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ABSTRACT

Opportunistic routing aims to improve wireless performance by ex-
ploiting communication opportunities arising by chance. A key
challenge in opportunistic routing is how to achieve good, pre-
dictable performance despite the incidental nature of such com-
munication opportunities and the complicated effects of wireless
interference in IEEE 802.11 networks. To address the challenge,
we develop a model-driven optimization framework to jointly opti-
mize opportunistic routes and rate limits for both unicast and mul-
ticast traffic. A distinctive feature of our framework is that the
performance derived from optimization can be achieved in a real
IEEE 802.11 network. Our framework consists of three key com-
ponents: (i) a model for capturing the interference among IEEE
802.11 broadcast transmissions, (ii) a novel algorithm for accu-
rately optimizing different performance objectives, and (iii) effec-
tive techniques for mapping the resulting solutions to practical rout-
ing configurations. Extensive simulations and testbed experiments
show that our approach significantly outperforms state-of-the-art
shortest path routing and opportunistic routing protocols. More-
over, the difference between the achieved performance and our
model estimation is typically within 20%. Evaluation in dynamic
and uncontrolled environments further shows that our approach is
robust against inaccuracy introduced by a dynamic network and it
also consistently out-performs the existing schemes. These results
clearly demonstrate the effectiveness and accuracy of our approach.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing protocols; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—Wireless communica-
tion

General Terms

Algorithms, Experimentation, Measurement, Performance

Keywords

Opportunistic Routing, Wireless Mesh Networks, Wireless Net-
work Model, Model-driven Optimization, Wireless Interference

1. INTRODUCTION
Wireless mesh networks are becoming a new attractive commu-

nication paradigm. Many cities have deployed or are planning to
deploy them to provide Internet access to homes and businesses.
Traditionally, a sender commits to a single node as the next hop to
route towards its destination, and traffic makes progress only when
it reaches the selected next hop. The high loss rates in wireless
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networks (e.g., 20-40% as observed in several deployments [2, 38])
make traditional routing inefficient. To achieve better performance,
opportunistic routing has been proposed to exploit communication
opportunities that arise by chance due to the broadcast nature of the
wireless medium. When a sender broadcasts its data, any node that
hears the transmission may forward the data toward the destination.
Although individual nodes may experience high loss rates, as long
as there exists one forwarder that is closer to the destination and
receives the transmission, the data can move forward. In this way,
opportunistic routing can effectively combine multiple weak links
into a strong link and take advantage of transmissions reaching un-
expectedly near or unexpectedly far.

There are two key factors that determine the performance of op-
portunistic communication in wireless mesh networks: (i) routes
(i.e., for a given flow how much traffic node j should forward upon
receiving a packet from another node i), and (ii) rate limits (i.e.,
how fast each traffic source can inject traffic into the network).
Routes determine how effectively we take advantage of commu-
nication opportunities and how efficiently we utilize network re-
sources and exploit spatial reuse. Rate limits ensure that traffic
sources do not send more than what paths can support. Without
appropriate rate limits, the network throughput can degrade dras-
tically under traditional shortest-path routing [23]. Rate limiting
is even more critical for opportunistic routing due to its use of
broadcast transmissions: (i) broadcast transmissions do not per-
form exponential backoff (i.e., its contention window does not in-
crease upon packet losses) and thus are more likely to cause net-
work congestion; and (ii) broadcast transmissions preclude the use
of 802.11’s synchronous ACK mechanism, and receivers’ feedback
has to be sent above the MAC layer, which can easily get lost dur-
ing network congestion and cause unnecessary retransmissions and
serious throughput degradation.

In this paper, we jointly optimize routes and rate limits for op-
portunistic communication. We focus on static, 802.11-based, mul-
tihop networks, though we believe that the general methodology is
applicable to other scenarios. We develop the first opportunistic
routing protocol that can accurately optimize IEEE 802.11 end-to-
end performance (i.e., the performance derived from optimization
can be realized in a real IEEE 802.11 multihop network). This dis-
tinctive feature is important given the wide deployment of IEEE
802.11 networks.

Challenges: Accurate optimization of opportunistic communica-
tion in an IEEE 802.11 network is challenging for the following
four reasons. First, the dynamic and incidental nature of commu-
nication opportunities makes it difficult to estimate their impact on
the resulting network performance. Second, optimization of oppor-
tunistic routing places stringent requirements on a network model:
the model should (i) specify the region of feasible network configu-
rations using a compact representation so that we can optimize the
objective within the feasible region as defined by these constraints,
(ii) accurately estimate performance on every link in the network
(as opposed to only a small number of links on specified routes, as
in [23], for the purpose of optimizing rate limiting alone), and (iii)
be accurate across a wide range of traffic conditions, including high
traffic load, which is common in opportunistic routing. Third, the
non-convex interference relationships among different links and the
huge search space of possible opportunistic routes and rate limits
impose significant challenges on the optimization procedure itself.



Fourth, to be valuable in practice, the resulting optimization solu-
tion should be easy to implement, using only a small number of
control knobs.

Approach and contributions: We address the above challenges
using the following four steps:

1. General optimization framework. We develop a general frame-
work to jointly optimize routes and rate limits for opportunistic
communication (Section 3). The framework uses opportunistic
constraints to probabilistically characterize the available com-
munication opportunities. It can use different wireless interfer-
ence models.

2. Interference model for IEEE 802.11 broadcast traffic. The com-
plex interference, traffic, and MAC-induced dependencies in
the network are often the underlying cause of unexpected be-
havior. We develop a new model to capture these dependencies
for broadcast transmissions (Section 4). We use measurements
from a given network to estimate link loss rate, carrier sense
probability, and conditional collision loss probabilities to seed
our model. Our model derives the relationships between send-
ing rates, loss rates, and throughput to capture the effects of
carrier sense and collisions. Our model involves only O(E)
constraints, where E is the total number of edges. Thus it can
be easily incorporated into our optimization framework. De-
spite its simplicity, the model captures real-world complexities
such as hidden terminals, non-uniform traffic, multihop flows,
non-binary and asymmetric interference.

3. Iterative procedure for non-convex optimization. Since our model
is non-convex, we develop an iterative optimization procedure
to find a local optimal solution (Section 5). Our algorithm
is flexible and can accommodate different performance objec-
tives. For comparison, we explore an alternative approach that
uses a widely used conflict-graph-based interference model [17]
that is less accurate [23, 33], but convex, and thus allows global
optimization. Our results show that our approach of combin-
ing a more accurate model with non-convex optimization yields
better and more accurate performance.

4. Practical installation of routes and rate limits. We develop a
practical opportunistic routing protocol that implements the op-
portunistic routes and rate limits optimized by our algorithm in
real networks (Section 6). The mechanisms for installing routes
and rate limits can support both unicast and multicast.

We implement our protocol in both the Qualnet simulator [34]
and a 21-node wireless mesh testbed using Click [8] and the Mad-
WiFi driver [27]. Extensive simulations and testbed experiments
(Section 7– 9) show that our approach achieves high accuracy (i.e.,
the difference between the achieved performance and our model
estimation is within 20%) and significantly out-performs state-of-
the-art shortest path and opportunistic routing protocols (e.g., its
total throughput is up to 14x ETX’s throughput and 11x MORE’s
throughput). We further study the impact of dynamic and uncon-
trolled environments on accuracy and performance, and find that
our approach is robust to inaccuracy in the input and it also consis-
tently out-performs the existing schemes (Section 10).

2. RELATED WORK
We classify related work into three categories: (i) design of op-

portunistic routing protocols, (ii) analysis of opportunistic routing
performance, and (iii) wireless network modeling.

Opportunistic routing protocols: ExOR [6] is a seminal oppor-
tunistic routing protocol. In ExOR, a sender broadcasts a batch of
packets. Each packet contains a list of nodes that can potentially
forward it. To maximize the progress of each transmission, the for-
warding nodes relay data packets in the order of their proximity
to the destination in terms of the ETX metric [9], which quanti-
fies the number of transmissions required to deliver a packet from

the forwarder to the destination. To avoid redundant transmissions,
every forwarding node only forwards packets that have not been
acknowledged by nodes with a smaller ETX to the destination.

Since then, several opportunistic routing protocols have been
proposed (e.g., [7, 20, 24, 25]). In particular, MORE [7] applies
network coding to opportunistic routing. Since random linear cod-
ing generates linearly independent coded packets with high prob-
ability, the forwarding nodes in MORE require no coordination.
Instead, each node computes how much traffic it should forward
and independently generates random linear combinations of all the
packets it has received from the current batch. By obviating the
needs for strict coordination, MORE can out-perform ExOR. How-
ever, as we show in Section 9, the performance of MORE can de-
grade significantly when there are more than a few flows in the net-
work. This is because (i) it lacks rate limiting and causes network
congestion, and (ii) its routes only try to minimize the number of
transmissions and do not take wireless interference into account. In
comparison, we directly optimize end-to-end performance by com-
puting interference-aware opportunistic routes and rate limits. The
performance optimized by our approach can be realized in a real
network and is significantly better than the existing schemes.

Theoretic analysis of opportunistic routing: There have been
several studies analyzing the performance of opportunistic rout-
ing. For example, [46] develops a methodology for estimating
the maximum throughput given forwarding paths and traffic de-
mands, and [47] extends the work to multi-radio multi-channel
wireless networks. Both works assume the opportunistic routes
are given, where nodes only forward traffic that is not received by
nodes closer to the destinations, so they cannot optimize routes.
Note that such selected routes are not optimal since (i) a single path
routing metric, such as ETX, does not capture the anycast perfor-
mance in the opportunistic routes [10] and (ii) shortest path routes
do not result in the highest throughput due to wireless interference.

A few studies (e.g., [26, 36, 43, 45, 48]) propose optimization
frameworks for opportunistic routing. These studies use a conflict-
graph-like interference model, which significantly over-estimates
the actual performance as shown in Section 8. Different from these
works, we show that to achieve accurate optimization of network
performance it is essential to use an effective network model that
captures the non-convex relationship between the performance of
different wireless links. This calls for a new wireless model and an
efficient algorithm to search for a close-to-optimal solution, which
we address in this paper. We further discuss the differences be-
tween the conflict graph interference model that these works use
and our model in Section 4. In addition to a new interference model
and model-based optimization, our work goes beyond theoretical
analysis (which is the primary focus of the above works) by devel-
oping a practical routing protocol to realize the performance gains
in a real IEEE 802.11 network.

Wireless network modeling: Significant research has been done
on wireless network modeling. One class of work focuses on asymp-
totic performance bounds (e.g., [15, 16, 22]). These models pro-
vide useful insights as a network scales, but cannot be applied to
a specific network. Another large class of models predict perfor-
mance for a given scenario (e.g., [5, 12, 14, 18, 33, 37]). They dif-
fer in their generality: some assume that everyone is within com-
munication range of each other [5, 12, 14, 21], while others as-
sume restricted traffic demands (e.g., a single flow [12, 14], two
flows [37], sending to a single neighbor [13], adding one new flow
at a time [40], or one-hop demands [18, 33]). Moreover, models
in this class predict performance under a given scenario and can-
not support optimization without enumerating all possible network
configurations, which is prohibitive due to a huge search space. To
facilitate optimization, we need a model that can specify the en-
tire region of feasible network configurations using a compact set
of constraints, which can then be incorporated into the optimiza-
tion procedure to optimize the desired objective within the feasible



F lows the set of unicast or multicast flows
src(f) source of flow f

dest(f, d) d-th destination of flow f
Demand(f) traffic demand of flow f , i.e., the amount of traffic f

desires to send
G(f) throughput of flow f

T (f, i) node i’s sending rate for flow f
Y (f, d, i, j) information receiving rate along link i → j for d-th

destination in flow f (d = 1 for unicast)
P (i, j) loss rate of link i → j (including both collision and

inherent wireless medium loss)
N (i) a subset of i’s neighbors

S(i,N (i)) success rate from node i to i’s neighbor set N (i)

Table 1: Notations for optimizing opportunistic routing.

⊲ Input : F lows, Demand(f)
⊲ Output : T (f, i), Y (f, d, i, j)
maximize:

P

f∈F lows G(f) − β
P

f,i T (f, i)
subject to:

[C1] G(f) ≤ Demand(f) (∀f)
[C2] G(f) ≤

P

kY (f, d, k, dest(f, d)) (∀f, d)
[C3] Y (f, d, k, src(f)) = 0 (∀f, d, k)
[C4] Y (f, d, dest(f, d), k) = 0 (∀f, d, k)
[C5]

P

kY (f, d, k, i) ≥
P

jY (f, d, i, j)
(∀f, d, i : i 6= src(f) and i 6= dest(f, d))

[C6] S(i,N (i))T (f, i) ≥
X

k∈N (i)

Y (f, d, i, k) (∀f, i,N (i))

[C7] interference constraints on Ti
△

=
P

fT (f, i)

Figure 1: Problem formulation to optimize multicast through-
put of opportunistic routing.

region. Two existing models are in this category: (i) the conflict-
graph model [17], and (ii) the unicast interference model [23]. We
discuss why they are insufficient for optimizing opportunistic rout-
ing in Section 4.1.

3. OPTIMIZATION FRAMEWORK
Overview: We develop a general framework for jointly optimiz-
ing opportunistic routes and rate limits. Our formulation assumes
the use of network coding, which prevents nodes from forwarding
redundant information without requiring fine-grained coordination
among different nodes. Without loss of generality, we focus on
multicast flows, since unicast flows are a special case of multicast
with one receiver in each multicast group. The main design is-
sue becomes how fast each traffic source should send traffic and
how much traffic an intermediate node should forward to achieve
high performance. This can be formulated as an optimization prob-
lem that maximizes total network throughput subject to informa-
tion conservation constraints, opportunistic constraints, and inter-
ference constraints. Figure 1 shows the resulting formulation, and
Table 1 specifies the variables in the formulation.

Optimization objective: Given the set of unicast or multicast
flows F lows, and the traffic demands Demand(f), our optimiza-
tion outputs traffic sending rates T (f, i) and information receiv-
ing rates Y (f, d, i, j), which will be converted to opportunistic
routing configurations using a credit-based scheme described in
Section 6. As shown in Figure 1, the first term in the objective,
P

f∈F lows G(f), reflects the primary goal of maximizing the to-

tal throughput over all flows. The second term in the objective,
−β

P

f,i T (f, i) represents the total amount of wireless traffic. In-

cluding both terms reflects the goals of (i) maximizing total through-
put and (ii) preferring the least amount of traffic among all solutions
that support the same total throughput (e.g., avoiding loops and un-
necessary traffic). Since the first objective is more important, we
use a small weighting factor β = 10−5 for the second term just
for tie breaking (i.e., only when the first objective is the same, we
prefer the one with the least traffic).

To compute the first term, for a unicast flow f , G(f) is its through-
put. For a multicast flow f , G(f) is the throughput of the bottle-
neck receiver. Note that there are many other ways to define the
objective in multicast setting [42]. Here we use one of the metrics
as an example. Our optimization framework can support other mul-
ticast objectives, such as total throughput over all receivers in the
multicast group or other weighted versions. Moreover, while we
focus on total throughput, our framework can be directly applied to
optimizing other objectives. For example, our evaluation also con-
siders optimizing a linear approximation of proportional fairness,
defined as

P

f∈F lows log G(f), which strikes a good balance be-

tween fairness and throughput [35]. We can also maximize total
revenue if the revenue of a flow is a function of its throughput.

Throughput constraints: To ensure G(f) is the throughput of
flow f , it has to satisfy constraints (C1) and (C2) in Figure 1. Con-
straint (C1) indicates that the throughput of a flow should be no
more than its traffic demand (i.e., total amount of information a
source desires to send). Constraint (C2) ensures that G(f) is no
more than the total amount of information delivered from all links
incident to the destination of flow f . For a multicast flow f , G(f)
should be no more than the total amount of information delivered
to each destination in the flow f . Note that we do not need a lower
bound on G(f) since the objective is to maximize G(f).

Information conservation constraints: To handle lossy wireless
links, we distinguish traffic and information sent along a link. A
feasible routing solution should satisfy information conservation.
This property is given by constraints (C3–C5) in Figure 1. Con-
straint (C3) ensures no incoming information to a traffic source,
constraint (C4) ensures no outgoing information from a destination,
and constraint (C5) represents flow conservation at an intermediate
node i, i.e., the total amount of incoming information is no less than
the total amount of out-going information.

Opportunistic constraints: Opportunistic routing exploits the
wireless broadcast medium by having different nodes extract in-
formation from the same transmission. We formally capture this
notion using opportunistic constraints, which relate traffic volume
to the amount of information delivered.

For ease of explanation, we first consider one sender sending to
two receivers, and then generalize it to an arbitrary number of re-
ceivers. Consider a sender s, and denote the link loss rates from s
to its neighbors r1 and r2 as P (s, r1) and P (s, r2), respectively. It
is evident that for a given flow the amount of information delivered
to a neighbor is bounded by the product of the sending rate and
link delivery ratio. Therefore we have (1 − P (s, r1))T (f, s) ≥
Y (f, d, s, r1) and (1 − P (s, r2))T (f, s) ≥ Y (f, d, s, r2). In ad-
dition, since there is overlap between the information delivered to
r1 and r2, we are only interested in the non-overlapping informa-
tion (i.e., when redundant information is delivered to both nodes,
it should only count once). The total non-overlapping information
delivered to r1 and r2 should satisfy the following constraints:

(1 − P (s, r1)P (s, r2))T (f, s) ≥
X

i∈{1,2}Y (f, d, s, ri),

where the left hand-side represents the total amount of traffic suc-
cessfully delivered to at least one of the receivers, and the right
hand-side represents the total non-overlapping information deliv-
ered to the receivers.

Now we consider a general setting, where a sender s has N
neighbors. We enumerate all possible subsets of its neighbors. For
each neighbor set N (i), we require:

S(i,N (i))T (f, i) ≥
X

k∈N (i)Y (f, d, i, k), (1)

where S(i,N (i)) denotes the delivery probability from i to at least
one node in N (i). When delivery rates of different links are in-
dependent, which holds for some networks [44], S(i,N (i)) =
1 − Q

k∈N (i) P (i, k). When the link delivery rates are correlated,



we can empirically measure S(i,N (i)). Equation 1 indicates the
total traffic successfully delivered to at least one neighbor in N (i)
should be no less than the total non-overlapping information deliv-
ered to N (i). This results in (C6) in Figure 1. When i has many
(say, K) neighbors, we limit the number of such constraints by only
enumerating neighbor sets of size 1, 2, and K (i.e., we enumerate

only O(K2) instead of O(2K ) neighbor sets).

Interference constraints: Wireless interference has a significant
impact on wireless network performance. In particular, nearby
senders carrier sense and defer to each other. Moreover, since car-
rier sense is not perfect, there may be multiple overlapping nearby
transmissions that can cause collisions. These effects can further
constrain the amount of traffic on each link and introduce strong
inter-dependency between sending rates, loss rates, and throughput.
We address this issue in Section 4 by developing the constraints that
capture the relationships between T (f, i) and P (i, j).

4. BROADCAST INTERFERENCE MODEL

4.1 Motivation for a Better Model
Despite significant research on modeling the impact of wireless

interference, none of the existing models directly fulfills our need
for optimizing opportunistic routing. To support optimization, we
need a model that specifies the feasible region of network configu-
rations using a compact representation. The following two existing
models fall into this category.

Conflict-graph model: The first model, proposed in [17], is a
conflict-graph model that represents wireless links as vertices and
draws a conflict edge between two vertices if the corresponding
wireless links interfere. Based on this definition, it is clear that links
corresponding to an independent set in the conflict graph can be
active simultaneously. Therefore, the interference constraints are
the schedule restrictions imposed by the independent sets, which
can be expressed as a set of linear constraints.

There are two limitations in applying the conflict-graph model
for optimizing opportunistic routing. First, the model in [17] as-
sumes perfect scheduling, i.e., packet transmissions at different
nodes can be precisely controlled and it over-estimates the per-
formance in real networks as we will show in Section 8. Second,
the conflict-graph model is a link-based model, while opportunis-
tic routing uses broadcast transmissions and requires a node-based
broadcast model. Existing broadcast extensions of the conflict-
graph model provide only an aggregate answer of whether two
broadcast transmissions interfere or not. For example, some exten-
sions [36, 41, 46, 48] conservatively consider two broadcast trans-
missions to interfere if any one of their receivers is interfered by
the other transmission, while other extensions [46] consider broad-
cast transmissions to interfere if all of their receivers are interfered
by the other transmission. A single aggregate answer on whether
broadcast transmissions interfere does not fully characterize the im-
pact of interference on different receivers and is therefore inade-
quate for use in optimizing opportunistic routing.

IEEE 802.11 unicast model: The other model, proposed in [23],
models interference among unicast transmissions in IEEE 802.11.
Since opportunistic routing uses broadcast traffic, we need to de-
velop interference models for broadcast transmissions. Further-
more, as broadcast transmissions does not perform binary backoff
to limit the sending rate (i.e., its contention window does not in-
crease even under packet losses), it is necessary to have an accurate
model even for high traffic load and channel occupancy, which in-
duces high collision losses, and the linear approximation used in
[23] becomes inaccurate under high collision losses. In addition,
[23] is used for rate limiting unicast transmissions when given spec-
ified routes. Therefore it suffices to accurately estimate the sending
rates and loss rates on a small number of links used for routing. In
contrast, for the purpose of route optimization, we need to accu-

rately estimate the performance for all receivers of a given sender,
which is much more challenging.

Modeling goals and strategy: We develop our model specifically
for IEEE 802.11 broadcast traffic. We observe that wireless in-
terference affects IEEE 802.11 traffic in two important ways: (i)
nearby senders cannot transmit simultaneously due to carrier sense,
and (ii) transmissions may sometimes result in collisions due to
imperfect carrier sense. We model these effects by developing
the relationships between sending rates, loss rates, and through-
put, which can be incorporated into our optimization framework
and facilitate model-driven optimization. While this paper applies
the model to optimizing opportunistic routing, the model is useful
in other contexts (e.g., optimizing network topology and network
planning). Our model is general and captures real-world complex-
ities (e.g., hidden terminals, multihop flows, non-binary interfer-
ence, and heterogeneous traffic), which is confirmed by simula-
tion and testbed experiments using multihop networks in Section 8.
Compared with [23], both our sender model (Section 4.3.1) and loss
model (Section 4.3.2) are much more refined and do not involve
any linear approximation. Thus, our model can more accurately es-
timate the loss rates for all receivers even under heavy traffic loads,
which is essential for the optimization of opportunistic routing.

4.2 Background and Assumptions
We first review the broadcast transmissions as specified by the

IEEE 802.11 standard [32]. Before transmission, a sender first
checks to see if the medium is available using carrier-sensing. A
sender determines the channel to be idle when the total energy re-
ceived is less than the clear-channel assessment threshold. In this
case, a sender may begin transmission using the following rule:
If the medium has been idle for longer than a distributed inter-
frame spacing time (DIFS) period, transmission can begin imme-
diately. Otherwise, a sender waits for DIFS and then waits for a
random backoff interval uniformly chosen between [0, CWmin],
where CWmin is the minimum contention window.

Our model strikes balance between realism and simplicity in or-
der to support effective model-driven optimization. We make the
following assumptions, which help simplify our model:

A1) It assumes pairwise interference, i.e., the interference relation-
ship between two links is independent of activities on other links.
Previous works show that pairwise interference is a good approx-
imation in real networks [1, 31]. Hence this assumption is widely
used in the literature (e.g., [5, 12, 14, 23, 37]). Moreover, for opti-
mizing the routing of multihop wireless networks, it is often more
important to capture the interference relationship among links that
are not too far apart. For these links, the pairwise interference rela-
tionship is likely to be an even better approximation.

A2) It assumes that inherent wireless medium loss (i.e., loss under
no interfering traffic) and collision loss are independent, which has
been commonly used (e.g., [23, 33]).

A3) The inherent wireless medium losses at different nodes are
independent, which is experimentally validated in [28, 29, 37].

A4) Inter-packet delays from a node follow an exponential distri-
bution, as assumed in [14, 23, 33]. This assumption is only needed
for deriving overlapping probabilities between two transmissions.

While some of these assumptions do not always hold (e.g., [44]
shows that loss rates of different wireless links may be correlated
for some networks), our evaluation results show that our model-
driven optimization yields accurate performance estimates despite
such simplifications. With these assumptions, we develop a tractable
model with O(E) constraints, where E is the number of links.

4.3 Our New Model
We develop a simple interference model for multihop wireless



networks to capture the interdependency between broadcast send-
ing rates, loss rates, and throughput. Such interdependency can
be captured using O(E) constraints, where E is the total number
of edges in the network. These constraints can then be incorpo-
rated into the optimization problem as interference constraints [C7]
shown in Figure 1. We present methods to measure the input pa-
rameters of the model in Section 6.

Our model consists of two main components: (i) a sender model
that captures the effects of carrier-sensing on a sender’s sending
rate, and (ii) a loss model that captures both inherent loss (i.e.,
packet loss under no interference) and the effects of overlapping
packet transmissions on the collision loss rates for different links.

4.3.1 Broadcast Sender Model
Modeling the effects of carrier sense on traffic rates: We divide
time into variable-length slots (VLS) for each sender i. A variable-
length slot may last for either IEEE 802.11 slot time Tslot or the
transmission time of a packet followed by a DIFS duration. The
former occurs when i senses a clear channel but either has no data
to transmit or has data but cannot transmit due to a non-zero backoff
counter. The latter occurs when i either transmits a packet or waits
for a transmission from another sender to complete.

Let τi be the probability for i to start a new packet transmission
in a variable-length slot. Clearly, τi depends on (i) how often i has
data to send, and (ii) the random backoff interval (i.e., CWmin). As
derived in [5], when i has saturated traffic demand (i.e., it always
has data to transmit), on average i performs one transmission every
CWmin/2 + 1 variable-length slots (since there is no exponential
backoff for broadcast traffic, we have CWmin/2 slots for backoff
plus 1 slot for the transmission). Therefore, the transmission prob-
ability τi is bounded by the following feasibility constraint:

τi ≤ τmax
△

=
1

CWmin/2 + 1
(for ∀i). (2)

Under the pairwise interference model (i.e., A1), whether sender
i carrier-senses (and thus defers to) an ongoing transmission of
sender j only depends on nodes i and j and is independent of if
other senders are transmitting. Let Dij be this carrier sense prob-
ability (i.e., probability for node i to defer to node j when node j
is transmitting). For convenience, let Dii = 1. Let Ti be sender
i’s sending rate over all flows (Ti =

P

f T (f, i)), V LSi be its

expected VLS duration, and P idle
i be the idle probability of node

i. Ti, V LSi and τi have the following approximate relationship,
called the throughput constraints:

Ti = (EP × τi)/V LSi, (3)

V LSi = TslotP
idle
i + (Txmit + TDIFS)(1 − P idle

i )

= Tslot + (Txmit + TDIFS − Tslot)(1 − P idle
i ), (4)

P idle
i =

Q

j

“

1 − Dij × τj × V LSi

V LSj

”

, (5)

where EP is the expected packet payload size, EH is expected
header size, Txmit = (EP + EH)/rate is the expected packet
transmission time, and Tslot is an IEEE 802.11 slot time. Eq. (3)
computes throughput as the total amount of payload transmitted
during one VLS divided by the expected VLS duration. Eq. (4)
computes expected VLS duration as idle probability times an idle
slot duration plus transmission (including collision) probability times
a transmission duration. Finally, Eq. (5) gives the probability that i
finds the medium is idle, where τj × V LSi

V LSj
is the probability for j

to start a transmission in i’s VLS, Dij ×τj × V LSi

V LSj
is the probabil-

ity that i defers to j’s transmission, and
Q

j(1−Dij × τj × V LSi

V LSj
)

is the probability that i does not defer to any node in the network
including its own transmission (i.e., i senses the medium is idle).

Eliminating model parameters {τi} and {P idle
i }: To better fa-

cilitate model-driven optimization, we eliminate model parameters

{τi} and {P idle
i } and transform (2)–(5) into the following equiva-

lent constraints, which apply directly to the traffic rates {Ti}.

• Feasibility constraint. According to Eq. (3), we have: τi =
Ti×V LSi

EP
. As a result, Eq. (2) is equivalent to:

Ti

EP
≤ τmax

V LSi
(for ∀i). (6)

• Throughput constraint. With τi = Ti×V LSi

EP
, Eq. (5) becomes:

P idle
i =

Q

j

“

1 − Dij×Tj×V LSi

EP

”

. So Eq. (4) becomes:

V LSi = Tslot + (Txmit + TDIFS − Tslot) ×
h

1 − Q

j

“

1 − Dij×Tj×V LSi

EP

”i

. (7)

Eq. (6) and (7) fully capture the relationships in (2)–(5) but have
fewer variables. Moreover, note that when traffic rates {Tj} are
given as inputs, Eq. (7) contains only a single variable: V LSi.
This allows us to numerically derive V LSi and partial derivatives
∂V LSi

∂Tj
from the given {Tj} (as described in Section 5.2). We will

therefore use (6) and (7) in our model-driven optimization.

4.3.2 Broadcast Loss Model
Integrating inherent loss and collision loss: To estimate loss
rates P (i, j) from traffic rates Ti, we distinguish between two types
of loss: inherent wireless medium loss (i.e., loss rate under no inter-
ference) and collision loss. The former is denoted as P raw(i, j) for
link i → j and can be periodically measured. The latter depends
on two factors: (i) how often transmissions from different nodes
overlap and (ii) how often such overlapping transmissions result in
a collision. To capture the first effect, we introduce O(i, k) to de-
note the probability for an i’s transmission to overlap with a k’s
transmission (conditioned on i’s transmission) and derive its value
based on the carrier sense probability. To capture the second effect,
we observe that the pairwise interference model indicates there is

a constant conditional collision loss probability Lk
ij (i.e., the prob-

ability that a transmission on link i → j collides with an overlap-
ping transmission from node k). We assume that inherent wireless
medium loss and collision loss are independent, which has been
commonly used (e.g., [23, 33]). We then compute P (i, j) as:

P (i, j) = 1 − (1 − P raw(i, j)) × Q

k 6=i

ˆ

1 − Lk
ij × O(i, k)

˜

. (8)

This is because a packet is delivered when it is not lost due to
either inherent loss or collision loss. To ensure no collision, the
packet should not collide with any node’s transmission. Since Lk

ij×
O(i, k) is the collision loss probability with node k’s transmission,
Q

k 6=i

ˆ

1 − Lk
ij × O(i, k)

˜

is the probability that the link has no

collisions with any other node in the network.

Estimating overlap probabilities: We next estimate the overlap
probability O(i, j), which depends on whether i and j can carrier
sense each other. Our model has two salient features: (i) it supports
both symmetric and asymmetric deferral (e.g., node i defers to node
j but not vice versa), and (ii) it handles non-binary deferral (e.g.,
node i sometimes defers to j and sometimes does not).

To provide both features, our modeling strategy is to divide time
into regions to which one of the following four cases applies:

• Case 1: i and j can both carrier sense each other;

• Case 2: neither i nor j can carrier sense each other;

• Case 3: i can carrier sense j but j cannot carrier sense i; and

• Case 4: i cannot carrier sense j but j can carrier sense i.

Let Qc(i, j) be the probability for Case c to occur. Let Oc(i, j)
be the probability for a transmission of i to overlap with any trans-



mission of j under Case c. We then have:

O(i, j) =
P4

c=1(Qc(i, j) × Oc(i, j)). (9)

Assuming whether i can carrier sense j is independent of whether
j can carrier sense i, we can simply compute Qc(i, j) as:

8

>

<

>

:

Q1(i, j) = Dij × Dji,
Q2(i, j) = (1 − Dij) × (1 − Dji),
Q3(i, j) = Dij × (1 − Dji),
Q4(i, j) = (1 − Dij) × Dji.

(10)

In our technical report [39], we derive Oc(i, j) as follows.
8

>

>

>

<

>

>

>

:

O1(i, j) = τj =
Tj×V LSj

EP
,

O2(i, j) = 1 − (1 − θj) exp [−Txmit/IPDj ] ,
O3(i, j) = 1 − exp [−Txmit/IPDj ] ,

O4(i, j) =
θj

θj+(1−θj) exp[−Txmit/IPDj ]
,

(11)

where θj =
Tj

rate
× EP+EH

EP
is the fraction of time j is transmit-

ting (either payload or header) and IPDj
△

=
1−θj

θj
× Txmit is j’s

expected inter-packet delay.

4.3.3 Model Initialization
Our model has the following input parameters: (i) inherent wire-

less link loss rates P raw
ij , (ii) carrier sense probabilities Dij , and

(iii) conditional collision loss probabilities Lk
ij . For simplicity, we

estimate these parameters by conducting pairwise broadcast mea-
surements [1, 23], but our model can just as easily use the inputs
inferred by more scalable approaches (e.g., [3, 4]).

1. We first let node a send broadcast traffic alone. The other
nodes record the receiving rates from a. We then estimate
P raw(a, b) = 1−(b’s receiving rate from a)/(a’s sending rate).

2. We next let two nodes a and b send broadcast traffic simul-
taneously and measure their sending rates Ta and Tb. Since
neither a nor b has any rate limit, we have τa = τb = τmax =

1
CWmin/2+1

. From Eq. (3), we can then compute V LSa =

(EP × τa)/Ta and V LSb = (EP × τb)/Tb. Applying Eq. (7)
to the case with only two senders a and b, we have:

V LSa = Tslot + (Txmit + TDIFS − Tslot) ×
h

1 −
`

1 − Daa×Ta×V LSa

EP

´

“

1 − Dab×Tb×V LSa

EP

”i

. (12)

Note that Daa = 1. So linear equation (12) has only a single
unknown Dab. We can therefore estimate Dab by solving (12).

3. Finally, when both a and b are sending broadcast traffic, the
other nodes record their receiving rates from a and b. For any
node c 6∈ {a, b}, we can compute the loss rate P (a, c) = 1 −
(c’s receiving rate from a)/Ta. Moreover, given Ta, Tb, Dab

and Dba, we can compute the overlapping probability O(a, b)
according to Eq. (9)–(11). Applying Eq. (8) to the case in which
there are only two senders a and b, we obtain:

P (a, c) = 1− (1−P raw(a, c))× (1−Lb
ac ×O(a, b)). (13)

We can then estimate Lb
ac by solving linear equation (13), which

has only a single unknown Lb
ac.

5. MODEL-DRIVEN OPTIMIZATION

5.1 Iterative Model-driven Optimization
The interference constraints [C7] in Figure 1 consist of Eq. (6)–

(11), which capture the inter-dependency between {Ti}, {V LSi}
and {P (i, j)}. A key challenge in optimization is that these rela-
tionships are non-convex. To address this challenge, we perform

⊲ T: traffic rates, Y: information, P: loss rates
1 initialization: T

∗ = 0, Y∗ = 0, thruput∗ = 0
2 for k = 1 to KMAX
3 P

∗ = estimate_loss(T∗)

4 [VLS
∗, ∂VLS

∗

∂T∗ ] = estimate_VLS_and_partial_derivatives(T∗)

5 derive linearized interference constraints in Eq. (14) using VLS
∗ and ∂VLS

∗

∂T∗

6 construct a linear program (LPk) from Figure 1 by adding linearized
interference constraints (14), and fixing loss rates P = P

∗ as constants

7 solve (LPk); let (Topt, Yopt) be the optimal solution
8 α = αmax; succ = false
9 while (α ≥ αmin) and (succ = false) // line search for a better solution

10 T = (1 − α) × T
∗ + α × T

opt

11 feasible = test_traffic_rates_feasibility(T)
12 if (feasible)
13 [thruput, Y] = compute_OR_thruput_from_traffic_rates(T)
14 if (thruput > thruput∗)
15 thruput∗ = thruput; T∗ = T; Y∗ = Y;
16 succ = true; break
17 end
18 end
19 α = α/2
20 end
21 if (succ = false), break; end
22 end
23 return (thruput∗, T∗, Y∗)

Figure 2: Iterative optimization of opportunistic routing.

optimization in an iterative fashion, as illustrated in Figure 2. To
decouple the non-linear inter-dependency between {Ti}, {V LSi},
and {P (i, j)}, we perform the following steps in each iteration:

1. We first fix traffic rates {T (f, i)} to their values {T ∗(f, i)}
obtained in the previous iteration and estimate the loss rates
{P ∗(i, j)} as described in Section 4.3.2.

2. We then numerically compute V LS∗
i and partial derivatives

∂V LS∗

i

∂T∗

k
from {T ∗

j } according to Eq. (7). The key observation

we leverage is that when {Tj} are given, Eq. (7) only contains
a single variable, i.e., V LSi. We present the details of this step
later in Section 5.2.

3. We then approximate the non-linear interference constraints given
in Eq. (6) and (7) using linear constraints. This can be achieved
by computing the first-order approximation to the R.H.S. of (6)
as a Taylor expansion at the current T ∗

i . Specifically, we use
the following linearized interference constraints:

Ti

EP
≤ τmax

V LS∗
i

− τmax

(V LS∗
i )2

X

k

∂V LS∗
i

∂T ∗
k

× (Tk −T ∗
k ), (14)

where V LS∗
i and

∂V LS∗

i

∂T∗

k
are computed in step 2.

4. We then treat loss rates P ∗(i, j) as constants in Figure 1. We
also add the linearized interference constraints given in Eq. (14)
to the formulation in Figure 1, yielding a linear program (LPk)
that can be solved efficiently by LP solvers like cplex.

5. Since the linearized interference constraints are only an approx-
imation to the true interference constraints, the optimal solution
to (LPk) may be infeasible under IEEE 802.11. We therefore
perform a line search between the old solution and the opti-
mal solution to (LPk) to find a new set of traffic rates that are
both feasible and improves the total throughput. During the line
search, we need two capabilities: (i) to test whether a set of traf-
fic rates are feasible under 802.11 (line 11 in Figure 2), and (ii)
to find the maximum total throughput of opportunistic routing
under such traffic rates. The former is performed as described
in Section 5.2. The latter can be achieved by treating T (f, i) as
constants while solving the problem formulated in Figure 1.

The iterative process continues until it reaches a solution that
cannot be further improved upon after enough attempts. Since the
total throughput will strictly increase over each iteration, the pro-
cess is guaranteed to converge. In our experiments, we conserva-
tively limit the maximum number of iterations to 30. Our experi-
ence suggests that typically the iteration stops much earlier.



5.2 Technical Details
Our model-driven optimization framework above makes use of

the following three key capabilities: (i) estimating V LSi from traf-
fic rates {Tj}, (ii) testing the feasibility of given traffic rates {Tj},

and (iii) computing partial derivatives ∂V LSi

∂Tk
. Below we present

details on how to support these capabilities using our model.

Estimating V LSi from traffic rates {Tj}: To numerically de-

rive V LSi from given traffic rates {Tj}, let fi(x)
△

= x − Tslot −
(Txmit+TDIFS−Tslot)×

h

1 − Q

j

“

1 − Dij×Tj×x

EP

”i

. According

to Eq. (7), x = V LSi is a root of fi(x). Moreover, we need x ∈
h

0, EP
maxj(Dij×Tj )

i

to ensure 1− Dij×Tj×x

EP
≥ 0 in Eq. (7). In our

technical report [39], we prove that when x ∈
h

0, EP
maxj(Dij×Tj)

i

,

fi(x) is convex and has at most one root. Therefore, we can apply
any univariate root-finding algorithm (e.g., Matlab’s fzero func-
tion) to numerically compute the root of fi(x) over interval x ∈
h

0, EP
maxj(Dij×Tj )

i

and let the solution be V LSi (if a root exists).

Testing the feasibility of traffic rates {Tj}: To test whether traf-
fic rates {Tj} are feasible, we first numerically compute V LSi

from Eq. (7) by finding a root of fi(x) over x ∈
h

0, EP
maxj(Dij×Tj )

i

as described above. If no solution is found or if the solution V LSi

violates Eq. (6), then traffic rates {Tj} are infeasible. Otherwise,
{Tj} are feasible.

Computing partial derivatives
∂V LSi

∂Tk
: Eq. (7) also allows us to

compute the partial derivatives ∂V LSi

∂Tk
for given traffic rates {Tj},

which allows us to linearize the non-linear interference constraints
(see Section 5.1). Specifically, we have ∂V LSi

∂Tk
= Nik

1−Mi
, where

Mi
△

= (Txmit + TDIFS − Tslot) × P idle∗
i × P

j

DijTj

EP−DijTjV LSi
,

Nik
△

= (Txmit + TDIFS − Tslot)× P idle∗
i × DikV LSi

EP−DikTkV LSi
, and

P idle∗
i

△

=
Q

j(1 − DijTjV LSi

EP
).

6. PROTOCOL IMPLEMENTATION
Overview: We develop a practical opportunistic routing protocol
to install the opportunistic routes and rate limits computed by our
optimization algorithm. It is built on top of MORE [7], which sits
between the IP and 802.11 MAC layers. It differs from MORE in
that it uses interference modeling and optimization to derive rate
limits and opportunistic routes for a given performance objective.
As in MORE, it leverages intra-flow network coding to carry out
the derived routes (i.e., an intermediate forwarder transmits random
linear combinations of the packets it receives for a given flow at the
rate derived from our optimization).

As most opportunistic routing protocols, we target medium to
large file transfers. A traffic source divides data packets into batches,
and broadcasts a random linear combination of the original pack-
ets at the rate computed according to Figure 2. Upon receiving
encoded packets, an intermediate node generates a random linear
combination of all the innovative packets it has from the current
batch. Each intermediate node uses the algorithm described in Fig-
ure 2 to determine how much traffic it should forward. After receiv-
ing enough innovative packets, the destination extracts the original
data packets and sends an end-to-end ACK using MAC-layer uni-
cast. When the source receives the ACK, it moves to the next batch.
Below we describe several key steps in our protocol: (i) measuring
inputs to seed our interference model, (ii) computing opportunistic
routes and rate limits for each flow, (iii) routing traffic according to
the derived sending rates and routes, (iv) supporting multicast, and
(v) enhancing the reliability of end-to-end ACKs.

Measuring input parameters: Our model-driven optimization
framework has the following input parameters: (i) traffic demands,

(ii) carrier sense probabilities, (iii) conditional collision loss prob-
abilities, and (iv) inherent wireless link loss rates. As reported in
[11, 23], wireless traffic exhibits temporal stability and we can es-
timate current traffic demands based on previous demands. In our
evaluation, we also test the sensitivity to the demand estimation
error. We conduct pairwise broadcast measurements [1] and com-
pute the carrier sense probabilities {Dab} and conditional collision

loss probabilities {Lb
ac} as described in Section 4.3.3. The pair-

wise broadcast measurements takes O(N2) time for an N -node
network. In our 21-node testbed, each pair of nodes broadcasts for
30 seconds, and the entire measurement takes around 2 hours. To
minimize measurement overhead, we conduct pairwise broadcast
measurement infrequently, around once a week. Note that recent
works have developed efficient online techniques to measure in-
terference when a network is in use (e.g., [3, 4]). These techniques
can be incorporated into our implementation to further reduce mea-
surement overhead. In addition, we conduct per-node broadcast
measurements at the beginning of each experiment to measure the
inherent wireless link loss rates. The latter is based on more fre-
quent measurements because it is more light-weight (only requir-
ing O(N) measurements) and existing routing protocols, such as
[6, 7, 9], all use frequent loss measurements for route selection.

Deriving opportunistic routes and rate limits: Note that since
our optimization problem is non-convex, existing techniques devel-
oped for distributed convex optimization (e.g., [19]) are not directly
applicable. Instead, we optimize opportunistic routes and rate lim-
its at a central location and then distribute the optimized results to
the other nodes. We use this approach in our implementation. The
amount of information to distribute is very small compared to data
traffic: the optimization input is around 2 KB per node and the op-
timization output is within a 100 bytes per node. Alternatively, the
computation can also be done in a fully distributed fashion, simi-
lar to link-state protocols like OSPF, where every node implements
the same algorithm over the same data to arrive at the same re-
sults. Such computation happens once every several minutes. For
instance, default SNMP polling intervals are typically 5 minutes, so
the optimization can rerun when the traffic demands and network
topology change. The optimization is fairly efficient (e.g., it takes
around 3 seconds to optimize routes and rate limits for 16 flows
under the 5 × 5 grid topologies used in our simulation).

Enforcing derived routes and rate limits: An intermediate node
enforces its forwarding strategy according to the derived T (f, i)
and Y (f, d, i, j) using the following credit-based scheme. When
node j receives a packet from node i, it increments its credit, which
denotes how many packets j should transmit for each received
packet. If its credit is at least 1, j generates and transmits a random
linear combination of the packets from the current batch buffered
locally, and decrements the credit by 1. This process repeats until
the credit goes below 1. The credit computation in our protocol dif-
fers from MORE in two main aspects. First, our protocol computes
credit to ensure the traffic and information sending rates conform
to the derived T and Y . Second, unlike MORE, which treats all
transmissions equally if coming from nodes with larger ETX to the
destination, our protocol differentiates transmissions coming from
different neighbors as follows. Upon receiving a packet from i, j
increments its credit by C×R, where C reflects the fraction of use-
ful information contained in each packet received from i and R re-
flects the amount of redundancy j should include to compensate for

loss to its neighbors. Specifically, we have C = Y (f,d,i,j)
T (f,i)(1−P (i,j))

,

and R = T (f,j)
P

k Y (f,d,j,k)
. For example, when j receives a packet

from a downstream node i, C = 0 to prevent j from sending non-
innovative packets; when receiving a packet from an upstream node
i, j updates its credit according to how much new information is in-
volved in the packet and its loss rate to its forwarders.

Supporting multicast extension: Our previous description ap-
plies to the unicast case. A few modifications are required to sup-



port multicast. First, since a single packet carries a different amount
of information for different destinations in the same multicast group,

a node j increments its credit by C×R, where C = maxd Y (f,d,i,j)
T (f,i)(1−P (i,j))

and R = T (f,j)
P

k maxd Y (f,d,j,k)
. Second, when some destinations re-

ceive enough innovative packets, the encoded packets from the cur-
rent batch should only be delivered to those who have not received
all packets. To adapt to the changes in the set of destinations that
need the packets, we dynamically re-adjust credit increment based
on the remaining receivers who have not finished.

Enhancing ACK reliability: The destination sends an end-to-end
ACK to the source upon receiving enough innovative packets for
decoding so that the source can move on to the next batch. To en-
sure the reliability of ACKs, we keep retransmitting ACKs until
they are received. To expedite ACK transmissions, ACKs do not
perform binary backoff so that they have higher priority over re-
transmitted data. For fair comparison, we apply the same optimiza-
tions to MORE. Finally, since there is only one ACK for a batch of
data packets, ACK overhead is negligible in opportunistic routing.

7. EVALUATION METHODOLOGY
We evaluate our approach using extensive simulation and testbed

experiments. Our evaluation consists of four parts. First, we com-
pare the fidelity of the conflict-graph (CG) model and our new
model by quantifying their under-prediction and over-prediction er-
rors. We use a conservative CG model, which considers two broad-
cast transmissions to interfere if any one of their receivers is inter-
fered by the other transmission.

Second, we compare the performance of our opportunistic rout-
ing protocol using either the CG model or the new broadcast in-
terference model with the following existing routing protocols: (1)
shortest-path routing using the ETX routing metric, which mini-
mizes the total number of expected transmissions from a source
to its destination [9], (2) shortest-path routing with rate limit opti-
mization as developed in [23], and (3) MORE, a state-of-art oppor-
tunistic routing protocol.

We compare total network throughput under 1–16 simultaneous
flows. We also compare in terms of the proportional fairness met-
ric [19], which is defined as:

P

f∈F lows log G(f), where G(f) is

flow f ’s throughput. This metric strikes a balance between increas-
ing network throughput and maintaining fairness among the flows.
Higher values are more desirable. Unless otherwise noted, each
flow sends saturated CBR traffic.

Third, we evaluate the multicast performance of one multicast
group with a varying group size, and measure the average through-
put of the bottleneck receiver. As in [7], we extend shortest path
routing to support multicast by generating a multicast tree as a
union of shortest paths towards all destinations and sending one
copy of traffic along the links that are shared by multiple destina-
tions. It saves the traffic on shared point-to-point links as in wire-
line multicast routing but does not leverage the broadcast nature of
wireless links (e.g., a node still needs to send traffic separately to
reach each of its next hops). Shortest path with rate limit [23] takes
a routing matrix R as part of the input, where Rid is the fraction of
flow d that traverses link i. To support multicast, we derive a mul-
ticast routing tree R, where Rig = 1 if link i appears in multicast
group g’s routing tree.

Fourth, we evaluate the sensitivity of our protocol against (i) er-
rors in the input traffic demands, (ii) unknown external interference,
and (iii) errors in link loss estimation.

For simulation, we implement all protocols in Qualnet 3.9.5 [34].
For testbed experiments, we use the shortest path routing and MORE
implementations publicly available [30]. In particular, the shortest
path routing is the Click implementation released as part of MORE
source code. We calculate ETX according to [9] and configure the
link weight accordingly. The shortest path with rate limiting is
based on the shortest path code but the rate limit of each flow is
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Figure 3: Actual vs. estimated throughput in simulation (25-
node random topologies).

computed using the algorithm in [23]. We extend MORE to im-
plement our protocol as described in Section 6. Both MORE and
our protocol use 64 packets as the batch size for network coding.
All these routing protocols are implemented using Click [8] and the
MadWiFi driver [27] in the testbed.

Qualnet simulation: In simulation, we use 802.11a with a fixed
MAC rate of 6 Mbps. The communication range is 230 meters, and
interference range is 253 meters. These are the default values in
Qualnet under transmission power of 10dBm, and we use them in
the CG model to determine if two nodes interfere. As in [23], we
seed the new interference model by having two senders broadcast
simultaneously and measuring the resulting sending rates and re-
ceiving rates. Unless noted otherwise, we use saturated UDP traffic
with 1024-byte payloads.

For each scenario, we conduct 20 random trials. In each trial,
flow sources and destinations are picked randomly and the simula-
tion time is 20 seconds. We extend Qualnet to generate directional
inherent packet losses, which are uniformly distributed between 0
and 90%. We consider two types of topologies: 5 × 5 grid and
25-node random topologies, each occupying a 750× 750 m2 area.

Testbed experiments: Our testbed consists of 21 nodes located
on two floors inside an office building. Each node runs Linux and
is equipped with a NetGear WAG511 NIC. Unless otherwise speci-
fied, we use 802.11a to minimize interference with campus wireless
LAN traffic, which uses 802.11g. This allows us to evaluate in a
controlled environment. We use 20 mW transmission power and 6
Mbps transmission rate so that the network paths are up to 7 hops.
Among the node pairs that have connectivity, 47.8% of them have
links with loss ≤ 20%. All the routing protocols require estima-
tion of link loss rates, which are measured by having one sender
broadcast at a time and the other nodes measure the receiving rates.
The loss measurements were collected before the experiments. In
addition, our protocol and shortest path with rate limiting require
interference measurement, which we collected once per week. As
in simulation, we conduct 20 random trials for each scenario. Each
trial lasts one minute. Other settings are consistent with the sim-
ulation. Finally, in Section 10, we further evaluate using 802.11b,
which competes with campus WLAN traffic, in order to assess the
sensitivity against unknown external interference.

8. MODEL VALIDATION
We adopt the evaluation methodology presented in [23] to quan-

tify the accuracy of our model. In particular, to evaluate the over-
prediction of our model, we install the estimated throughput to
the network to see if it can be satisfied. To evaluate the under-
prediction error, we uniformly scale each flow throughput by the
same factor and check if the scaled demand is achievable. If the
scaled demand is achieved in the network, it indicates that the under-
prediction error is at least the scaling factor. We vary the scaling
factor from 1.1, 1.2, 1.5, corresponding to a load increase of 10%,
20%, and 50%, and vary the number of flows from 1 to 16.

Simulation results: We first evaluate how often the models over-
predict. In Figure 3, we plot the estimated throughput versus the
actual throughput using the CG model and our model in 25-node
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Figure 4: CDF of ratios between actual and estimated through-
put in simulation (25-node random topologies).
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Figure 5: Actual vs. estimated throughput in the testbed.

random topologies. For reference, we plot lines y = x and y =
0.8x. Here, the CG model significantly over-predicts the actual
throughput obtained, whereas the actual performance under our
model is mostly within 80% of the estimated throughput. The
CG model experiences significantly higher over-prediction errors
since it assumes perfect scheduling, whereas our model explicitly
models the interference between broadcast transmissions in IEEE
802.11, thereby achieving higher accuracy. Moreover, the amount
of over-estimation by CG heavily depends on the network topology
(e.g., whether the network has hidden terminals) and simply scal-
ing down the performance estimated by CG by a constant factor
does not work. Both CG and our models have part of their over-
prediction errors coming from the delay in end-to-end ACKs, dur-
ing which time the source keeps retransmitting the current batch.
This effect is not modeled. The use of a larger batch size can re-
duce the gap between the model estimation and actual performance
at the cost of a larger header size and longer delay.

Next we quantify under-prediction errors. In Figures 4(a) and
(b), we plot CDFs of the ratios between actual and estimated through-
put in random topologies for the CG model and our model, respec-
tively. Consistent with the scatter plots, the CG model mostly over-
predicts, and virtually none of the scaled demands are satisfied. In
comparison, using our model with a scale factor of 1, 80% of the
runs have actual throughput within 80% accuracy of the estimation.
Increasing the scale factor to 1.1 causes 65% of the actual through-
put to be within 80% accuracy. After a further increase of the scale
factor to 1.2, only 11% of actual throughput falls into 80% accu-
racy. This indicates that the demands scaled up by 20% can rarely
be satisfied and shows our model has low under-prediction errors.

Testbed results: Next we validate our model and the CG model
using testbed experiments. Figures 5(a) and (b) show the scatter
plots of the CG model and our model, respectively. Figures 6(a)
and (b) plot the CDFs of the ratios between actual and estimated
throughput using different scale factors. As in simulation, the scat-
ter plots from testbed experiments show a good match between ac-
tual and estimated throughput using our model and a significant
over-estimation in the CG model. Scaling the demands by 1.1 leads
to only 50% of the demands being satisfied and scaling the demands
by 1.2 leads to only 29% of the demands being satisfied. These re-
sults indicate low over-prediction and under-prediction error. There
are a few points in the testbed results where the actual throughput
is higher than the estimated throughput. These cases arise from
loss fluctuation: we use loss measurements to seed our model and
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Figure 6: CDF of ratios between actual and estimated through-
put in the testbed.
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(a) 5 × 5 grid

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16

T
o
ta

l 
th

ro
u
g
h
p
u
t 
(M

b
p
s
)

Number of Flows

OUR
OUR w/ CG
ETX w/ RL
MORE
ETX w/o RL

(b) 25-node random topology

Figure 7: Total unicast throughput in simulation (25-node ran-
dom topologies).

derive opportunistic routes and rate limits, but the actual link loss
rates in the experiment improve and support higher throughput.

Summary: The simulation and testbed results demonstrate that
our model rarely over-estimates or under-estimates performance
by more than 20%. In comparison, the CG model consistently
over-predicts network throughput due to its assumption of perfect
scheduling. These results highlight the importance of model fi-
delity on performance predictability.

9. PERFORMANCE COMPARISON
In this section, we compare the performance of different routing

protocols using simulation and testbed experiments.

9.1 Simulation Results
Total throughput of unicast flows: Figures 7(a) and (b) show the
total throughput for 5× 5 grid and 25-node random topologies, re-
spectively. The error bars on the graph show the standard deviation
of the sample mean.

We make several observations. First, in all cases our protocol
using our model yields the best performance. It out-performs ETX
by 76%-799% in the grid topology and by 117%-327% in the ran-
dom topologies. Its gain over ETX with rate limiting ranges from
57%-99% in the grid topology and 46%-117% in the random topol-
ogy. Its gain over MORE increases rapidly with the number of
flows, ranging from 34% (2 flow) to 146% (4 flows) to 501% (16
flows) in the grid topology, and from 50% (2 flows) to 169% (4
flows) to 311% (16 flows) in random topologies. It out-performs
the protocol with CG, the second best performing protocol by up to
24% in the grid topologies and 16% in the random topologies. Its
performance benefit comes from three main factors: (i) taking ad-
vantage of opportunistic transmissions to cope with lossy wireless
links, (ii) using interference-aware rate limiting to avoid network
congestion, and (iii) using interference-aware opportunistic routing
to maximize spatial reuse.

Second, comparing MORE against shortest path rate limiting,
we observe that MORE out-performs the latter under 1 or 2 flows
by leveraging opportunistic transmissions to recover losses. As the
number of flows increases, the performance of MORE degrades and
becomes significantly worse than shortest path with rate limiting
due to lack of rate limiting. The impact of rate limiting on oppor-
tunistic routing is even higher than shortest path routing because
opportunistic routing uses broadcast transmissions, which do not
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Figure 8: Multicast throughput in a 5 × 5 grid.
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Figure 9: Total unicast throughput in the testbed.

have binary backoff and are more likely to cause network conges-
tion. Further, congestion on the data path may corrupt end-to-end
ACKs in opportunistic routing and lead to unnecessary retransmis-
sions and throughput degradation. In contrast, shortest path rout-
ing uses unicast transmissions, whose MAC-layer ACKs are given
higher priority and hence more reliable.

Multicast flows: Figure 8 shows the throughput of the bottleneck
receiver in a multicast group as we vary the group size from 1 to 5.
As in unicast flows, our protocol consistently out-performs the al-
ternatives. It improves the protocol with CG by 10%-46%, MORE
by 8%-47%, shortest path rate limiting by 58%-232%, and shortest
path by 74%-894%. The larger performance gain over both ver-
sions of shortest path is because our protocol effectively exploits
the broadcast nature of the wireless medium to reduce the num-
ber of transmissions. When sending to multiple neighbors, it uses
one broadcast transmission to reach all the neighbors. In compar-
ison, while shortest path routing uses a multicast tree to compress
the traffic on a shared link, the links from one sender to different
neighbors are considered different and multiple transmissions are
required to reach them. For the same reason, MORE consistently
out-performs both versions of shortest path routing. Our protocol
still out-performs MORE and the protocol with CG by using a more
accurate model to optimize rate limit and opportunistic routes.

9.2 Testbed Results
Throughput of unicast flows: Figure 9(a) shows the total through-
put of different protocols in the testbed, which has up to 7 hops. The
relative rankings of the routing schemes are consistent with the sim-
ulation. As before, our protocol yields the best performance. The
links in our testbed tend to be binary: either low loss or close to no
connectivity. Among the node pairs that have network connectivity,
47.8% of them have loss rate within 20%. So the benefit of oppor-
tunistic routing is smaller in the testbed than in simulation. MORE
performs close to shortest path routing, and significantly worse than
shortest path with rate limiting; similarly, the gap between our pro-
tocol and shortest path routing also becomes smaller. These results
confirm the intuition that opportunistic routing is most useful under
lossy wireless medium.

To understand how opportunistic routing performs under more
lossy wireless medium, we conduct another set of experiments where
we pick only flows whose ETX between source and destination is
at least 1.25. Figure 9(b) summarizes the results. In this case, the
throughput of our protocol is 1.09-14.0x that of shortest path with-
out rate limiting and 1.26-1.67x that of shortest path with rate lim-
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Figure 10: Unicast proportional fairness in the testbed.
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Figure 11: Multicast throughput in the testbed.

iting. Its throughput is similar to MORE under 1 flow and 11.47x
MORE’s throughput under 16 flows. Furthermore, MORE yields
low throughput: its performance is worse than shortest path with
rate limiting as the number of flows reaches 4 or higher. These
results are consistent with the simulation, and highlight the impor-
tance of jointly optimizing rate limits and opportunistic routes.

Proportional fairness of unicast flows: Next we consider maxi-
mizing proportional fairness. Since this objective is non-linear, in
order to optimize it, we first approximate it using a piecewise lin-
ear, increasing, convex function as follows. We select s points on
log(x), and approximate log(x) using s line segments, each con-
necting two adjacent points. We perform two different point se-
lections and observe similar performance. In the interest of space,
below we present results from only one selection: x = 0.001, 0.01,

0.1,
√

0.1, 1,
√

10, 10. When a flow’s throughput is 0, its log value
is undefined, so we set its throughput to 1 Kbps. Figure 10 shows
the proportional fairness as we vary the number of unicast flows
in the testbed. The three routing schemes that support rate limit-
ing significantly out-perform MORE and shortest path without rate
limiting since the latter two can easily cause starvation. Among
those that support rate limit, our protocol performs the best due to
its opportunistic routing and high-fidelity model.

Multicast flows: Finally, we evaluate the performance of multi-
cast in our testbed. Figure 11 shows the throughput of the bottle-
neck multicast receiver in one multicast group, where the multicast
group size is varied from 2 to 4. Our protocol performs the best. It
out-performs the protocol with CG by 16%-38%, MORE by 10%-
63%, shortest path with rate limiting by 68%-89%, and shortest
path routing by 101%-181%. In addition, by leveraging the broad-
cast wireless medium, all types of opportunistic routing, including
MORE, out-perform both versions of shortest path routing. These
results suggest opportunistic routing is even more useful to mul-
ticast, and the effective optimization of multicast routes and rate
limiting continues to be important.

9.3 Summary of Performance
The simulation and testbed results show that our protocol con-

sistently out-performs the alternatives. By leveraging opportunistic
transmissions and effective route optimization, it significantly out-
performs state-of-the-art shortest path routing protocols. By using
a high fidelity network model to jointly optimize rate limits and
opportunistic routes, it significantly out-performs state-of-the-art
opportunistic routing protocols. These benefits suggest that all the
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Figure 12: Throughput under inaccurate traffic estimates.

design components in our protocol, including opportunistic rout-
ing, network model, and joint rate limit and route optimization, are
essential and help improve the performance.

10. EVALUATION OF SENSITIVITY

10.1 Impact of Inaccurate Traffic Demand
Methodology: We first evaluate the performance under inaccurate
traffic demand estimation, since in practice traffic demands fluctu-
ate and may not be known exactly. The actual traffic demands are
uniformly distributed between 0 and the maximum link through-
put. To simulate demand estimation error, we inject errors into
the actual demands and feed the salted demands to our optimiza-
tion framework while imposing the actual demands to the network
for evaluation. The error injected is uniformly distributed between
0-10%, 0-20%, and 0-50%. To protect against estimation error,
our protocol slightly over-provisions by scaling the derived send-
ing rates from the optimization output by a factor of 1.1.

Simulation: Figure 12(a) shows the total throughput versus the
number of flows. We see similar performance across different er-
ror ranges. This indicates that our protocol is fairly robust against
demand estimation errors, because for the purpose of performance
optimization, the spatial traffic demand distribution is more impor-
tant than the exact demand values.

Testbed: Figure 12(b) shows the performance of our protocol
when we feed inaccurate traffic demands as input to our optimiza-
tion. As in simulation, it is robust to the inaccuracy in traffic de-
mand estimation in testbed. Its performance under no error is close
to that under the relative error of 0.5.

10.2 Impact of Unknown External Interference
and Loss Fluctuation

10.2.1 Simulation
Methodology: We create external interference by randomly plac-
ing two external noise sources in 25-node random topologies. All
protocols compute routes and rate limits without considering the
external noise, and we measure the throughput of using the derived
routes and rate limits under external noise. The noise sources have
uniformly distributed on and off time, where the average on-time is
0.25 second and the total simulation time is 20 seconds. We vary
the average off-time so that every noise source is on 10% to 80% of
time. During on-time, each noise source broadcasts 802.11 packets
(with 1024-byte payload) as fast as possible.

Model validation: First, we compare actual throughput under ex-
ternal noise versus estimated throughput derived without consid-
ering the noise sources. As shown in Figure 13(a), the accuracy
of our protocol degrades gracefully as we increase the on-time of
each noise source. The fractions of runs that achieve within 30%
error are 99% under 10% noise on-time, 76% under 20% noise on-
time, and 56% under 30% noise on-time. Moreover, even with 30%
noise on-time, it achieves much higher predictability than the pro-
tocol with CG model under no external noise.

Performance comparison: As shown in Figure 13(b), the ranking
of different protocols remains the same across all noise levels. Our
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Figure 13: Simulation results under 2 noise sources with vary-
ing on-time in 25-node 802.11a random topologies.
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Figure 14: Amount of external traffic from the campus network
and loss fluctuation in our 802.11b testbed.

protocol consistently out-performs all other protocols. Even when
every noise source is active 80% of time, it out-performs the one
with CG by 18%, shortest path with rate limiting by 75%, MORE
by 209%, and shortest path without rate limiting by 535%. More-
over, the performance of different protocols degrades smoothly as
the on-time of each noise source increases.

10.2.2 Testbed
Methodology: We also evaluate the sensitivity in an 802.11b testbed
consisting of 22 nodes. As before, we randomly select flows in our
network. As common practice, we run the link loss measurements
at night, which has low network activity. Then we run all eval-
uation during the day. This allows us to evaluate the sensitivity
against unknown external interference and loss fluctuation. In par-
ticular, our building has an active 802.11g campus network, whose
traffic directly interferes with our wireless mesh traffic. We treat
traffic from the campus network as unknown external interference.
Figure 14(a) plots the CDF of the average campus network traffic
measured by all mesh nodes in promiscuous mode every 30 sec-
onds. The median and mean are both 15.5 Kbps. Moreover, loss
fluctuates from nights to daytime. Figure 14(b) plots a CDF of
DeliveryRatio(night) − DeliveryRatio(day) over all links that
have ≥ 5% delivery rates. We observe loss fluctuation, because
during the day time (i) more people sit near mesh nodes and cause
more attenuation, and (ii) more people move around and close/open
doors and cause frequent changes to the RF environment.

Model validation: Figure 15 shows the scatter plot of actual ver-
sus estimated throughput from the 802.11b testbed. We also plot
y = x and y = 0.8x for reference. Our protocol continues to
exhibit high predictability: 78% of runs have within 20% error.

Performance comparison: As shown in Figure 16, our protocol
continues to perform the best. Different from simulation, MORE
sometimes performs worse than shortest path without rate limiting
because the network congestion in MORE is more severe in a dense
network like our 802.11b testbed.

11. CONCLUSION
In this paper, we present the first protocol that can accurately

optimize the performance of opportunistic routing in IEEE 802.11
networks. Our framework consists of three key components: (i) a
simple yet effective wireless network model to support optimiza-
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Figure 15: Actual vs. estimated throughput in 802.11b testbed
under unknown external interference and loss fluctuation.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  2  4  6  8  10  12  14  16

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

Number of flows

OUR
OUR w/ CG
ETX w/ RL

MORE
ETX w/o RL

Figure 16: Unicast throughput in our 802.11b testbed under
unknown external interference and loss fluctuation.

tion, (ii) a novel algorithm for optimizing different performance
objectives, and (iii) an opportunistic routing protocol that effec-
tively maps solutions resulted from our optimization into practical
routing configurations. Through testbed implementation and simu-
lation, we show that the performance of our protocol is close to our
estimation, and is much better than state-of-the-art shortest path
routing and opportunistic routing protocols. Moreover, it is robust
against inaccuracy introduced by a dynamic network and it also
consistently out-performs the existing schemes. To further enhance
the robustness against traffic and topology variations, in the future
we plan to extend the robust traffic engineering techniques devel-
oped in the Internet to optimize wireless networks. In particular, a
traffic engineering system usually collects a set of traffic matrices
and uses their convex combination to cover the space of common
traffic patterns for optimization. These new demand constraints are
compact and can be easily incorporated into our framework. We
plan to extend this technique to cope with both traffic and topology
variations in wireless networks.
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