
Gel: A Generic Extensible Language

Jose Falcon, William R. Cook

Department of Computer Science
University of Texas at Austin

jofalcon@mail.utexas.edu, wcook@cs.utexas.edu

Abstract. Both XML and Lisp have demonstrated the utility of generic syn-
tax for expressing tree-structured data. But generic languages do not provide the
syntactic richness of custom languages. Generic Expression Language (Gel) is
a rich generic syntax that embodies many of the common syntactic conventions
for operators, grouping and lists in widely-used languages. Prefix/infix opera-
tors are disambiguated by white-space, so that documents which violate common
white-space conventions will not necessarily parse correctly with Gel. With some
character replacements and adjusting for mismatch in operator precedence, Gel
can extract meaningful structure from typical files in many languages, including
Java, CSS, Smalltalk, and ANTLR grammars. This evaluation shows the expres-
sive power of Gel, not that Gel can be used as a parser for existing languages.
Gel is intended to serve as a generic language for creating composable domain-
specific languages.

1 Introduction

The traditional approach to implementing concrete syntax for a language is to define
a custom grammar and a parser to read the language, and possibly a pretty-printer to
output or reformat programs. Examples include programminglanguages, grammars for
parser generators, configuration files, CSS styles, and makefiles.

C/Java: int m(int[] a) { return o.m(2 * a[x++], !done); }

CSS: a:link { font-family: courier; color: #FF0000 }

Smalltalk:ˆ o m: 2 * (a at: x inc) n: done not .

ANTLR: call : ID ’(’ (a=e (’,’ b=e { a.add(b); }) *)? ’)’;

A custom-designed language is generally easy for humans to read and write, al-
though they must learn specialized syntax and lexical conventions for each language.
There are many tools for creating custom languages [19, 25, 17] and also for creating
extensions to custom languages [7].

A second approach is to use a generic language that provides astandard concrete
syntax representing generic abstract trees. Examples of this approach include XML [9]
and Lisp S-Expressions [22]. A custom language can be definedwithin a generic lan-
guage as asubset: the Lisp programming language is a subset of S-Expressions, XHTML
is a subset of all possible XML documents. Krishnamurthi hascalled this technique

bicameral parsing[21]. A language designer can choose how to encode high-level con-
cepts using the generic syntax. For example,if x<3 then print(x) could be represented
this way:

Lisp: (if (< x 3) (print x))

XML: <if><test op=”lt”><var name=”x”/><const>3</const></test>
<then><call fun=”print”><arg>x</arg></call></then></if>

It is easy to embed or compose different languages in one document. Humans only
have to learn one set of syntactic conventions. Parsing, pretty-printing, and other tools
can be reused.

A major negative of generic languages is that humans generally find them less ap-
pealing to read and write than custom languages. Compared tolanguages with a custom
grammar, both Lisp and XML are impoverished syntactically:a few delimiters and sim-
ple syntactic forms are repeated many times.

In this paper we present Generic Extensible Language (Gel),a language that em-
bodies many of the common syntactic conventions popular languages, including C/Java,
Smalltalk, CSS and EBNF. The goal of this research is to definea generic language
based on the syntactic conventions that have evolved over the last 40 years.

Gel has a uniform fixed syntax supporting arbitrary prefix, suffix, and infix opera-
tors, lists, grouping, keywords, sequences of adjacent expressions. and string interpola-
tion. It has a novel quoting construct to support meta-languages.

We evaluate Gel by analyzing how well the Gel AST correspondsto the AST created
by a traditional parser. Ignoring some conflicts in operatorprecedence, Gel extracts a
good representation of the structure of Java programs, CSS styles, Smalltalk programs,
and Corba IDL definitions. These examples demonstrate the expressive power of Gel.
The goal is not to create actual parsers for these languages,but to use Gel as a standard
input format for future domain-specific languages. The benefit is that Gel can easily
parse embedded languages; for example, allowing a Java-like language to include CSS-
like fragments directly in an expression, without switching to a different parser.

2 Introduction to Gel

This section introduces Gel by example. For reference, an informal summary of Gel
syntax in EBNF is given in Figure 1. A formal grammar is given in Section 3. Gel
expressions include familiar identifiers, numbers, strings which can be combined with
binary operators and grouped in the familiar way.

s1 = x * 3 && c == "str" (&& (= s1 (* x 3)) (== c ”str”))
(s1 = (x * 3)) && (c == "str") (&& (= s1 (* x 3)())() (== c ”str”)())
{s1 = [x * 3] } && [c == "str"] (&& (= s1 (* x 3)[]){} (== c ”str”)[])

The expression on the left is input text. The expression on the right is a Lisp-like
presentation of the generic abstract syntax (GAST) that results from parsing the text on
the left using Gel. The grouping symbols are indicated in GAST by a superscript. This
convention emphasizes that parenthesis are often ignored in the semantic processing of

Precedence of expressions, highest first
e := s | t | (e) | [e] | • 9. symbol, string, group, op

| ‘ e 8. quoted expression
| ee 7. sequence/function application
| e•e 6. binary without spaces
| •e | e• | •e• 5. unary prefix and/or suffix
| e e 4. sequence with space
| e • e 4. binary with spaces
| e ? , ? e 3. comma list
| e: | : e | : e: | {e} 2. keyword forms and braces
| e ? ; ? e 1. semicolon list

• := ‘ ∗[. , ˆ˜ , * /%, +- , @#, <>, != , &, | , :?$]+ arbitrary operators
s := [a-zA-Z0-9]+ symbols
t := ’ r∗’ | " p∗" strings
r := \xXX | \uXXXX| \[tnr’" \$] | char text encoding
p := $s•??g∗ | r string interpolation
g := [e] | (e) | {p∗} interpolation group

:= white-space or begin/end of group/file

Fig. 1. Informal summary of Gel syntax with expression precedence

expressions. Remember that Gel only specifies syntax; the semantics of these notations
are defined by the particular language encoded using Gel.

Gel interprets any contiguous digits, letters, and underscores assymbols. As a result,
Gel accepts3F5BA2, 10pt , 3 Dand10e23 as symbols. The validity of these symbols
is determined by the client program using Gel. Handling of more complex floating point
formats is discussed in Section 2.4.

The set of operators is not fixed. Instead, operators are constructed like identifiers:
any combination of operator symbols is an operator.

{1..9 } :-> [c = * = "str"] (:-> (.. 1 9){} (=*= c ”str”)[])

Several other languages, including Haskell[18], Scala[23] and Smalltalk[15], allow
arbitrary infix operators.

The precedence of most operators is defined by their first character as defined in
Figure 2. There is a special case for assignment operators [23] which end in[[=]] and
do not start with[[!=<>]] . Throughout this paper,[[abc]] represents thesetof characters
{a,b,c}.

The comma, semicolon, and grouping characters are calledpunctuationin Gel.
Punctuation symbols do not combine with other operators, and are always taken as
single characters. Also, white space is always ignored around punctuation, while it is
significant around other operators, as described below.

Multiple uses of the same operator are collected together into an n-ary application,
so they have no associativity. Different operators with thesame precedence level use
right-associativity. While the operators resemble the precedence of many languages,
they do not match any perfectly. Although Gel can parse Java code, some operators are

precedence first character middle last description
13 [[.]] any not [[=]] dots
12 [[ˆ˜]] any not [[=]] high
11 [[* /%]] any not [[=]] multiplicative
10 [[+-]] any not [[=]] additive
9 [[@#]] any not [[=]] middle
8 [[<>]] any any relational
7 [[!=]] any any equality
6 [[&]] any not [[=]] and
5 [[|]] any not [[=]] or
4 [[:?$]] any not [[=]] low
3 not [[!=<>]] if len>1 any [[=]] assignment
2 [[,]] — — comma list
1 [[;]] — — semicolon list

whereany =[[ˆ˜ * /%+-@#!=<>&|:?$‘]]

Fig. 2.Gel precedence table of operator patterns and precedence levels.

given the wrong precedence; the goal of Gel is not to create a better Java parser, but to
be able to parse Java-like languages generically. Gel does not support ternary operators,
but Java’sc ? a : b operator can be parsed as a combination of binary operators.

c ? a : b + 2 (? c (: a (+ b 2)))

Many programming languages use comma and semicolon to represent lists of iden-
tifiers and lists of statements.

{ 2, 3, 5, 7, 13 } (, 2 3 5 7 13){}

one; two; three (; one two three)
(a, 1); (a + 1, b + 2) (; (, a 1)() (, (+ a 1) (+ b 2))())
a, 1; a + 1, b + 2 (; (, a 1) (, (+ a 1) (+ b 2))

Comma has higher precedence than semicolon, and they both have lower prece-
dence than other operators, so the last two examples above are equivalent. An empty
objectǫ is inserted when list items are missing, even at the end of a list:

a,,b (, a ǫ b)
{ a * = b + 1; } (; (*= a (+ b 1)) ǫ){}

Operators are treated as symbols in situations where they donot make sense as
binary (or unary) operations. Comma and semicolon are always treated as operators,
unless they are directly enclosed in a group.

ops = (* , +, -, /) (= ops (, * + - /)()))
others = [(,) + (;) + ($)] (= others (+ ,() ;() $())[])

2.1 Unary Operators

Any operator (other than comma and semicolon) can be used as aprefix or suffix unary
operator, on any expression:

x?, * p++, !done, pat * (, [x]? *[p]++ ![done] [pat]*)

In the abstract notation on the right, unary operators have aspecial notation. For any
operator◦, the prefix form is◦[x] , the suffix form is[x]⋆ and a combined prefix/suffix
form is ◦[x]⋆ .

The combination of binary and unary operators allows Gel to represent the typical
notation for regular expressions which are also used in modern versions of Extended
BNF and other notations for patterns.

(a+ | b+)? | x * (| [(| [a]+ [b]+)]? [x]*)

Although a period is often used to represent a wildcard pattern, in Gel it works
better to use since it is a symbol, not an operator.

Gel does not support compound grouping symbols, although they can be represented
by a prefix and/or suffix operator on a standard group.

@["a", "b"] @[(, “a” “b”)[]]

=[x, y, z]= =[(, x y z)[]]=
<{ #2342; @:option ** }> <[(; #[2342] @:[option]**){}]>

2.2 Sequences

Gel allowssequencesof expressions that are not separated by an operator. In Haskell
sequences of expressions denote function application. In Smalltalk a sequence of identi-
fiers following an expression represent postfix unary operators. In both cases sequences
have higher precedence than binary operators.

Haskell:f a 3 + g 10 (+ (f a 3) (g 10))
Smalltalk:obj size + item max (+ (obj size) (item max))

In the abstract syntax on the right, a sequencea b is represented by an underscore
operator:(a b). It does not matter to Gel that the interpretation of these syntactic
forms is completely different in Haskell and in Smalltalk. What matters is that they
follow common syntactic conventions.

Java and C do not have explicit sequence operators, but sequences arise in declara-
tions, statements and in some expressions.

static int f (int x, bool y) (static int f (, (int x) (bool y))())
if (x > y) { return x; } ((> x y)() (; (return x) ǫ){})
(String) x == a [i] (== (String() x) (a i[])

Sequences are also used in grammars and regular expressions.

p ::= id | ’(’ p ’)’ (::= p (| id (’(’ p ’)’)))
(’+’ | ’-’)? (’0’ .. ’9’)+ ([(| ’+’ ’-’)()]? [(.. ’0’ ’9’)()]+)

Sequences enable Gel to parse compound expressions withoutany specific infor-
mation about what the sequence should contain.

2.3 Spaces

The combination of arbitrary infix, prefix and suffix operators with sequences of ex-
pressions is highly ambiguous. There would not be any reasonable way to parse the
following generic grammar without additional syntactic clues:

e ::= e op e | op e | e op | e e

The simple expressiona + * b can be parsed five different ways (assuming+ and
* are separate operators). Gel is based on common conventionsfor formatting expres-
sions, using white spaces, that distinguish these cases. Parsers are traditionally written
to ignore white-space, but humans do not ignore it. Gel uses white-space to distinguish
three of the interpretations of this expression (here, an equivalent parenthesized version
is provided):

a + * b ≡ a + (* b) (+ a *[b])
a+ * b ≡ (a+) * b (* [a]+ b)

a+ * b ≡ (a+) (* b) ([a]+ *[b])

Two other interpretations require parentheses in Gel:

(a+) * b ≡ ((a+) *) b ([[a]+]* b)
a +(* b) ≡ a (+(* (b)) (a +[*[b]])

There is one remaining way to include white-space in the expression. It is not clear
how this expression should be parsed.

a + * b

One option is to make it an error. However, it is similar to a more common situation
with a freestanding operator before or after an expression.In this case, Gel interprets
the operator as if it were in parentheses:

* x + 3 ≡ (*) x + 3 (* (+ x 3))
a [@ 1] $ ≡ a [(@) 1] ($) (a (@ 1)[] $)

[+ -, * /] ≡ [(+) (-), (*) (/)] (, (+ -) (* /))[]

a + * b ≡ a (+) * b (* (a +) b)

The final example illustrates how the ambiguous expression above is covered by
this rule. The last operator is taken as a binary operator, while previous operators are
parsed as symbols. The motivation for this choice is to allowGel to act as a flexible
tokenizer. Gel does not reject expressions that might have ameaningful interpretation.

Spacesare significant in most languages. For example, in Javaint x does not
mean the same thing asintx . Fortran is the only language we know for which spaces
are truly optional [1].

The precedence rules for sequences and operators do not allow Java to be parsed
perfectly, even using the pretty-printing conventions. Insome cases sequences should

have higher precedence than comma, and in other cases comma should have higher
precedence:

fun(int x, int y) (fun (, (int x) (int y))())
int x, y; (, (int x) y)

There is no way to parse bothint x, int y and int x, y correctly with
generic precedence for sequences and comma. Gel assigns sequence higher precedence
than comma so that function headers, as in the first example, could be parsed correctly.
This precedence ordering, however, does not correctly parse the second example.

2.4 Spaced and Non-Spaced Operators

Spacing also affects the interpretation of binary operators in Gel. The examples in Sec-
tion 2.2 depend on sequences of expressions having higher precedence than binary oper-
ators. However, there are other situations in which binary operators should have higher
precedence. One example comes from ANTLR grammars, which use an equal sign as
a high-precedence binary operator.

exp : a=term (’+’ b=term) *

Does “a=b c ” parse as(= a (b c)) or as((= a b) c)? In this case the desired
parse is the latter, but this violates the rule that sequences have higher precedence than
binary operators. Note that the convention in ANTLR is to haveno white-spacearound
the = operator, in contrast to the convention when formatting assignment operators in
Java.

The solution in Gel is to make operators without white space have higher prece-
dence than operators surrounded by white-space, includingsequences separated by
white-space. This is clearly a controversial decision. It matches conventions in lan-
guages as diverse as Haskell and ANTLR, as examples illustrate below. Using this rule,
the ANTLR expression parses correctly in Gel:

exp : a=term (’+’ b=term) *
(: exp ((= a term)〈〉 [(’+’ (= b term)〈〉)()]*))

The general rule is that a chunk of text with no spaces or punctuation is always
parsed as a unit, as if it were parenthesized. These chunks are then combined by any
operators with spaces. The same precedence rules are applied to non-spaced and spaced
operators. Thus white-space acts as an implicit grouping operator, in effect a kind of
parentheses. This idea is represented explicitly in the abstract representation using a〈〉

as a grouping operator.
Unary prefix and suffix operators can only occur at the beginning or end of a chunk,

and they always apply to the result of the entire chunk.

2 * -3.14ˆ20 (* 2 −[(ˆ (. 3 14) 20)])
x=A* | y=B? (| [(= x A)]* [(= y B)]?)
&a+b+c * &[(+ a b c)]*

The first example illustrates how the decimal point in floating point numbers is in-
terpreted as a binary operator. Java breaks sequences of operator characters into tokens,
but Gel does not. For example, the Gel expressionx-- * ++y has the binary operator
-- * ++ but in Java it parses as(x--) * (++y) . In Gel it must be writtenx-- * ++y .
Java is not completely consistent in this respect, because it fails to parsex+++++y .

A sequence without spaces, which has high precedence than all other operators, can
be used for casting, function application and array access in Java. Note that sequence
has higher precedence than dot in Gel, but lower precedence in Java.

f(x, y)[n] (f (, x y)() n[])〈〉

(Integer)a.b (. (Integer() a) b)〈〉

(Integer) a.b (Integer() (. a b)〈〉)
o.m(a) (. o (m a()))〈〉

o.m (a) ((. o m)〈〉 a())

These examples illustrate how spaces affect the grouping ofoperators. The punc-
tuation characters (parentheses, brackets, braces, commaand semicolon) are always
interpreted the same whether or not they have white-space around them.

Gel can also parse typical email addresses and URLs, although it does not conform
to the full specification of either.

wcook@cs.utexas.edu (@ wcook (. cs utexas edu))〈〉

http://google.com/search?query=Gel&n=1#m
(:// http (? (/ (. google com) search) (# (& (= query Gel) (= n 1)) m)))〈〉

This example is only meant to be suggestive of the kinds of notations that Gel could
parse, in more restricted contexts. The actual email and URLstandards [11, 2] allow
many other characters that would be interpreted as operators in Gel and ruin the parse.

The Haskell period symbol uses a special case of the general rule for spaces and
operators. Without spaces, the period between identifiers represents module paths, but
with spaces it is a binary operator, as seen in this one-line implementation of the Unix
sort command:

(sequence . map putStrLn . List.sort . lines) =<< getContent s

Gel parses this Haskell expression correctly:

(=<< (. sequence (map putStrLn) (. List sort)〈〉 lines)() getContents))

2.5 Keywords and Curly Braces

A keyword is a special identifier often used to indicate a particular syntactic structure.
In most languages keywords are reserved words that cannot beused for any other pur-
pose. One common use is to identify control flow structures, for examplefor , while ,
if /else , switch /case , try /catch and return . Some keywords act as oper-
ators, for examplenew and instanceof in Java. The set of keywords differs from
language to language. Some languages, including Smalltalk, do not have any keywords.

Many uses of keywords in Java can be parsed in Gel without any specific informa-
tion about keywords.

while (!b) { b = next(); } (while ![b] () (; (= b (next ǫ())〈〉) ǫ){})
p = new Point(3, 4) (= p (new (Point (, 3 4)())〈〉))
if (a>b) f(i); else return; (; (if (> a b)() (f x())〈〉) (else return))
if (e instanceof Point) m(e) (if (e instanceof Point)() (m e())〈〉)
for (i = 9; i > 1; i--) f(i) (for (; (= i 9) (> i 1) [i]−−)() (f i())〈〉)

This is not a general solution, however. The statementreturn x + y parses
incorrectly as(return x) + y because sequence has higher precedence than +. A
similar situation happens in ML or Haskell, which do not require parentheses as in Java
and C, so control flow statements do not parse correctly in Gel.

if a = b then 1 else 2 (= (if a) (b then 1 else 2))

These examples illustrate a common purpose for keywords — tolabel or combine
expressions to form statements. When viewed from this perspective, keywords can be
understood as a kind of low-precedence operator. In Gel, keywords are identified by
a prefix or suffix unary colon operator. Keywords enable more of Java to be parsed
correctly with Gel:

return: x + y; (; ([return]: (+ x y)) ǫ)
if: a = b then: 1 else: 2 ([if]: (= a b) [then]: 1 [else]: 2)

Keywords have precedence greater than semicolon but less than comma. In the ab-
stract syntax (on the right) keywords are combined by a double-barred sequence opera-
tor, . Gel generalizes the notion of a keyword to allow any expression with a prefix or
suffix colon operator to be a keyword.

n-val: 23; (test): 5 (; ([(- n val)]: 23) ([test()]: 5))

In addition, groups in curly braces are also treated as keywords. This convention
mirrors usage in C/Java and CSS, where such groups are not included in sequences.
Compare these examples:

a + b [more] ≡ a+(b[more]) (+ a (b more[]))
a + b { more } ≡ (a+b) {more} ((+ a b) more{})

As a result, Gel parses these forms correctly:

class: C implements: A, B { ... }
([class]: C [implements]: (, A (B ...{}))

.info,h1 { color: #6CADDF }
((, .[info] h1) ([color]: #[6CADDF]){})

if: (b) { ... } a = 3; (; ([if]: (b() ...{})) (= a 3) ǫ)

If these groups were not treated the same as keywords, they would parse as

implements: A, (B { ... })
and

if: (((b) { ... } a) = 3);
The last example above illustrates a final special case: whena curly group is inside

a semicolon operator, the group has an implicit semicolon added after it. In C++ the
semicolon is required after a class declaration, but not after a method body. This special
case for curly groups affects some other languages badly. For example, many parser
generators use curly groups to enclose parser actions, so they do not parse correctly in
Gel. The solution is to add a unary operator to the group, as in* { ... }, or to use a
different grouping operator.

Gel also cannot meaningfully parse languages that use keywords for grouping, e.g.
begin /end or if...end if . Parsing these examples correctly would require spe-
cific knowledge of the structure of statements.

There is a special case for keywords or curl braces that are the direct argument of a
binary operator. In this case they keyword is nested inside the binary operator.

p = new: Point(3, 4) (= p ([new]: (Point (, 3 4)())〈〉))
x = {a} + b * test: x ((= x (+ a{} (* b ([test]: x)))))
b * k1: k2: 99 (* b ([k1]: [k2]: 99))

The design of keywords is the most difficult part of Gel. We explored the option of
user-defined keywords in a document or block header, but thiscomplicated the language
and interrupted the flow of content in a document. The colon marker is lightweight and
explicit.

2.6 Quoting

Quoting is useful to indicate that a syntactic form has a special meaning. In Lisp, any
expression can be quoted. Syntactically, this wraps the expression in a list beginning
with the symbolquote, which tells the Lisp interpreter to use the expression as a literal
data value. Quotes are also useful in defining grammars. Theycan be used to distinguish
the syntax being defined from the meta-syntax of the grammar definition language. To
illustrate, first consider a conventional presentation of the syntax of EBNF in EBNF:

grammar EBNF {
grammar ::= "grammar" id " {" rule (";" rule) * " }" ;
rule ::= id "::=" pat ;
pat ::= id | str | pat pat | pat "|" pat | pat " * " ;
id ::= letter+ ;
str ::= quote any * quote

}

This is a typical grammar for parsing text streams, in which the tokens of the lan-
guage being defined are enclosed in quotes. It assumes that the patternsletter and
quote are predefined. This grammar is highly ambiguous, requiringsignificant work
to resolve these ambiguities. More work would be needed to deal with white-space.

Gel suggests another possibility where the operators"|" and " * " are parsed as
actual operators rather than strings. The operators that are part of the language being
defined are marked with a backquote character:

id | ‘id | pat pat | pat‘|pat | pat‘ *

This is a tree grammar [14] that recognizes Gel trees that represent EBNF patterns.
The expressionpat‘|pat is written as a chunk (without spaces) so that it will have
higher precedence than the other| operators. In the example below it is parenthesized
instead. The full grammar is below:

grammar EBNF {
grammar ::= (‘grammar ID { rule * });
rule ::= (ID ‘::= pat);
pat ::= ID | ‘ID | pat pat | (pat ‘| pat) | pat‘ * ;

}

In Gel any expression or operator can be quoted. A quoted operator has exactly the
same precedence as its unquoted version. That is, Gel will create the same structure for
a quoted expression and an unquoted version.

(grammar EBNF
(; (::= grammar (‘grammar ID [rule]* {})())

(::= rule (‘::= ID pat)())
(::= pat (| ID ‘ID (pat pat) (‘| pat pat) [pat]‘*))){})

Gel quoting can also be combined with a prefix operator to implement back-quote
substitution as in Lisp. This kind of structural substitution has a counterpart in strings
as defined in the next section.

2.7 Strings and Interpolation

Many languages allow variables or expressions to be embedded inside a string, a tech-
nique calledstring interpolation. For example,"the $nth word" is equivalent to
"the " + nth + " word" . String interpolation is a short-hand for string con-
catenation. In Gel the$ character can be followed by an optional symbol, then an op-
tional operator, and then any number of groups. The parenthesis and square bracket
groups contain Gel, while the curly bracket groups enclosestrings. That is, the text
inside${... } is implicitly quoted and can contain additional interpolations.

"$heading[2+n] {Section $n } equation: $= {2+n}"
(+ (heading * (+ 2 n)[] (“Section ” n$){})$ “ equation ” (= “2+n”{})$)

Note that Gel’s interpolations generalized both Perl notation and also TEX [20].
After substituting$ for \, Gel can extract meaningful structure from many (but not all)
TEX documents. Gel could be used for a Latex-like formatting language, but the Gel
operator syntax could be used for math instead of text encoding as in TEX.

3 Gel Specification

Gel is defined by a concrete grammar, an abstract syntax, and aset of rewrite rules to
handle keywords. The grammar of Gel is given in Figure 3. As isstandard,x* means
zero or more repetitions ofx, x+ is one or more, andx? means zero or one copy ofx. A
set of characters in brackets[[abc]] represents exactly one character from the set. Char-
acter sets preceded by a¬ symbol represents exactly one character that is not in the char-
acter set, and sets superscripted by a numbern representn repetitions. Ranges may also
appear in superscripts asn−m. White-space tokens are not ignored, but are represented
explicitly in the grammar as[[]] . Comments can only occur in conjunction with white-
space. The reference parser for Gel is defined using Rats! [17], a Parsing Expression
Grammar system [13]. Syntactic predicates are needed in therule for Bn+1 to identify
extra operators as defined at the end of Section 2.3. More details and the Gel implemen-
tation are available for download athttp://www.utexas.edu/users/wcook/Gel .

expression::= list quote? [[;]] expression| list
list ::= optional quote? [[,]] list | optional

optional::= [[]] ? B3? [[]] ?
Bi ::= Bi+1 [[]] opi [[]] Bi | Bi+1 for i ∈ {3..n}

Bn+1 ::= op [[]] ? | (op [[]])* sequence([[]] op)*
sequence::= chunk([[]] chunk)*

chunk::= op?C3 op?
Ci ::= Ci+1 opi Ci | Ci+1 for i ∈ {3..n}

Cn+1 ::= primary+
opi ::= quote? [[‘:$@?|&!=<>+- * / \%˜ˆ#.]]+

wherei is the precedence as defined in Figure 2
op ::= op1 | . . .| opn

quote::= [[‘]]+
primary ::= quote? (symbol| group| string1| string2)
symbol::= [[a-zA-Z0-9]]+
group ::= [[{]] expression[[}]] | exprGroup

string1 ::= [[’]] (escape| ¬[[’]])* [[’]]
string2 ::= [["]] (escape| interpolate| ¬[["]])* [["]]
escape::= [[\]][[u]][[0-9A-F]]4 | [[\]][[0-7]]1−3 | [[\]]

interpolate::= [[$]] symbol?op? (string3| exprGroup)*
string3 ::= [[{]] (escape| interpolate| ¬[[}]])* [[}]]

exprGroup::= [[(]] expression[[)]] | [[[]] expression[[]]]
ignore ::= [[/]][[/]] (¬newline)* newline| [[/]][[*]] any* [[*]][[/]]

Fig. 3.Gel grammar, wheren is the number of operator precedence levels

The first three productions represent lists, separated by semicolon (op1) and comma
(op2), of optional items. The nonterminalsB3 throughBn represent binary expressions
with opi surrounded by spaces. The[[]] terminal represents any number of white-space

(⋆ (⋆ x̄) x) ⇒ (⋆ x̄ x) (⋆ x (⋆ x̄)) ⇒ (⋆ x x̄)
(k x) ⇒ (k x) (x k) ⇒ (x k)

(◦ (x̄ v1) v2) ⇒ (x̄ (◦ v1 v2)) (◦ v1 (v2 x̄)) ⇒ ((◦ v1 v2) x̄)
((x̄1) (x̄2)) ⇒ (x̄1 x̄2)

((x̄) x) ⇒ (x̄ x) (x (x̄)) ⇒ (x x̄)
(; x̄1 (x̄2 x{} x̄3) x̄4) ⇒(; x̄1 (x̄2 x{}) (x̄3) x̄4)

⋆, ◦ ∈ op,◦ 6∈ [[;]], x is any Gel,k ∈ { [x]: , :[x] , x{} }, v 6∈ { x:, :x, x{}, (x̄) }

Fig. 4.Keyword rewrite rules

characters, including single spaces, tabs, return feeds and new lines. These nonterminals
have lower precedence thansequence, which is a list of chunks that do not contain
spaces. TheBn+1 rule allows operators to be part of a sequence, when they cannot be
interpreted as binary operators. The nonterminalsCi are analogous toBi except the
operators do not have spaces. TheCn+1 rule allows sequences of primaries that are not
separated by spaces.

Compound operators are composed of any sequence of operatorcharacters. The
precedence order of operators is given by the table in Figure2. For most operators the
precedence is given by the precedence of the first character.There is a special case for
assignment operators, which end with equal[[=]] and do not begin with[[!=<>]] .

A primary is a symbol, string, or group. Thestring1andstring2rules define strings
with single and double quotes, respectively. Both strings allow Java-style escaping with
backslash. The[[$]] character is an interpolation character in double-quoted strings. It
allows interpolation of Gel expressions into a string. The single back-quote character
(‘) is used for quoting. Any operator or primary may be quoted.

x ∈ Gel = symbol| “str” | (⋆ x1 . . . xn) | ⋆[x] | [x]⋆ | ⋆[x]⋆ | ‘x | x
G | ǫ

symbol∈ [[a-zA-Z0-9]] +

⋆ ∈ ; | , | [[‘:$@?|&!=<>+- * / \%˜˜ˆ#.]]+ | |

G ∈ Group= () | {} | [] | 〈〉

where means sequence,means keyword sequence,〈〉 means chunk

Fig. 5. Gel abstract syntax.

The behavior of keywords in Gel is not implemented by the parser, but is handled
by the rewrite rules in Figure 4 during construction of the abstract syntax tree. The first
rule combines operators to eliminate associativity. Keywords in a sequence are moved
outside of other operators. The last rule adds an implicit semicolon after a group. The
abstract syntax of Gel is defined in Figure 5.

4 Evaluation

We evaluate Gel by testing how well it can extract the structure from existing languages
that are defined by a custom grammar. It is not enough to determine whether Gel accepts
a given input, because Gel accepts almost any input with balanced grouping operators.
The key question is whether Gel can extract meaningful structure from typical doc-
uments that follow standard formatting conventions. Thesetests were instrumental in
designing Gel.

Let S be a source file of a languageL, and letL(S) be the AST ofS created by the
L parser. The same source fileS can be parsed with Gel to produce a GAST,Gel(S).
The goal is to determine ifGel(S) has the same structure asL(S).

However, theL(S) AST cannot be compared to the GAST because each uses a dif-
ferent abstract syntax. To overcome this problem, we apply the idea that the structure of
an abstract tree can be made explicit in concrete syntax by adding parentheses at every
level of the tree. The implementation of this idea starts with a printerP for language
L having the property thatL(P (T)) = T for any abstract treeT in L. We then con-
vert P into a parenthesizing printerP ′ that prints a treeT while adding parentheses
around every abstract node as it is printed. The outputP ′(T) may not be a valid in-
stance of languageL, but it can be parsed with Gel. The extra parentheses force Gel to
create a parse three that mirrors the structure ofL(S). Gel has captured the structure
of L if Gel(P ′(L(S))) = Gel(S) ignoring parentheses. As an example, consider this
Smalltalk fragment and its parenthesized versions:

x min to: args size * 2 do: aBlock
((x min) [to]: (* (args size) 2) [do]: aBlock)

((x) min) to: (((args) size) * (2)) do: (aBlock)
((x() min)() [to]: (* (args() size)() 2())() [do]: aBlock())

Not all languages follow Gel’s syntactic standards. Although there can be signif-
icant differences, sometimes the differences are small, for example comment mark-
ers and operator choices may conflict. Smalltalk separates statements with a period,
which is a high-precedence binary operator in Gel. If Smalltalk used a semicolon, as
in Java, Gel would parse it more accurately. We handle minor syntactic issues by con-
verting symbols before parsing with Gel. This change preserves the key characteris-
tics of Smalltalk; it just uses a different symbol. A fixup transformationT for lan-
guageL is applied to the files before they are parsed by Gel. These transformations are
simple character or reserved word substitutions. With transformation, the comparison
is Gel(T (P ′(L(S)))) = Gel(T (S)). We have successfully applied this technique to
Smalltalk, Java, CSS and CORBA IDL. For a small set of representative sample docu-
ments, Gel extracts the exact same structure as the custom parser, in all but a few cases
as mentioned below. There may be other syntactic mismatchesthat did not show up in
our test documents.

Java Gel operators and precedence are based on Java, but Gel does not have exactly
the same operator precedences, so it will not parse Java precisely. We tested Gel against
Java documents whose operators align with Gel precedence. Other issues in java are

related to sequences, where two syntactic structures are placed next to each other with
just a space between them.

– Declarations of multiple variables do not parse correctly,as described at the end of
Section 2.4.

– Java keywords do not parse correctly unless they are marked as Gel keywords as
mentioned in Section 2.5.

– The grammar we used for Java parseso.m() as((. o m) ǫ()), while Gel parses it
as(. o (m ǫ())). It is debatable which of these is correct.

– Generics in Java are declared using the< and> characters, as inStack<String> .
We translated these to [...] before parsing.

– Typical white-space conventions must be followed: using white-space after a colon,
and around binary operators. Typical white-space means that int[] x must not
be writtenint []x although this is legal in Java, it violates coding conventions.
Similarly, p = * p2 must not be writtenp =* p2 . We found that the reformat
command in Eclipse corrects most spacing issues in Java documents so that they
parse correctly with Gel.

Smalltalk The Gel syntax closely resembles and generalizes Smalltalkgrammar. Key-
words in Smalltalk are identified by a colon suffix. Arbitrarybinary operators use infix
notation, and have higher precedence than keywords. Unary messages are represented
by a sequence of symbols separated by spaces, with higher precedence than binary op-
erators. Parentheses, braces, and brackets are used for grouping.

There are problems with parsing using Gel:

– Statements are terminated or separated by periods. We translated these semicolons
before parsing with Gel.

– Cascaded message sends are separated by semicolons. These become ambiguous
if period is replaced by semicolon. We insert a special “previous” token after the
semicolon to make reuse of the previous message target explicit. These message
sends must also be enclosed in parentheses if the target object is returned.

– Binary operators in Smalltalk all have the same precedence.
– The conventional storage format for Smalltalk programs (the method change list)

does not have grouping constructs that can be parsed by Gel.
– Typical white-space conventions must be followed: using white-space after a colon,

and around binary operators.

CSS Most of CSS follows a typical structure with semi-colons andbraces. CSS also
uses keywords tagged with colon. It uses a variety of prefix and infix operators. How-
ever, there are problems with parsing CSS with Gel:

– Identifiers that include hyphens, e.g.background-color , parse as chunks in
Gel. This works reasonably well, although Gel is breaking upmore tokens than are
necessary.

– Typical white-space conventions must be followed: using white-space after a colon,
and not separating prefix operators from their.

– Pseudo-classes look like binary colon operators, of the form link:visible .
According to one CSS grammar they should be parsed aslink (:visible)
but Gel parses them as(: link visible) . This does not seem like a major
issue.

– The use of numbers with a dimension, as in16pt , is handled in Gel as an identifier,
not as a sequence of number16 andpt . It is simple to process these tokens to
extract the dimension.

Python Although Python does not adhere to many of the conventions discussed, Gel
is able to parse Python programs. The following problems must be addressed to parse
Python correctly:

– In Gel, logical blocks of code can only be created using the three types of grouping
operators. However, Python uses indentation to specify logical blocks of code. This
is currently handled by a pre-processor, which inserts{... } groups according to
indentation rules of Python. This preprocess is a lexical transformation.

– Many statement constructs in Python use the colon character, as in if x is
True: . These can be discarded once grouping operators are createdaround the
logical block.

– Python uses newline to separate statements. However, thesewould parse as white-
space tokens in Gel, so semicolons must be inserted.

ANTLR and other parser generatorsWe have used Gel to parse grammar specifica-
tion languages, including ANTLR [24] and Rats! [17]. These languages use{... } as
parser actions within a rule. A prefix or suffix must be added toprevent actions from
terminating the expression (according to the keyword rule in Section 2.5). In addition,
Rats! uses[A-Z] as a character class, in effect quoting an arbitrary set of characters,
as in [({] . These must quoted as strings, or converted to the form used by ANTLR:
’A’..’Z’ .

5 Related Work

Gel is related to other generic and extensible languages, include Lisp, XML and JSON.
Gel can parse Lisp-like data [22], if single-quote is converted to backqoute, comma to$,
comments to// . Common lisp atoms* val-list * are converted to Gel chunks*[(-
val list)]* with prefix/suffix* operators, which means that they have been over-analyzed
but are still recognizable. Any sequence of non-punctuation characters without spaces
can be parsed as Gel. Operators are the main problem, since Lisp always treats them
as ordinary symbols, but Gel may parse them as binary operators. Thus(a + b) is
incorrectly parsed as(+ a b) in Gel. To express something like the correct Lisp structure
(a + b) the operator must be changed, for example enclosed in a group(a {+} b) .

XML [9] cannot be parsed by Gel at all. It uses< and> as grouping characters,
and tags as grouping for large-scale units. To parse XML-like structures, a more C-like
notation is needed.

<tag attr=”value” ...>...</tag> ⇒ tag: attr=”value” ... { ... }
text⇒ ”text”

Alternatively, Gel could simulate the text-oriented nature of XML and its history in
HTML by using an interpolation-based translation:

<tag attr=”value” ...>...</tag> ⇒ $tag(attr=”value” ...){ ... }

The JavaScript Object Notation (JSON) is a subset of JavaScript that is frequently
used as a generic data encoding language [12]. Correct parsing of JSON depends on
consistent white-space conventions. It works well if colonis treated as a binary operator.

"val" : 3, "name" : "Test" (, (: “val” 3) (: “name” “Test”))
"val": 3, "name": "Test" ([“val”]: (, 3 ([“name”]: “Test”)))
"val": 3; "name": "Test" (; ([“val”]: 3) ([“name”]: “Test”))

The keyword notation in the second example groups the valuesawkwardly: the
second keyword is within the body of the first keyword becauseof the comma. If JSON
used semi-colons then Gel could parse the keyword form more naturally, as in the third
example.

Another approach to extensible languages involves languages whose syntax can be
extended with additional rules. This approach has the advantage that specific syntax
is recognized and checked during parsing. Brabrand and Schwartzbach [5] provide a
detailed summary and comparison of different systems for syntax extension [10, 27, 6,
8, 16]. It is difficult to perform a direct comparison betweenthe extensible syntax and
the idea of generic extensible languages, because the two approaches are so different
in their fundamental assumptions. Each clearly has drawbacks and advantages that can
only be evaluated in the context of a larger system in which domain specific languages
are defined and manipulated. Examples of such systems include<bigwig> [4, 5] and
Stratego [28]. Lisp and Scheme macros provide a similar benefit in the context of the
generic syntax of Lisp S-Expressions. Gel does not yet part of a complete system for
language definition and syntactic extension, so it is difficult to compare its effectiveness
at this level. Given that Gel is essentially a syntactic variant of Lisp S-Expressions,
the techniques developed for Lisp/Scheme should work for Gel as well. This kind of
validation will not be possible until different researchers experiment with using Gel in
their own systems.

6 Conclusions

Gel is designed to be used as a front-end for domain-specific languages. To define a
language within Gel, appropriate operators and syntactic forms are chosen, and a struc-
ture grammar is defined. The output tree from Gel must then be parsed to verify that it
matches the DSL structure. This process is very much like validating against an XML
Schema [26, 3] but is beyond the scope of this paper. Gel allows easy syntactic compo-
sition or embedding of different languages within each other. It may also be possible to
define a generic pretty-printer for Gel.

One argument against Gel may be that its use of white spaces makes it too fragile
for casual use. However, most programming languages are sensitive to adding new arbi-
trary spaces, or completely removing spaces. Gel accepts nearly every input document
without error, as long as grouping symbols are balanced. When used for a specific DSL,

error messages will come from later phases, when the output of Gel is validated against
the DSL structure.

During the design of Gel numerous alternatives were tried. We have worked hard to
eliminate special cases. Currently the only special cases are for assignment operators
and curly braces. These special cases are relatively simplefor users and provide useful
options to language designers when designing a new notation. We have resisted allow-
ing the grammar to be customized, for example by allowing external definition of a set
of keywords. We plan to gather feedback on Gel for a short period of time before fixing
the language specification.

References

1. J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, H. L. Herrick, R. A. Hughes, L. B. Mitchell,
R. A. Nelson, R. Nutt, D. Sayre, B. P. Sheridan, H. Stern, and I. Ziller. Fortran Automated
Coding System For the IBM 704. International Business Machines Corporation, New York,
1956.

2. T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators (URL). RFC
1738, Internet Engineering Task Force, Dec. 1994.http://ds.internic.net/rfc/
rfc1738.txt ; accessed August 23, 1997.

3. P. V. Biron and A. Malhotra. XML Schema part 2: Datatypes. The World Wide Web Con-
sortiumhttp://www.w3.org/TR/xmlschema-2/ , May 2001.

4. C. Brabrand, A. Møller, and M. I. Schwartzbach. The<bigwig> project.ACM Trans. Interet
Technol., 2(2):79–114, 2002.

5. C. Brabrand and M. I. Schwartzbach. Growing languages with metamorphic syntax macros.
In In Proceedings of Workshop on Partial Evaluation and Semantics-Based Program Manip-
ulation, PEPM 2002. ACM, pages 31–40. ACM Press, 2002.

6. C. Brabrand, M. I. Schwartzbach, and M. Vanggaard. The metafront system: Extensible pars-
ing and transformation. Inin Proc. 3rd ACM SIGPLAN Workshop on Language Descriptions,
Tools and Applications, LDTA ’03, 2003.

7. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.Stratego/xt 0.17. a language and
toolset for program transformation.Sci. Comput. Program., 72(1-2):52–70, 2008.

8. M. Bravenboer and E. Visser. Designing syntax embeddingsand assimilations for language
libraries. InModels in Software Engineering: Workshops and Symposia at MoDELS 2007,
Nashville, TN, USA, September 30 - October 5, 2007, Reports and Revised Selected Papers,
pages 34–46, Berlin, Heidelberg, 2008. Springer-Verlag.

9. T. Bray, J. Paoli, C. M. Sperberg-McQueen, Eve, and F. Yergeau, editors.Extensible Markup
Language (XML) 1.0. W3C Recommendation. W3C, fourth edition, August 2003.

10. L. Cardelli, F. Matthes, and M. Abadi. Extensible syntaxwith lexical scoping. Technical
report, Research Report 121, Digital SRC, 1994.

11. D. H. Crocker. Standard for the Format of ARPA Internet Text Messages. University of
Delaware, Department of Electrical Engineering, Newark, DE 19711, August 1982.www.
faqs.org/rtcs/rfc822.html .

12. D. Crockford. Rfc 4627. the application/json media typefor javascript object notation (json).
online, http://www.json.org/, 2006.

13. B. Ford. Parsing expression grammars: A recognition-based syntactic foundation. InSym-
posium on Principles of Programming Languages, pages 111–122, 2004.

14. A. V. Gladky and I. A. Melčuk. Tree grammars (=∆-grammars). InProceedings of the
1969 Conference on Computational linguistics, pages 1–7, Morristown, NJ, USA, 1969.
Association for Computational Linguistics.

15. A. Goldberg and D. Robson.Smalltalk-80: the Language and Its Implementation. Addison-
Wesley, 1983.

16. R. Grimm. Practical packrat parsing.New York University Technical Report, Dept. of Com-
puter Science, TR2004-854, 2004.

17. R. Grimm. Better extensibility through modular syntax.In PLDI ’06: Proceedings of the
2006 ACM SIGPLAN conference on Programming language designand implementation,
pages 38–51, New York, NY, USA, 2006. ACM.

18. P. Hudak, S. P. Jones, P. Wadler, B. Boutel, J. Fairbairn,J. Fasel, M. M. Guzmán, K. Ham-
mond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. Report
on the programming language Haskell: a non-strict, purely functional language version 1.2.
SIGPLAN Not., 27(5):1–164, 1992.

19. S. C. Johnson. Yacc: Yet another compiler compiler. InUNIX Programmer’s Manual, vol-
ume 2, pages 353–387. Holt, Rinehart, and Winston, New York,NY, USA, 1979.

20. D. E. Knuth.The TEXbook. Addison-Wesley, 1984.
21. S. Krishnamurthi.Programming Languages: Application and Interpretation. 2006.

http://www.cs.brown.edu/˜sk/Publications/Books/Prog Langs/ .
22. J. McCarthy. Recursive functions of symbolic expressions and their computation by machine,

part i. Commun. ACM, 3(4):184–195, April 1960.
23. M. Odersky, L. Spoon, and B. Venners.Programming in Scala: A comprehensive step-by-

step guide. Artima Inc, August 2008.
24. T. Parr and R. Quong. ANTLR: A Predicated-LL (k) Parser Generator.Software - Practice

and Experience, 25(7):789–810, 1995.
25. T. Parr and R. Quong. ANTLR: A Predicated-LL(k) parser generator. Journal of Software

Practice and Experience,, 25(7):789–810, July 1995.
26. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema part 1: Struc-

tures. The World Wide Web Consortiumhttp://www.w3.org/TR/xmlschema-2/ ,
May 2001.

27. E. Visser. Meta-programming with concrete object syntax. In Generative Programming and
Component Engineering (GPCE02, pages 299–315. Springer-Verlag, 2002.

28. E. Visser. Program transformation with stratego/xt: Rules, strategies, tools, and systems in
stratego/xt 0.9. In C. Lengauer, D. S. Batory, C. Consel, andM. Odersky, editors,Domain-
Specific Program Generation, volume 3016 ofLecture Notes in Computer Science, pages
216–238. Springer, 2003.

