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ABSTRACT
Traffic engineering plays a critical role in determining the perfor-
mance and reliability of a network. A major challenge in traffic en-
gineering is how to cope with dynamic and unpredictable changes
in traffic demand. In this paper, we propose COPE, a class of traf-
fic engineering algorithms that optimize for the expected scenarios
while providing a worst-case guarantee for unexpected scenarios.
Using extensive evaluations based on real topologies and traffic
traces, we show that COPE can achieve efficient resource utiliza-
tion and avoid network congestion in a wide variety of scenarios.

Categories and Subject Descriptors:C.2.2 [Computer Commu-
nication Networks]: Network Protocols; C.2.3 [Computer Commu-
nication Networks]: Network Operations—Network Management

General Terms: Algorithms, Design, Management, Performance,
Reliability.

Keywords: COPE, Traffic Engineering, Unpredictable Traffic, Op-
timization, Oblivious Routing.

1. INTRODUCTION
Traffic engineering (TE) has become an indispensable tool used

by many autonomous systems (ASes) to select routes which effec-
tively utilize their network resources. This is particularly important
given the high cost of network assets and the highly competitive na-
ture of the Internet ISP market [8, 9, 46]. The importance of traffic
engineering has motivated many studies in the last few years, and
quite a few traffic engineering algorithms were recently proposed
(e.g., [4, 6, 7, 19, 22, 23, 24, 25, 26, 27, 34, 36, 44, 48, 49, 50, 54]).

Traffic characteristics are a major factor affecting the design of
traffic engineering algorithms. Unfortunately, for many ASes, al-
though their traffic demand can be relatively stable most of the
time, there exist time periods during which traffic can be highly
dynamic, containing unpredictable traffic spikes that ramp up ex-
tremely quickly, leaving no time for a traffic engineering algorithm
to re-compute or adjust. We recently examined the traffic traces
of several backbone networks and found that there exist short time
periods during which traffic demand can increase by at least one
order of magnitude. Highly unpredictable traffic variations have
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also been observed and studied recently by other researchers (e.g.,
[27, 37, 38, 41, 47, 54]). To further confirm the likelihood of ob-
serving highly unpredictable traffic spikes in real-life, we surveyed
the operators of some large ASes and received reports of highly un-
predictable traffic patterns in their daily operations. Many factors
contribute to the highly unpredictable nature of Internet traffic: out-
breaks of worms/viruses, outages or routing changes of major ISPs,
the occurrence of natural disasters, denial-of-service attacks, and
flash-crowd effects due to major news events. For many cases, traf-
fic spikes occur exactly when the networking service is most valu-
able! In addition, with more bursty UDP-based multimedia traf-
fic, more dynamic traffic such as that from overlay networks [30],
and more networks adopting traffic engineering, variability in traf-
fic could increase further.

It is important that traffic engineering handle sudden traffic spikes.
If a traffic engineering algorithm is not prepared for them, it may
cause network links and routers to be unnecessarily overloaded.
Overloaded links and routers can cause long delay, high packet loss
rates, reduced network throughput (e.g., TCP flows), BGP session
reset, and even router crashes. These reduce network reliability
and efficiency, and may violate increasingly stringent service level
agreements (SLAs), leading to potential financial penalties.

Despite the importance of handling traffic spikes, most of the
proposed traffic engineering algorithms belong to a type of algo-
rithms which we callprediction-based TE, and these algorithms
optimize their routing without preparing for unpredictable traffic
spikes. Such an algorithm first collects a set of sample traffic ma-
trices, and then computes a routing to optimize the performance,
based only on these samples. For instance, the algorithm can op-
timize for the average or the worst-case cost over these samples.
An advantage of this type of algorithms is their potential perfor-
mance gain. When the network traffic is relatively stable and the
real traffic is similar to the samples based on which the routing is
computed, these algorithms can achieve near-optimal performance.
However, since these algorithms optimize routing specifically for
these samples, when the real traffic deviates substantially from the
samples (e.g., during the presence of traffic spikes), the computed
routing may perform poorly. An extreme case of prediction-based
TE is online adaptation. An advantage of this scheme is that if it
can converge quickly, it does not need to collect many samples or
make prediction. However, when there are significant and fast traf-
fic changes, such a scheme can experience a large transient penalty.

As motivation, we show using real traffic traces that when ISPs
use prediction-based TE and unexpected traffic spikes occur, the
traffic intensity of some links may well exceed their link capacities.
For example, using the real Abilene topology and traffic traces, we
show that for bottleneck links, the traffic intensity generated by all
three prediction-based algorithms we evaluated exceeds link capac-



ity during traffic spikes, and some reaches 2.44 times link capacity,
while for an optimal algorithm, no link receives traffic above 50%
of its capacity. Such large performance penalties arise when actual
traffic demands deviate significantly from prediction. Therefore, it
is important that a traffic engineering algorithm is robust when such
deviations occur.

One way to deal with unpredictable traffic spikes is oblivious
routing (e.g., [6, 7, 27, 42, 54]). In oblivious routing, a routing
that is independent of the traffic matrix is computed, and thus has
the potential to handle traffic spikes well. A potential drawback
of oblivious routing, however, is its sub-optimal performance for
normal traffic, which may account for the vast majority of time
periods. For example, the optimaloblivious ratioof arbitrary sym-
metric networks can grow logarithmically as they scale up [7]. Re-
cently, Applegate and Cohen [7] computed the oblivious ratio of
several real network topologies. Although they discovered that the
ratio is typically only around 2, they also commented that overhead
at this level “is far from being negligible to working ISPs.”

Besides rapid traffic fluctuations, interdomain routing poses an-
other set of challenges to traffic engineering. First, interdomain
routing introduces point-to-multipoint demand; that is, there can be
multiple equally-good egress points for some external destinations
in the BGP decision process [17]. Thus, it is up to the intrado-
main routing determined by traffic engineering to break the tie.
Since egress links may become the bottlenecks of the network [16],
this tie-breaking can affect the congestion of the network. Second,
although interdomain routes for most traffic volumes can be sta-
ble [32, 51], there are BGP routing changes that can cause signifi-
cant shifts of traffic [37]. In particular, with the dynamic nature of
the global Internet, the available interdomain routes of an AS can
fluctuate as its peers announce and withdraw interdomain routes,
or even reset their eBGP sessions. Thus, the intradomain routing
determined by traffic engineering should be robust against such in-
terdomain route changes.

In this paper, we propose novel traffic engineering algorithms
to handle both dynamic traffic and interdomain routing. Our key
insight is that we can use an efficient and easily implementable
technique to guarantee worst-case performance under all traffic de-
mands. By choosing a worst-case guarantee that is just a small
percentage above lowest possible, we can optimize routing for pre-
dicted demands, and significantly improve common-case perfor-
mance.

Based on this insight, we design a new class of traffic engineer-
ing algorithms, calledCommon-case Optimization with Penalty En-
velope(COPE). Our algorithms combine the best of oblivious rout-
ing and prediction-based optimal routing. The penalty bound com-
ponent of COPE is inspired by the pioneering work of oblivious
routing [7]. Thus, COPE can bound the worst-case performance
penalty to ensure acceptable performance when the network expe-
riences unpredictable changes. But unlike oblivious routing, COPE
optimizes routing for predicted demands to achieve high efficiency
under normal network conditions. Therefore COPE can achieve
close-to-optimal performance in the common case in our real traf-
fic traces, whereas oblivious routing can be 30% - 90% worse than
optimal.

We extend COPE to deal with interdomain routing. To handle
the point-to-multipoint nature of interdomain demands and the dy-
namics of interdomain routes, we compute routing that is robust to
changes in interdomain routes and yet responsive to traffic patterns.

The rest of the paper is organized as follows. In Section 2, we
overview the related work. In Section 3, we present common-case
optimization with penalty envelope (COPE). In Section 4, we com-
pare the performance of COPE with the state-of-art approaches us-

ing real traffic traces and network topologies. We further extend
COPE to handle interdomain routing, and describe our preliminary
results in Section 5. We conclude in Section 6.

2. RELATED WORK
There is a large body of literature on traffic engineering. In the

interest of brevity, we review only the most related work.
Intradomain traffic engineering has received significant attention

in the research community. Many interesting traffic engineering
algorithms and mechanisms have been proposed. Due to the flexi-
bility and increasing popularity of MPLS [46], many recent studies
focus on MPLS-based traffic engineering. We broadly classify this
work into the following two categories: (i) traffic engineering for
predicted traffic demands, and (ii) oblivious routing.

The algorithms in the first category share the following features:
they maintain a history of observed traffic demand matrices, and
they optimize for the representative traffic demand matrices ex-
tracted from the observed traffic during a certain history window.
For example, Sharadet al. [4] use a traffic matrix in a one-hour
window during daily peaks as the representative demand. Zhanget
al. [49, 50] consider multiple representative traffic matrices and
find an optimal set of routes to minimize expected or worst-case
cost for these representative matrices. Note that in their approach,
the worst case is only among the samples, not all possible traf-
fic matrices. In [52], Zhang and Ge try to identify critical matri-
ces from past history, and then conduct traffic engineering based
on these matrices. It might be possible to extend prediction-based
optimization using robust optimization (e.g., [14]), but it will be
challenging to estimate the variation set of parameters. MATE [19]
and TeXCP [26] conduct online traffic engineering and react to in-
stantaneous traffic demands. An advantage of these dynamic al-
gorithms is that if they can converge quickly, they do not need to
collect many samples or make prediction. However, when there are
significant and fast traffic changes, these algorithms can experience
a large transient penalty, as we will show in Section 4.

The second category of algorithms is oblivious routing (e.g., [6,
7, 10, 11, 27, 28, 31, 42, 54]). In oblivious routing, routes are
computed to optimize the worst-case performance over all traffic
demands. Therefore the computed routes are prepared for dynamic
changes in traffic demands. In their pioneering work [7], Applegate
and Cohen propose an efficient algorithm to compute the worst-
case oblivious routing for real networks. They also extend oblivi-
ous routing to compute failure scenarios [6]. They found that the
oblivious ratio is typically around a factor of 2. A penalty as high as
100% may be acceptable when traffic demands are completely un-
predictable, but it is a high cost to pay under predictable demands.
In other words, oblivious routing takes a pessimistic point of view
and may not be appropriate in relatively stable periods or stable
networks.

Our approach is inspired by both prediction-based routing and
oblivious routing, and combines the best of both approaches. It
optimizes routing for predicted demands to achieve high efficiency
under normal network conditions; in the meantime it also bounds
the worst-case performance penalty to ensure acceptable perfor-
mance when the network experiences unpredictable changes.

There are also recent studies on the interaction of intradomain
traffic engineering with interdomain routes and traffic. Examples
include evaluation (e.g., [3, 37, 39, 40, 45]) and design (e.g., [16,
20, 21, 22]). Recently, researchers observed that intradomain traffic
engineering within an AS can cause substantial traffic changes out-
side the AS (e.g., [4, 15, 37]). For example, Agarwalet al. report
in [4] that for an operational tier-1 ISP, intradomain traffic engineer-
ing can cause up to 25% of its traffic to a neighboring AS to shift



the exit point. Such traffic changes could trigger routing changes
at the neighboring AS, and result in network instability. Motivated
by these studies, we further extend COPE to handle interdomain
routing.

3. OPTIMAL TE WITH TOLERANCE
In this section, we focus on a single AS. We assume that the

egress point of each external destination is known and fixed. We
will extend to the case of interdomain routing in Section 5.

3.1 Background Definitions
One major objective of the traffic engineering of an AS is to de-

termine routing so as to minimize congestion. For concreteness, in
this paper we measure network congestion using metrics based on
maximum link utilization (MLU), as it is a commonly used metric
in many studies (e.g., [4, 6, 7, 26]). Another possibility would be
to use network cost [24, 25] to measure congestion. Our scheme
is directly applicable to optimizing for this alternative metric. We
will discuss generalization in Section 3.3.

An AS is represented by a graphG= (V,E), whereV is the set of
routers, andE is the set of network links. The capacity of link(i, j)
from nodei to nodej is denoted byc(i, j). For intradomain routing,
we assume that the graph is stable during the operation. When
the network topology changes (e.g., a link that carries substantial
amount of traffic fails), the routing computed by traffic engineering
is no longer valid and has to be updated. For important intradomain
links, a good recovery strategy is to pre-compute routing for each
failure scenario [6]. Our COPE algorithms can be extended to deal
with such scenarios.

The input to traffic engineering is traffic demand matrices (TM).
We represent a TM as a set of traffic demandsD = {dab|a,b∈V},
wheredab is the demand for the origin-destination (OD) paira→ b.

The output of traffic engineering is routing. Since around half
of the ISPs run MPLS in their core [26], and more ASes are start-
ing to deploy MPLS, we focus our study on MPLS-based routing.
Slightly different from MPLS-style path routing, we use link-based
routing [7, 13]. A link-based routingf is specified by a set of val-
ues f = { fab(i, j)|a,b, i, j ∈ V}, where fab(i, j) specifies the frac-
tion of demand froma to b that is routed over the link(i, j). One
can convert link-based routing to standard MPLS path-based rout-
ing [5, 29], to shortest-path implementable routing [44], and to
OSPF equal weight-split routing [36]. As we show in Appendix,
we can incorporate shortest-path implementation considerations by
adding penalty terms into performance metrics. Unless otherwise
stated, routing refers to link-based routing in this paper.

For f to be a routing, the values offab(i, j) for the OD paira→ b
should specify a flow of value 1 froma to b. For an actual demand
dab for the OD paira → b, the contribution of this demand to the
flow on a link (i, j) is dab fab(i, j). The constraints on the rout-
ing variables{ fab(i, j)} are flow conservation and non-negativity,
which can be defined by the following equations:






∀a 6= b,∀i 6= a,b : ∑(i, j)∈E fab(i, j)−∑( j,i)∈E fab( j, i) = 0;
∀a 6= b : ∑(a, j)∈E fab(a, j)−∑( j,a)∈E fab( j,a) = 1;
∀(i, j) ∈ E : fab(i, j) ≥ 0.

(1)
The maximum link utilization (MLU) of a routingf on a TMD

is defined as the maximum of traffic to capacity ratios of all links:

U( f ,D) = max
(i, j)∈E

∑
a,b

dab fab(i, j)
c(i, j)

. (2)

An optimalrouting for a given TMD is a routing that minimizes
the maximum link utilization. Formally, theoptimal utilizationfor

a TM D is given by

OU(D) = min
f is a routing

U( f ,D). (3)

Theperformance ratioof a given routingf on a given TMD is
defined as

P( f ,D) =
U( f ,D)

OU(D)
. (4)

It measures how far the routingf is from being optimal on TMD.
P( f ,D) = 1 indicates that the routingf is optimal. A higher ratio
indicates that the performance is farther away from the optimal.

To account for fluctuations in network traffic, we may consider
multiple traffic demand matrices. Given a set of TMsD, there are
multiple ways to extend a performance metric defined on a single
TM D to the setD. Since our objective is on robustness, we con-
sider the worst case extension ofU( f ,D) andP( f ,D).

ExtendingU( f ,D), we define themaximum MLUof a routing f
on the setD as

U( f ,D) = max
D∈D

U( f ,D). (5)

We refer to a routing that minimizes the maximum MLU onD as
an MLU optimal routingon D, and the corresponding maximum
MLU as theoptimal MLUon D.

ExtendingP( f ,D), we define themaximum performance ratio
of a routing f on the setD as

P( f ,D) = max
D∈D

P( f ,D). (6)

We refer to a routing that minimizes the maximum performance
ratio onD as aperformance-ratio optimal routingon D, and the
corresponding maximum performance ratio as theoptimal perfor-
mance ratioon D. WhenD is the complete traffic demand space
containing all non-negative traffic demands, the performance-ratio
optimal routing is referred to as theoblivious routing, and the opti-
mal performance ratio is referred to as theoblivious ratio.

3.2 Optimal TE with Convex-Hull Prediction
We start with a type of robust prediction-based TE algorithms.

Assume that a traffic engineering system has collected a set of TMs
{D1, . . . ,DH} during some time interval, whereH is the number of
TMs collected. To compute the routing for the next interval, the
TE system needs to predict the TM that may appear during the next
interval. There can be many predictors. A large class of predictors
(e.g., exponential moving average) essentially estimate the TM of
the next interval as a convex combination of the previously seen
TMs. Aggregating the predictions of all such predictors, we obtain
the convex hull of{D1, . . . ,DH}.

Let D be the convex hull of the set of TMs{D1, . . . ,DH}. More
specifically, the convex hull can be constructed using convex com-
binations of the TMs inD, namely,∑ thDh, whereth is a coefficient
between 0 and 1,∑h th = 1, andDh is theh-th traffic matrix. Then
the problem of optimal TE with convex-hull prediction is to com-
pute the MLU or performance-ratio optimal routing over the setD.

One advantage of a convex-hull-based predictor is its monotonic-
ity (i.e., if the convex hull is continuously maintained, it will always
grow). Specifically, the monotonicity property leads to the follow-
ing stability result:

PROPOSITION 1. If interdomain BGP stability condition (e.g.,
[43]) is satisfied, then intradomain traffic engineering using convex
hull eventually converges.



3.3 Common-Case Optimization with Penalty
Envelope (COPE)

The convex-hull-based TE is effective when future demands fall
into the convex hull. However, traffic fluctuation may make fu-
ture demands fall outside the convex hull. In this case, the per-
formance may degrade significantly. One way to handle this issue
is to expand the convex hull to include more traffic demands. We
can expand the corresponding convex hull by letting the convex
combination coefficientsth take values less than 0 or larger than
1. Then we can optimize routing for all traffic demands that fall
into the expanded convex hull. Such expansion could help us to
tolerate changes in traffic demands to a certain extent. However,
there is a significant trade-off between the degree of expansion and
the performance optimality. In an extreme, the convex hull can be
expanded to include all traffic demands, which results in oblivious
routing. This is robust against arbitrary possible traffic changes, but
does not provide the best performance for normal demands.

To address the problem, we separate the optimization for the
common (predicted) cases and the bound on the worst cases. In
particular, we propose a novel approach based on the notion of
penalty envelope. It guarantees worst-case performance under arbi-
trary possible traffic demand while achieving close-to-optimal per-
formance under predictable demands.

DEFINITION 1. A routing f is said to haveMLU (or performance-
ratio) penalty enveloper if the maximum MLU (or performance ra-
tio) of f on the whole set of possible traffic demands is no more
thanr.

A penalty envelope restricts the set of possible routing to those
with maximum MLU or performance ratio less than or equal tor.
With the penalty envelope as a safeguard, a prediction-based TE
algorithm can then search the optimal routingf for the predicted
traffic demands, so long the routing satisfies the penalty envelope.
We call such a scheme common-case optimization with penalty en-
velope (COPE).

The general COPE scheme can be defined as follows. LetX

be the set of all possible TMs, andD ⊂ X the set of predicted
TMs. Let o( f ,x) be the objective function of applying routing
f to TM x. Let o( f ,D) be the aggregated objective function on
the setD. The aggregation can be done, for example, by taking
the maximum, or by taking some type of weighted average. Let
c( f ,x) be the penalty function. Note that for both the objective and
penalty functions, lower values are better. It can also be the case
that o( f ,x) = c( f ,x). Then the general setting is to find the rout-
ing f that minimizeso( f ,D), under the constraint that the penalty
over the whole setX of possible traffic demands (and thus includes
those inX −D) is bounded by a penalty enveloper. Formally, the
formulation is:

minf o( f ,D)

subject to f is a routing,i.e., (1) ;

∀x∈ X : c( f ,x) ≤ r.

Figure 1: General COPE framework.

Figure 2 illustrates the basic idea of the COPE scheme. This
scheme gives us a novel, simple, yet effective tool to handle dy-
namic networks with mostly normal traffic but sometime unex-
pected (yet possible) traffic demands.

3.4 Implementing Penalty Envelope
There are two remaining issues in implementing penalty enve-

lope. The first is how to choose the penalty enveloper. The algo-

bound

D

X

for set X

for set D
optimize

Figure 2: Illustration of COPE. The system objective is to
choose the routing f which is optimal for the predicted set D

under the constraint that its penalty in the set of all possible
traffic demands X is bounded.

rithm we use is the following. First, we computec∗(X)= minf ,x∈Xc( f ,x).
Then we setr = αc∗(X), whereα is a scale-up factor. As we will
show in Section 4, by choosingα slightly higher than 1, we can
achieve performance close to optimal for most common cases.

The second key challenge to the COPE framework is whether we
can efficiently incorporate penalty envelope into prediction-based
TE optimization. Below, we consider three cases and illustrate how
they can be efficiently implemented.

In the first case, we consider a penalty envelope on the absolute
value of MLU on the set of possible traffic demands (i.e., the set
X ) which satisfy access capacity constraints. The problem can be
formulated as follows:

min o( f ,D) (7)

subject to f is a routing;

∀ links l ,∀dab ≥ 0 such that

∑
b∈V

dab ≤ ROUT
a , ∑

b∈V

dba ≤ RIN
a ,

∑
ab

dab fab(l)/c(l) ≤ r,
(8)

whereROUT
a andRIN

a are the aggregated capacities of inbound and
outbound access links of nodea, respectively; they have equal val-
ues when access links have equal capacities in both directions. In
this formulation,r is an upper bound on MLU.

The constraints (8) are not standard LP formulation. However,
they can be tested by solving the following “slave LP” for each link
l , and testing whether or not the objective is≤ r.

max ∑
a,b

fab(l)dab/c(l) (9)

subject to ∀a,b∈V : dab ≥ 0,

∑
b∈V

dab ≤ ROUT
a , ∑

b∈V

dba ≤ RIN
a .

Using linear programming duality, we can show that the objec-
tive of (9) is≤ r if and only if the following set of constraints can
be satisfied:

∀a∈V : µl (a) ≥ 0,νl (a) ≥ 0;
∀a,b∈V : fab(l)/c(l) ≤ µl (a)+νl (b);

∑
a∈V

(µl (a)ROUT
a +νl (a)RIN

a ) ≤ r.

Figure 3: LP constraints to provide MLU penalty envelope over
the set of demands satisfying access capacity constraints.

The variablesµl (a) andνl (a) are dual multipliers on the node
capacity constraintsROUT

a andRIN
a , respectively.



We can then replace the constraints (8) with the set of constraints
in Figure 3. This gives an TE optimization problem with MLU
penalty envelope over the set of traffic demands satisfying access
capacity constraints.

There can be scenarios where it is more convenient to use a
penalty envelope based on performance ratio than on the absolute
value of MLU (e.g., the feasible MLU envelope is too high). In
the second case, we consider how to handle a performance-ratio
penalty envelope on a convex setX formed as the convex hull of a
set of TMs{D1, . . . ,DH}:

min o( f ,D) (10)

subject to f is a routing;

∀ links l ,∀ TM D =
H

∑
h=1

thDh, th ≥ 0,
H

∑
h=1

th = 1,

∑abdab fab(l)
c(l)

≤ r ·OU(D). (11)

Note that in the preceding problem formulation, there is one con-
straint for each traffic matrixD ∈ X . Since the number of such ma-
trices are infinite, this is not a standard linear programming prob-
lem. To solve the problem, we observe that the performance ratio
P( f ,D) is scale-free:

P( f ,D) = P( f ,αD), for all scalarα > 0. (12)

Then we have the following result:

LEMMA 1. Computing the performance-ratio optimal routing
over the convex hull is equivalent to computing the performance-
ratio optimal routing over a convex cone with the additional con-
straint OU(D) = 1.

PROOF. For anyD, by the scale-free property of performance
ratioP( f ,D), we have that:

P( f ,D) = max
D∈D

P( f ,D)

= max
D∈D

P( f ,
D

OU(D)
)

= max
D∈D

U( f ,
D

OU(D)
) (∵ OU(

D
OU(D)

) = 1)

D′= D
OU(D)
= max

D′:∃D∈D,D′= D
OU(D)

U( f ,D′)

= P( f ,D ′),

where the setD ′ =
{

D′ : ∃D ∈ D,D′ = D
OU(D)

}

.

Apply the preceding result whenD is a convex hull,i.e., D =
{D : D = ∑H

h=1 thDh, th ≥ 0,∑H
h=1 th = 1}, it can be shown that the

correspondingD ′ = {D′ : D′ = ∑H
h=1 thDh, th ≥ 0,OU(D′) = 1} is

a convex cone. This proves the lemma.

Applying Lemma 1 toX (instead ofD), we obtain the formula-
tion in Figure 4.

The formulation in Figure 4 still involves infinite number of con-
straints because it has one constraint for eachD in the convex cone.
However, the last two lines of constraints in Figure 4 can be tested
by solving, for each linkl , the following “slave LP”, and testing if
the objective is≤ r.

max ∑
a,b

fab(l)dab/c(l) (13)

subject to gab(e) is a flow of demanddab;

min o( f ,D)

subject to f is a routing;

∀ link l ,∀ TM D =
H

∑
h=1

thDh, th ≥ 0,OU(D) = 1;

∑
ab

dab fab(l)/c(l) ≤ r.

Figure 4: Optimal TE with a performance-ratio penalty enve-
lope over a convex set.

∀ link m,∑
a,b

gab(m) ≤ c(m);

∀a,b,dab =
H

∑
h=1

thdh
ab, th ≥ 0. (14)

Using an approach similar to that in [7], we can show by linear
programming duality, that the objective of (13) is≤ r if and only if
the following set of constraints can be satisfied:

∀ links l ,m : π(l ,m) ≥ 0;
∀ link l , nodesi, j : pl (i, j) ≥ 0, with pl (i, i) = 0;
∀ link l : ∑mπ(l ,m)c(m) ≤ r;
∀ link l , OD paira→ b : fab(l)/c(l) ≤ pl (a,b)−λl (a,b);
∀ link l , nodei, link m= ( j,k) : pl (i,k) ≤ pl (i, j)+π(l ,m);
∀ link l , h = 1, . . . ,H : ∑a,b λl (a,b)dh

ab ≥ 0.

Figure 5: LP constraints to provide performance-ratio penalty
envelope over a convex set.

Compared with the LP models developed in [7], our model has
additional Lagrange multipliersλl (a,b), which correspond to the
conic combination constraint (14).

We can then replace the last two lines of constraints in Figure 4
with the set of constraints in Figure 5, and form an TE optimiza-
tion problem with performance-ratio penalty envelope over a set
of possible traffic demands expressed as a convex-hull. When the
TE optimization objective in (10) is the performance-ratio function
over a convex setD, we can similarly derive LP constraints.

The third case is a special case of the preceding case when the
set of possible traffic matrices includes all non-negative traffic de-
mands. The restriction imposed by the penalty envelope require-
ment in this case can be incorporated as a set of linear constraints.
Specifically, a routingf has performance-ratio penalty enveloper
if and only if the constraints in Figure 6 are satisfied.

∀ links l ,m : π(l ,m) ≥ 0;
∀ link l , nodesi, j : pl (i, j) ≥ 0, with pl (i, i) = 0;
∀ link l : ∑mπ(l ,m)c(m) ≤ r;
∀ link l , OD paira→ b : fab(l)/c(l) ≤ pl (a,b);
∀ link l , nodei, link m= ( j,k) : pl (i,k) ≤ pl (i, j)+π(l ,m).

Figure 6: LP constraints to provide performance-ratio penalty
envelope over the set of all non-negative traffic demands.

4. EVALUATIONS
In this section, we evaluate our algorithms.

4.1 Evaluation Methodology
Dataset description: We evaluate our algorithms using both real
and synthetic data. We use the real topologies and traffic demand



Network Aggregation level #Nodes #Links Oblivious ratio Penalty envelope

US-ISP PoP-level - - 2.045 2.50
Abilene router-level 11 28 1.853 2.00

Abovenet PoP-level 15 60 2.014 2.05

Table 1: Summary of network topologies used.

Network Description Period studied Time interval

US-ISP Tier-1 ISP hourly traffic traces a month in 2005 hourly traffic count
Abilene Netflow data collected every 5 min-

utes from a number of universities
and enterprises on the Internet-2

03/01/04 - 09/10/04 5-minute traffic count

Table 2: Summary of real traffic traces used.

matrices from Abilene and a major tier-1 ISP in US (anonymized as
US-ISP). For Abilene, we collected the router-level topology and
6-month worth of traffic demands from Abilene Observatory [2].
Our dataset is available at [1]. For US-ISP, we rely on a PoP-level
model, which differs from the real router-level topology and traffic
demands, yet still illustrates the scope and power of the methods
proposed here. In addition, we use the PoP-level Abovenet topol-
ogy inferred by RocketFuel [35]. We use OC192 as the capacity for
links in the Abovenet topology, and use the gravity model [53] de-
scribed in [33] to generate synthetic traffic demands. Table 1 sum-
marizes the topologies in use, their oblivious ratios, and the default
performance-ratio penalty envelopes used in evaluation. Table 2
summarizes the real traces in use. Note that for proprietary reasons,
we omit the numbers of nodes and links of US-ISP in Table 1.

Performance metrics:We use the following two performance met-
rics to compare different algorithms: (i) maximum link utilization
(MLU) as defined in Equation (2); and (ii) performance ratio as
defined in Equation (4). For both metrics, lower values indicate
more efficient resource utilization, and hence are preferred. Note
that the MLU defined in Equation (2) allows utilization to be above
100% when the traffic demand is large, while in practice, link uti-
lization cannot exceed 100%. To be consistent with terminologies
used by other authors, we use MLU with the understanding that it
means traffic intensity and can exceed 100%. Also note that in our
real-trace-based evaluations, we assume that traffic demands do not
change as a function of the performance of a TE algorithm. When
a TE algorithm performs badly and leads to network overload, TCP
flows might be able to react and reduce network demand, resulting
in lower demand than that happened in the real traces. However,
this leads to reduced network throughput.

Algorithms: We categorize the algorithms we evaluate into the
following three classes: (i) oblivious routing, (ii) prediction-based
TE, and (iii) COPE. For all algorithms, we compute the routing
by solving the corresponding linear programs using CPLEX [18].
By default, CPLEX uses dual simplex method to solve linear pro-
grams, but this is a poor choice for COPE. Given the particular
structure of our problem formulation, we use the barrier method
without crossover [12].

• Oblivious routing (oblivious): We compute the routing that
gives the optimal oblivious ratio using the algorithm described
in [7].

• Prediction-based TE: We evaluate the following three algo-
rithms in this category. The first one requires routing update
every time interval (i.e., 1 hour in US-ISP, and 5-minutes in
Abilene), whereas the latter two require routing update once
a day. We have also conducted experiments using the Abi-
lene traces, with predictions based on traffic of the preceding

week and routing update every week, and the results are sim-
ilar.

– Dynamic (dynamic): At the beginning of each interval,
we compute the optimal routing based on the traffic de-
mand in the previous interval, and apply it to the traffic
in the current interval. This algorithm models online
traffic engineering (e.g., [19, 26]). Note that the change
in traffic demand from the previous interval can result
in less efficient routing, compared to the optimal for the
current interval.

– Peak traffic demand (peak): At the beginning of each
day, an optimal routing is computed based on the traf-
fic demand in the peak interval (in terms of the total
volume of traffic) of the previous day (for US-ISP) or
the previous day and the same day of the previous week
(for Abilene). This scheme has been suggested by [4].

– Multiple traffic matrices (multi): At the beginning of
each day, an optimal routing is computed based on a
set of traffic matrices collected. We use the previous
day’s traffic matrices to compute routing for US-ISP,
and use the traffic matrices in the previous day and the
same day of the previous week to compute routing for
Abilene. This algorithm is used in [34]. In addition, we
also evaluate its variant suggested in [49], which selects
traffic matrices of 6 consecutive intervals with the high-
est total volume of traffic. The results are similar and
omitted for the interest of brevity.

• COPE: We evaluate two versions of COPE. For both of these
two versions, we optimize routing based on the convex hull
constructed from the set of traffic matrices collected from the
previous day (for US-ISP), or from the previous day and the
same day last week (for Abilene), subject to a performance-
ratio penalty envelope on all non-negative traffic demands.
Both versions require routing update only once a day, and
are cheap to implement. The two versions differ only in their
objective functions.

– Minimizing the performance ratio (COPE-ratio): To
optimize for performance ratio as the objective function
over a convex set, we adopt the technique developed
in Section 3.4 to handle penalty envelope on a convex
set. Note that we also refer to COPE-ratio as COPE for
short.

– Minimizing MLU (COPE-MLU): This version of COPE
is a variation of COPE-ratio which uses the absolute
value of MLU, instead of performance ratio, as its ob-
jective function. Note that we can consider COPE-
MLU as an extension ofmulti with penalty envelope.



4.2 Evaluation Results
US-ISP:First, we evaluate the performance of different algorithms
using US-ISP, a large tier-1 US ISP. For confidentiality, we can-
not report absolute MLU for US-ISP. Instead, we report relative
MLU normalized byMLUopt,max, whereMLUopt,max is the highest
maximum link utilization under the optimal routing over the entire
month. Note that there are a small fraction of intervals without traf-
fic demand information in the trace and we exclude those intervals
in our evaluations.
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Figure 7: Oblivious vs. prediction-based TE: US-ISP traces.
The performance ratio is truncated at 8.

We first compare the algorithms using performance ratio as the
metric. Figure 7 compares oblivious routing with prediction-based
TE. It plots the performance ratio versus the time interval sorted
based on the performance ratio. Each time interval spans 1 hour.
On one hand, we observe that prediction-based TE out-performs
oblivious routing in most cases. For example, the performance ra-
tio under the prediction-based algorithms is less than 1.2 for about
half of the time intervals. Among the prediction-based algorithms,
dynamic performs the best in the common case. This is expected
as it updates every interval, while the others update every day. In
comparison, the performance ratio of oblivious routing is above
1.5 for almost all of the intervals. On the other hand, the largest
performance ratio under oblivious routing is 2.0355, whereas the
largest performance ratios of prediction-based algorithms are all
above 3.5, with multi even goes to higher than 8. Note that we
limit the y-axis to 8 so that we can easily see the difference under
normal traffic. The prediction-based algorithms incur large perfor-
mance ratios because the inaccurate traffic prediction makes them
perform significantly worse than the optimal. These results indicate
that prediction-based TE is good at optimizing common-case per-
formance, but suffers from large performance penalty when traffic
demands change significantly. On the other hand, oblivious routing
is good at handling unexpected traffic, but suffers on common-case
performance. Neither class of algorithms dominates the other.

Figure 8 plots the performance ratios of the COPE algorithms,
oblivious routing, and the common-case best-performing dynamic
algorithm. Note that in order to display the curves clearly, we have
truncated the performance ratio of dynamic, whose performance
ratio will shoot up well beyond 2.2. We observe that for the com-
mon case, COPE algorithms achieve performance ratio which is
about 6% higher than the dynamic algorithm, and significantly out-
perform oblivious routing; for the worst case (in the traces), COPE
algorithms even out-perform oblivious, and significantly out-perform
dynamic prediction-based routing. Thus, COPE achieves the best
of both.

Next, we compare the algorithms using normalized MLU as the
metric. Figure 9 shows time series plots of normalized MLU under
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Figure 8: COPE vs. oblivious and dynamic: US-ISP traces.
The performance ratio is truncated at 2.2.
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(a) oblivious vs. prediction-based algorithms.
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(b) oblivious vs. COPE.

Figure 9: Time series plots of normalized MLU: US-ISP traces.
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various routing schemes. From Figure 9(a), we can see that without
penalty envelope, the prediction-based routing schemes can result
in large spikes in normalized MLU. On the other hand, the nor-
malized MLU of oblivious routing never exceeds 1.6, showing the
robustness of oblivious routing. However, from Figure 9(b), we ob-
serve that the robust performance of oblivious routing is surpassed
by COPE and COPE-MLU. They consistently yield lower link uti-
lization than oblivious routing. We observe reduction in normalized
MLU up to 56%.

Abilene traces: The results of the US-ISP traces are normalized.
Next we evaluate the algorithms using the public Abilene traces
and show absolute values of MLU. Since COPE and COPE-MLU
perform similarly, we report only COPE.

Figure 10 compares the algorithms in terms of performance ra-
tio. It plots the performance ratio versus the time interval sorted
based on the performance ratio. Each time interval spans 5 min-
utes. We make the following observations. First, predictions based
on either multiple traffic matrices or peak traffic matrix perform
poorly, with a performance ratio greater than 2 for about half of
the intervals. Second, although dynamic routing achieves close-to-
optimal performance ratio most of the time, the performance ratio
can occasionally get as high as 6.7. Third, even though oblivi-
ous routing has better performance ratio on Abilene traces than on
US-ISP traces, COPE still out-performs oblivious routing for about
80% of the intervals.

Figure 11 plots the MLU achieved by the algorithms during 3
days of the Abilene traces when traffic spikes happen. For clar-
ity we zoom in to a few intervals in the day. We make the fol-
lowing three observations. First, on April 10, traffic engineering
using multiple traffic matrices or peak matrix may drive the traf-
fic intensity of the bottleneck link to be 240% of its link capacity
(e.g., at interval 161), while the optimal utilization is less than 50%.
This high traffic intensity can lead to high packet loss rates and/or
router crashes. Second, the dynamic algorithm exhibits interest-
ing behavior. On April 10 and 14, it drives the traffic intensity of
the bottleneck link to over 100% of its link capacity during some
time periods (e.g., 120% on April 10 at interval 159, and 181% on
April 14 at interval 110). On the other hand, on April 12, it al-
ways achieves close-to-optimal performance. Closer examination
of the traffic of the three days identifies that on April 12, there is a
traffic ramp-up process, and thus the dynamic algorithm can adjust
and performs well. However, on April 10 and 14, there is no such
a ramp-up process before the spikes, and traffic changes rapidly;
thus the dynamic algorithm overloads the network. Third, COPE
and oblivious perform well under traffic spikes.

We next evaluate the performance of the algorithms when traffic
is relatively steady and there are no traffic spikes. Figure 12 shows
that for Friday, April 9, 2004 (all other days in the one-week period
from April 9 to April 15 contain spikes). We make the following
observations. First, during this normal-traffic day, the utilization
of the network is low—the optimal MLU is only around 6%. This
is typical of Abilene, which is over-provisioned. Second, the MLU
achieved by using multiple traffic is about twice that of the optimal.
This is because the traffic demands used for route computation do
not match well with the real traffic, thus resulting in a large per-
formance penalty. Third, the MLU achieved by oblivious routing
is about 1.3 times optimal. This is better than the oblivious ratio
of 1.853 for the Abilene network. However, a 30% performance
penalty could still be large, especially if the network is heavily
loaded. In comparison, the MLU of COPE is within 5% of optimal,
and comparable to the dynamic algorithm under stable demands.

Abovenet: Next we evaluate the performance of COPE and oblivi-
ous routing using Abovenet topology. Since its traffic demands are
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(a) Saturday, April 10, 2004.
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(c) Wednesday, April 14, 2004.
Figure 11: Time series plots of MLU: Abilene traces.
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not available, we use the gravity model [53] described in [33] to
generate sample synthetic traffic demands.
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Figure 13: Scatter plot of MLU: Abovenet with gravity model
traffic.

Figure 13 summarizes the results. The figure is a scatter plot,
where each point represents one sample. The x-axis is the opti-
mal MLU for the sample traffic matrix, and the y-axis is the MLU
achieved by COPE or oblivious routing. In this evaluation, COPE
uses a penalty envelope of 2.05, while the oblivious ratio of Abovenet
is 2.014. In other words, the penalty envelope of COPE is only 2%
more than the worst-case bound of oblivious routing. Interestingly,
relaxing the worst-case bound slightly is sufficient to allow COPE
to consistently achieve close-to-optimal performance. In compari-
son, the MLU of oblivious routing is much higher, up to 1.9 times
of the optimal MLU.

Effects of penalty envelope:
There is a trade-off in choosing different values of penalty enve-

lope. When the value of the penalty envelope is high, the penalty
guarantee is weak; however, a higher value of envelope leaves more
room for optimizing common-case performance. When the enve-
lope is set to be a very large value, the algorithm becomes prediction-
based routing. On the other hand, when the value of the envelope is
low, the penalty guarantee is strong; but not much room is left for
optimizing common-case performance. When the penalty envelope
is equal to the oblivious ratio of the whole possible traffic set, the
scheme becomes oblivious routing.

To evaluate the effects of the penalty envelope, we study the per-
formance of the US-ISP and Abilene traces as we vary the penalty
envelope. Figure 14 shows the results. Note that the time interval
of the US-ISP traces is an hour, while that of the Abilene traces is 5
minutes. Note also that we choose a 10-day period for the US-ISP
traces, and choose a one-week period from April 9 to April 15 for
the Abilene traces, as they best demonstrate the effects of penalty
envelope.

We observe that as we increase the value of penalty envelope,
the performance of most intervals improves. For example, for the
US-ISP traces, the medium performance ratio (i.e., the performance
ratio at the middle of the sorted intervals) decreases by 23% as we
increase the penalty envelope from 2.05 (the oblivious ratio) to 2.2;
for the Abilene traces, the medium performance ratio decreases by
18% as we increase the penalty envelope from 1.85 (the oblivious
ratio) to 2.0. When we increase the envelope beyond 2.2 for US-
ISP and 2.0 for Abilene, however, the performance improvement
is small. Since a larger value of penalty envelope implies larger
potential worst-case performance ratio, 2.2 appears to be a good
penalty envelope for US-ISP, and 2.0 for Abilene. In addition, Fig-
ure 14 shows that by choosing a penalty envelope slightly higher
than the oblivious ratio, we achieve about 20% performance im-
provement for both US-ISP and Abilene. Note that US-ISP and

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  50  100  150  200  250

P
er

fo
rm

an
ce

 r
at

io

Intervals sorted by performance ratio

oblivious
PE = 2.2
PE = 2.4
PE = 2.6
PE = 2.8

(a) US-ISP traces.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0  500  1000  1500  2000  2500
P

er
fo

rm
an

ce
 r

at
io

Interval sorted by performance ratio

oblivious
PE = 1.9
PE = 2.0
PE = 2.1
PE = 2.2

(b) Abilene traces: April 9-15, 2004.

Figure 14: Effects of penalty envelope.

Abilene have typical topologies that are representative for a wide
range of networks. These results suggest that by increasing the
penalty envelope to be just 10% above the lowest possible, we can
already have enough room to optimize common-case performance.

Summary: Prediction-based algorithms can pay serious perfor-
mance penalty when large traffic changes happen. They can drive
traffic intensity to be over link capacity when the optimal network
utilization is well below 100%. Oblivious routing pays perfor-
mance penalty under normal traffic, driving utilization to be 30% to
90% higher than optimal in our evaluations. COPE avoids the per-
formance penalties of both, and combines the best of both. Com-
pared with the prediction-based algorithms, COPE retains their close-
to-optimal performance under expected traffic demands, but avoids
surge in network utilization and performance ratio under large traf-
fic changes. Compared with oblivious routing, COPE also guaran-
tees worst-case performance, but avoids the performance penalty
of oblivious routing under predictable demands.

5. TRAFFIC ENGINEERING WITH
INTERDOMAIN ROUTING

In this section, we develop a light-weight mechanism to handle
interdomain routing. As we point out in Section 1, interdomain
routing introduces two challenges. The first is point-to-multipoint
demand; that is, there can be multiple equally-good egress points
to a given external (i.e., interdomain) destination prefix in the BGP
decision process [17]. Thus, COPE needs to break the tie and as-
sign the egress point of each external destination. Since egress links
may become the bottlenecks of the network [16], this tie-breaking
can affect the congestion of the network. Second, there are a large
number of external destination prefixes each with their own set of
egress points. ISPs have less control over interdomain routes, but



some changes in the availability of interdomain routes can cause
significant shifts of traffic. Thus, COPE should compute a routing
that is robust to the traffic changes caused by changes of interdo-
main routes.

5.1 COPE with Interdomain Routing
Our high-level approach is a two-step process. In the first step,

we convert the point-to-multipoint interdomain problem to a point-
to-point intradomain problem in a topology extending the intrado-
main topology. By solving the latter problem, we obtain an as-
signment of external destinations to their egress points. This gives
us point-to-point ingress-egress (IE) traffic matrices involving only
intradomain nodes. In the second step, we apply COPE to the IE
matrices to compute an intradomain routing. Since COPE tolerates
traffic variations, the computed routing is robust against traffic vari-
ations due to shifts of egress points caused by dynamic interdomain
routes.

peer

virtual

peer

peer

peer

virtual b
c

e
a

intradomain topology

d

Figure 15: Extended graph G′ which includes intradomain
topology, peers, peering links (dashed links), and virtual nodes.
Each virtual node represents a set of external destinations with
the same set of egress peers.

Specifically, in the first step, we group external destination pre-
fixes that share the same set of stable egress points into an equiv-
alence class. Each equivalence class is represented by a virtual
destination. We estimate the aggregated traffic demands to each
virtual destination, and obtain origin-destination (OD) traffic de-
mands. Then we construct an extended graphG′, as illustrated in
Figure 15, which includes the intradomain topology, the peers of
the AS, the peering links, and the virtual destination nodes. We
connect each virtual destination node with its corresponding peers
using virtual links with infinite capacity. We apply COPE to the
resulting topologyG′ to compute a robust routing. In particular,
this routing will tell us how traffic to a virtual destination be split
among its connected peers. Guided by the splitting ratios, we as-
sign the egress point of each external destination prefix to approx-
imate these ratios. This assignment of egress point can be imple-
mented by BGP using local preference values. Figure 16 summa-
rizes the algorithm.

In the second step, using the splitting ratios, we first compute
ingress-egress (IE) traffic matrices involving only intradomain nodes.
Then we use the IE matrices to compute a robust intradomain rout-
ing. To be robustness against possible large changes in traffic de-
mands (e.g., traffic change when a peer is down and many external
destinations change egress points), we apply COPE to compute in-
tradomain routing. The algorithm is shown in Figure 17. Note that
unlike in Figure 16, here the inputs of COPE are the ingress-egress
traffic matrices and the intradomain topology (which does not in-
clude peering links). This is important because we want to ensure
that when peers or peering links go up and down, the penalty enve-
lope of the resulted routing is not affected.

When the status of a peering link changes, the OD traffic that
goes through this link is equally split over the alternative links that

1. Group traffic demands that share the same set of egress
points into an equivalence class,EQ.

2. For eachEQ, derive its pseudo OD demand that
consists of all the OD demands belonging toEQ

3. InitializeG′ to include intradomain topology,
peers, peering links, and virtual nodes representing EQ’s

4. Connect a virtual node to its corresponding peers
using a virtual link with infinite capacity

5. Apply COPE to compute routing onG′ for the
pseudo demands

6. Derive the splitting ratios based on the routes
7. Assign interdomain prefixes to egress points

Figure 16: Step 1 of COPE with interdomain routing: convert
point-to-multipoint to point-to-point demands by determining
splitting ratios.

1. InitializeG to be the intradomain topology
2. Compute IE demands based on the splitting ratios

derived in Figure 16.
3. Apply COPE to compute intradomain routes

in G for ingress-egress demands

Figure 17: Step 2 of COPE with interdomain routing: compute
robust intradomain routing.

are available for routing the OD demand. This change does not
affect intradomain routing, since intradomain routing is robust to
traffic changes through the use of penalty envelope.

5.2 Evaluation Results
Next we present our preliminary evaluation of COPE in dealing

with interdomain routing dynamics.
We first extend the Abilene topology. From those ASes that peer

with Abilene, we choose two (ESNET and DREN) and add them
as virtual destinations. Each one represents a collection of inter-
domain destination prefixes. ESNET has 3 peering links with Abi-
lene, and DREN has 4. For each peering link, we insert an AS in
between. Therefore, in the final topology, Abilene has 3 neighbor-
ing ASes connecting to ESNET, and 4 connecting to DREN. The
capacities of the peering links connecting Abilene to the inserted
neighboring ASes are assigned using the actual peering link capac-
ities. The oblivious routing ratio for this new topology is 2.039.

Next we determine the total demands from a router in Abilene
to ESNET and DREN. Due to lack of good models for interdomain
traffic matrices, we generate synthetic interdomain traffic demands
using the Abilene traces as follows. We assume that a random por-
tion (uniform from 0 to 0.5) of the traffic from a router in Abilene
to the 3 border routers connecting to ESNET is actually targeted to
ESNET. We similarly derive interdomain traffic demands to DREN.

We apply the algorithm described in Section 5.1 to the above de-
rived topology and traffic demands. We set the penalty envelope to
2.2. We evaluate two failure scenarios: 1) a peering link connect-
ing to ESNET (link 11) is down; and 2) both a link connecting to
ESNET (link 11) is down, and a link connecting to DREN (link 15)
is down.

Figure 18 shows the time series plot of MLU for Thursday, March
11, 2004. At the 145-th time interval, links 11 and 15 fail and re-
main failed until the end of the day. We include 4 curves in the plot:
optimal with no link failures (i.e., performance should the links not
fail), optimal with the link failures, COPE without link failures, and
COPE with the link failures. We observe that when the two links



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  50  100  150  200

M
LU

Interval

link 11 and 15 fail

COPE PE=2.2, with failures
COPE PE=2.2, no failure

optimal, with failures
optimal, no failure

Figure 18: Times series plot of MLU: Abilene traces on Thurs-
day, March 11, 2004.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  500  1000  1500  2000

P
er

fo
rm

an
ce

 r
at

io

Intervals sorted by performance ratio

link 11 and 15 fail
link 11 fails

no failure

Figure 19: Scatter plot of sorted performance ratios: Abilene
traces from March 8, 2004 to March 14, 2004.

fail, the MLU of COPE increases; but the performance penalty is
small.

Figure 19 evaluates the performance ratio of COPE under link
failures, for the time period from March 8, 2004 to March 14, 2004.
It plots the sorted performance ratios of COPE under the following
three scenarios: (i) there is no link failure, (ii) only link 11 is down,
and (iii) both links 11 and 15 are down. We observe that when only
link 11 is down, the performance degradation of the network under
COPE is small. When two links are down, COPE has a higher per-
formance ratio compared to the first two scenarios. However, even
then the performance is mostly within 30% of optimal. Finally, we
note that the performance ratios are always within the penalty en-
velope, and during most of the intervals, the performance ratios are
well below the penalty envelope.

Summary:While preliminary, these results show that COPE is promis-
ing in handling interdomain route dynamics. As part of future
work, we plan to further evaluate COPE in more diverse scenar-
ios.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel scheme of traffic engineering:

common-case optimization with penalty envelope (COPE), a class
of traffic engineering algorithms that optimize for the expected sce-
narios while providing worst-case guarantee for unexpected scenar-
ios. Using extensive evaluations based on real topologies and traffic
traces, we show that COPE combines the best of prediction-based
routing and oblivious routing, and can achieve efficient resource
utilization under a wide variety of scenarios.

There are several avenues for future work. First, in this paper
we focus on MLU. It is useful to apply COPE for optimizing other
performance metrics. Second, we are interested in implementing

COPE in a real network, and gain operational experience. Third, it
will be interesting to find a way to dynamically detect that the com-
mon case traffic has changed and the network should recompute.
Fourth, we believe that the general principle behind the design of
COPE, optimizing for the common-cases while providing worst-
case guarantee, can be applicable to many dynamic environments.
We plan to explore other applications of this general principle.
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APPENDIX

A. SHORTEST-PATH-IMPLEMENTABLE
INTRADOMAIN TE

The link-based routing computed by COPE can be implemented
by path-based routing such as MPLS [29]. In this section, we seek a
mechanism which enables us to compute routing that can be imple-
mented by OSPF-style shortest path routing, with an appropriate set
of positive link weights. Formally, A routingfab(i, j) is shortest-
path-implementableif there exists a set of positive link weights,
such that any pathp carrying positive flows for OD paira→ b is a
shortest path froma to b.

From the above definition, it can be shown that a routingfab(i, j)
is shortest-path-implementable if and only if there exists a set of
link weights {w(i, j)|(i, j) ∈ E} and corresponding shortest dis-
tances{U(i, j)|i, j ∈V}, such that:

∀(i, j) ∈ E : w(i, j) ≥ 1; (15)

∀a, i ∈V, i 6= a : U(a,a) = 0,U(a, i) > 0; (16)

∀a∈V,(i, j) ∈ E : U(a, i)+w(i, j) ≥U(a, j); (17)

∀a,b∈V,(i, j) ∈ E :

fab(i, j) > 0⇒U(a, i)+w(i, j) = U(a, j). (18)

Given (15)-(18), if fab(i, j) > 0, theni is on the shortest path from
a to j, and by inductioni is also on the shortest path froma to b.

Let

SP( f ,w,U) = ∑
a,b∈V,(i, j)∈E

fab(i, j)[U(a, i)+w(i, j)−U(a, j)].

In view of (17) and the fact thatfab(i, j)≥0, we have thatSP( f ,w,U)≥
0 for any f , w andU satisfying (15)-(17), and that (18) is equivalent
to SP( f ,w,U) = 0. Therefore, if we can compute a routingf and its
associatedw, U such thatSP( f ,w,U) = 0, we can set link weights
of OSPF-style routing protocols according tow(i, j), which makes
sure that traffic is always routed through shortest paths.

Specifically for COPE, we now introducew andU as optimiza-
tion variables and (15)-(17) as constraints. We can then add

SP( f ,w,U) = 0 (19)

as a quadratic constraints to guarantee that the routingf computed
is shortest path implementable. Alternatively, we can add

α ·SP( f ,w,U) (20)

as a quadratic penalty term to the objective of COPE, whereα > 0.
The added penalty termα ·SP( f ,w,U) will ensure that the opti-
mization not only minimizes the orginal objective of COPE, but
also SP( f ,w,U). The scalerα is a very small positive number
which is introduced to ensure that the minimization of the origi-
nal objective of COPE takes higher priority. When this alternative
approach is used, the routing computed is no longer guaranteed to
be shortest path implementable. However, if the computed rout-
ing f , link weightsw and corresponding shortest path distancesU
makeSP( f ,w,U) small, the routingf is “nearly” shortest path im-
plementable.


