
Monadic Memoization Mixins

Daniel Brown and William R. Cook
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

{danb,wcook}@cs.utexas.edu

Abstract
Memoization is a familiar technique for improving the performance
of programs: computed answers are saved so that they can be reused
later instead of being recomputed. In a pure functional language,
memoization of a function is complicated by the need to manage
the table of saved answers between calls to the function, includ-
ing recursive calls within the function itself. A lazy recursive data
structure can be used to maintain past answers — although achiev-
ing an efficient algorithm can require a complex rewrite of the func-
tion into a special form. Memoization can also be defined as a lan-
guage primitive — but to be useful it would need to support a range
of memoization strategies. In this paper we develop a technique for
modular memoization within a pure functional language. We define
monadic memoization mixinsthat are composed (via inheritance)
with an ordinary monadic function to create a memoized version
of the function. As a case study, we memoize a recursive-descent
parser written using standard parser combinators. A comparison of
the performance of different approaches shows that memoization
mixins are efficient for a small example.

1. Introduction
Memoization is a technique for saving the results of function calls
so that subsequent calls with the same inputs do not need to be
recomputed. Memoization does not change the values returned by
a function — it only changes the performance characteristics of
the function. Typically a memoized version of a function uses
more space to store previously computed results, but it computes
subsequent results more quickly.

Memoization is one of the key characteristics of algorithms for
dynamic programming. Sophisticated memoization strategies can
prune or discard the table of stored values, store values selectively,
and analyze or translate inputs before storing them as memo table
keys.

Memoization can be implemented in many ways. A function
can be memoized by rewriting it — the new function would explic-
itly access and update the table of stored values. Rewriting many
functions this way can be tedious. Moreover, it does not localize
the common memoization behavior, thus reducing the modularity
of the overall program. Modularity can allow different memoiza-
tion strategies to be used for a single function.

In procedural languages memoization can be implemented as
a user-defined, higher-order procedurememo which produces a
memoized versionmemo f of any functionf . Thismemo function
cannot be written in a pure functional language, but it is sometimes
included as a built-in primitive. Naı̈ve application ofmemo will
not memoize recursive calls within the function. In object-oriented
languages, recursive methods can be modified using inheritance.

Inheritance is frequently viewed as specific to object-oriented
programming, but the underlying concept of inheritance is the

incremental modification of recursive structures, which has many
other applications [4]. In particular, we show how inheritance can
be used in Haskell to implement memoization.

As an alternative to explicit memoization, lazy functional lan-
guages typically support a form of memoization as a side effect of
their evaluation strategy. In these systems, expressions are evalu-
ated at most once, and only if needed. A lazy data structure that
is referenced by multiple computations will be computed once and
shared by all clients. This optimization can be used to memoize a
function [11]. By storing the function results in an appropriate lazy
data structure, each function result will be computed only once.
For example, the results of the Fibonacci function can be stored in
a list, where thenth item of the list is thenth Fibonacci number.
This approach is the basis of the oft-cited Haskell legerdemain in
Figure 1.

fibs :: [Int]
fibs = 0 : 1 : [a + b | (a, b)← zip fibs (tail fibs)]
zipFib n = fibs !! n

Figure 1. Fibonacci as a lazy list computation

Thefib function accesses thenth item of a lazy data structure.
The list comprehension defining the data structure contains two
references to itself. Each node in the lazy list is computed once,
on demand, and the other references reuse the already computed
list values. One problem with this technique in general is that
memoizing an algorithm requires the algorithm to be rewritten
into a special form — in this case, the implementation is radically
different from the standard description of the Fibonacci function.

In this paper we provide a pure functional account of memo-
ization based onmonadic memoization mixins. We consider sev-
eral distinct cases where memoization can be applied: ordinary
recursive functions, recursive functions returning monadic values,
mutually-recursive functions, and monadic values with functional
behavior. For ordinary functions,monadification[6] is used to in-
troduce a monad parameter into the function. Recursive functions
are converted to generators with open recursion [4]. A generalized
memoizationmixin is developed, which is composed using inher-
itance with the original function to create the memoized version.
For functions returning monadic values, we show how the exist-
ing monad can be extended to support memoization. To do this,
we develop a new class that relates a monad transformer to its cor-
responding monad. We compare the performance of the different
approaches to memoization. As a final case study, we memoize a
top-down parser written using standard parser combinators.

1 2006/6/3

2. Memoizing Recursive Functions
Memoizing a simple recursive function is a good illustration of
the technique of monadic memoization mixins. The underlying
ideas behind this approach are well known, but have not been
systematically studied in the context of mixins and monads in
pure functional languages. As an example, consider the Fibonacci
function.

fib :: Int → Int
fib 0 = 0
fib 1 = 1
fib (n + 2) = fib n + fib (n + 1)

The execution time forfib n grows exponentially inn becausefib
is called many times with the same input.

While it is possible to rewritefib to include memoization, the
memoization code would be tangled with the Fibonacci computa-
tion. Instead, we explore ways to generalizefib so that it can be
memoized by composing it with an appropriate memoization func-
tion.

2.1 Monadification

Modifying a function to use a monad is calledmonadification[6].
The new monad can be used to pass state between the recursive
calls of the function – the state is the memo table which may be
updated after each function call. Rather than rewritefib to use an
explicit state monad,fib can be rewritten to use a generic monad
parameter, which can be bound to an appropriate state monad
during memoization. The monadic versionmFib of fib returns
computations in a generic monadm:

mFib :: Monad m ⇒ Int → m Int
mFib 0 = return 0
mFib 1 = return 1
mFib (n + 2) = do a ← mFib n

b ← mFib (n + 1)
return (a + b)

The recursive calls must be executed in the same monad. This has
the effect of serializing the recursive calls, which will enable the
memo table to be passed into the first call and the resulting table to
be passed into the second call.

The original Fibonacci function can be recovered by running
mFib in the identity monad:

fibm :: Int → Int
fibm = runIdentity ◦mFib

runIdentity :: Identity a → a serves two purpose here: it binds
the monad parameterm in mFib to theIdentity monad and then
extracts theInt from the resulting trivial computation of type
Identity Int .

2.2 Open Recursion and Inheritance

For memoization to affect recursive calls, the self-reference infib
must be exposed, or opened, so that it can be rebound to refer to the
memoized version offib. This is exactly whatinheritancedoes in
object-oriented languages [5]; the same technique can be applied to
functions [4]. To do so, we abstract the self-reference infib as an
explicit self parameter, then reconstructfibg using an explicit fixed
point:

gFib :: (Int → Int)→ (Int → Int)
gFib self 0 = 0
gFib self 1 = 1
gFib self (n + 2) = self n + self (n + 1)

fibg :: Int → Int
fibg = fix gFib

Functions likegFib used to specify a fixed-point are called
generators[5]. They have types of the forma → a. Generators
will appear frequently, so we introduce a type function to simplify
their types:

type Gen a = a → a

Now gFib can be given the simpler typeGen (Int → Int).
Inheritance works by composing generators before computing

the fixed point. For memoization, the memoized Fibonacci function
will have the formfix (memo ◦ gFib) for an appropriatememo
and generatorgFib. This has the effect of binding self-reference
in gFib to the memoized version of the function. In this context,
memo is amixin [2].

Object-oriented languages support open recursion implicitly:
every recursive definition implicitly defines a generator which can
be inherited using special syntax. The same thing could be sup-
ported in Haskell. The syntaxmemo inherit fib could be defined
to meanfix (memo ◦ gFib0) wheregFib0 is the generator offib.
As we shall see in Section 7, there is a significant performance
penalty for using explicit fixed-points in Haskell to implement in-
heritance; direct support for inheritance could improve this situa-
tion.

2.3 Monadic Fibonacci Generator

The versions offib with open and monadic recursion are combined
to create a monadic Fibonacci generator. Since open recursion and
monadification are orthogonal operations, they can be performed in
either order to yield the same result:

gmFib :: Monad m ⇒ Gen (Int → m Int)
gmFib self 0 = return 0
gmFib self 1 = return 1
gmFib self (n + 2) = do a ← self n

b ← self (n + 1)
return (a + b)

fibgm :: Int → Int
fibgm = runIdentity ◦ (fix gmFib)

The three functionsfibg, fibm, andfibgm all behave the same as
fib.

2.4 Memoization Mixin

A memoized versionfM of a functionf has a standard pattern,
based on a table of previous results. The function callfM (x) first
checks ifx has a value in the table, and if so returns the stored
result. If not, it computesf(x) and then stores the result in the
table. In a pure functional language, an explicit memo table is
passed as an input tofM (and to the recursive callfM (x)), and
the possibly updated table is returned as a result. This kind of
computation is naturally expressed using theState monad with the
memo table as the state. However, various kinds of tables or state-
like monads might be used, so we parameterize thememo function
by two accessor functions tocheck whether a value has already
been computed, and tostore new values that are computed. These
two functions constitute a dictionary interfaceDict a b m, where
a is the key type,b is the value type, andm is the state monad:

type Dict a b m = (a → m (Maybe b),
a → b → m ())

Given a dictionary, thememo mixin is easily defined, as shown
in Figure 2. Following a convention from object-oriented program-
ming [9], the argument of a mixin is calledsuper .

While it would be desirable to encapsulatecheck and store
within some type class for memo tables and stateful monads, this
approach does not work in cases where multiple dictionaries have
the same type (see Section 6).

2 2006/6/3

memo :: Monad m ⇒ Dict a b m → Gen (a → m b)
memo (check , store) super a = do

b ← check a
case b of

Just b → return b
Nothing → do b ← super a

store a b
return b

Figure 2. Memoization Mixin

2.5 Memoized Fibonacci

Finally, thememo mixin is combined with the generator offib
to create the memo functionmemoFib. Notice that the particular
representation for the memo table is still unspecified.

type Memoized a b m = Dict a b m → a → m b

memoFib :: Monad m ⇒ Memoized Int Int m
memoFib dict = fix (memo dict ◦ gmFib)

The typeMemoized a b m represents the memoized version
of a function typea → b abstracted over a memo dictionary.
One way to specify the memo dictionary’s table is with a standard
Data.Map object withlookup andinsert operations:

mapDict :: Ord a ⇒ Dict a b (State (Map a b))
mapDict = (check , store) where

check a = gets (lookup a)
store a b = modify (insert a b)

memoMapFib :: Int → State (Map Int Int) Int
memoMapFib = memoFib mapDict

The functionmemoMapFib is memoized with a Map to store
computed values. SincememoMapFib exposes the stateful monad
that carries the memo table, a client can reuse the same table across
separate uses of the function, given that the client is written to
handle a state monad. On the other hand, if the client doesn’t need
this kind of reuse and only wants to memoize recursive calls, a
simpler version can be defined with the same interface asfib:

runMemoMapFib :: Int → Int
runMemoMapFib n = evalState (memoMapFib n) empty

The functionevalState :: State s a → s → a runs the stateful
computationmemoMapFib n with the initial stateempty , an
empty map, and returns theInt result of that computation.

For efficiency, the memo table might instead be implemented
as an array. Haskell provides a variety of array types; to use one
for memoization, an appropriate pair of accessors must be defined.
(The details of using theMArray array type and theST monad
aren’t relevant to our discussion, but we include the code in full for
completeness.)

arrayDict :: (MArray arr (Maybe b) m, Ix a,Ord a)
⇒ a → arr a (Maybe b)→ Dict a b m

arrayDict size arr = (check , store) where
check a = if a > size then return Nothing

else readArray arr a
store a b = if a > size then return ()

else writeArray arr a (Just b)

With arrayDict in hand, a memoizedfib with an array memo table
is easily defined:

newSTArray :: Ix i ⇒ (i , i)→ e → ST s (STArray s i e)
newSTArray = newArray

runMemoArrayFib :: Int → Int → Int
runMemoArrayFib size n = runST (do

arr ← newSTArray (0, size) Nothing
memoFib (arrayDict size arr) n)

In summary,fib was memoized by monadifying, opening recur-
sion, and then composing with a memo mixin. The memo mixin is
parameterized by functions that interact with a memo table within
a stateful monad. Next, we consider memoizing a function that is
already defined in a monadic style.

3. Memoizing Monadic Functions
A function that returns monadic values can be memoized just like
an ordinary function: the memo table simply contains monadic
values that have been previously computed. To memoize, a new
monad is inserted by monadification, such that all recursive calls
are evaluated in the new monad.

Consider a function that computes the fringe of a tree: given
a tree with values at its leaves,fringe computes a list of values
representing the pre-order traversal of the leaves.

data Tree a = Leaf a | Fork (Tree a) (Tree a)
deriving (Show ,Eq)

fringe :: Tree a → [a]
fringe (Leaf a) = [a]
fringe (Fork t u) = fringe t ++ fringe u

The preimage (of singleton sets of output values) offringe is
the functionunfringe which computes the set of trees that have a
given fringe. Functions likeunfringe that produce a set of results
are naturally written using the list monad, which supports iteration
over multiple sub-results while combining these to produce a list of
final results.

unfringe :: [a]→ [Tree a]
unfringe [a] = [Leaf a]
unfringe as = do

(l , k)← partitions as
t ← unfringe l
u ← unfringe k
return (Fork t u)

The functionpartitions computes the various binary partitions of
a list:

partitions :: [a]→ [([a], [a])]
partitions as = [splitAt n as | n ← [1 . . length as − 1]]

3.1 Monadification of Unfringe

The functionunfringe can be transformed to add a monad param-
eter and open recursion in the same wayfib was transformed in
Sections 2.1 & 2.2.

Even thoughunfringe uses a list monad, the list monad doesn’t
carry state, so we can’t use it to memoizeunfringe; more im-
portantly, list computations are the object of memoization, so this
wouldn be the wrong approach! Therefore a new monad parameter
is introduced independently from the existing list monad. The re-
cursive calls tounfringe are run in this new monad. The result,
gmUnfringe, is openly recursive viaself and is parameterized
over a monadm:

gmUnfringe :: Monad m ⇒ Gen ([a]→ m [Tree a])
gmUnfringe self [a] = return [Leaf a]
gmUnfringe self as =

liftM concat (sequence (do -- In []
(l , k)← partitions as

3 2006/6/3

return (do -- In m
ts ← self l
us ← self k
return (do -- In []

t ← ts
u ← us
return (Fork t u)))))

This straightforward but inelegant monadification ofUnfringe pro-
duces a function written in two monads:[] andm. Computation in
the two monads is interleaved, making the resulting code difficult
to understand. In the next section we show how to coordinate the
two monads with monad transformers.

Note thatunfringe uses the list monad for two purposes: to
iterate over the partitions, and to iterate over the results of recursive
calls. Monadification separates the two uses. The first use of the
list monad, to iterate over partitions, must be lifted and the results
concatenated to produce the final result.

The monad generatorgmUnfringe can be run by closing the
recursion and binding the monadic parameterm to the Identity
monad:

unfringegm :: [a]→ [Tree a]
unfringegm = runIdentity ◦ fix gmUnfringe

The result,unfringegm , behaves the same asunfringe.
The memo mixin and accessors defined in Sections 2.4 & 2.5

apply togmUnfringe just as they did forgmFib:

memoUnfringe :: (Ord a,Monad m)
⇒ Memoized [a] [Tree a] m

memoUnfringe access = fix (memo access ◦ gmUnfringe)

runMemoUnfringe :: Ord a ⇒ [a]→ [Tree a]
runMemoUnfringe l =

evalState (memoUnfringe mapDict l) empty

4. Memoization via Monad Transformers
The unbound monad parameter required for memoization can also
be introduced by lifting a monad to a monad transformer. For
example,unfringe uses the list monad, so it can easily be lifted
into a monadListT m, for some monadm; the newly-introduced
monad parameter becomes the memoization monad. The benefit of
doing this is that the resulting functiongmUnfringeT is defined
similarly to unfringe and avoids the interleaved monads found in
gmUnfringe:

gmUnfringeT :: Monad m
⇒ Gen ([a]→ ListT m (Tree a))

gmUnfringeT self [a] = return (Leaf a)
gmUnfringeT self as = do

(l , k)← ListT (return (partitions as))
t ← self l
u ← self k
return (Fork t u)

As in gmUnfringe, there are still two different uses of lists: one
for the function being defined, and another forpartitions as . The
latter is lifted into the monad transformer viaListT ◦ return.

4.1 Transformer-based Memoization Mixin

It might seem reasonable to define a memoization mixin by lifting
the memo table operations into the monad transformer. This strat-
egy produces the following memo mixin:

memoX :: (Monad m,MonadTrans t ,Monad (t m))
⇒ Dict a b m → Gen (a → t m b)

memoX (check , store) super a = do
b ← lift (check a)
case b of

Just b → return b
Nothing → do b ← super a

lift (store a b)
return b

Unfortunately,memoX misbehaves. In the case ofListT , it mem-
oizes the first value of the computation and ignores the rest. The
problem is that the memo mixin must capture the monadic value
that comes from the transformed monad, rather than interleaving
with theeffectof this monad. This problem can be seen in the type
of memoX : The memo table defined byDict a b m stores values
of typeb, not monads of typet Id b. In the case ofListT m b, the
memo table stores values of typeb, but it should store values like
[b].

To define a memoization mixin that works with monad trans-
formers, there must be a connection between the transformert and
the monadn to which it is related. This relationship can be ex-
pressed by a type class that specifies an isomorphism between the
transformer and its corresponding monad:

class (MonadTrans t ,Monad n)⇒
TransForMonad t n | t → n,n → t where

toTrans :: m (n a)→ t m a
fromTrans :: t m a → m (n a)

To defineTransForMonad we use a common Haskell extension
called functional dependencies[14]: the syntaxt → n specifies
that the typet uniquely determinesn, and the second clausen → t
says thatn determinest . In general, the compiler uses the rela-
tionships specified by functional dependencies to infer types for
functions liketoTrans andfromTrans, where some variables oc-
cur only in the output type. The bidirectional specification between
n and t creates the isomorphism between a monad and its trans-
former. A relevant example of this relationship is the list monad[]
and its transformerListT :

instance TransForMonad ListT [] where
toTrans = ListT
fromTrans = runListT

The transformer-based memo mixin is defined by adapting the
basic memo mixin to work within the transformed monad, while
capturing values of the outer monad:

memoT :: (TransForMonad t n,Monad m)
⇒ Dict a (n b) m → Gen (a → t m b)

memoT dict f =
toTrans ◦memo dict (fromTrans ◦ f)

Note that the memo table now stores computations of typen b,
wheren is the monad associated with the transformert .

The monad transformer version of the memo mixin can now be
used with transformer-based functions like before:

type MemoizedT a n t b m =
Dict a (n b) m → a → t m b

memoUnfringeT :: Monad m
⇒ MemoizedT [a] [] ListT (Tree a) m

memoUnfringeT dict = fix (memoT dict ◦ gmUnfringeT)

runMemoUnfringeT :: Ord a ⇒ [a]→ [Tree a]
runMemoUnfringeT a =

evalState (runListT (memoUnfringeT mapDict a))
empty

4 2006/6/3

An aside: it is unfortunate that the type synonymMemoizedT
must include explicit arguments for bothn and t . It would seem
that either variable could be inferred from the other by the func-
tional dependencies specified byTransForMonad , but GHC’s
type synonyms aren’t designed to use the information specified by
functional dependencies in this way. A more flexible type synonym
feature might allow two new uses: a way to compute types that are
uniquely determined by other types and variables via functional de-
pendencies, and pattern matching, as in(n b) below.

type MemoizedT ′ a (n b) m = TransForMonad t n
⇒ Dict a (n b) m → a → t m b

This way,MemoizedT ′ a [b] m would expand toDict a [b] m →
a → ListT m b by computing that the constraintTransForMonad t []
uniquely determinest asListT . However, this syntax is unfortu-
nate since it already means something else in GHC! GHC expands
MemoizedT ′ a [b] m to forall t a b. TransForMonad t [] ⇒
Dict a [b] m → a → t m b, which is different. Given a more
clever syntax, we think these two extensions to type synonyms
would be useful.

5. Memoizing Mutual Recursion
A set of mutually recursive functions can be memoized by main-
taining a collective state with a memo table for each individual
function. In general the functions may have different types, so their
corresponding memo tables may have different types as well. In
this section we develop a technique to memoize a pair of mutually
recursive, non-monadic functions. The parser case study we will
consider later will have many mutually recursive functions, and we
will show how this method generalizes.

Consider a pair of mutually recursive functionsf and g (de-
signed primarily to have different types):

f :: Int → (Int ,String)
f 0 = (1, "+")
f (n + 1) = (g (n, fst (f n)), "-" ++ snd (f n))

g :: (Int , Int)→ Int
g (0,m) = m + 1
g (n + 1,m) = fst (f n)− g (n,m)

The technique for defining mutually recursive functions using
an explicit fixed-point is standard: the fixed-point generator oper-
ates on tuples of functions. In this case, the tuple is a pair with
type(Int → (Int ,String), (Int , Int) → Int). As in the case for
fib, these non-monadic functions must be monadified to introduce
a monad parameter. The result is a generator of a pair of functions
parameterized by a monadm which serializes the recursive calls to
f andg :

type MFuns m =
(Int → m (Int ,String), (Int , Int)→ m Int)

gmFG :: Monad m ⇒ Gen (MFuns m)
gmFG ∼(f , g) = (f ′, g ′) where

f ′ 0 = return (1, "+")
f ′ (n + 1) = do a ← f n

b ← g (n, fst a)
return (b, "-" ++ snd a)

g ′ (0,m) = return (m + 1)
g ′ (n + 1,m) = do a ← f n

b ← g (n,m)
return (fst a − b)

The input, a pair of functionsf andg , represents the self parame-
ters, whilef ′ andg ′ are the functions produced by the generator.
The pattern(f , g) is made lazy with the∼ symbol to prevent di-

vergence. Whereas similar encodings for object-oriented languages
typically use records instead of tuples, Haskell records are akward
to use because they lack first-class injection functions, so we use
tuples instead.

The functionf is easily recovered fromgmFG by taking its
fixed-point, projecting, and running the result through the identity
monad.

fgm :: Int → (Int ,String)
fgm = runIdentity ◦ (fst (fix gmFG))

The functionfgm behaves the same asf .

5.1 Memoizing Mutually Recursive Functions

To memoize mutually recursive functions, a memoization mixin
must be composed with each generator individually, yet each memo
mixin must read and write to a separate part of a shared state. The
memo mixin forf andg is a function on pairs, which uses a pair of
dictionaries to access the store:

memoFGMixin :: (Monad m,Monad m ′)
⇒ (Dict a b m,Dict a ′ b′ m ′)
→ Gen (a → m b, a ′ → m ′ b′)

memoFGMixin (df , dg) (f , g) = (memo df f ,memo dg g)

memoF :: Monad m
⇒ (Dict Int (Int ,String) m,

Dict (Int , Int) Int m)
→ Int → m (Int ,String)

memoF dicts = fst (fix (memoFGMixin dicts ◦ gmFG))

One strategy for representing memo tables for mutual recursion
is to maintain a map for each function. Access to theith map is
provided by a pair of a projection and injection functions:

type Accessor a b = (b → a, a → b → b)

The functionselMap creates a pair of dictionary accessors given a
projection/injection pair. It assumes that the components of the pair
are Maps.

selMap :: Ord a
⇒ Accessor (Map a b) s → Dict a b (State s)

selMap (proj , inj) = (check , store) where
check a = gets (lookup a ◦ proj)
store a b = modify (λs → inj (insert a b (proj s)) s)

To run the memoized version off , the memo functionmemoF
is applied to an appropriate pair of accessors and executed in
an empty state. We assume a family of projection and injection
functionsproji/n and inji/n for accessing theith component of
an n-tuple. Letacci/n = (proji/n, inji/n). (These could easily
be written by hand or generated with metaprogramming.)

runMemoF :: Int → (Int ,String)
runMemoF n =

evalState (memoF dicts n) (empty , empty) where
dicts = (selMap acc1/2, selMap acc1/2)

The shared state forf andg contains a Map for each function of
the appropriate type:

type MemoFG = State (Map Int (Int ,String),
Map (Int , Int) Int)

5.2 Tuple Operations with Template Haskell

When the tuple contains multiple recursive functions, this construc-
tion becomes tedious, but there is no way to abstract over tuple
elements in standard Haskell. Template Haskell [22] provides an

5 2006/6/3

elegant solution by generating theproji,n andinji,n functions au-
tomatically.

We use psuedo-Template Haskell here to specify functions in-
stead of defining them; their proper definitions are straightforward
and not relevant to the discussion. Tospecifya Template Haskell
function, we define the result of splicing it and use ellipses and
subscripts to represent tuples of arbitrary length.

The Template Haskell functions needed for this example are de-
termined by their types. First we define projection and injection
functions. The integer pair(i ,n) is used to indicate theith compo-
nent of a tuple of sizen.

$ (proj (i ,n)) :: (a1, ..., an)→ ai

$ (proj (i ,n)) = λ(a1, ..., an)→ ai

$ (inj (i ,n)) ::
a → (a1, ..., an)→ (a1, ..., ai−1, a, ai+1, ..., an)

$ (inj (i ,n)) =
λa (a1, ..., an)→ (a1, ..., ai−1, a, ai+1, ..., an)

An accessor pair can now be defined in terms ofproj andinj :

$ (accessors (i ,n)) :: Accessors a b s
accessors l = [| ($(proj l), $(inj l)) |]

Finally, mapAccT maps a function over a tuple, much likemap
maps a function over a list, also providing the function an accessor
pair as an initial input:

$ (mapAccT n [| f |]) (a1, ..., an) =
(f $ (accessors (1,n)) a1, ..., f $ (accessors (n,n)) an)

ThememoFGMixinTH is now defined simply as a call tomapAccT :

memoFGMixinTH :: Gen (MFuns MemoFG)
memoFGMixinTH = $(mapAccT 2 [| memo ◦ selMap |])

This approach scales up to any number of functions in the mutually
recursive definition, with potentially different types, as long as they
are all unary. To create the memoized function, the mixin is applied
as before.

6. Memoizing Parsers
In this section we consider a case study: memoizing monadic
parsers. Parsers are commonly expressed in Haskell top-down as
state monads with failure (and optionally non-determinism) [12,
18]. State monads are an instance of a more general structure we
call functional monads— monads that encapsulate a functional
behavior. State monads fit this mold because each contains a state
transformation function. We will show how any functional monad
— and indeed anything with a function-like behavior — can be
memoized by mapping to its functional behavior, memoizing it, and
mapping back into the original construct — possibly with a new
type, depending on whether the memo tables need to be reused.

Since parsers tend to be mutually recursive, the case study will
employ the techniques developed in Section 5; since grammars tend
to require a fair number of mutually recursive parsers, those results
will be generalized to arbitrary numbers of mutually recursive
functions.

While the transformations in this section may appear complex,
they much simpler than the transformations used in creating the
Packrat parser, which is memoized with a complex lazy data struc-
ture of linkedDerivs structures [7]. The version presented here
requires less invasive transformations and thus is closer to the orig-
inal, simple parser.

We take as an example a parser for the “grammar for a trivial
language” in figure 1 of [7]:

Additive ::= Multitive ‘+’ Additive | Multitive
Multitive ::= Primary ‘*’ Multitive | Primary
Primary ::= ‘(’ Additive ‘)’ | Decimal
Decimal ::= ‘0’ | ... | ‘9’

Our parser combinators are modeled after the monadic Packrat
parsing style of section 3.3 in [7], which is very similar to Par-
sec [18]. We use a variant of the standard parsing monad [12] and
store the parsed result in aMaybe instead of aList . This provides
a depth-first rather than breadth-first parsing strategy for determin-
istic parsers. Extending our technique to non-deterministic parsers
should be straightforward.

type Parser a = StateT String Maybe a

mkParser :: (String → Maybe (a,String))→ Parser a
mkParser = StateT

runParser :: Parser a → String → Maybe (a,String)
runParser = runStateT

The functionsmkParser andrunParser simply map between the
function that defines a parser’s behavior and the parser itself.

The grammar is implemented as a collection of mutually recur-
sive parsers:

additive :: Parser Int
additive = do

a ← multitive; char ’+’; b ← additive; return (a + b)
<|> multitive

multitive :: Parser Int
multitive = do

a ← primary ; char ’*’; b ← multitive; return (a ∗ b)
<|> primary

primary :: Parser Int
primary = do

char ’(’; a ← additive; char ’)’; return a
<|> decimal

decimal :: Parser Int
decimal = do

c ← anyChar
guard (inRange (’0’, ’9’) c)
return (read [c] :: Int)

This mutually recursive parser depends on the parsers(< | >),
char , and anyChar . The (< | >) parser is simplymplus spe-
cialized toParser , which is an instance ofMonadPlus because
StateT String Maybe is one.

(<|>) :: Parser a → Parser a → Parser a
(<|>) = mplus

Thechar parser parses a specified character, andanyChar simply
returns the next character to parse.char is easily defined in terms
of anyChar , andanyChar interacts directly with the underlying
String state:

char :: Char → Parser Char
char c = do

d ← anyChar ; guard (c == d); return d

anyChar :: Parser Char
anyChar = do

s ← get
case s of

[] → mzero
c : s ′ → do put s ′; return c

6 2006/6/3

These three parsers constitute the parsing library on top of which
our parser is built; in practice these libraries are much larger with
many more features!

Finally, a string from the grammar is parsed withparse, which
runs the parser that corresponds to the start symbol in the grammar,
Additive:

parse :: String → Maybe (Int ,String)
parse = runParser additive

6.1 Monadifying a Single Parser

Memoizing the parsers requires the same initial transformation
described in Section 5: monadify each parser and combine all
of the mutually recursive parsers together into a tuple generator.
First, we examine how to monadify a parser. Since a parser is a
monad that encapsulates a function, monadifying a parser requires
monadifying the encapsulated function and wrapping it back up as
a parser again.

Monadifying such a state transformation function changes
its type from String → Maybe (a,String) to String →
m (Maybe (a,String)). Thinking ofm as a memoization monad
carrying a memo table, this makes sense: we want the memo table
to associate input strings with values inMaybe (a,String). This
will memoize both successful and failed parses, which is also what
we expect. Unfortunately, theParser monad can’t wrap functions
with that type. This motivates a generalization of the parser monad:
a parser monad transformer.

type ParserT m a = StateT String (MaybeT m) a

mkParserT :: Monad m
⇒ (String → m (Maybe (a,String)))→ ParserT m a

mkParserT f = StateT (MaybeT ◦ f)

runParserT :: Monad m
⇒ ParserT m a → String → m (Maybe (a,String))

runParserT p = runMaybeT ◦ runStateT p

The monadParserT m nicely wraps a monadified state transfor-
mation function with typeString → m (Maybe (a,String)).

Although MaybeT is not in the standard Haskell libraries, its
definition is well-known. The necessary instance declarations are
straight-forward and omitted here.

newtype MaybeT m a =
MaybeT{runMaybeT :: m (Maybe a)}

So to monadify a parser with typeParser a, it suffices to
type it as a parser transformer over an unbound monad using type
ParserT m a. Since the parser monad is the outer monad, none
of the parser code needs to be changed! That is, aParser a value
is aParserT m a value when all of its sub-parsers are typed with
ParserT m instead ofParser .

Unfortunately, re-typingeverysub-parser requires re-typing ev-
ery sub-parsers’ sub-parsers, and eventually requires monadifying
the entire parsing library, which violates basic assumptions about
modularity and abstraction. On the other hand, we must monadify
someof the sub-parsers simply to support mutual recursion.

While monadifying entire parsing libraries isn’t feasible in prac-
tice, we feel our method is a first step toward memoizing real-world
parsers. We leave the development of more modular techniques as
future work.

6.2 Transforming All of the Parsers

Monadifying each parser and applying the mutual recursion tech-
niques developed previously, the mutually recursive parsersadditive,
multitive, primary , anddecimal together with the parsing library
char andanyChar become a six-tuple of parsers:

type Parsers m = (ParserT m Int ,
ParserT m Int ,
ParserT m Int ,
ParserT m Int ,
Char → ParserT m Char ,
ParserT m Char)

Since the individual parser definitions remain unchanged, the
tuple generator is also easily defined.

gmPars :: Monad m ⇒ Gen (Parsers m)
gmPars ∼(add ,mult , prim, decimal , char , any) =

(add ′,mult ′, prim ′, decimal ′, char ′, any ′) where

add ′ :: ParserT m Int = do
a ← mult ; char ’+’; b ← add ; return (a + b)
<|> mult

mult ′ :: ParserT m Int = do
a ← prim; char ’*’; b ← mult ; return (a ∗ b)
<|> prim

prim ′ :: ParserT m Int = do
char ’(’; a ← add ′; char ′ ’)’; return a
<|> decimal

decimal ′ :: ParserT m Int = do
c ← any
guard (inRange (’0’, ’9’) c)
return (read [c] :: Int)

char ′ (c :: Char) :: ParserT m Char = do
d ← any ; guard (c == d); return d

any ′ :: ParserT m Char = do
s ← get
case s of

[]→ mzero
c : s ′ → do

put s ′

return c

The input tuple (add ,mult , prim, decimal , char , any) repre-
sents the self parameters.

The original function can be obtained, as usual, by taking the
fixed-point, selecting the function corresponding to the start sym-
bol, and then running the unbound computation in the identity
monad:

parsegm :: String → Maybe (Int ,String)
parsegm = runIdentity ◦ runParserT (proj 1/6 (fix gmPars))

We useproj 1/6 to denote the function that projects the first element
from a six-tuple. The parserparsegm behaves the same asparse.

6.3 Memoizing the Parsers

Now that the parsers are transformed into a tuple generator, they
are almost ready to be memoized. The last step is to compose the
memo mixin with the transformer function within each parser. This
is trivial most of the parsers, but the fifth parserchar with type
Char → ParserT m Char requires some currying and poses
a more general question: since the memo mixin expects a unary
function, how do we memoize parsers with an arbitrary number of
input parameters?

Our solution to this problem is to introduce a type class for
constructs that are “like functions” but lack a direct functional
representation:

class Functional f a b | f → a b, a b → f where
toFun :: f → (a → b)
fromFun :: (a → b)→ f

7 2006/6/3

Parser types easily fit this mold:

instance Monad m ⇒
Functional (ParserT m a)

String
(m (Maybe (a,String)))

where
fromFun = mkParserT
toFun = runParserT

And to solve the problem posed above,n-ary functions also fit the
mold, reducing to(n− 1)-ary functions:

instance Functional f b c ⇒
Functional (a → f) (a, b) c where

fromFun = (fromFun◦) ◦ curry
toFun = uncurry ◦ (toFun◦)

Thus a parser that takesn arguments has analternaterepresentation
as a unary state transformation function whose input is ann + 1
tuple, combining then parser arguments with the state input. For
example, the necessary instance for the type of thechar parser
would be deduced as:

instance Monad m ⇒
Functional (Char → ParserT m Char)

(Char ,String)
(m (Maybe (Char ,String)))

where
fromFun = (mkParserT◦) ◦ curry
toFun = uncurry ◦ (runParserT◦)

With this abstraction we can define a functionwrap that com-
poses a given generatorg with the function underlying something
“like a function”:

wrap :: Functional f a b ⇒ Gen (a → b)→ Gen f
wrap g = fromFun ◦ g ◦ toFun

The functionwrap can be used to extend the behavior of a parser
that takes any number of arguments. For a zero-argument parser
like additive, wrap g additive has typeParserT m Int when
g has typeGen (String → m (Maybe (Int ,String))). For a
one-argument parser likechar , wrap g char has typeChar →
ParserT m Char when g has typeGen ((Char ,String) →
m (Maybe (Char ,String))). For parsers with multiple argu-
ments, the input type tog becomes a nesting of pairs:(a, (b, c)) for
two-argument parsers,(a, (b, (c, d))) for three-argument parsers,
and so on.

With wrap, we can define a memo mixin for the six parsers,
again using Template Haskell to enable the use of arbitrarily-sized
tuples:

$ (mapT n [| f |]) (a1, ..., an) = (f a1, ..., f an)
$ (applyT n) (f1, ..., fn) (a1, ..., an) = (f1 a1, ..., fn an)

type ParserDicts m =
(Dict String (Maybe (Int ,String)) m,
Dict String (Maybe (Int ,String)) m,
Dict String (Maybe (Int ,String)) m,
Dict String (Maybe (Int ,String)) m,
Dict (Char ,String) (Maybe (Char ,String)) m,
Dict String (Maybe (Char ,String)) m)

memoParsMixin :: (Monad m)
⇒ ParserDicts m → Gen (Parsers m)

memoParsMixin dicts = $(applyT 6) wraps where
wraps = $(mapT 6 [| wrap |]) memos
memos = $(mapT 6 [| memo |]) dicts

In memoParsMixin, the standardmemo function is applied to
each of the dictionaries in the six-tuplesuper , and thenwrap is
applied to each of the six resulting memo mixins to create a six-
tuple of parsers generators.

Finally, to create a fully memoized parser, the memo mixin
adapter is composed with the parser generator. After taking the
fixed-point and selecting the start function, the parser is run with
an empty memoization table. Since it is not generally useful to
parse different strings with the same memo tables, a self-contained
memoized parser is probably sufficient (but a reusable parser is
easily definable).

memoParse :: Monad m
⇒ ParserDicts m → ParserT m Int

memoParse dicts =
proj 1/6 (fix (memoParsMixin dicts ◦ gmPars))

Given a concrete tuple of dictionaries,memoParse creates a mem-
oized parser for the grammar given at the beginning of the section.
As usual, the supplied dictionaries determine the state monad for
memoization and the state representation for the memo tables.

6.4 Running the Parser

As before, we can memoize using both maps and arrays. Although
we only consider memo tables that are either all maps or all arrays,
there is no requirement that they are all represented in the same
way: some could be represented as maps, others as arrays, and the
rest as something else entirely.

The first memoization state,ParserMaps , is a tuple containing
six parser maps. Each tables maps a suffix of the input string to its
parsed result paired with the remainder of the string. Since parsing
may fail for an input, the table stores this output pair within a
Maybe type.

type ParserMaps =
(Map String (Maybe (Int ,String)),
Map String (Maybe (Int ,String)),
Map String (Maybe (Int ,String)),
Map String (Maybe (Int ,String)),
Map (Char ,String) (Maybe (Char ,String)),
Map String (Maybe (Char ,String)))

parserDicts :: ParserDicts (State ParserMaps)
parserDicts = $(mapAccT ′ 6 [| selMap |])
runMemoMapParse :: String → Maybe (Int ,String)
runMemoMapParse s =

evalState (runParserT (memoParse parserDicts) s)
empties

where
empties = (empty , empty , empty , empty , empty , empty)

Alternatively, we might use arrays for the memo tables instead
of maps for efficiency:

arrayDict :: (MArray arr (Maybe b) m)
⇒ (a → Int)
→ Int
→ arr Int (Maybe b)
→ Dict a b m

arrayDict f size arr = (check , store) where
check a = readArray arr (f a)
store a b = writeArray arr (f a) (Just b)

newSTArray :: Ix i ⇒ (i , i)→ e → ST s (STArray s i e)
newSTArray = newArray

runMemoArrParse :: String → Maybe (Int ,String)
runMemoArrParse s = runST (do

8 2006/6/3

let size = length s
addA ← newSTArray (0, size) Nothing
multA ← newSTArray (0, size) Nothing
primA ← newSTArray (0, size) Nothing
decimalA← newSTArray (0, size) Nothing
charA ← newSTArray (0, 4 ∗ (size + 1)) Nothing
anyA ← newSTArray (0, size) Nothing
let acc = (arrayDict length size addA,

arrayDict length size multA,
arrayDict length size primA,
arrayDict length size decimalA,
arrayDict hash size charA,
arrayDict length size anyA)

hash (a, b) = 4 ∗ length b
+ fromJust (elemIndex a "+*()")

runParserT (memoParse acc) s)

7. Performance
To evaluate performance of the monadic memo mixins, we com-
pared the simple Fibonacci function implemented in six different
ways:

zipFib The traditional hand-coded lazy data structure (Figure 1).

mixinFib/fix The Fibonacci implemented as a memo mixin as in
Section 2.

mixinFib/nofix To identify the effect of explicit use offix versus
the hard-coded recursion, we created a version ofmixinFib/fix
in which the recursion between the mixin and Fibonacci func-
tion is defined by name references, astabFib/nofix, rather than
an explicit call tofix .

mixinFib/nofix/IO A version of mixinFib/nofix that uses the
Data.Array .IO module rather than the arrays in theST
monad. It also uses hard-coded inheritance rather than explicit
fixed-points.

tabFib/nofix Hinze developed a theory oftabulatingfunctions that
can be used for memoization [11]. A tabulation is a lazy data
structure that contains a map from an index value to a result.
The concept of a tabulation is defined generically for any index
type by induction on the structure of the type; it is thuspoly-
typic, working on many types. We defined tabulation functions
for integers, so that the results can be compared with the other
implementations:

tabulateInt f = map f [0 . .]
applyInt list n = list !! n

These functions create a table of results of the functionf and
then look up the results. Tabulation reduces the Fibonacci func-
tion from exponential to quadratic execution time.

fib 0 = 0
fib 1 = 1
fib n = tabFib (n − 1) + tabFib (n − 2)

tabFib = applyInt (tabulateInt fib)

The memoized version is not a modular extension of an original
fib function, because the definition offib calls memoFib. A
modular version is considered next.

tabFib/fix It is possible to express the tabulating memo function as
a mixin [21]:

memoNat = applyInt ◦ tabulateInt
fib = fix (memoNat ◦ gFib)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

n (thousands)

C
P

U
 T

im
e

fo
r

20
0

ru
n

s
(S

ec
o

n
d

s)

zipFib

ta
bF

ib
/n

of
ix

m
ix

in
F

ib
/fi

x

m
ix

in
F

ib
/n

of
ix

/IO

m
ix

in
F

ib
/n

of
ix

Figure 3. Performance of memoized Fibonacci (detail)

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3

n (thousands)

C
P

U
 T

im
e

fo
r

20
0

ru
n

s
(S

ec
o

n
d

s)

tabFib/nofixtabFib/fix

(see detail)

Figure 4. Performance of memoized Fibonacci (expanded view)

The functiongFib used to definefib is the Fibonacci generator
defined in Section 2.2.

7.1 Performance Results

The performance of these implementations are summarized in Fig-
ures 3 & 4. The x axis definesn and the y axis is the time to com-
putefib n. The two charts present the same data, but with different
maximum values forn and time:(25, 1.2) and(3, 12) respectively.
Each computation is performed separately so that the memo tables
for computingfib n are cleared beforefib (n + 1) is computed.
The results represent the total time of of 200 runs on a 2.4Ghz
Intel Pentium 4 with Windows XP. The code was compiled with
optimizations (using the -O flag) in GHC 6.4.1. The performance
results are relatively stable between runs.

9 2006/6/3

The memoization mixins are comparable to the traditionalzip-
Fib version, although the latter has a slightly worse asymptotic be-
havior. None of the implementations exhibit true linear behavior,
although the second-degree coefficients are generally small. The
graphs include second-degree polynomial trend lines which match
the curves closely. Interestingly, when run without optimizations in
GHCi the trends are more clearly linear. The implementation using
IO arrays is the closest to linear.

One clear source of overhead is the use of explicit fixed points to
achieve modular memoization. For the monadic memoization mix-
ins,mixinFib/fix is on average 2 times slower thanmixinFib/nofix .
This is a very significant penalty on modularity. In object-oriented
languages, the performance hit of virtual methods versus non-
virtual methods is typically just a few additional memory accesses.

As Hinze noted, the tabulating version,tabFib/nofix, is quadratic
in n. This is because it traverses the list multiple times to look up
cached values. Its performance is more easily seen in Figure 4. It is
approximately 200 times slower than the otherzipFib. The slower
modular version,tabFib/fix , might be slow because it’s creating a
new memo table at each unrolling of the fixed-point.

Our initial investigations show that the parser performs badly
when compared to the hand-written tabulating parser in [7]. Until
the performance penalty for modularity is addressed, the monadic
memoized parser will remain an order of magnitude slower than
the lazy implementation.

8. Related Work
Memoization is an old technique [19]. Most accounts introduce a
higher-ordermemo function to perform memoization. This ap-
proach can be implemented in procedural languages that sup-
port higher-order functions [10]. Amemo function can also be
implemented as a primitive within the implementation of a lazy
functional language. For example, some versions of the Glasgow
Haskell Compiler system included amemo function, but it ap-
pears to have been removed from recent versions [8]. Memoization
can also be defined in terms of more basic primitives which allow
effects outside the normal semantics of functional languages; for
example, memoization can be defined on top of an unsafe state
monad [3] or unsafeIO monad [15].

The current work was motivated by a desire to develop a simpler
implementation of Packrat parsers [7]. The presentation given by
Ford uses Haskell’s internal memoization of recursive lazy data
structures. Using this approach requires rewriting the parser to use
a special memoization data structure; the transformation is quite
complex. While some of the complexity can be hidden from users
of the library who write grammars, not all of it can: users creating
a parser must also create the corresponding lazy data structures.

A similar approach to parsing was presented by Norvig [20].
He used a procedural language in whichmemo could be de-
fined as a macro. Johnson extends this method to work with left-
recursive grammars by transforming the parser to continuation-
passing style [13].

Hinze [11] defines tabulation functions that store previous re-
sults in lazy data structures. He also transforms functions, but only
needs to open recursion, not apply monadification. As a result, the
technique of tabulation is easier to use than monadic memoization
mixins. However, it does not produce as efficient a result. For Fi-
bonacci, the result is a quadratic function, not the linear function in
Figure 1.

Swadi et al. [23] independently proposed an approach to mem-
oization similar to the one presented in this paper. However, their
goal is different, leading them to significantly different solutions.
Their primary goal is to perform partial evaluation on memoized
computations to increase performance. They develop a monadic
memoization combinator that is similar, but not identical, to the first

one given here. Instead of creating a memoization mixin, they cre-
ate a memoizing fixed-point combinator. This obscures the connec-
tion to inheritance and mixins in object-oriented languages. They
do this in part because they are working in an applicative lan-
guage, rather than a lazy one. They express partial evaluation via
explicit stagingof the computation. When the memoized compu-
tation is staged in an applicative language, computations are du-
plicated which negate the benefit of memoization. To avoid re-
computation they transform the code to continuation-passing style
(CPS), and then define a memoizing fixed-point combinator for this
style. The staged version of the memoized function performs sig-
nificantly better than the unstaged version. The work presented here
has a different goal: to develop memoization techniques useful for
a variety of situations, including functional and monadic computa-
tions. We base our approach on the well-known concepts of mix-
ins and inheritance that support flexible and modular programming.
They mention the situation of mutual recursion, and outline a simi-
lar solution using accessor functions. We take this approach slightly
further by using template metaprogramming to generate the acces-
sor functions automatically. Our approach does not require staging
or continuations to avoid recomputation. Since the two approaches
have a common starting point, it may be possible to combine them.

The memoization technique described here depends upon monad-
ification — introducing an unbound monad parameter into a recur-
sive function. A comprehensive review of this problem and its
solution was presented by Erwig in [6], although the problem was
discussed earlier [16].

Memoization by lazy data structures appears to be unique to
lazy functional programming languages. The technique is power-
ful, but difficult to use because it is almost invisible in the resulting
program [1]. The technique relies on structures implicitly main-
tained by the Haskell runtime that cannot be manipulated by the
programmer; for example, there is no simple way to shrink the
memo table in the canonical memoization offib presented in the
introduction. This approach also depends upon the implementation
of the language; it can be difficult to determine exactly which sit-
uations will be memoized. These optimizations are not inherent in
the underlyingλ-calculus. Precise specification of lazy evaluation
is a difficult problem [17].

Cook and Lauchbury studied “disposable memo functions”,
where the memo table can be garbage collected when it is no longer
referenced [3]. They present an extension toλ-calculus with a prim-
itive memo function. They also discuss briefly the basic solution
to memoization using a state monad. They show how the behavior
of the extendedλ-calculus can be implemented usingunsafeST ,
which allows update of mutable state to be hidden within a Haskell
program. They also discuss applications to parsers. Our results re-
fute the claim that “in Haskell,memo must be defined outside the
of the language”. The issue of disposing memo tables does not
arise in the solution presented here because the memo table is an
explicit value and not hidden by implementation primitives. Hav-
ing an explicit memo table also allows it to be pruned, shared, or
written to disk just like any other value. The technique of lazy data
structures supports disposable memoization, although it requires
that lazy data structure and its corresponding functions go out of
scope.

9. Conclusion
This paper presents monadic memoization mixins. The work had
two main motivations. One was to illustrate the use of inheri-
tance in functional languages. Inheritance is usually associated with
classes in object-oriented languages, but is in fact a general tech-
nique for modifying recursive structures — classes, modules, func-
tions, types, etc. The other motivation was to develop a modular
technique for memoization in pure functional languages and a sim-

10 2006/6/3

pler approach than Packrat parsers to memoizing top-down parsers
built from combinator libraries. We developed techniques for mem-
oizing recursive functions, mutually recursive functions, monadic
functions, and general constructs that encapsulate a functional be-
havior. We evaluated the performance of various approaches to
memoization in Haskell and showed that ours is efficient for a small
example. Memoizing mutually recursive functions is awkward be-
cause Haskell lacks generic functions for manipulating tuples and
records; Template Haskell provides some help, although language
extensions might be more effective.

References
[1] Richard Bird and Ralf Hinze. Functional pearl: Trouble shared

is trouble halved. InHaskell ’03: Proceedings of the 2003 ACM
SIGPLAN workshop on Haskell, pages 1–6, New York, NY, USA,
2003. ACM Press.

[2] Gilad Bracha and William Cook. Mixin-based inheritance. InProc.
of ACM Conf. on Object-Oriented Programming, Systems, Languages
and Applications, pages 303–311, 1990.

[3] Byron Cook and John Launchbury. Disposable memo functions.
In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP-97), volume 32,8 ofACM SIGPLAN
Notices, pages 310–310. ACM Press, 1997.

[4] William Cook. A Denotational Semantics of Inheritance. PhD thesis,
Brown University, 1989.

[5] William Cook and Jens Palsberg. A denotational semantics of
inheritance and its correctness. InProc. of ACM Conf. on Object-
Oriented Programming, Systems, Languages and Applications, pages
433–444, 1989.

[6] Martin Erwig and Deling Ren. Monadification of functional
programs.Sci. Comput. Program., 52(1-3):101–129, 2004.

[7] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time,
functional pearl. InICFP ’02: Proceedings of the seventh ACM
SIGPLAN international conference on Functional programming,
pages 36–47, New York, NY, USA, 2002. ACM Press.

[8] GHC – The Glasgow Haskell Compiler.haskell.org/ghc.

[9] A. Goldberg and D. Robson.Smalltalk-80: the Language and Its
Implementation. Addison-Wesley, 1983.

[10] M. Hall and J. Mayfield. Improving the performance of ai software:
Payoffs and pitfalls in using automatic memoization. InInternational
Symposium on Artificial Intelligence, 1993.

[11] Ralf Hinze. Memo functions, polytypically! InSecond Workshop on
Generic Programming, 2000.

[12] Graham Hutton and Erik Meijer. Monadic parsing in Haskell.Journal
of Functional Programming, 8(4), 1998.

[13] Mark Johnson. Memoization in top-down parsing.Computational
Linguistics, 21(3):405–417, 1995.

[14] Mark P. Jones. Type classes with functional dependencies. InESOP
’00: Proceedings of the 9th European Symposium on Programming
Languages and Systems, pages 230–244, London, UK, 2000.
Springer-Verlag.

[15] Simon L. Peyton Jones, Simon Marlow, and Conal Elliott. Stretching
the storage manager: Weak pointers and stable names in haskell. In
Implementation of Functional Languages, pages 37–58, 1999.

[16] R. Lämmel. Reuse by Program Transformation. In Greg Michaelson
and Phil Trinder, editors,Functional Programming Trends 1999.
Intellect, 2000. Selected papers from the 1st Scottish Functional
Programming Workshop.

[17] John Launchbury. A natural semantics for lazy evaluation. InPOPL,
pages 144–154, 1993.

[18] Daan Leijen. Parsec, a fast combinator parser.http://www.cs.uu.
nl/daan.

[19] Donald Michie. “memo” functions and machine learning.Nature,
218:19–22, 1968.

[20] Peter Norvig. Techniques for automatic memoization with appli-
cations to context-free parsing.Computational Linguistics, 17(1),
1991.

[21] Anonymous ICFP reviewer. Private communication.

[22] Tim Sheard and Simon L. Peyton Jones. Template metaprogramming
for Haskell. InACM SIGPLAN Haskell Workshop 02, pages 1–16,
October 2002.

[23] Kedar Swadi, Walid Taha, Oleg Kiselyov, and Emir Pasalic. A
monadic approach for avoiding code duplication when staging
memoized functions. InPEPM ’06: Proceedings of the 2006 ACM
SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 160–169, New York, NY, USA, 2006.
ACM Press.

11 2006/6/3

