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Abstract
We show that 4-universal hashing can be implemented ef-
ficiently using tabulated 4-universal hashing for characters,
gaining a factor of 5 in speed over the fastest existing meth-
ods. We also consider generalization to

�
-universal hashing,

and as a prime application, we consider the approximation
of the second moment of a data stream.

1 Introduction.
This paper is about fast � -universal hashing, with fast data
streaming algorithms being the prime application. We also
consider generalization to

�
-universal hashing for arbitrary�

. For any ��� � , let � ���
	 �
����������������������� . As
defined in [19], a class � of hash functions from � ��� into� ��� is a

�
-universal class of hash functions if for any

distinct �! "���������#��$
%'&)(*� ��� and any possibly identical+  ��������� + $
%,& (-� ��� ,.0/1�243 �65879�;:=<>	 + :#�,?;�@(A� � ���B	C�6DE� $(1.1)

By a
�

-universal hash function, we mean a hash function that
has been drawn at random from a

�
-universal class of hash

functions. Our main contribution is a fivefold speed-up for� -universal hashing of keys consisting of one or a few words.
Hashing is typically applied to a set of FHG � keys

from � ��� and often we consider collisions harmful. For any� �JI , with
�

-universal hashing, the expected number of
collisions is bounded by F6K6D6� collisions. However, with I -
universal hashing, the variance in the number of collisions
may be as large as LM7�F
N6DE�O< . On the other hand, as shown
in [7], with � -universal hashing, the variance is no bigger
than the expected number of collisions. As described in [7]
this means that � -universal hashing is more reliable in many
algorithmic contexts.

Our special interest in fast � -universal hashing is due
to its applications in the processing of data streams, an area
that has recently gathered intense interest both in the theory
community and in many applied communities such as those
of databases and the Internet (see [2, 13] and the references
therein). A common data stream scenario is as follows. A
large stream of items arrive one by one at a rapid pace. When
an item arrives, we have very little time to update some small
amount of local information that we maintain on the data

stream. This information is selected with a certain question
or type of questions in mind. The item itself is lost before
the next item arrives. When all the items have passed by, we
have to answer questions on the data stream.

A classic example is the second moment computation
from [1]. Each item has a weight and a key and we want
to compute the second moment which is the sum over each
key of the square of the total weight of items with that key.
The generic method used in [1] is that when an item arrives,
a hash function is computed of the key, and then the hash
value is used to update the local information. At any point in
time, the local information provides an unbiased estimator of
the second moment of the data stream seen so far. In order to
control the variance of the estimator, the hash function used
in [1] has to be � -universal.

The generic method from [1] is used in many other
streaming algorithms. Sometimes we just use 2-universal
hashing. Other times we have a choice between simpler
algorithm using � -universal hashing and a more complicated
one using 2-universal hashing. And finally, as in the second
moment example, we only have algorithms using � -universal
hashing.

In many of the streaming algorithms, computing the
hash function is a bottleneck. The basic reason to prefer
2-universal hashing over � -universal hashing is that it is an
order of magnitude faster with existing methods. However,
here we improve the speed of � -universal hashing by a factor
of 5, making it a more viable option in time critical scenarios.

1.1 Concrete application areas. The application [11] that
originally motivated us for this research was a sniffer that
monitors packets passing through a high speed Internet
backbone link at OC48 speed (2.48 gigabits per second). At
such high link speed, it is common for packets to arrive at
a rate of more than a million per second, thus leaving us
with less than a microsecond per packet. In the worst case,
when all packets are of the minimum Internet packet size of
40 bytes (320 bits), the packet arrival rate can be as high
as I�P �RQTSU���"V�DEWRI4�X	ZY[P\Y4]^SH�
��_ per second, leaving us
with less than 130 nanoseconds per packet. A critical part of
the application was to compute the second moment with the
packet key being its single word 32-bit IP address, and the
packet weight being its size in bytes. The speed-up achieved



in this paper made the application possible.
We note that independent of computer speeds, there

is an absolute virtue in processing information with just a
few instructions. The basic point is that many streams are
already passing through computer software, hence limited
by the actual processor’s speed. If we can process data in
a few instructions, then chances are that we are as fast as
everything else, hence that we can keep up with the stream.
An example of such software limited streams are IP firewalls
that are often implemented in software. Another example is
the flow level statistics exported by most IP routers.

1.2 Tabulation based hashing. On most of today’s com-
puters, the fastest way of generating a 2-universal bit string
from a key is to divide the key into characters, use an inde-
pendent tabulated 2-universal function to produce a bit string
for each character, and then just return the bit-wise exclusive-
or of each of these strings. This method goes back to [4], and
an experimental comparison with other methods is found in
[16]. More precisely, if � is a 2-universal class of hash func-
tions from characters to bit-strings, and we pick ` indepen-
dent random functions 5  ���������a5;b %,& (T� , then the functionc5 mapping d  d & ������d[b %'& to 5  � d  �aef5 & � d & �"�����geh5!b %'& � dib %,& �
is 2-universal. Here e denotes bit-wise exclusive-or. If �
is 3-universal, then so is 5 . However, the scheme breaks
down above 3. Regardless of the properties of � ,

c5 is not� -universal.
Above we used ‘ � � ’ around the arguments of the 5�: to

indicate that the 5;: are tabulated so that function values are
found by a single look-up in an array.

1.2.1 Our results. Despite the above obstacles, we show
in this paper that it is possible to use tabulation for fast � -
universal hashing. As a simple illustration, consider the case
where keys are divided into two characters. Then we will
show that 5j� dika�;	H5  � d"�[el5 & � ka��em5 K � donlka�
is a � -universal hash function if 5! , 5�& , and 5 K are inde-
pendent � -universal hash functions into strings of the same
length. As a slight caveat of the above scheme is that the de-
rived character d!npk requires one more bit than d and k , hence
that 5 K need to be over a domain of twice the size. It would
have been nicer if we could just apply 5 K to d�eqk instead
of drnsk , but then we will show that the combined function
is not � -universal. We can reduce the domain of d�nqk by
performing the addition over an appropriate odd prime field.
With character length tu	XQv����w , we exploit that IRxEny� prime.
Then the domain of the derived character drnsk is only one
bigger than that of the input characters.

The above scheme could be applied recursively, but
then, for ` characters, we would end up using `4z {�|�}[~ hash
functions. We show here that we can get down to I4`��
�
hash functions whose output strings need to be e ed. Apart
from hashing ` input characters in � I x � , we hash `T���
derived characters over � IRx�n�`
� . The derived characters are
all generated using a total of `pnH� simple operations over

integers returned for free as part of the look-up done over the
input characters.

We also present a scheme for general
�

that gives
�

-
universal hashing using 7 � ����<�7�`^����<on�� � -universal
hash functions. For

� 	�� , this is not as good as the
previous result, but it does have the advantage that the
derived characters have exactly the same length as the input
characters.

As a theoretical comment, we note that our scheme com-
pletely avoids multiplication. It only uses ��7 � `R< AC  oper-
ations like addition, shifts, and bit-wise Boolean operations
plus memory look-ups. For contrast, we know that any small
space implementation of

�
-universal hashing needs non-AC  

operations like multiplication [12]. The space of our tables
allows us to circumvent this problem. An alternative solution
would have been to use our space to tabulate multiplication
of t�D4I -bit characters, and use this table to implement mul-
tiplication over � -bit keys with AC  operations. Even with
the asymptotically fastest multiplication [15], we would use� 7�`8�����0`R< look-ups per multiplication and � 7 � `j���"��`R< look-
ups for

�
-universal hashing. This is worse than the ��7 � `R<

look-ups with our solution, and it is not even remotely prac-
tical.

1.2.2 Random derived characters. Recently and inde-
pendently, a somewhat similar scheme has been suggested
[9, � 5], but where the derived characters are based them-
selves on random hashing. As we shall see below, our de-
terministically derived characters work much better.

The scheme in [9] takes an integer parameter � , and
generates � independent universal hash functions �  ��P�P�P���� %'&
from input keys to t -bit characters. Here, as in [4], universal
just means that for any inputs � and � , .0/ �6��:#79�8<O	H�4:=79�;<��o	�ED4I"x . For 32- and 64-bit input words, such a universal hash
function can be implemented with a multiplication and a shift
[8]. The output is defined as5879�8<O	X5v R� �6 "79�,<g��el5�&4� ��&67g�,<9�veX�����6em5 � %'&4� � � %'&E79�8<9��P
In [9, Proof of Theorem 5], they show for any distinct input�! ���P�P�P���� � %'& and output �� 4��P�P�P��#� � %'&.�/ �65879�!:#<>	 + :#�,?;�@(A� � �g��	C�6DE� $ ns7 � D[7��Mns��<#<a7 � D�I x < �
Above, the additive term 7 � D[7���n���<#<�7 � D4IRx�< � is the error
relative to � -universality as defined in (1.1). In order to
get remotely

�
-universal, we set IRx � 	�� $ and accept an

error factor of
� ��� & D[7���n���< . For ��	 I6¡ and t-	��
DE` ,

this means that �¢	 � ` where � is the number of hashed
characters and table look-ups. This is actually more than the7 � �£�4<�7�`o����<�nH� deterministically derived characters that
we use for our general perfectly

�
-universal scheme.

Our special scheme for � -universal hashing provides
even bigger improvements, using only I�`f�C� as opposed
to �"` derived characters and look-ups, and avoiding the error
factor

� N b=� & Di79�"`¤n¥��< . Conversely, if we limit the scheme
from [9] to use the same computational resources as we do,
that is, only �q	¦I4`��¥� randomly derived characters and



look-ups, the error is7 � Di7§�MnX�4<#<a7 � D�I x < � I N�¡u¨ 7�Q K b D�I4`R<�I K=¡©¨ � K
For example, hashing 64-bit integers to 64-integers using 16-
bit characters, [9] gets an error factor ¨ I & NªV . In all fairness,
it should be mentioned that the scheme in [9] is not claimed
to be practical. Also, the analysis in [9] is geared towards
asymptotic bounds, and it may be possible to tighten it.

We note that [9, � 5.2] stipulates that they can implement
their

�
-universal hashing with a single multiplication, though

over numbers that are ` times as long as the input keys.
As mentioned previously, our scheme avoids multiplication
altogether.

1.3 Hashing single and double words in C. The focus
of this paper is to develop efficient C code for � -universal
hashing of single and double words of 32 and 64 bits,
respectively, producing a corresponding number of output
bits. Indeed, we end up gaining a factor 5 in speed over
previous methods. We shall later return to the case where
input and output are of different sizes.

Concerning other key lengths, if keys have less than 16
bits, we can hash them trivially using a complete table over
all such keys. If keys have between 16 and 32 bits, we hash
them as 32 bit keys. If keys have between 32 and 64 bits,
we hash them as 64 bit keys. Finally, if keys have more than
64 bits, we first apply fast standard universal hashing into 64
bits, and then we apply � -universal hashing on the reduced
keys.

In the above reduction to 64 bit keys, the universal
hashing means that two keys get the same reduced key
with probability I % _#N . Hence, if there are ��G I"~�K
different keys in the stream, they will all have distinct
reduced keys. However, as detailed in [18, A3], if the target
is to estimate the second moment, then the error is small
with high probability if most of the mass of the stream is
distributed on �«G*I�_�N keys, which is most certainly the
case in any foreseeable future.

We note that our techniques generalize perfectly to 96
and 128 bits if that is of any interest. The point we try
to make here is that a more standard asymptotic analysis
for keys of non-constant length, e.g., favoring Schönhage-
Strassen multiplication of large numbers [15], is much less
relevant for the kind of streaming applications we have in
mind.

Another point in not considering the asymptotic case is
that our worst competitor may simply be undefined, depend-
ing on a major unresolved problem in number theory.

1.4 The opposition. When implementing
�

-universal
hashing from words to words in C on a standard computer,
our worst competitor is the original function from [19]:5,7g�,<O	 $
%'&¬ :�­' d : � :,® �[¯o�(1.2)

for some prime � ¨ � with each di: picked randomly from� �v� . If � is an arbitrary prime, this method is fairly slow

because the ’® �i¯-� ’ is slow. However, as pointed out in
[4], we get a fast implementation if � is a so-called Mersenne
prime of the form I : �A� . Then (1.2) gives the fastest known� -universal hashing on a processor with standard arithmetic
operations. We shall refer to this as CW-trick. In the hashing
of 32-bit integers, we can use �£	�I"_ & �U� , and for 64-bit
integers, we can use ��	XI"°�Vu�l� .

As mentioned previously, we do not know if CW-
trick is defined for arbitrary key lengths, for it is a major
open problem in number theory if arbitrarily large Mersenne
primes exist. The largest known so far is I & ~#Nª_�_aV &=± ��� .

For the second moment estimation from [1], it is actually
preferable that the � -universal output is a bit string, for
then each bit position is a � -universal bit independent of the
remaining string. In contrast, if the output is in a prime field,
the bit positions are not independent, and then we typically
have to give up some of the most significant bits in order to
get an approximately � -universal bit string. The output of
our � -universal hashing is a bit string as desired. Also, we
can easily generate long � -universal bit-strings. All we have
to do is to put long bit-strings in the � -universal character
tables, and then e these bit-strings as we look them up in a
sequential read.

We note that a weakness of our tabulation based scheme
relative to CW-trick is that we require fairly large pre-
computed tables whereas CW-trick just requires access todR "��P�P�P���di$
%,& . One can easily imagine applications where
it is desirable to compute hash values directly from a small
space representation of a hash function. However, for our
streaming applications, it is not a problem to initialize some
tables in an up-start face.

We are going to compare CW-trick with our tabulation
based method both based on a high level instruction count,
and based on experiments on two different computers.

1.4.1 With � a power of I . In [6] it was shown that
(1.2) can be used with � an appropriately large power of
two, outputting a suffix of the result as a

�
-universal bit

string. For 2-universal hashing, this power-of-two scheme
has proved very fast [16]. However, for � -universal hashing,
the scheme needs ��	²I�K & ° just to hash from 32 bits to
32 bits [6, Theorem 10]. The multiplication of 218-bit
integers makes this method much slower than CW-trick for
4-universal hashing.

We note that since the method from [6] gives us � -
universal bit strings, we could use it to initialize the character
tables needed in our tabulation based method. Assuming
that the data stream is much bigger than the tables, the
initialization time is not an issue.

1.5 The C-level instruction count. Besides an experi-
mental comparison, we are going to compare our tabulation
based scheme with CW-trick using a coarse-grained analysis
of C code. We assume we have a 64-bit processor, and we
charge a unit cost for each instruction on one or two 64-bit
double word. Of computational instructions we have stan-
dard arithmetic operation such as addition and multiplica-



tion. We note for both addition and multiplication that over-
flow beyond the 64 bits are discarded. In particular, this
means that multiplication is only used to multiply integers
below I ~�K . With CW-trick we do not need modulus or di-
vision so we do not need to worry about the slowness of
these operations. Of other computational instructions, we
have regular and bit-wise Boolean operations and shifts. Fi-
nally, we may define a vector of characters over a double
word and extract a character at unit cost.

We note that among the above operations, multiplication
is typically the most expensive. Since multiplication is used
by CW-trick and not by us, we are generous to the opponent
when only charging one unit for multiplication.

We assume that our processor has a small number, say
30, of registers. Here registers are just thought of as memory
that is so fast that copying between cells is almost free. Since
the registers are controlled by the compiler, it is convenient
to ignore it. When running CW-trick, we assume that all
variables reside in registers. However, we do charge a unit
cost for memory access beyond the registers. This means
that our tabulation based methods are charged a unit for
each look-up. Obviously, the unit cost is only fair if the
tables are small enough to fit in reasonably fast memory. For
example, if tables over 16-bit characters were too slow, we
could switch to tables over 8-bit characters.

As a final cost, we charge a unit for a jump. For
a conditional jump, we charge for the evaluation of the
condition and for the jump if it is made. All our procedure
calls are inline, so we do not need to charge for them.

We refer to the above cost as the C-level instruction
count. Here “C-level” refers to the fact that a finer analysis
would have to take the concrete machine and compiler into
account. Our C-level analysis will be complemented with an
experimental evaluation on two different computers, and as
it turns out, the C-level instruction count does give a fairly
accurate prediction of the actual running times.

1.5.1 Modern processors. For the
�

-universal hashing of
longer keys, it is worth noting that our algorithms are ideally
suited for the kind of vector operations supported supported
on 128-bit words by modern processors like the Pentium 4
[10, 17]. In fact, we are really coding such vector operations,
making sure that we have enough space between coordinates
that we do not get overflow from one coordinate to another.
For contrast, these modern processors do not support full-
word multiplication, and hence they do not help as much for
the traditional method in (1.2).

1.6 Second moment estimation. The estimation of the
second moment is a canonical application of our tabulation
based � -universal hashing. We present a new estimator that
given a � -universal hash value, yields the same variance and
space gains roughly a factor of 2 over the best combination
of previous methods [1, 5]. In [11], this speed is used,
as part of a larger application, in real time estimation of
the second moment over IP-addresses of packets coming
through a high speed Internet router. Our second moment

estimator is described in � 4, deferring some details to [18,� A].

2 Tabulation based hashing.
In this section, we show how tabulation can be used for fast� -universal hashing. First we present a general framework
for
�

-universal hashing along with some simple lemmas.
Next, we present a scheme for � -universal hashing on two
input characters that requires 3 table lookups. We then
generalize the scheme to achieve � -universal hashing on `
input characters with I4`o�s� table lookups. We also present
a scheme for general

�
that gives

�
-universal hashing on `

characters using 7 � �£�4<a7g`¤���4<'nX� table lookups. We then
compare our � -universal hashing scheme with CW-trick, the
fastest known algorithm, both in terms of C-level instruction
count and actual running times. The results suggest that our
tabulation based scheme consistently wins by at least a factor
of 5.

2.1 General framework. Our general framework for tab-
ulation based

�
-universal hashing with ` characters is as fol-

lows.

1. Given a vector of ` input characters
c� 	79�v h��&U�����³� b %'&E< , �;:¢(´� I x � , we construct a vec-

tor of `�nTµ derived characters
c¶ 	C7 ¶  ¶ &M����� ¶ b=�8· %,&�< ,¶�¸ (�� �v� , �
� ®�¹Eº �6I"x��a`rnHµ"� . Some of the derived

characters may be input characters.

2. We will have `vnMµ independent tabulated hash functions5 ¸ into � I6¡�� , and the hash value is then587 c�,<�	X5v [� ¶  ��ieX�����
em5 b=�8· %,&4� ¶ b#�,· %'&a�(2.3)

The domain of the different derived characters depends
on the application. Here we just assume that 5 ¸ has an
entry for each possible value of ¶ ¸ .

We will now define the notion of a “derived key matrix”
along with some simple lemmas. Consider

�v»©¼½�
distinct

keys
c� : 	C79� :9¾  � :9¾ & �����;� :9¾ b %,& < , ��(A� �i» � , and let the derived

characters
c¶ : be 7 ¶ :9¾  ¶ :9¾ &������ ¶ :9¾ b=�,· %'&6< . We then define the

derived key matrix as¿ 	 ÀÁÁÂ ¶  �¾  ¶  �¾ & ����� ¶  �¾ b=�,· %'&¶ &�¾  ¶ &ª¾ & ����� ¶ &�¾ b=�,· %'&
. . .¶ $�Ã9%'&�¾  ¶ $�ÃÄ%,&ª¾ &Å����� ¶ $�Ã9%'&�¾ b=�8· %,&

Æ§ÇÇÈ
LEMMA 2.1. Suppose for any

�v»q¼É�
distinct keys

c� : ,�Ê(�� �i» � , the derived key matrix
¿

contains some element
that is unique in its column, then the combined hash function5 defined in (2.3) is

�
-universal if all the 5 ¸ , Ëf(-� `�nÌµ
� , are

independent
�

-universal hash functions.

Proof. Consider a set of
�

distinct keys along with their
derived key matrix

¿
. For any set of

�
hash values + : ,��(Í� � � , we have to show that.�/ �6587 c�!:#<>	 + :#�,?;�@(Í� � �g<a��	
�ED4I $ ¡



By assumption, there is an element ¶ :�Î�¾ ¸ Î that is unique
in column Ë  . Since the 5 : are independent

�
-universal

hash functions, each character in each column is hashed
independently. Without loss of generality, we can assume
that the hash value of ¶ : Î ¾ ¸ Î is picked last. When all the other
characters are hashed, we obtain hash values for each of the
other

� �H� keys. By induction, these are hashed 7 � �U��< -
universally, so.�/ �6587 c� : <>	 + : �,?;�@(A� � �[ÏB���  �"��	
�ED4I[Ð $
%'&#Ñ ¡
However, ¶ :�Î�¾ ¸ Î is hashed independently by 5 ¸ Î , and.0/ �
587 c� : Î�<>	 + : ÎE�	 .0/ÊÒÓ Ô 5 : Î"� ¶ : Î ¾ ¸ Îª�,	 + : Î�esÕ:�Ö­,:�Î 5 : � ¶ :9¾ ¸ Îª��× ØÙ 	C�6D�I ¡
Hence,

.�/ �E5,7 c�;:=<>	 + :#�,?;�@(A� � ��<#��	
�ED4I $ ¡ , as desired.

In our constructions for � -universal hashing, the input
characters will all be used as derived characters, and then we
can simplify the assumption of Lemma 2.1 to dealing with
exactly 4 keys.

LEMMA 2.2. Suppose all input characters are used as de-
rived characters and that for any � distinct keys

c��: , �B(X� �4� ,
the derived key matrix

¿
contains some element that is

unique in its column, then the combined hash function 5 de-
fined in (2.3) is � -universal if all the 5 ¸ , ËU(�� `rnUµ
� , are
independent � -universal hash functions.

Proof. Consider
��»�Ú � distinct keys. The distinctness

implies that some column of input characters in
¿

has at
least two different elements, and for

��»MÚ � , one of these
elements must be unique in its column. Hence, for

� 	½� ,
the condition of Lemma 2.1 is satisfied if it is satisfied for�i» 	 � 	s� .
2.2 � -universal hashing with two characters.

THEOREM 2.1. If keys are divided into 2 characters, then5879�!�!<�	X5v R� ���iel5�&4� �"��em5 K � ��nA�R�
is a � -universal hash function if 5  , 5 & , and 5 K are indepen-
dent � -universal hash functions into � I4¡�� .
Proof. For any 4 distinct keys �;:4��: , ��(Í� �4� , let ¶ :8	X�!:"n^��: .
By Lemma 2.2, it suffices to show that the derived key matrix¿ 	 ÀÁÂ �! Û�4 ¶  �'&Ü�R& ¶ &� K � K ¶ K� ~ � ~ ¶ ~

Æ ÇÈ
has an element that is unique in its column. Without loss
of generality, we may assume that each element appears at
least twice in the input columns ��� ¸ � and �
� ¸ � . Since the

four keys �;:,��: are distinct and
¿

has only four rows, it is
easy to see that each � : and � : must appear exactly twice in
its column. Without loss of generality, we can assume the
four distinct keys ��:6��: are dR 
kª , dR 
k�& , di&�kª , and d�&�k�& , whered  Ú d & and k  Ú k & . This implies d  nHk  Ú d  nXk & Úd�&@nlk�& and dR 0n�kª Ú d�&@nlkª Ú d�&@n�k�& . So both dR 0n�kª 
and d�&@nlk�& are unique in column � ¶ ¸ � .

A slight caveat of the above scheme is that �OnM� requires
one more bit than � and � , hence that 5 K needs to be over a
domain that is twice as large. It would have been nicer if
we could just apply 5 K to ��e£� instead of ��nX� , but then
the combined function guarantees 5,7�����<ieÍ587g�v�4<ieA5,7����i<�e587#�"�4<jÝH� , and is therefore not � -universal.

The following theorem shows that we can still achieve� -universal hashing if we replace ��nX� with addition over
an odd prime field Þ � containing the domain for input
characters. With concrete character length tu	HQ����
w , we can
exploit that I x nC� prime. Then the domain of the derived
character �Ìn
� is only one bigger than that of the input
characters.

THEOREM 2.2. Theorem 2.1 still holds if we perform addi-
tion over an odd prime field Þu� containing the domain for
input characters. That is, if keys are divided into 2 charac-
ters in � I�x#� , then5879�!�!<>	U5  � ���iel5 & � �"�iem5 K � ��nA� ® �i¯£���
is a � -universal hash function, where � ¨ I[x is an odd
prime and 5  , 5 & , and 5 K are independent � -universal hash
functions into � IE¡#� .
Proof. For this proof, we use ’ n ’ and ’ � ’ to denote addition
and subtraction over Þ � . As in the proof of Theorem 2.1, we
may assume that the 4 distinct keys � : � : are d  k  , d  k & , d & k  ,
and d�&�k�& , respectively, where d[ Aß	�d�& and kª Aß	�k�& . With¶ :8	X�!:#n³��: , we need to show that some ¶ : is unique. Clearly,¶  	¢d  n£k  ß	¢d  n£k & 	 ¶ & . Similarly, ¶  ß	 ¶ K . Hence,
if ¶  is not unique, ¶  u	 ¶ N , and if ¶ K is not unique, ¶ K 	 ¶ ~ .But these equalities imply d[ 4n¤kª 
nodR 6n¤k�&0	Hd�&�n¤kª Enod�&�n¤k�& ,
or d  nXd  	àd & nHd & . Therefore, there exists an elementá 	qdR u�Íd�&�ß	q� such that á n á 	q� . This is impossible in
an odd prime field, so we conclude that some ¶ : is unique.

Note that if we perform addition on any even field over� I�x=� , the combined hash function 5,7g�v�;<�	«5  � ���;es5 & � �R�!e5 K � �ÊnX�R� is not � -universal. This is because for any even
field over � I"x=� , there always exists an element á ß	â� such
that á n á 	X� , where 0 is the zero element of the field. This
means 587g����<'e£587g� á <,e£5,7 á ��<'e£587 á>á <0ÝC� . Therefore, 5
cannot be � -universal.

Interestingly, however, 5879�!�;<>	H5  � ���9n¤5 & � �R�Än¤5 K � ��e��R�is indeed � -universal if 5v , 5�& , and 5 K are � -universal hash
functions into � � » � , where � » is an odd prime, and addition is
performed over Þ©� Ã . But since in practice it is often much
more convenient to deal with bit strings, we will not go into
details on this.



2.3 � -universal hashing with ` characters. For � -
universal hashing with more than two input characters, we
can recursively apply the two-character scheme, but then, for` characters, we would end up using ` z {�| } ~ hash functions.
Here we show that we can get down to I�`B��� .

Let µã	 `A��� . Given ` input characters
c��	79�v ³�'&m�����ä� b %'&E< , �!:�(�� I"xå� , we obtain `�n¥µ characters

by including the ` input characters themselves together withµ additional characters
c��	C79�� ��R&������'� · %'&
< derived usingc��	 c��æ

where æ is a `�STµ generator matrix with the property that
any square submatrix of æ has full rank, and vector element
additions and multiplications are performed over an odd
prime field Þ � , �^� ®�¹4º �6I�x���`unmµR� . We then use the above
general hashing framework to combine `MnUµ independent
tabulated � -universal hash functions.

For small ` , the generator matrix æ can be constructed
manually. In particular, if `�	½I (thus µÊ	â� ), we can just
use æç	�7#���4<�è , which gives the scheme in Theorem 2.2.
For large ` , we can use a `�S�µ Cauchy matrix over prime
field Þ©� (which mandates ���£`©nÍµ ):é b�êi· 	Jë ���n�Ë�nX��ì : 2ií båî ¾ ¸ 2ií ·#î
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THEOREM 2.3. Let æ be a `�SÊµ generator matrix with the
property that any square submatrix of æ has full rank over
prime field Þ � , where �-� ®�¹4º �EI�x���`BnmµR� is an odd prime.
Given any ` characters

c��	ï7g� : < , �T(�� `
� , let
c�q	)7g� ¸ < ,Ëð(Í� µ
� , be the µp	s`@�T� additional characters derived usingc��	 c��æ , then the combined hash function5,7 c�,<O	H5� [� �! ���ef�����§er5 b %,&4� � b %,&ª�åeðñ5v "� �4 ���ef�����§eðñ5 · %,&E� � · %,&a�

is a � -universal hash function if hash functions 5�: ( �¤(q� `
� )
and ñ5 ¸ (Ëy(�� µ
� ) are independent � -universal hash functions
into � IE¡=� .
Proof. Consider � distinct ` -character keys

c� : 	79�!:9¾  ^�����,�;:Ä¾ b %'&E< , ��(A� �4� . Let
c��:>	¢7g��:Ä¾  ������,�":Ä¾ · %'&6<O	 c�!:�æ

and consider the the derived key matrix¿ 	 ÀÁÂ �  �¾  �����à�  �¾ b %,& �  �¾  �����â�  �¾ · %,&��&�¾  �����à��&�¾ b %,&Ü�R&�¾  ò�����â�R&�¾ · %,&� K ¾  �����à� K ¾ b %,& � K ¾  �����â� K ¾ · %,&� ~ ¾  �����à� ~ ¾ b %,& � ~ ¾  �����â� ~ ¾ · %,&
Æ§ÇÈ	 �0ó ôõ�

where ó and ô are the submatrices formed by vectors
c�':

and
c�": , respectively. Clearly, ô 	 ó æ .

By Lemma 2.2, we only need to prove that some element
of
¿

is unique in its column.
Assume by way of contradiction that each element of¿

appears at least twice in its column. Then each column¿ �\����Ë�� must be either of type 0: 7�drdpdMdv<åè , in which all 4
elements of the column are equal, or one of the three proper
types in which each element appears exactly twice: type ö :7�dBd¤kOk
<�è , type ÷ : 7�dok>d�k6<�è , and type ø : 7gdok�kjd!<�è .

For ù0	q�v��ö��#÷@�#ø , let ó�ú be the possibly empty subma-
trix of ó that consists of all columns of type ù . Also, let æ ú
be the submatrix of æ consisting of the rows Ë such that col-
umn Ë of ó is of type ù . Finally, we define ô;ú 	 ó�ú æ ú . Thenô 	qû ú ­, �¾ ü�¾ ý�¾ þ ô!ú .

Consider a specific derived column ô �§����Ë�� , Ëy(�� µ
� . Forùp	�����ö��#÷��=ø , ô!ú �\����Ë�� is of type 0 or type ù as it is a linear
combination of input columns of type ù . We say type ùMß	¢�
is present in derived column ô �\����Ë�� if ô ú �\����Ë�� is of type ù .

We will now prove that at most one type can survive
in each derived column ô �§����Ë�� , Ëà()� µ
� . Suppose for a
contradiction that we have at least two present types. By
symmetry, we may assume that ö and ÷ are present. Thenô ü8�§����Ë���	C7gdR Ed" 4kª Ekª �<�è and ô ýj�\����Ë���	C7gd�&
k�&�di&
k�&6<�è , so from
the proof of Theorem 2.2, we know that ô ü �§����Ë��,n ô ý �§����Ë��
has a unique character. If ø is not present, ô  i�\����Ë��in ô þ;�§����Ë��
is of type � , and then we know that ô �§����Ë�� has a unique
character. Otherwise, all three types ß	 � are present and
symmetric in that regard. If we don’t have a unique character
in ô �§����Ë�� , it is of some type, say � or ø . This implies thatô ü �§����Ë��!n ô ý �§����Ë4��	 ô �§����Ë��'� ô  �\����Ë��vn ô þ �\����Ë�� is of type ø
contradicting that ô ü8�§����Ë��in ô ýj�§����Ë�� has a unique character.

Let � ú be the number of columns in óðú . Next, we prove
that if � ú ¨ � and ù³ß	¥� , then æ has at most � ú �£� derived
columns ô �§����Ë�� where type ù does not survive. Assume
by contradiction that there are � ú or more derived columns
where � ú does not survive. We can then find an � ú Sm� ú
submatrix æ  ú of æ ú consisting of columns Ë such that typeù is not present in derived column ô �\����Ë�� . Then, for any two
rows

cd and
ck of ó�ú , cd[æ  ú 	 ck�æ  ú . However, ó�ú has different

rows so this contradicts the fact that all square submatrices
of æ have full rank.

From the above results, we know that æ cannot have
more than �  n û ú ­8ü�¾ ý�¾ þ ®�¹Eº �
�v�#� ú �s�4� . Since the input
keys are distinct, there has to be at least two proper types ù
with � ú ¨ � . Hence �' ;nÊû ú ­jüi¾ ý�¾ þ ®�¹4º �6����� ú �Ê�4� ¼ `j�fI .
However, æ has µ�	J`ð�¢� columns, so this gives us the
desired contradiction.

2.3.1 Relaxed and efficient computation of
c�Bæ on Þ � .

With the above scheme, we only need I�`¤�X� table lookups
to compute the hash value for ` input characters. However,
to make the scheme useful in practice, we still need to
compute

c�T	 c�Bæ very efficiently, which requires ��7g`6µR<�	��7�`EK4< multiplications and additions on Þ©� using schoolbook
implementation. Below we describe several techniques to
get down to ��7g`R< time.

Multiplication through tabulation. Let
cæ³: . ��(�� `
� ,

be the ` rows of the generator matrix æ from Theorem 2.3.



Thenc��	 c�oæ¥	C79�! ������'� b %,&6< ÀÁÂ cæ  
...cæpb %,&

Æ ÇÈ 	 ¬: 2ií båî �;: cæ³:
Therefore, we can avoid all the multiplications by storing
with each � : , not only 5 : � � : � , but also the above vector � : cæ : ,
denoted

cÿ :#79�;:=< . Then we compute
c� as the sum û : 2ií båî cÿ :#79�;:=<

of these tabulated vectors.
Using regular addition. We will now argue that for � -

universality, it suffices to compute û : 2ií b�î cÿ : 79� : < using regu-
lar integer addition rather than addition over Þ©� . What was
shown in the proof of Theorem 2.3 was that some element
of the derived key matrix

¿
was unique in its column. How-

ever, all elements were from � �v� so the uniqueness cannot be
destroyed by adding a variable multiples of � to the elements,
but this is exactly the effect of using regular integer addition
rather than addition over Þä� .

Parallel additions. To make the additions efficient, we
can exploit bit-level parallelism by packing the

cÿ :=7g�!:#< into
bit-strings with � ����� K `�� bits between adjacent elements.
Then we can add the vectors by adding the bit strings as
regular integers. By Bertand’s Postulate, we can assume� Ú I�x � & , hence that each element of

cÿ : 7g� : < uses t@nH� bits.
Consequently, we use t » 	Ht'n-�8n��Ä���"� K `�� bits per element.

For any application we are interested in, ��n�� ����� K `�� ¼t , and then t »ä¼ I4t . This means that our vectors are coded
in bit-strings that are at most twice as long as the input keys.
We have assumed our input keys are contained in a word.
Hence, we can perform each vector addition with two word
additions. Consequently, we can perform all `ð�
� vector
additions in ��7g`R< time.

In our main tests, things are even better, for we use �
w -
bit characters of single and double words. For single words
of W"I bits, this is the special case of two characters. For
double words of w�� bits, we have `r	H� and µr	q`��£�³	HW .
This means that the vectors

cÿ : 7g� : < are contained in integers
of µEt » 	CWv7#��w¤nU�än£Ii<ä	¢]RY bits, that is, in double words.
Consequently, we can compute û : 2ií b�î cÿ : 7g� : < using W regular
double word additions.

Compression. With regular addition in û : 2ií båî cÿ : 79� : < ,
the derived characters may end up as large as `[7§�ä�h��< , which
means that tables for derived characters need this many
entries. If memory becomes a problem, we could perform
the ® �i¯r� operation on the derived characters after we have
done all the additions, thus placing the derived characters in� �v� . This can be done in ��7g���"��`R< total time using bit-level
parallelism like in the vector additions.

However, for character lengths tm	õQ�����w , we can do
even better exploiting that ��	HI"xRnT� is a prime. We are then
going to place the derived characters in � IRx>nl`
� . Consider a
vector element d Ú `ª� . Let d » 	
d��-7�I�x��s�4<,nl`³�£79���t6<��M7�I"xv�Ê��< . Here � denotes a right shift and � denotes bit-
wise AND. Then it is easy to show that � ¼ � Ú I x nl` andd » Ý¦dhnU` 7 ® �i¯M�8< . Adding ` and a variable multiple
of � to each element of the derived key matrix does not

destroy the uniqueness of an element in a column, so our
hash function remains � -universal with these compressed
derived characters. The transformation from d to d » can
be performed in parallel for a vector of derived characters.
With appropriate precomputed constants, the compression is
performed in 5 C-level instructions.

2.4
�

-universal hashing with ` characters. Here we
present a scheme for general

�
-universal hashing using 7 � ���<�7�`��£��<'nH� � -universal hash functions. For

� 	U� , this is
not as good as the previous results, but it does have the ad-
vantage that it allows the derived characters to have the same
length as the input characters.

Let µ«	Ü7 � �¢I[<�7�`Ê���4< . Given ` input charactersc�A	�7g� : < ( �³(U� `
� ), we derive `¤n�µy	�7 � �X��<�7�`p�X��<8n¥�
characters

c¶ 	C7 ¶�¸ < (Ë�(A� `©nAµ�� ) usingc¶ 	 c�
	
where 	 is a `pSÌ7g`©n-µR< generator matrix with the property
that any `�S�` submatrix of 	 has full rank on a (possibly
even) field with size � ®�¹Eº �EI"x��a`�n�µR� . Matrices with this
property are commonly used in coding theory to generate
erasure resilient codes [3, 14]. For example, we can choose	ç	 � ��buæo� where where ��b is the `�SÊ` identity matrix andæ is a `�SÊµ matrix with full rank of all square submatrices.
Then we get a scheme just like in � 2.3 where æ can be the
Cauchy matrix

é b
êi· . However, this time we may use an
even field such as ��
o7�I"x�< , and that gives us some substantial
savings to be explored later. Another possible choice of 	 is
a `�S�7�`©nAµR< Vandermonde matrix:

� b�ê Ð b=�,· Ñ 	�� Ë :�� : 2ií b�î ¾ ¸ 2ií b=�,·#î
	 ÀÁÁÂ � � � ����� �� & � & I & ����� 7g`©nÍµ¤���4< &����� . . . ������ b %,& � b %'& I b %'& ����� 7�`©nAµo�l��< b %,&
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THEOREM 2.4. Let 	 be a `ÌSq7g`hnCµR< matrix with the
property that any `�SÌ` submatrix of 	 has full rank on a
(possibly even) field with size � ®�¹Eº �6IRx��a`Bnmµ"� , where t is
the length of the input characters. For any given ` charactersc��	C79�;:=< , �@(A� `
� , derive `�npµ¤	
7 � ����<�7g`;���4<�nf� charactersc¶ 	C7 ¶�¸ < , Ëð(A� `änAµ
� . Then the combined hash function587 c�8<O	X5  � ¶  ��es�����
el5!b#�,· %'& � ¶ b=�,· %'& �
is a

�
-universal hash function if 5 : ( �½( � `Tn½µ
� ) are

independent tabulated
�

-universal hash functions into � I�¡�� .
Proof. By Lemma 2.1, we only need to prove for any��»�¼ �

distinct keys
c� : , �s(ï� �i» � , some element of the

derived key matrix
¿

is unique in its column. Suppose
for a contradiction that every element appears at least twice
in its column. For each column

¿ �§����Ë�� , define � ¸ 	�R7gd;�ak6<��Rd;�ak�(C� ��» ����P ��Pid Ú k�� ¿ � d;��Ë��ä	 ¿ � kE��Ë��g� . Then
we have � � ¸ �^� ��» D�I . As the result, û ¸ 2ií b=�,·#î � � ¸ �^�



7g`'nðµR<4� �i» D�I¤	
7#7 � �y�4<a7g`j����<
n���<4� �i» D4I ¨ 7�`8�y�4<�� $ ÃK � . But
there are only � $ ÃK � different 7�d!�ªk
< pairs ( d;�ªk³(s� ��» � , d Ú k ).
Therefore, there must exist a pair 7gdi ��ªkª 4< that appears in at
least ` different � ¸ , Ëð(Í� `unAµ
� .

Let
¿ »

and 	 » be the `ÊSÍ` submatrices of
¿

and 	
consisting of columns Ë with 7gd[ "�akª �<Ê(�� ¸ . In

¿ »
, rowsd  and k  are identical, so

c� ��Î�	 » 	 c� !gÎ�	 » . However,c� � ÎHß	 c� ! Î , so this contradicts the fact that 	 » is a `ÊSl`
matrix with full rank.

2.4.1 Efficient computation of
c¶ over ��
B7�IRx�< . As men-

tioned above, we can pick 	 	Å� � b æo� and thus get a
scheme like in � 2.3 with

c¶ being the concatenation of
c� andc�^	 c�oæ . With the notation of � 2.3.1, we compute

c� as the
sum û : 2ií båî cÿ :#79�;:=< of the tabulated vectors

cÿ :#79�;:#< . However,
this time, we may work in the even field ��
�7�IRx�< . Conse-
quently, the elements of ÿ :=7g�!:�< are in � I"xå� and addition over��
o7�I x < is just e as supported directly in C without any need
for carry bits. Thus, each vector

cÿ :#79�;:#< is represented as a
bit-string of length µEtB	¥7 � ��Ii<�7g`@�^�4<�t , and we just need toe these vectors to produce

c� . The resulting derived charac-
ters are all in � I�x#� . This scheme is thus in many ways simpler
than our specialized scheme for � -universal hashing over Þ � .
However, for

� 	X� , our general scheme performs worse be-
cause it uses Ii7�`p�U�4< derived characters, whereas our spe-
cialized scheme only uses `��M� derived characters. So far, we
do not understand if this is an inherent advantage of Þu� over��
o7�I�x�< , or if there is a smarter way of exploiting �"
�7�IRx�< .
3 Performance evaluation.
We have implemented our schemes and CW-trick in C. Ta-
ble 1 compares the different algorithms both in terms of
C-level instruction count and actual running times on two
machines with different architecture and operating systems.
OldTable is simply the standard 2-universal hashing men-
tioned in � 1.2 obtained by hashing each character indepen-
dently using 16-bit characters. This is currently the fastest
known method for 2-universal hashing, hence an interesting
benchmark.

CWtrick61 and CWtrick89 are CW-trick schemes as
described in � 1.4 with Mersenne primes I _ & �T� and I °�V �T� ,
respectively. The actual code for CWtrick61 is found in � 5.3
while the code for CWtrick89 is deferred to [18, � B.5]. The
code for CWtrick89 gains speed from only producing the 64
least significant bits of the result assuming that we only need
that many hashed bits.

Table and CompressTable are instances of our new
tabulation based � -universal hashing schemes from � 2.3 with
16-bit input characters. With Table the derived characters
are not compressed, and may be as large as `�S�I & _ with`m	�I��#� depending on whether the input is 32 or 64 bits.
With CompressTable, the derived characters are less thanI & _�nA` , so they need much smaller tables. The actual codes
for 32-bit keys is found in � 5.2. The code for 64-bit keys is
deferred to [18, � B.3].

The C-level instruction count can be read directly from
the code and is thus independent of compiler and machine

architecture. We see that Table gains more than a factor 5
over CW-trick, both for 32 and 64 bit keys.

When it comes to actual running time, we see that the
C-level instruction count gives a good rough estimate of
the relative performances, yet there is a glaring contrast on
Computer A between Table and CompressTable on 64 bit
keys. In this case, Table uses roughly 4 times as much space
as CompressTable, so it is natural to attribute its slowness
to use of slower memory. Similarly, the relative slowness
of CW-trick can be attributed to its use of multiplication.
All in all, for running times, we see that CompressTable
consistently wins by a factor of 5 over CW-trick. Table is
even faster in most cases when memory is not a problem.
Even when memory starts to become a problem (Table with
64 bit keys on Computer A), it is still more than 4 times faster
than CW-trick.

Summing up, we have shown that tabulation can be used
for
�

-universal hashing, and for the important case of � -
universal hashing, we have gained a factor of 5 in speed over
the previous fastest methods, making it a much more viable
method for time critical streaming applications.

4 Second moment estimation.
Let # 	 7gd & �%$ & <a��7gd K �%$ K <���P�P�P���7gd'&
�%$(&
< be a data stream,
where each key d : is a member of � )!� . Let + �³	 û :+* �-, ­ � $ :
be the total weights associated with key dy(l� )!� . Define, for
each Ëð��� , . ¸ 	 ¬

� 2ií / î + ¸�
The second moment,

. K , is of particular interest, since it
arises in various applications.

4.1 Second moment estimators.
Classic estimator. The classic method for estimating. K by Alon et. al. [1] uses � counters t�: ( �h(�� ��� ) and �

independent � -universal hash functions F : that map � )!� into�R�³�����4� . When a new data item 7gd;�%$p< arrives, all � counters
are updated using t�:�nl	 F
:�7gd!<©�'$ ( �Ì(ç� ��� ). . K is then
estimated as ó10 z 243�3�5 0 	 û : 2ií 6 î t�K: D6� . Following the analysis
in [1], we have 7Ì� ó80 z 243�3�5 0 ��	 . K and 9 ¹ / � ó10 z 243�3�5 0 ��	û � Ö­ ! I + K� + K! 	XIi7 . KK � . N <åDE� .

Count sketch based estimator. Recently, Charikar et.
al. [5] described a data structure called count sketch for
keeping track of frequent items in a data stream. We can
adapt count sketch to make second moment estimation.
Using this method, we need � counters t : ( �u(£� ��� ) and two
independent � -universal hash functions 5;:¤� )!�=< � ��� andF>:B� )!�?<É�"�³�����4� . When a new data item 7gd;�%$p< arrives,
a single counter t 1 Ð � Ñ is updated using t 1 Ð � Ñ nT	âF"7gd!<��@$ .. K is then estimated as ó10 {4ACBED 3�F4GHD 0JI 	�û : 2ií 6 î t�K: . We can
prove that 7�� ó80 {KALBED 3�FKGHD 0MI �8	 . K and 9 ¹ / � ó10 {4ACBED 3NFKGHD 0JI �8	I�7 . KK � . N <=D6� . Therefore, ó 0 {4ACBED 3�F4GHD 0JI achieves the same
variance as ó 0 z 2K3N3�5 0 with substantially lower update cost.

Fast count sketch based estimator. An alternative way
of implementing the count sketch scheme is to use IE� coun-
ters t�: ( ��(H� I4��� ) and a � -universal hash function 5>:O� )!�O<



key bits P C-level running time (sec)Q
-universal hash bits algorithm instructions computer A computer B

2 32 P 64 OldTable32 5 0.17 0.31
4 32 P 61 CWtrick61 41 1.82 2.95
4 32 P 64 Table32 8 0.30 0.55
4 32 P 64 CompressTable32 12 0.34 0.55
2 64 P 64 OldTable64 11 0.35 0.48
4 64 P 64 CWtrick89 184 6.83 12.31
4 64 P 64 Table64 32 1.56 2.22
4 64 P 64 CompressTable64 37 1.04 2.53

Update 2nd moment in stream 11 0.50 0.68

Table 1: C-level instruction count plus running times for performing 10 million hash computations on computer A (400 MHz
SGI R12k processor running IRIX64 6.5) and B (900 MHz Ultrasparc-III processor running Solaris 5.8).� I4��� . When a new data item 7�d;�%$³< arrives, $ is directly
added to the counter t 1 Ð � Ñ : t 1 Ð � Ñ nH	R$ . In the end

. K
is estimated using the alternating sum ó1S 2K3+D 0 {KALBED 3�FKGHD 0MI 	û : 2ií 6 î 7�t K :@�lt K : � &6<�K . ó S 2K3+D 0 {4ACBED 3NFKGHD 0JI achieves the same
variance as ó 0 {4ACBED 3�F4GHD 0JI , but is faster because the direct up-
date of a counter based on a single hash value is much sim-
pler. However, such simplicity comes at the cost of doubling
the space.

Our new estimator. Here we present a new estimator
that achieves the same speed and variance as the fast count
sketch based estimator without having to double the space.
Instead of using I4� counters, our new method uses � 	�fnH� counters t : ( �ä(m� �h� ), and a � -universal hash function5�:j� )!�T< � �h� . The update algorithm is exactly the same as
that of the fast count sketch based estimator: when a new
data item 7gd;�K$³< arrives, $ is added to the counter t 1 Ð � Ñ :t 1 Ð � Ñ n�	�$ . But the estimation formula is quite different.
We use ó BLGHU 	 ��½��� ¬: 2ií V î t K: � ��½��� 7 ¬: 2ií V î t�:#< K

Note that we do not worry about the cost of adding
up counters done in the end. Hence, it is not considered a
problem to have a more complex sum for this. In [18, � A],
we prove

THEOREM 4.1. If 5 is I -universal, 7Ì� ó BLGHU ��	 . K . If5 is � -universal, 9 ¹ / � ó BCGHU �f	ïI�7 . KK � . N <=D[7g� �¢�4<^	Ii7 . KK � . N <=D6� .

4.2 Performance evaluation. The code for second mo-
ment estimation can be found in � 5.4. We used �ã	àI &XW ,
giving us a relative standard error below Y I"Di79�½���4<[ZI %;± Ú ��\ . The last line in Table 1 shows the instruc-
tion count and the running times for performing 10 million
hash computation and counter updates. This should be com-
pared with the hash computation alone in Table32. We see
that the additional overhead is limited. Even in the worst
case when all packets are of the minimum IP packet size of
40 bytes (320 bits), the counter update part can easily keep
up with W"I���SÌ�
� ± DE�vP w"Q³	H�!P�YMS-���"V bits per second on the
slower computer, which is nearly twice as fast as OC48 speed

(2.48 Gbps). With enough buffering, if the average IP packet
size is above 85 bytes (680 bits), which is generally the case
in today’s Internet, we can even keep up with OC192 speed
(10 Gbps).

5 Code.
In this section, we present some of the code discussed in this
paper, justifying the concrete C-level instruction counts. The
remaining code is found in [18, � B].

5.1 Common data types and macros.

typedef unsigned int INT32;
typedef unsigned long long INT64;

const INT64 LowOnes = (((INT64)1)<<32)-1;
const INT32 HalfLowOnes = (((INT32)1)<<16)-1;

#define LOW32of64(x) ((x)&LowOnes)
#define HIGH32of64(x) ((x)>>32)
#define LOW16of32(x) ((x)&HalfLowOnes)
#define HIGH16of32(x) ((x)>>16)

5.2 Tabulation based hashing for 32-bit keys using 16-
bit characters.

/* tabulation based hashing for 32-bit key x
* using 16-bit characters. T0, T1, T2 are
* precomputated tables */

inline INT64 Table32(INT32 x, INT64 T0[], INT64
T1[],INT64 T2[]){

INT32 x0, x1, x2;
x0 = LOW16of32(x);
x1 = HIGH16of32(x);
x2 = x0 + x1;
x2 = compress32(x2); //optional compression
return T0[x0] ˆ T1[x1] ˆ T2[x2];

} // 8 + 4 = 12 instructions

/* optional compression */
inline INT32 compress32(INT32 i) {
return 2 - HIGH16of32(i) + LOW16of32(i);

} // 4 instructions

The code uses 12 instructions (8 without compression),
including 3 lookups.



5.3 CW Trick for 32-bit keys with prime I _ & ��� .
const INT64 Prime = (((INT64)1)<<61) - 1;

/* Computes ax+b mod Prime, possibly +2*Prime,
* exploiting the structure of Prime.*/

inline INT64 MultAddPrime(INT32 x, INT64 a,
INT64 b) {

INT64 a0,a1,c0,c1,c;
a0 = LOW32of64(a)*x;
a1 = HIGH32of64(a)*x;
c0 = a0+(a1<<32);
c1 = (a0>>32)+a1;
c = (c0&Prime)+(c1>>29)+b;
return c;

} // 12 instructions

/* CWtrick for 32-bit key x with
* prime 2ˆ61-1 */

inline INT64 CWtrick(INT32 x, INT64 A,
INT64 B, INT64 C,
INT64 D) {

INT64 h;
h = MultAddPrime(MultAddPrime(

MultAddPrime(x,A,B),x,C),x,D);
h = (h&Prime)+(h>>61);
if (h>=Prime) h-=Prime;
return h;

} // 12*3 + 5 = 41 instructions

The code uses 41 instructions including 6 multiplications.

5.4 Second moment estimation.
#define NumCounters 32768 // (1<<15)
INT64 Counters[NumCounters];

/* precomputed tables whose hash strings
* only use 15 least significant bits */

INT64 *T0, *T1, *T2;

inline void StreamUpdate2nd(INT32 ipaddr,
INT32 size) {

Counters[Table32(ipaddr,T0,T1,T2)]+=size;
} // 3 instructions plus those in Table32.

double StreamEstimate2nd() {
int i;
INT64 c;
double sum = 0, sqsum = 0;
for (i = 0; i < NumCounters; i++) {

c = Counters[i];
sum += c;
sqsum += c*c;

}
return sqsum + (sqsum-sum*sum)/

(NumCounters-1);
}

The code for updating the counters adds 3 instructions to
those in Table32, including one additional lookup.
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