 (respectively), where is the value on
the index tape of the configuration 7. If g (7, t, p) and g (7, t, p) are gates
of a, then g is an input to gz if t tz and the computation described by p starting
in configuration 7 ends at 7 such that all configurations in this computation except the
last are of type t2.

It is straightforward to show by induction that a gate g (7, t, p) is 1 if and only
if 7 is accepting with respect to the input z. Also, the depth of the circuit is clearly the
number of alternations of M.

It remains to be proved that the circuit family (a) is UD uniform. However, this
now follows directly, since for the given gates g (7, tt, p) and g2 (72,,t2,/92) we
can simulate the computation specified by p to determine if g is an input to 92.

Note. If the U9-uniformity condition is used in the definition of AC (k > 0),
the class does not change. Also, the ATM definition of AC (Proposition 2.3) can be
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augmented to include k 0 by adding the further restriction that the machine operate
in time O(logk+l n).

We are now ready to define AC reductions:
DEFINITION. Let A and B be sets. Then A <ACO B if there is a function f in AC

such that for every z, z E A if and only if f(z) B.
THEOREM 2.6. IfA <AGO B and B <AGO C, then A <AGO C.
Proof. Let f be an AC function such that x A if and only if f(x) B. Let M be

an ATM computing f. Let g be an AC function such that x B if and only if g(x) C.
Let N be an ATM computing g. We show that g o f is computable in AGO by an ATM
T. Suppose the input to T is (c, i, x). T must accept if and only if the ith bit of (g o f)(x)
is c. T begins by simulating N on input (c, i, x) until N enters an input state. Suppose
that when N does so, it has j written on its index tape and N would accept if xj was
b E {0, 1 }. T now finishes by simulating M on input (b, j, x). Clearly, T runs in log time,
uses a constant number of alternations, and computes g o f.

THEOREM 2.7. IfB NC and A <_NC,1 B, then A NC1.
Proof. Let f be a function such that for every x, x A if and only if f(x) B and f

is in NC1. Let M be an ATM recognizing B in log time. Let N be an ATM computing
f (that is, recognizing AI) in log time. We describe an ATM T that recognizes A. T
simulates M except where M enters an input configuration. Suppose T has simulated
M up to an input configuration and has written onto its index tape and c as the guess
for the ith input bit. At this point T begins to simulate N with the input (c, i, x). It is
easy to see that T accepts input x if and only if M accepts f(x). Also, since M and N
run in log time, so does T. Therefore, A E NC1.

COROLLARY 2.8. IfB NC and A <ACo B, then A NC1.
2.2. Arithmetic circuit complexity. Most of the material in this section can be

found in [jg86].
DEFINITION. An arithmetic circuit (straight-lineprogram) over an algebraic structure

F is a directed acyclic graph for which each node has indegree 0, 1, or 2. Nodes with
indegree 0 are labeled as either input nodes or elements of F. Nodes with indegree 1
and 2 are labeled with the unary and binary operators of F, respectively. For example if
F is a field, then the unary operators are "-" (additive inverse) and ,,-1,, (multiplicative
inverse) and the binary operators are "+" and "". There is a sequence of m > I gates
with outdegree 0 designated as output nodes.

As with Boolean circuits, we assume there are no superfluous nodes. For an arith-
metic circuit a the complexity and depth of a are defined the same as for Boolean circuits.

Arithmetic circuits are not sufficiently powerful for our purpose. For example, there
may be no way to describe and manipulate the formula within the particular algebraic
structure.

DEFINITION. An arithmetic-Boolean circuit over an algebraic structure F is an arith-
metic circuit (over F) augmented with a Boolean component and an interface between
the two. The Boolean component is a Boolean circuit. The interface consists of two
special gatesmsign F {0, 1}, defined by sign(a) 0 if and only if a 0, and
sel. F F.x {0, 1} -- F, defined by

b,c)=
a ifc=O,

sel(a,
b ifc= 1.

The definitions ofcomplexity and depth for arithmetic-Boolean circuits are extended
from arithmetic circuits. Also, the definitions of arithmetic-Boolean circuit families, uni-
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formity, and parallel complexity classes (i.e., the NC hierarchy) are analogous to those
for Boolean circuits.

Inputs to an arithmetic-Boolean circuit consist of algebraic values to the arithmetic
circuit and Boolean values to the Boolean circuit. In the case of arithmetic-formula eval-
uation, the Boolean inputs will describe the structure of the formula and the arithmetic
inputs will specify the value of the variables in the formula.

2.3. Problem definitions.
DEFINITION. A Boolean sentence is defined inductively by
1. 0 and 1 are Boolean sentences.
2. If a and/ are Boolean sentences, then so are (-a), (a A/3), and (a V/3).

The definition of Boolean sentences above describes sentences in infix notation.
However, our algorithm will work with sentences in postfix (reverse Polish) notation
with the further provision that for any binary operator, the longer operand occurs first.

DEFINITION. Apostfix-longer-operand-first (PLOF) sentence is defined by
1. 0 and i are PLOF sentences.
2. If a and are PLOF sentences where lal > I/l, then a-, a/A, and a/V are
PLOF sentences.

We define the value of a Boolean or PLOF sentence in the usual way, where 0 and
1 represent False and True, respectively.

DEFINITION. The Boolean sentence-value problem (BSVP) is as follows: Given a
Boolean sentence A, what is the value of A?

DEFINITION [js82]. Asemi-ring is a 5-tuple (S, @, (R), 0, 1), where 0, 1 S such that
1. (S, q3, 0) is a commutative monoid.
2. (S, (R), 1) is a monoid.
3. (R) distributes over
4. For every a S, a (R) O O O (R) a.

For convenience, we will also assume a unary operator "(R)," where (R)a a for every
a S. This will give us flexibility to increase the size of a formula over a semi-ring.

Some examples of semi-rings are S ({0, 1}, V, A,0, 1), S (Z, min, , +o, 1),
and any ring S.

DEFINITION. Let be a semi-ring (which may also be a ring or field). An arithmetic

formula over S with indeterminates X1, X2,.--, Xn, is defined by
1. For 1 < i < n, X is an arithmetic formula.
2. For every c S, c is an arithmetic formula.
3. If a is an arithmetic formula and 0 is a unary operator of S, then (0 a) is an

arithmetic formula.
4. If a and fl are arithmetic formulas and

is an arithmetic formula.
An arithmetic formula Awith indeterminates X, X2, , X= is denoted by A(Xi,..., Xn).

The Boolean formula discussed earlier is clearly a special case of these new for-
mulas. We define postfix arithmetic formula and PLOF (postfix-longer-operand-first)
arithmetic formulas to be exact analogs of their Boolean counterparts. The length of
an arithmetic formula A (denoted IA]) is the number of nonparenthesis symbols in A
(where an indeterminate is one symbol).

DEFINITION. Let S be a ring, field, or semi-ring. The arithmetic-formula evaluation
problem is as follows: Given an arithmetic formula A(Xi, X2,..., Xn) over S and con-
stants c, c2,..., c, S, what is A(ci, c2,..., c,)?
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2.4. Other definitions. Consider a Boolean sentence A. Define the depth of
atoms ofA as the level of nesting of parentheses in the subsentence containing the atom.
We can view A as a binary tree, namely its (unique) parse tree, defined inductively as fol-
lows: the root is the operator of A of minimum depth and its children are the roots of
the trees of the operands of the operator. Notice that we do not need parentheses in the
tree representation. In exposition we will use the tree representation interchangeably
with the infix or PLOF representation. Therefore, we carry over tree notions such as
root, child, ancestor and descendent to sentences.

DEFINITION. Let A be a Boolean sentence. The length of A, denoted IAI, is the
number of nonparenthesis symbols in A.

This definition has the desirable property that sentences have the same length re-
gardless of the representation used (either infix or PLOF).

DEFINITION. Let A be a postfix Boolean sentence, and suppose 1 <_ j <_ k _< n.
Then A[j, k] is the string A[j]A[j + 1]... A[k]. The subsentences of A are those strings of
the form A[j, k] that form sentences. For I < k < n, A denotes the unique subsentence
of A of the form A[j, k] for some j. We call Ak the subsentence rooted atposition k or,
for short, rooted at A[k]. We use j <3_ k to mean that A[j] is in Ak and j <1 k to mean j k
andj # k.

Note that j S k if and only ifA is a substring of Ak if and only if A[k] is an ancestor
of A[j]. Also, the relation <1_ forms a partial order. The following fact is used often:

LEMMA 2.9. Let A be a postfix Boolean sentence IAI n. Let a, b, c < n such that
c< a, c < b, and a <_b. Then a< b.

Proof. The subsentence Ab is of the form A[j, b] (j < b). c < b j < c < b and
c <1 a = c < a. Therefore, j < c < a < b = a b. I-1

DEFINITION. Let A be a Boolean sentence. Consider the sentence obtained by re-
moving a subsentence A and replacing it with some constant c (i.e., c {0, 1}). The
resulting sentence is denoted by A(k, c). We say that A(k, c) is A with a scar at k and
that A(k, c) is scarred.

All the definitions made here can be translated to arithmetic formulas in a natural
way, and we will use these definitions when discussing arithmetic formulas.

3. Translation ofBoolean sentences to PLOF sentences. As a first step toward find-
ing an NC algorithm for BSVP, we give an NC algorithm that translates Boolean sen-
tences into PLOF sentences. It iswell known [co85] that there is a uniform family of
NC circuits in which the nth circuit computes the function

Count" {0, i}n -- {0, 1}

(i.e., given n Boolean values, output a binary string denoting their sum). Likewise, there
is a uniform family of NC circuits where the nth circuit computes the summation of n
n-bit numbers.

If A is an infix Boolean formula, let A[i] E {A, V, -, 0, 1} be the ith nonparenthesis
symbol in A. We describe an algorithm that outputs, for each A[i], its position in the
PLOF sentence.

DEFINITION. For A, an infix Boolean sentence, and A[1]A[2]... A[n], the enumer-
ation of the nonparenthesis symbols of A, the subsentence rooted at A[i] is the smallest
subsentence of A containing A[i]. A[k] is an ancestor of A[i] if the subsentence rooted at
A[k] contains the subsentence rooted at A[i].

LEMMA 3.1. Thefollowing are computable in NC.
a. Scope(A, i, j) de__f A[i] in the subsentence rooted at A[j].
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b. For each j, the size ofthe subsentence rooted at A j].
Proof. Notice that by counting the nonparenthesis symbols in A, it is easy to locate

A[j] in A.
a. Define the depth of nonparenthesis symbols in A in the normal way (i.e., with respect

to the parse tree for A). Using Count, it is easy to determine the depth of each
nonparenthesis symbol of A. This is used to find the parentheses that delimit
the subsentence rooted at A[j]. A[i] is in this subsentence if it sits between these
parentheses.

b. Count the number of for which Scope(A, i, j) holds. 1
To determine the position of nonparenthesis symbol A[j] in the PLOF translation

of A, do the following:
1. Calculate the size of the subsentence rooted at A[j].
2. For each ancestor A[k] of A[j], let Lk (Rk) be the size of the subsentence rooted

at the left (right) child of A[k]. Define

Lk if Lk >_ Rk and Scope(A, j, right child of A[k]),
Sk Rk if Rk > Lk and Scope(A, j, left child of A[k]),

0 otherwise.

3. The position of A[i] is ] Sk.
Because summation is NC computable, it is now easy to see that the function mapping
an infix formula A to its PLOF translation is NC computable.

4. The algorithm for the PLOF sentence-value problem. Because there is an NC
algorithm that translates a Boolean sentence into an equivalent PLOF sentence, it suf-
fices by Theorem 2.7 to prove the next theorem in order to prove that the Boolean
sentence-value problem is in NC.

THEOREM 4.1. There is an NC algorithm for determining the truth value ofa PLOF
sentence.

For the remainder of this section, we present a proof of Theorem 4.1. A good way to
explain the algorithm is to use an interpreted version of the Dymond-Tompa 2-person
pebbling game [dt85] (this is the standard simulation of a Boolean circuit by an ATM).
This version can be used to determine the output of a Boolean circuit C with specified
inputs, as follows. The game has two players, called the Pebber and the Challenger.
The Pebbler has a supply of pebbles, each labeled either 0 or 1. The Pebbler moves
by placing a pebble on a node of C. (The node is either a gate or an input to C.) The
label on the pebble represents the Pebbler’s guess as to the value of the node pebbled.
The Pebbler moves first by placing a pebble labeled 1 on the output node, representing a
guess that the output value of the circuit is 1. After each Pebbler move, the Challenger
moves by challenging some pebbled node. The challenged node must either be the one
just pebbled or the node last challenged by the Challenger. The game ends when all in-
puts to the challenged node have been pebbled (pebbles are never removed once placed
by the Pebbler). The Pebbler wins if and only if the label on the pebble of the chal-
lenged node is consistent with the node type and the labels on its inputs.

For example, if the challenged node is an input node with value 1, then the Pebbler
wins if and only if the pebble on that node has label 1. If, on the other hand, the chal-
lenged node is an OR gate with pebble label c and its inputs have pebble labels z and y,
then the Pebbler wins if and only if c is the logical OR of z and y.

LEMMA 4.2. In the above game, the Pebbler has a winning strategy ifand only if the
circuit has output 1.
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Proof. If the circuit has output 1, then the Pebbler’s strategy is, for each move, to
pebble with the correct label all unpebbled inputs to the challenged node. If the circuit
has output O, then the Challenger’s strategy is to always challenge the node ofminimum
depth whose pebbled value is incorrect.

The above game forms the basis for our NG algorithm for determining the value
of a PLOF sentence. The input to the algorithm is a PLOF sentence A, which is a string
of symbols A A[1]... A[n] from the alphabet {V, A, =,-, 0, 1}. Hence, the length of
A, IAI, is n.

Without loss of generality, we may assume that n is a power of 2. If n is not in fact
a power of 2, the algorithm proceeds as if a string of --’s is tacked on to the right end,
bringing the length of the input to the nearest larger power of 2. If the number of such
--’s is odd, the normal output of the algorithm is negated.

To adapt the pebbling game from the circuit C to the PLOF sentence A, the Pobbl or
places a pebble on a position k of A instead of a node of C, and the label on the pebble
is a guess as to the value of subsentence Ak. The maximal subsentences of Ak are the
inputs to the node.

If the sentence has value 1, then the Pebbler can force a win in O(log n) moves by
the strategy used by Tompa [to85] to efficiently pebble a tree. (The basic idea goes back
to Lewis, Stearns, and Hartmanis [lsh65] in their proof that context-free languages can
be recognized in space O(logz n).)

This strategy can be described as follows: Consider the challenged subsentence A
to be scarred by replacing each of its maximal pebbled subsentences by 0 or 1 (the label
on the pebble). Place the next pebble on the subsentence Aj ofA that comes as close
as possible to cutting the scarred A in half. That is, the scarred size of Aj should be as
close as possible to the new scarred size ofA (in fact, the size of A; will be between
and the size of Ak). In this way, whether the Cha:t:tenger next challenges the same
position or the new position, the scarred size of the challenged subsentence is at least
less after each pair of moves.

A straightforward implementation of this strategy on an ATM requires time
O(logz n), since each of the O(log n) steps requires time O(log n) to describe a pebble
position. To reduce the ATM time, we present a variation of the strategy that includes a
uniform method for choosing subsentences, so that each pebble move can be described
in a constant number of bits.

Associated with each of the Pebbl or’s moves is a substring g/- A[i, j] of the input
sentence Awhose length is a power of 2. This substring includes the currently challenged
position k and all unpebbled positions in the scarred subsentence A. All future moves
are made within g. To help determine these moves, we define distinguished positions
V(g), V1 (g), and V2 (g), in g which depend only on A and the end points (i and j) of

DEFINITION. Let g A[i, j]. If g has even length, define

V(g) max{klk < j and k}.

That is, Av(g) is the maximal subsentence ofA containing A[i] whose root is in g. Further,
define

Vl(g) V(A[i, (i + j 1)/2]) and V2(g) V(A[(i + j + 1)/2,j]).

Here, Vl(g) and Vz (g) are just "V(first half of g)" and "V(second half of g)," respec-
tively.

LEMMA 4.3. Let g A[i, j] have even length. Then V(g) is one ofV (g) and V2 (g).
Proof. If V(9) <_ (i + j 1)/2, then V(9) V (9); otherwise, it is Vz(9).
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LEMMA 4.4. Let t A[i, j] have even length. Then V1 (t/) + 1 V2(t/).
Proof, If V1 (g) (i + j 1)/2 or VI(g) _<1 V2(g), the lemma is obvious. Therefore,

assume that V(g) < (i + j 1)/2 and V(g) $ V2(g). Let W V(A[V(g) + 1,j]). We
show that W V2(g). If W > (i + j + 1)/2, then W V=(9) since Aw and Av() are
maximal and both contain A[(i + j + 1)/2]. Now suppose that W < (i + j 1)/2 (see
Fig. 4.1).

FIG. 4.1. V1 (9) : Vz(g) and W <_ (i + j 1)/2.

Clearly, Aw is the left operand of its parent operator, and its parent occurs to the
right of 9 (since otherwise we could extend W to include its parent). But Aw is at least
as long as its sibling to its immediate right because the input is a PLOF sentence. Since
[Awl < (i +j- 1)/2, the entire sibling as well as the parent, must be in 9, a contradiction
to the definition of W. [3

DEFINITION. Let t/= A[i, j] be a substring ofAwhose length J-i/ 1 is divisible
by 4. Then t/x, t/z, and t/3 denote the left, middle, and right halves of t/, respectively. That
is, g A[i, i + [91/2 1], g2 A[i + 191/4, + 3tgl/4 1], and g3 A[i + Ig[/2, j].

Our pebbling game will allow the Pebbler to place pebbles only at the V position
corresponding to each quarter of g (see Fig. 4.2).

Ul( u=( vx( v=(a v1(3

FIG. 4.2. Pebble positions in 9.

It is easy to see
LEMMA 4.5. V (t/1) < V2 (t/1) Vl (t/2) < V2 (t/2) Vl (g3) < V2 (t/3).
Rules of the ATM game. The Pobbaor may pebble up to 4 positions in one round of

moves, as specified below. The Challenger challenges one of these 4. Associated with
each round (except the first) is a substring g of A, whose length is a power of 2 and which
contains the challenged position. We assume IA[ > 2.

1. For the first round, the PobbXer places a pebble with label 1 on position n.
The ChaXXenger challenges n. The substring associated with the next round is
g A[1, n]. (Recall that n is a power of 2 by our earlier assumption.)

2. After the first round, the substring g contains the challenged position c. Assume
[g[ > 4. The pebbler considers V1 (gl), V2 (t/i), V2 (t/2), V2(g3), in that order, for
pebbling. For each of these 4 candidates k, the Pebblor pebbles k if and only
if k _<1 c and no pebbled satisfies k <! <3 c. The label on the pebble may be
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either 0 or 1, except that if k c (the only case in which a position is allowed to
be repebbled), the label must agree with the previous label. The Chattengor
challenges one such pebbled V(g). Notice that by Lemma 4.3, this permits
rechallenging c. The new substring is g.

3. Assume Igl 2. Then g consists of the challenged position c and a second
position k. The Pobblor pebbles k if and only if k is unpebbled and k <1 c, and
then repebbles c with the same label as before. The t3hallonger challenges
one of the positions c’ just pebbled. Lemma 4.6 below shows that all maximal
subsentences of A, have been pebbled. The Pobblor wins if and only if the
pebble label on c’ is consistent with the operator A[c’] and the pebble labels on
the maximal subsentences of A,.

The following lemma justifies our assertion that if c is the challenged position, then
the substring g contains all unpebbled positions in the scarred subsentence A. It also
justifies the end condition in step 3 of the Rules.

LEMMA 4.6. After each round in the ATMgame, everyposition k <1 c with k to the left
of g has somepebbled such that k

Proof Induction on the round number.
Basis. Vacuous.
Induction. Suppose c’ is the new challenged position and g is the new interval. By

the Rules, c’

_
c. Let k <1 c’, where k is to the left of g. Thus, k <1 c’

___
c.

Case 1. k is to the left of g. By the induction hypothesis, there is a pebbled with k <1 c.
By the Rules, c’ 1. But subsentences A, and At both contain k, so by Lemma
2.9 one subsentence contains the other. Hence, k

_
<1 c’.

Case 2. k is in g but to the left of g. Then k is in g. If j 2, then by Lemma 4.4
k <3 V1 (91) or k <1 V2 (g) and by the Rules c’ V2 (92). Similarly, if j 3, then
k

__
V (91), k

Va (gb). Then dearly Va (gb < c’, and by Lemmas 2.9 and 4.5 k

_
V(gb <1 c’ c

(since the subsentences at both position Va(gb) and c’ contain k). If Va(gb) is
pebbled, then we are done, with V(gb). Otherwise, by the Rules, there is
a pebbled with Va (gb) -- < C. Again by the Rules, c’ 1. But subsentences
A, and At both contain V, (gb), SO one subsentence contains the other. Hence,
k <:1 Va (gb)

LEMMA 4.7. In the ATM game, the Pebb].er has a winning strategy if and only if the
alue ofA is 1.

Proof. The proof is similar to that of Lemma 4.2. The positions pebbled are com-
pletely determined by the Rules and the positions challenged. The only choice iven to
the Pebber is the labels on the pebbles. If the value of A is 1, the Pebber’s strategy
is to choose each label equal to the value of the subsentence pebbled. If the value of A
is 0, the Cha:tenger’s strategy is to challenge the leftmost incorrectly labeled pebble in
each round.

It remains for us to show that the game can be implemented on an ATM in time
O(log n).

LEMMA 4.8. Thefollowingpredicates are in

a. Subsentence(A, i, j) de__f A[i, j] is a well-formed PLOF sentence.

b. Descendent(A, i, j) de=f i <1 j.

C. Child(A, i, j) de=f Ai is a maximalproper subsentence of Aj.
d. V(A, i, j, k) de__.f (k Y(A[i, j])).
Proof. Recall that the function Count is in NC.
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a. Check that the number of binary operators in A[i, j] is one less than the number of
constants and that for each binary operator in A[i, j] (say A[k]) there are more
constants in A[i, k] than binary operators.

b. Find the unique k for which Subsentence(A, k, j) holds, and check that k < i < j.
c. Assume that A[j] is a binary operator and that i j- 1 (otherwise, it is trivial). Check

that A[i + 1, j + 1] is a sentence.
d. Since V(g) is defined in terms of subsentences, descendents, and children, this is

immediate from a.-c. V1

LEMMA 4.9. Let A be a PLOF Boolean sentence and (pl,"-,pk) (pi E {1,..., 4}
for all PO be a sequence representing the challengedpositions (from among V1 (gl ), V2 (gl),
V2 (g ), and Vz (ga)) in the first k rounds ofa 2-player game as described above..Then, the
following are in NC
a. Determining if the sequence is valid.
b. Determining the position ofpk in A.
c. Determining the interval g after the kth round.

Proof. Let IAI n . We prove the above in the reverse order.
c. For each i (1 < i < k) let

Zi

0 if pi 1, 2,

1
2

if p 3,
2

if pi 4,

Ri

1,

2- if pi--l,2,

1 2. 2-7 if p--3,

0 if Pi 4.

Here Li and R represent the amount the left and right boundaries of 9 are
moved at the ith round of the game. Then, the current 9 is given by the string
All + ’ Li, n ’ nil.

b. Let g be the interval after the first k 1 moves (i.e., corresponding to plays (p, .,
Pk-)). Then, we use the predicate V to determine the position of the pkth
pebble placement at move k in g.

a. Denote the currently challenged position after the first moves by I((p,..., pi)).
For every i (1 _< i < k) check that I((pl, ,p,p+))

_
I((p,... ,pi)), and

for every j (1 < j < p)check that I((p,... ,p+)) I((p,... ,pi_,j)). All
these checks can be performed in parallel using part b. to compute I. q

DEFINITION. Let A be a PLOF Boolean sentence. Then, a k-round history of A
is a sequence u (Ul,... ,Uk), where u (pi, Ti,,..., Ti,pi_l) p {1,..., 4}, and
Ti,j {0, 1}. A k-round history u (u,..., uk) of A is valid if there is a play of the
2-person game outlined above such that each ui represents the ith round of this game.
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By this we mean that for each round i (1 < i < k) pi is the position (in the sequence
V1 (gl), V2 (g), V2 (g), Vz (g3)) of the challenge node and 7-i,j is the value of the pebble
placed by the Pebb:ter at the jth pebble position if this position was pebbled, and other-
wise -,j is arbitrary.

Using Lemmas 4.8 and 4.9, it is easy to prove the following.
LEMMA 4.10. Let A be a PLOF Boolean sentence. Let u be a k-round history of a

game on A. Then, there is an NC algorithm to determine if u is valid.
Since Igl is cut in half each round of the game, the number of rounds is at most

log n / 1. The ATM simulates the Pebblor’s moves by using existential states and the
Cha:tlonger’s moves by using universal states. It records the history of the play in a
string of 10 bits for each round. The 4 possible Pobb’l er moves are recorded by using
a pair of bits each, telling (1) whether the position was pebbled and, if the position was
pebbled, (2) the label. The Chaltenger’s move is recordedwith 2 bits tellingwhich ofthe
potentially 4 moves is challenged. The finite-state control can ensure that the challenged
position is one that was actually pebbled.

After the history of the play is recorded, the ATM checks whether 1) the Pobb].or’s

moves are legal and 2) whether the Pobb’l er won. The ATM accepts if and only if both
conditions are true. To do 1), Lemma 4.10 is used. Condition 2) is checked by using the
information in the history of the game and the Child predicate from Lemma 4.8. It is
now easy to complete the proof of Theorem 4.1.

5. NC completeness of BSVP. Theorem 4.1 showed that there is an NC algo-
rithm for recognizing true PLOF sentences; hence, by the NC translation of Boolean
sentences into PLOF sentences there is an NC algorithm for recognizing true Boolean
sentences, in this section we prove that these results are optimal.

THEOREM 5.1. BSVP is N(3 complete under many-one AGO reductions. BSVP is
also NC complete under many-one deterministic log-time reductions.

Recall that BSVP is the set of true Boolean sentences; Theorem 5.1 also holds for
the set of true PLOF sentences. By Theorem 2.4, a deterministic log-time reduction also
is an AC reductiOn. So to prove Theorem 5.1 it suffices to prove completeness under
deterministic log-time reductions.

Thus, it suffices to exhibit, for a log-timeATM M, a deterministic log-time function f
such that, for any input z (with Ix[ n), f(z) is a Boolean sentence that has value true
if and only if M accepts z. The sentence f(z) will essentially be the execution tree ofM
on input z where the V’s,/X’s, O’s, and l’s in f(z) correspond to the existential, universal,
rejecting, and accepting configurations in the execution of M, respectively. We begin by
building the framework for the proof of Theorem 5.1.

Recall the assumptions made in 2.1 about ATMs--every configuration has at most
2 successors, all accesses to the ATM’s input tape are performed at the end of the com-
putation, and deterministic configurations are considered to be existential.

Let M be a log-time ATM; without loss of generality, the input alphabet for M is
{0, 1} and the runtime of M is bounded by t(r) c. log n + c on inputs of length r
for some constant c. Throughout the remainder of this proof we will be working with
this fixed M. For each configuration s of M, we denote by l(s) and r(s) the successor
configurations of s, where the degenerate cases are defined by l(s) r(s) when s has
exactly 1 successor and s l(s) r(s) when s has no successors (i.e., s is a halt state or
a read state).
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Suppose s is a configuration and/9 E {/, r}*. Define

8 when p e (the empty string),

when p l’y, (7 E {1, r}*),
when p r’r, (’y {1, r}*).

Intuitively, p is a string of choices made by M, and p(s) is the configuration ofM reached
from s by these choices.

We want to define a family of Boolean formulas (Fn) such that M on input z accepts
if and only if FI (z) is a true Boolean sentence (here Boolean formulas are similar to
the arithmetic formulas defined in 2.3 except they have/ and v as operators). Let I
be the initial configuration of M. We define the nth Boolean formula Fn as follows: Fn
has indeterminates X1,..., X,. Let p {l, r}*. First define the Boolean formulas
(Ipl <_ t(n)) by

1. If IPl t(n), then p(IM) is a halting configuration and we define the following:
If p(IM) is accepting (respectively, rejecting), then/3,(p) 1 (respectively,

0).
If p(It) is a read configuration with i on its index tape and M would accept
(respectively, reject) if the ith bit ofthe input is 1, then/3n (p) Xi (respectively,

2. If IPl < t(n), then let bt 13n(pl) and br n(pr). If p(IM) is a universal
configuration, then fin (p) (bt A br) and otherwise/n (bt V b).

Now, Fn =/n(e). Clearly, Fix (z) is true exactly when M accepts z.
If z is an input to M, then z zl...zn is a vector of O’s and l’s. We let f(z) be

the Boolean sentence obtained from Fix by replacing each literal Xi by the binary digit
z and each literal X by the binary digit i zi. To prove Theorem 5.1, it will suffice to
show that the function f(z) is deterministic log-time computable. Recall that this means
that there is a deterministic log-time Turing machine N that, on input (z, i), outputs the
ith symbol of f(z) in O(log n) time.

DEFINITION. Let b be a Boolean formula. Let 14[ denote the number of symbols
in 4, including parentheses. For each nonparenthesis symbol s in 4, the height of s is
defined inductively by

1. If s is a 0 or i or for some i, Xi or X, then the height of s is 0.
2. If s is an operator, then its height is 1 plus the maximum of the heights of its

operands.
The height of 4 is the maximum height over all the symbols of 4.

We notice that the formulas (F,) are completely balanced (i.e., for every operator,
both its operands have the same height). Also, Fn has height t(n). It is easy to prove the
following lemma by induction.

LEMMA 5.2. Let q be a completely balanced Boolean formula of height s with only
binary connectives. Then I1 28+2 3.

Thus, IF I 2 3, and for p {1, r}* (Ipl <- t(n)), I  (p)l 2 /2 3, where
s t(n) [p]. Our construction of the deterministic log-time algorithm is based on the
following observations about F,:

1. For each i < 2t(’0+ 3, there is a unique p {/, r}* such that the ith symbol
of Fn is in/3n (p) but not in/3n (pl) or/3n (pr). (We make the convention that the
symbols of F,, and of f(z) are numbered starting with 0.)

2. Given p {/, r}*, there is a unique number No such that/3,(p) occurs at posi-
tions No,... No + [fin (P)[ 1 in Fn. Specifically, if Ipl < t(),
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(a) The leftmost "(" of,(/9) occurs at position Na of F,.
(b) The rightmost ")" of 3,(p) occurs at position N + 13,(p)l 1.
(c) The root of 3,(p) occurs at position Na + 1/2(1()1 1).
(d) (pl) occurs at positions Na + 1,...,N +
(e) 3,(pr) occurs at positions Np + 1/2(I,(P)I + 1),..., Na + (]3n(P)l 2).

3. Since,(p) is completelybalanced and has height t(n)-lp], 1, (/9)1 2t(n)-Ial+2

-3. Hence, Nat Na + 1 and Nat Na + 2t(n)-Ial+l 1.
To compute the ith symbol of the Boolean sentence f(z), we need to find a

{1, r}* such that i N or i N + 2t(n)-Ial+l 2 or i Na + 2t(n)-Ial+2 4, which
indicate that the ith symbol ofF is the "(", the root, or the ")" of,(/9). It is then quite
easy to simulate M(z) to determine what the ith symbol of f(z) is. We first give a naive
algorithm for computing the ith symbol of f(z); unfortunately, this naive algorithm does
not execute in O(log n) time, so we shall later indicate how to improve its execution time.

Input: z, i
Output: The ith symbol of f(z).
Step (1)" Compute n
Step (2): Compute d c. log n + c. (This is easy because our logarithms are base

two.)
Step (3): Check that < 2a+ 3 If(z)l; if not, abort.
Step (4): Set p e (the empty string).

Set s d.
Set j i.

Step (5): (Loop while s > 0)
Select one case (exactly one must hold):

Case (5a): If j 0, output "(" and halt.
Case (5b)" If 0 < j < 2"+ 2, set j j I and set p
Case (5c)" If j 28+ 2, exit to step (6).
Case (5d)" If 28+1 2 < j < 28+2 4, set j j (28+1 2) and set

p= pr.
Case (5e): If j 28+ 4, output ")" and halt.

Sets=s-1.
If s > 0, reiterate step (5); otherwise, exit to step (6).

Step (6): Simulate M for [p[ steps to determine the configuration p(I).
If IP[ < d and p(1M) is a universal configuration, output "A".
Otherwise, if IPl < d, output "V".
Otherwise, if p(1) is an accepting configuration, output "1".
Otherwise, if p(I) is an rejecting configuration, output "0".
Otherwise, p(I) is an input configuration with some number k written
on the index tape. If the value of the ith symbol of z would cause this
configuration to accept, output "1". Otherwise, output "0".

It should be clear by inspection that this algorithm correctly computes the ith symbol
of f(z). In an iteration of the loop in step (5), s is equal to t(n) IPl, and it has already
been ascertained that the ith symbol of FI is the jth symbol of the subformula lxl (P)o
The subformula 11 (/9) is of the form 11 (pl) 11 (P’), where is either V or A; the five
cases correspond to the jth symbol being (a) the initial parenthesis, (b) in the subformula

11 (pl), (c) the logical connective symbol, (d) in the subformula 11 (pl), or (e) the final
parenthesis.

To complete the proof of Theorem 5.1, we must prove that there is a log-time deter-
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ministic Turing machine N for computing the ith symbol of f(z). In the above algorithm,
each step other than step (5) takes O(log n) time. In particular, for step (6) the simula-
tion of M is hard wired and N simulates each operation of M with only one operation.
Step (1) can be executed by finding the least k such that rt < 2k and then using a binary
search to calculate n. Step (5), however, is more difficult: There are O(log n) iterations
of the loop, and each iteration takes O(log n) time in our naive implementationmwe
need each iteration to take constant time.

The reason that each iteration takes O(log rt) time is that in case (5d), for example,
to subtract 2+ 2 from j, both the high- and low-order bits of j must be modified; but
j has O(log n) bits, so it takes too much time just to move the tape head from one end
of j to the other. Similar problems arise in comparing j to 2+ 2 and 2+z 4. Also,
even when just decrementing j by i in case (Sb), it may take O(log n) time to propagate
a borrow.

Fortunately, all these problems can be avoided by a simple trick. Before starting
step (5), N breaks j into two parts: the low-order 2 / log d bits of j are stored on a
tape in unary notation; the remaining high-order bits of j are kept on a different tape in
binary notation. Thus, to decrement j by 1, N merely changes one tape square on the
unary tape and moves that tape head one square. To subtract 2+ 2 from j, N need
only change two squares on the unary tape and modify one square of the binary tape
(since j _< 2+z 4). A complication arises when there is a carry or borrow out of the
(2 + log d)-th bit position of j. N handles this by allowing the unary tape to overflow
(and cause a carry) or underflow (and cause a borrow). To do this the unary tape is
initialized with a marker indicating where the overflow or underflow occurs; since the
unary part ofj is changed by 1 or /2 at most d c. log n/ c times, at most one marker
is needed. During the iterations of the loop in step (5) N remembers whether or not an
underflow/overflow has occurred. N also initializes the binary tape with a marker that
indicates how far the borrow or carry will propagate.

We can now summarize how N executes step (5) in O(log n) time. First j is split into
binary high-order and unary low-order partsthese are stored on separate tapes along
with borrow/carry information. Then the loop is executed for s d to 8 1 / log d,
maintaining the value of j in the split binary/unary form. After these iterations, the
higher-order, binary portion ofj is equal to zero. The unary portion ofj is now converted
back to binary notation, and the remaining iterations of the loop with 8 log d to s 0
are executed in the normal naive fashion with j in binary notation. This completes the
proof of Theorem 5.1. [3

The set of true PLOF sentences is also complete for NC under deterministic log-
time reductions. This is proved similarly to the proof of Theorem 5.1: It must be shown
that the ith symbol of f(x) in postfix notation can be obtained in deterministic log time.

6. Log depth circuits for arithmetic formula evaluation. We begin by describing a
2-player game (similar to that in 4) for evaluating arithmetic formulas over commutative
semi-rings. We then transform this game into a log depth arithmetic-Boolean circuit over
the commutative semi-ring. Finally we show how the game can be modified to solve the
problem for noncommutative semi-rings, rings, and fields.

Throughout this section let ; be some fixed commutative semi-ring and A be an
arithmetic formula over $ of length n. Without loss of generality we can assume that n
is a power of 2. If rt is not a power of 2, we assume that A has a string of (R) attached
to the left-hand side, bringing the total length of A to the next power of 2. (Recall that
"(R)" is the unary identity operator.) Let A(j, X) be A with Aj (the subformula rooted at
position j) replaced by the indeterminate X. Recall that this is equivalent to saying that
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A is scarred at j. Then we can write

A(j,X) B X / C (B,c es).

Therefore, determining the value of A can be broken into 3 subproblems: Evaluate A
for some appropriately chosen j, determine/3, and determine (7. This procedure can re-
cursively be applied to evaluate A. However, ifwe now apply this procedure to A(j, X),
we end up with the formula [A(j, X)](j’, X’), where A[j’] is not necessarily an ancestor
of A[j]. That is, the new formula may have 2 scars. After O(log n) steps, the formula can
end up with O(log n) scars, making the procedure useless.

Brent [br74] solved this problem by allowing only one scar in any formula. In his
algorithm, A is initially scarred by a subformula of A (say A) of size approximately
IAI/2. A is handled recursively. However, the next scar of A is chosen so that its root is
an ancestor of j. Therefore, at any step in the algorithm the subformula being evaluated
has at most I maximal scar. A straightforward implementation of this technique would
require O(log2 n) time, since finding successive j’s takes O(log n) time and the algorithm
takes O(log n) rounds.

We modify the pebbling game of 4 to maintain the condition of having only 1 scar.
In this new game pebbles have no labels and pebbles can be removed as well as added.
The game ends with a win for the pebbler when all inputs of the challenged node are
pebbled. Suppose that the pebbler has a strategy such that after every challenge (after
some pebbles are possibly removed), each pebbled subformula has at most 1 maximal
scar unless both children of the subformula are pebbled. As before, in the first round
the pebbler pebbles the root of the input formula and the challenger challenges this
node; in each subsequent round the challenger challenges a node pebbled in the current
round or rechallenges the node challenged in the previous round. If the pebbler has
an r round winning strategy on any play on a given input formula, then the following
theorem shows that there is a circuit of depth 2r that computes the value of the formula.
The resulting circuit family may not be uniform, and later we describe a strategy that can
be implemented on a uniform circuit family.

THEOREM 6.1. Let A be an arithmetic formula, and let the pebbler in the above 2-
person game have an r round winning strategy on allplays on A. Then there is a circuit of
depth 2r that computes the value of A.

Proof. We prove the more general result that if the pebbler has an r round winning
strategy on all plays on a formula A with a scar X at position i, then a circuit of depth 2r
suffices to compute values B, (7 such that

A(i, X)= B. X / C.

The result required in the theorem is simply the special case in which A has no scar; in
this case B 0 and C is the value of A.

The proof is by induction on the number of pebble moves. The base case r 0
is straightforward and is omitted. Assume inductively that any formula with a single
maximal scar for which the pebbler has an r I round winning strategy on all plays can
be computed by a circuit of depth 2(r 1). Let A be a formula with a single maximal
scar X at position i, and let the pebbler have a winning r round strategy on all plays on
this formula. Let IAI n. We now show that there is a circuit of depth 2r that computes
the value of A(i, X).

In the first round of the game the position n is pebbled and challenged as required.
Consider the next move by the pebbler. If this move does not provide a new scar for A,
then the pebbler has an r I round winning strategy on all plays of A. Hence, A can be
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evaluated by a circuit of depth 2(r 1) by the induction hypothesis, and we are done. If
the move does provide a new scar Y at position j for A we distinguish two cases: 1) A
has two maximal scars X and Y, and 2) Y is an ancestor of X and hence A continues to
have one maximal scar.

Case 1. If X and Y are two distinct maximal scars of A, then by assumption X and
Y are the two children of A. Since it is possible for position j to be challenged in
the current round, the pebbler has an r- 1 roundwinning strategy for any play on
the subformula rooted at position j. Hence, by the induction hypothesis, there is
a circuit of depth 2(r- 1) that computes the value of Y. But A(i, X) B.X+C
with B 1 and C Y if the root of A is an addition node, and B Y and
C 0 if the root ofA is a multiplication node. Hence, A(i, X) can be computed
by a circuit of depth 2(r 1) in this case.

Case 2. The new scar Y is an ancestor of the old scar X (see Fig. 6.1).

C A B"Y + C"

FIG. 6.1. New scar Y is an ancestor ofold scar X.

As in Case 1, it is possible for position j to be challenged in the current round,
hence the pebbler has an r I round winning strategy for the formula Y with a
single maximal scar X. Hence, we have circuits to compute B’ and C’, each of
depth 2(r 1), such that Y(i’, X) B’ X + C’, where i’ is the new position
of i in the formula Y. Similarly, it is possible for position n to be rechallenged
in the current round, so the pebbler has an r 1 round winning strategy for the
formula A with a single maximal scar Y. Hence, we have circuits of depth at
most 2(r 1) to compute B" and C" such that A(j, Y) B". Y + C". But
A(i, X) B"(B’ X + C’) + C" B X + C, giving

B=B".B’ and C=B"-C’+C".

Since a circuit of depth 2 computes B and C in terms of B’, C’, B", and C", a
depth 2r circuit suffices to compute A(i, X).

This completes the induction step, and the theorem is proved. q

We now show how to make the game uniform.
DEFINITION. Let A be a PLOF formula, IAI n. For i, j < n, the least common

ancestor of i and j (denoted lca(i, j)) is the common ancestor of i and j with minimum
depth. Furthermore, right(i) denotes the right child of node i.

In our new game, we add 5 pebbling points to the 4 used in the Boolean game of 4.
The object will be to ensure that the challenged formula either is contained in the new
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interval or has a leftmost scar in the interval. In the original game, the pebbled positions
in an interval 9 were Vx (g), V(), V(gz), and V(). We augment these with

1. lca(Vl (91), V2(9I denoted by Lcax(g).
2. right(Lcal (g)) denoted by R1 (). This is a pebble position only if Lcal (g)

3. lca(V2(gl), V2(g2))denoted by Lca2(g).
4. right(Lca2(g)) denoted by R2(g). Again, this is a pebble position only if Lea2

5. The node challenged in the previous round denoted by last(g).
In this game we explicitly include the challenged node from the previous round since it
may not be one of the other 8. Figure 6.2 shows one possible placement of pebbles.

A

L

FIG. 6.2. Onepossiblepebbleplacement.

DEFINITION. Let A be a PLOF formula. Ale is a leflmost subformula of A if it is
a subformula of A such that when A is viewed as a tree, Ak occurs along the leftmost
branch. A leftmost scar of A is a maximal pebbled leftmost subformula.

Notice that if F is a subformula of a PLOF A and Fk is a leftmost subformula of
F, then Fk is an initial segment of F. The following rules ensure that every challenged
formula has a single leftmost scar.

Rules of the algebraic game. Let A be an arithmetic formula, IAI n a power of 2
(n > 2).

1. In the first round, the Pebber places a pebble on n, and the ha:tenger chal-
lenges it. In all subsequent rounds there will be an interval g whose length is a
power of 2 and a challenged position c within g. For the next round, g All, n]
andc= n.

2. For c, the challenged position in in g, if at least one child of c is not pebbled, then
let ,..., ’9 be the 9 pebble positions defined earlier such that u < _< u9.
We consider these for pebbling in this order. For each of these 9 candidates ,
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the Pobblor pebbles v if and only if v

___
c and there is no pebbled satisfying

v <1 c. The Challenger challenges one of these new pebble positions. Notice
that this allows rechallenging c. After the round ends all newly placed pebbles
except the challenged node and any leftmost scar are removed, unless both chil-
dren of the challenged node are pebbled. The new substring is the leftmost gj
containing the new challenged position.

3. If both children of c are pebbled, then the Pobblor wins.
LEMMA 6.2. Let g be the current interval, and let c be the challenged node. Then either

1) Ac is contained in g or 2) Ac has a leftmost scar in g.
Proof. We proceed by induction on the round number. Notice that to establish

condition 2, it suffices to show that some leftmost subformula ofA rooted in g is pebbled.
Basis. At round 1, A A satisfies condition 1.
Induction. In general, suppose the lemma holds for an interval g and challenged

node c. If the new challenged node c’ is in gl, then gl is the new interval and either
condition 1 holds for c’ and gl or condition 2 holds with the same scar as for A.

Now suppose c’ is in the second half of g2, so that g2 is the new interval, and suppose
that A, is not contained in g2. Assume that the leftmost scar of Ac does not lie in g
(since otherwise we are done). Therefore, it lies in the first half of gl. There are two
subcases, depending on whether A, includes an initial segment of g. If it does, then the
leftmost scar ofA is a leftmost subformula of A,, and Lcal (g) is either a leftmost scar
of A, in g2 (SO condition 2 holds for c’ and 92) or Lcal (g) is c’, in which case the two
children of c’ are V (g) and R1 (g), so the game ends. The second subcase is that A, is
not an initial segment of g (see Fig. 6.3).

g2

y (gx c’

FIG. 6.3. Subcase in which Ac, is not an initial segment of9.

In that case, V (91) is a leftmost subformula of Ac, because of the PLOF property.
Finally, suppose c’ is in the second half of ga, so that ga is the new interval. Further-

more, assume that A, does not lie entirely in 93. If the left child of c’ is to the left of
ga, then it is in g (since A is in g or has a leftmost scar in g), so either c’ Lca (g)
or c’ Lca2(g). In either case, both children of c’ are pebbled, so the game ends.
If the left child of c’ is in the left half of 93, it is V2(g2) and condition 2 holds for c’
and 93. The final case occurs when the left child of c’ is in the right half of 93. Then
one of {Lcal (g), Lca2(g), V2(g), the leftmost scar of c} provides a leftmost scar of c’ in

93.
Lemma 4.6 can easily be adapted to show that in any round of the game, every po-

sition k <3 c with k to the left of g has some pebbled such that k <1 <1 c.
LEMMA 6.3. In the game, the indicated strategy for the Pebbler wins in O(log n)

rounds.
Proof. In every round of the game, the interval g is cut in half. [-1
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We must now show that the game can be converted into a uniform log-depth arith-
metic-Boolean circuit family.

In the game above, we did not knowwhere any Lca, Ri, or last was in the interval
Ifone ofthese positions was challenged, a constant depth circuit could not determine the
new interval. We modify the game slightly so that the Pobbor must specify an interval
when a pebble is placed (corresponding to the interval the pebble is in). This interval
can be placed as a label on the pebble. This gives a total of at most 14 different pebble
points and labels (since many of the pebble points cannot be in every interval).

We must augment Lemma 4.8 to show that the new pebbling points can be de-
termined in Boolean NC. However, although the least common ancestor (and its
right child) can be determined once the interval is known, the entire history of the
game may be necessary to determine the last challenged position. Let v (pl,’" ",p
(Pi { 1,..., 14}) be asequence that describes the first k moves of the game. Here, p
denotes the pebble challenged by the Oaallsngr in the ith round.

LEMMA 6.4. Thefollowingpredicates are in Boolean NG"
a. Lca(A,i,j,k) de (k Lca(A[i,j])).
b. Lca2(A,i,j,k) d (k Lca2(A[i,j])).
c. Rl(A,i,j,k) dej (k R(A[i,j])).
d. R2(A, i, j, k) d (k R2(A[i, j])).
e. Last(A, i, j, k, ) d=f k is the challenged node in theprevious round ofthe game.

Proof.
a., b. By Lemma 4.8, we can determine VI(A[i, j]) and V2([A(i, j)]) in NC1. The De-

scendent predicate in Lemma 4.8 can be used to check that one of the V occurs
as a descendent of the left child of k and the other as a right child.

c., d. Determining the right child of a least common ancestor is easy once we can deter-
mine the least common ancestor.

e. Let (p,..., Pk). In ,, find the largest i such that pi is not last (say pt). Find the
indicated pebble position in round 1. This will be the challenged position in the
current round.

We can use a slightly modified Lemma 4.9 to determine if (p,..., Pk) codes a
valid sequence of challenges.

Let A denote the scarred subformula challenged after the k indicated challenges,
and let I(,) be the position of the root of A. Let fl be the circuit that computes the
value of A and c be the value computed by the circuit f2. To obtain the desired log-
depth arithmetic-Boolean circuit over the commutative semi-ring S we must compute
c with a constant-depth circuit using the values a (q) (q < 14). We break f2 into
subcircuits f2 (q). c will be either a single value in S or a tuple, depending upon which
of the cases in Lemma 6.2 holds. We will describe the circuit for the case where A has a
leftmost scar in g. The other case is an easy modification of this. Figure 6.4 is a simplified
circuit to compute the value of A for the pebble placements in Fig. 6.2.

Suppose that A has A’ as a leftmost scar. Denote by O-q the valuea (q), assuming
the correct values (or tuples) at all pebble positions in this round of the game that came
before the qth are computed. Now our algorithm is as follows.
Algorithm: Compute a where A satisfies case 2 ofLemma 6.2

qmin :--" smallest q satisfying I(/) < I(t/ (q)) < I()
qmax largest q satisfying

In parallel, for each q 6 qmin"" qmax compute" u^ <q>
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(B1, C1)

I(B4, C4)
If op at Lcal (g) is "+"
then (B1, C1 + D5)
else (B1 D5, C1 * Ds)

D5

D1

D4

If op at Lca2(g) is "+"
then D1 + 03
else D1 03

(B3, C3)

FIG. 6.4. Circuitfor computing A forpebbleplacements in Fig. 6.2.

{Train :-- Cu" (qmin)
For q qmin q- 1 to qmax

If Au satisfies condition 1 of Lemma 6.9. then aq :=

else if Au satisfies condition 2 of Lena 6.2 then

Let (B,C) a.
Let ql be the position of the mimal leftmost pebbled

subfoula of AU
If aq is element of S then aq := B. aq + C
else Let (B’, C’) aql

aq := (B B, B C’ + C)
else Let ql d q2 be the pebble placements of the left

d rght operds of A
Let be the operator at A
X ql S element of S then aq := qlg2



OPTIMAL FORMULA EVALUATIONALGORITHM 779

else Let (/3, C) ffql

If 0 then Gq :-- (B Gq2 C * Gqg.)
else 6rq :-- (/, C -- rq2

Endfor

The only change that must be made to the algorithm for it to work for the other condition
of Lemma 6.2 above is the value of qmin.

The technique described above can easily be generalized to solve the problem for
fields and (noncommutative) semi-rings. We show the field case first. Suppose F is a
field and A is an arithmetic formula over . It is easy to show that a scarred formula
A(j, X) can be written as a rational affine function:

B.X+C
A(j,X) D. X / E (B, C,D,E e IF).

It is also easy to verify that these functions are closed under composition. Therefore, the
same algorithm as above is used except the value c of a subformula with a leftmost scar
is represented by a 4-tuple (/3, C, D, E).

For the (noncommutative) semi-ring case, we must first convert to PLOF form.
However, we have problems if is not commutative. Therefore, we augment the lan-
guage to include a "reverse multiplication," denoted .’, where a b b .’ a. Any for-
mula can be put in equivalent PLOF form in this augmented language. Now, a scarred
formula A(j, X) can be written as

A(j,X) B X C+ D (B,C,D 6S).

A subformula A(j, X) is represented by a 3-tuple (B, C, D). Again, composition is easy
to do. Therefore, the semi-ring algorithm can be used except that a little care is necessary
in keeping the left and right multipliers separate.

Finally, we present a simpler method for solving the evaluation problem when the
algebra is a ring. Suppose we wish to evaluate the scarred formula A(j, X) B. X + C.
Then, A(j, O) C and A(j, 1) B + C. From this system of equations we can easily
determine both B and C. Therefore, the problem of determining A is broken into three
subproblems: Evaluate the formula rooted at X, evaluate A(j, 0), and evaluate A(j, 1).
These problems can be recursively solved.
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