Sketch-based Change Detection

```
Balachander Krishnamurthy (AT&T)
Subhabrata Sen (AT&T)
Yin Zhang (AT&T)
Yan Chen (UCB/AT&T)
```

ACM Internet Measurement Conference 2003

Network Anomaly Detection

- Network anomalies are common
 - Flash crowds, failures, DoS, worms, ...
- · Want to catch them quickly and accurately
- Two basic approaches
 - Signature-based: looking for known patterns
 - E.g. backscatter [Moore et al.] uses address uniformity
 - Easy to evade (e.g., mutating worms)
 - Statistics-based: looking for abnormal behavior
 - E.g., heavy hitters, big changes
 - · Prior knowledge not required

Change Detection

- Lots of prior work
 - Simple smoothing & forecasting
 - Exponentially weighted moving average (EWMA)
 - Box-Jenkins (ARIMA) modeling
 - Tsay, Chen/Liu (in statistics and economics)
 - Wavelet-based approach
 - Barford et al. [IMW01, IMW02]

The Challenge

- · Potentially tens of millions of time series!
 - Need to work at very low aggregation level (e.g., IP level)
 - · Changes may be buried inside aggregated traffic
 - The Moore's Law on traffic growth ... \otimes
- Per-flow analysis is too slow / expensive
 - Want to work in near real time
- · Existing approaches not directly applicable
 - Estan & Varghese focus on heavy-hitters

Need scalable change detection

Sketch-based Change Detection

- Input stream: (key, update)
- Summarize input stream using sketches
- Build forecast models on top of sketches
- Report flows with large forecast errors

Outline

- Sketch-based change detection
 - Sketch module
 - Forecast module
 - Change detection module
- Evaluation
- · Conclusion & future work

Sketch

- Probabilistic summary of data streams
 - Originated in STOC 1996 [AMS96]
 - Widely used in database research to handle massive data streams

	Space	Accuracy
Hash table	Per-key state	100%
Sketch	Compact	With probabilistic guarantees (better for larger values)

K-ary Sketch

- Array of hash tables: $T_j[K]$ (j = 1, ..., H)
 - Similar to count sketch, counting bloom filter, multi-stage filter, ...
- Update (k, u): $T_j[h_j(k)] += u$ (for all j)

K-ary Sketch (cont'd)

 Estimate v(S, k): sum of updates for key k unbiased estimator of v(S,k) with low variance

K-ary Sketch (cont'd)

Estimate the second moment (F₂)

$$F_2(S) = \sum_{k} [v(S,k)]^2$$

- Sketches are linear
 - Can combine sketches

- Can aggregate data from different times, locations, and sources

Forecast Model: EWMA

Compute forecast error sketch: S_{error}

Update forecast sketch: S_{forecast}

$$= \begin{bmatrix} & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\$$

Other Forecast Models

- Simple smoothing methods
 - Moving Average (MA)
 - S-shaped Moving Average (SMA)
 - Non-Seasonal Holt-Winters (NSHW)
- · ARIMA models (p,d,q)
 - ARIMA 0 $(p \le 2, d=0, q \le 2)$
 - ARIMA 1 $(p \le 2, d=1, q \le 2)$

Find Big Changes

- Top N
 - Find N biggest forecast errors
 - Need to maintain a heap
- Thresholding
 - Find forecast errors above a threshold

$$v(S_{error}, k) \ge Thresh \times \sqrt{F_2(S_{error})}$$

Evaluation Methodology

- Accuracy
 - Metric: similarity to per-flow analysis results
 - This talk focuses on
 - TopN (Thresholding is very similar)
 - Accuracy on real traces (Also has data-independent probabilistic accuracy guarantees)
- Efficiency
 - Metric: time per operation
- Dataset description

			#records	
Data	Duration	#routers	Total	Range
Netflow	4 hours	10	190M	861K - 60M

Experimental parameters

Parameter	Values
Н	1, 5, 9, 25
K	8K, 32K, 64K
Ν	50, 100, 500, 1000
Interval	1 min., 5 min.
Model	6 forecast models
Router	10 (this talk: Large, Medium)

Accuracy

H = 5, K = 32768, Router = Large

Similarity = | TopN_sketch ∩ TopN_perflow | / N

Accuracy (cont'd)

Model = EWMA, Router = Large

Accuracy (cont'd)

Model = ARIMA 0, Interval = 5 min.

Accuracy Summary

- For small N (50, 100), even small K (8K) gives very high accuracy
- For large N (1000), K = 32K gives about 95% accuracy
- Router, interval, and forecast model make little difference
- H generally has little impact

Efficiency

	Nanoseconds per operation	
Operation (H=5, K = 64K)	400MHz SGI R12k	900MHz Ultrasparc-II
Hash computation	34	89
Update cost	81	45
Estimate cost	269	146

1 Gbps = 320 nsec per 40-byte packet

Can potentially work in near real time.

Conclusion

Sketch-based change detection

Scalable

- Can handle tens of millions of time series

· Accurate

- Provable probabilistic accuracy guarantees
- Even more accurate on real Internet traces

Efficient

- Can potentially work in near real time

Ongoing and Future Work

Refinements

- Avoid boundary effects due to fixed interval
- Automatically reconfigure parameters
- Combine with sampling

Extensions

- Online detection of multi-dimensional hierarchical heavy hitters and changes

Applications

- Building block for network anomaly detection

Thank you!

Heavy Hitter vs. Change Detection

- Change detection for heavy hitters
 - Can potentially use different parameters for different flows
 - Heavy hitter ≠ big change
 - · Need small threshold to avoid missing changes
 - Aggregation is difficult
- Sketch-based change detection
 - All flows share the same model parameters
 - Aggregation is very easy due to linearity