William Cook, Alex Loh
UT Austin

Tijs van der Storm
CWI

Prevent Bad

nable Good

Bug Finding
Race Detection
Type Checking
etc.

Prevent Bad

Enable Good

Bug Finding
Race Detection
Type Checking
etc.

Prevent Bad

Enable Good

New languages?
New features?
For what?

Bug Finding
Race Detection
Type Checking
etc.

Prevent Bad

Enable Good

New languages?
New features?
For what?

Kolmogorov Complexity

Shortest program
that
generates information

Best
“Shextest program
that
generates information

behavior

Best
Shertest program
that
generates information

behavior

Qualitative Kolmogorov
Program Complexity

| don't know how

but it’s a good goal

A Problem

1. Many (many!) repeated
instances of similar code

2. Unique details and names
prevent generalization

Requirements

Strategies

—_

Application
(Code)

Behavior

Small change to
Requirements

Very different
Strategies

Very different
Code

Behavior

Small change to
Requirements

Very different
Strategies

Very different
Code

Behavior

Requirements

Technical
Requirements

Requirements .

17

Data
Requirements

Technical
Requirements

Objects

Using Managed Data (Ruby)

* Description of data to be managed
Point = { x: Integer, y: Integer }
* Dynamic creation based on metadata

p = BasicRecord.new Poilnt
p.x = 3
p.y = —10

print p.x + p.y
p.z = 3 # error!
* Factory BasicRecord: Descrption<T> 2> T

Implementing Managed Data

Override the "dot operator"” (p.x)
Reflective handling of unknown methods

* Ruby method_missing

* Smalltalk: doesNotUnderstand

* Also IDispatch, Python, Objective-C, Lua, CLOS
* Martin Fowler calls it "Dynamic Reception”
Programmatic method creation

* E.g. Ruby define_method

Partial evaluation

Other Data Managers

Mutability: control whether changes allowed
Observable: posts notifications

Constrained: checks multi-field invariants
Derived: computed fields (reactive)

Secure: checks authorization rules

Graph: inverse fields (
Persistence: store to ¢

oidirectional)
atabase/external format

General strategy for a

| accesses/updates

Combine them for modular strategies

21

Graphs, Invariants, Computed

V

Person

name
SSN
active

Course
Teacher
title <teaches Hiitle
schedule teacher—>
Ncourse advisor Tt
J-enrollments advisees,
A A
Enroliment Student
) <enrollments | —
grade-option student=> ! tw.tlon
grade paid

Constraints: for all student s

f

s.dept = s.advisor.dept

Computed values/attribute grammars

—< 0 or more
—+ Exactly 1
—O+ 0or1
—> Subtype

Traditional Data Mechanisms

| Data
Runtime Process Instances

Programmer en [?gtga
Prorgjram Definitions

1L

Language | Programming| Data

: Lan Definition
Designer anguage Mechanisms

Managed Data

. Data
Runtime Process > Instances
oroarammer | CENt > Data hData Definition
9 Program T TVDefinitions Mechanisms
: D
Language Programming Bo%ztfriﬁﬁionata

Designer Language Mechanisms

24

Grammars

 Mapping between text and object graph
* A pointis written as (x, y)

(3, 4) P ::= [Point] "(" x:int "," y:int ")"

o

* Direct reading, no abstract syntax tree (AST)
* Bidirectional: can parse and pretty-print
* GLL parsing, interpreted!

* Notes:

25

Door StateMachine

start Opened

state Opened
on close go Closed

state Closed
on open go Opened
on lock go Locked
state Locked

on unlock go
Closed

State
Machine
Example

StateMachine Grammar

M::= [Machine] "start" \start:</states[it]> states:S*
S ::= [State] "state" name:sym out:T*
T ::= [Trans] "on" event:sym "go" to:</states[it]>

A StateMachine Interpreter

def run_state_machine(m)
current = m.start

while gets
puts "#{current.name}"
input =S_.strip
current.out.each do |trans|
if trans.event == input
current = trans.to
break
end
end
end
end

StateMachine Schema

class Machine
start : State
states! State*

class State
machine: Machine
name # str

out ! Trans*

in : Trans*
class Trans

event : str

from : State / out
to : State /in

Sample Expression

3*(5+6)

Expression
Example

Expression Grammar
.= [Add] left:E "+" right:M | M

E
M ::= [Mul] left:M "*" right:P | P
P o [Num] Val:int | ||(|| E ||)||

An Expression Interpreter Expression Schema
module Eval class Exp
operation :eval
class Num
def eval_Num(val) val : int
val
end class Add
left : Exp
def eval_Add(left, right) right : Exp
left.eval + right.eval
end class Mul
left : Exp
def eval_Mul(left, right) right : Exp
left.eval * right.eval
end

end

Grammar Grammar

start G

G ::=[Grammar] "start" start:</rules[it]> rules:R*

R ::=[Rule] name:sym "::=" arg:A

A = [Alt] alts:C+ @" |"

C ::=[Create] "["name:sym"]"arg:S | S

S ::=[Sequence] elements:F*

F ::=[Field] name:sym ":" arg:P | P

P ::=[Lit] value:str
Value] kind:("int" | "str" | "real" | "sym"
Ref] "<" path:Path ">" non-terminal name
Call] rule:</rules[it]> => reference to rule
(Code] "{" code:Expr "}"
Regular] arg:P "*" Sep? { optional && many }

| [Regular] arg:P "?" { optional }
| Il(ll A Il)ll
Sep ="@"sep:P 28

Everything is a language

Schema Grammar

Grammar Grammar

| stateMachine StateMachine | -
.| Schema Grammar |
:.-.-r...< o e . L/ ;...r:—.‘.:
=~ ~ —— =
StateMachine
DSL

29

Instance of

- - -y
-
l 4

by

Formatted

Schema
Grammar

Quad-model

Instance of

Nontrivial

bootstrapping

Formatted by

Grammar
Schema

jJo 2duBISU|

Grammar
Grammar

Formatted by

30

Schema Schema

class Schema
types: Type*
class Type
name: string
class Primitive < Type
class Class < Type
fields: Field*
super: Type?

class Field
name: string
type: Type
many: bool
optional: bool

primitive string

primitive bool

(Self-Description)

Diagrams

* Model
* Shapes and connectors

* |Interpreter
* Diagram render/edit application
* Basic constraint solver

Schema Diagram

Type |
name: st \

33

Stencils

* Model: mapping object graph > diagram
* |nterpreter
* Inherits functionality of Diagram editor
* Maps object graph to diagram
—Update projection if objects change
* Maps diagram changes back to object graph
* Binding for data and collections
—Strategy uses schema information
—Relationships get drop-downs, etc
—Collections get add/remove menus

Schema Diagram Editor

sadA E

Type

name: st_
Delete Field
Create Field
Remove Class

35

Schema Stencil

diagram(schema)
graph [font.size=12,fill.color=(255,255,255)] {
for "Class" class : schema.classes
label class
box [line.width=3, fill.color=(255,228,181)] {
vertical {
text [font.size=16,font.weight=700] class.name
for "Field" field : class.defined_fields
if (field.type is Primitive)
horizontal {
text field.name // editable field hame
text ": "
text field.type.name // drop-down for type

1

traversal: bool

Schema Stencil: Connectors

// create the subclass links
for class : schema.classes
for "Parent" super : class.supers
connector [line.width=3, line.color=(255,0,0)]

lass -->) !
(class --> super Type

[also for relationships] name: str

Language Workbench Challenge

 Models
* Physical heating system
—furnace, radiator, thermostat, etc
* Controller for heating system

* |Interpreter
e Simulator for heating system
—pressure, temperature
» State machine interpreter
—Events and actions

Physical Heating System Model

Piping Controller

START
T GAS: <0 t Burner_ignite to true
_GAS: Fet Burner.gas_level to START_CGAY
Pump.flow: 0.35 .
Pump.run to true
WATER_MARGIN: 3 Turn spiitter Valve center
IATOR_MARGIN: 3
RNER_RAMPUP: 2
RNER_RAMPDOWN: 2
MPUP

ise Burner.gas_level by BURNER _RAMPUH
Turn spiitter Valve center

!

Focuzn
u:sﬂe;::::.g:ﬁﬁ by BURNER_RAMPUS Q‘DRUNI@QIN

OOLDOWN

r Bumer.gas_level by BURNER_RAMPCOWN|

40

Piping Details

Simulation updates physical model
* Change to physical model causes update to view
* Observable Data Manager -> Presentation update

State machine interpreter changes states

* Presentation shows current state

User can interact with physical model

* Change thermostat

User can edit diagram

Performance

* Enso is currently slow but usable

* Accessing a field involves two levels of meta-
Interpretation

* My job is to give compiler people something to do
* Partial Evaluation of model interpreters

web (UI, Schema, db, request) : HTML
webur, schema] (db, request) : HTML

42

Code SLOC Model SLOC

Core

Piping

5582

527

Bootstrap 387 —
Utilities 256 —
Schemas 69| 51

Grammar/Parse 885 106
Render 318 |7
Web 932 305
Security 276 46
Diagram/Stencil 1389 176
Expressions 448 | 44

268

43

Enso Summary

Executable Specification Languages
* Data, grammar, GUI, Web, Security, Queries, etc.

External DSLs (not embeded)
Interpreters (not compilers/model transform)
* Multiple interpreters for each languages
Composition of Languages/Interpreters
* Reuse, extension, derivation (inheritance)

Self-implemented (Ruby for base/interpreters)
 Partial evaluation for speed

Related Work

Aspects: a fundamental idea
e Current solutions are terrible (Aspect))

DSLs and Models: Feeling same elephant

* external vs. internal Language Meta-Model

e graphical vs. textual Program Model
F# Type Providers
Scheme macros (defstruct)
Metaprogramming

e But without manipulating 'code’

D

Spectrum of programming

Verification

47

Synthesis

Verification

48

Synthesis

Verification

Verification

Verification Lite =
Type checking 4o

Synthesis Lite =
Model-Driven Development

Domain-Specific Languages, ...

Synthesis
(guided)

Verification
Lite

Verification

50

Don't Desigr
Your Program

Program
Your Designs

Enso
enso-lang.org

52

