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Network Anomaly Detection

- Network anomalies are common
- Flash crowds, failures, DoS, worms, ...

+ Want to catch them quickly and accurately

» Two basic approaches

- Signature-based: looking for known patterns
* E.g. backscatter [Moore et al.] uses address uniformity
- Easy to evade (e.g., mutating worms)

- Statistics-based: looking for abnormal behavior

- E.g., heavy hi’r‘rersl big changes I\
* Prior knowledge not required This talk




Change Detection

* Lots of prior work

- Simple smoothing & forecasting

» Exponentially weighted moving average (EWMA)
- Box-Jenkins (ARIMA) modeling

» Tsay, Chen/Liu (in statistics and economics)

- Wavelet-based approach
* Barford et al. [IMWO1, IMWO02]



The Challenge

* Potentially tens of millions of time series |

- Need to work at very low aggregation level
(e.g., IP level)
» Changes may be buried inside aggregated traffic

- The Moore's Law on traffic growth .. ®
* Per-flow analysis is too slow / expensive
- Want to work in near real time

» Existing approaches not directly applicable
- Estan & Varghese focus on heavy-hitters

Need scalable change detection
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Sketch-based Change Detection

module

‘ Sketch

J Error :
Sketche Forecast Sketch | Change | Alarms
| detection )
module(s) module |

Input stream: (key, update)

Summarize input stream using sketches
Build forecast models on top of sketches

Report flows with large forecast errors



Qutline

» Sketch-based change detection
- Sketch module

- Forecast module

- Change detection module

- Evaluation
 Conclusion & future work



Sketch

* Probabilistic summary of data streams
- Originated in STOC 1996 [AMS96]

- Widely used in database research to handle
massive data streams
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K-ary Sketch

+ Array of hash tables: T,[K] (j=1,.., H)

- Similar to count sketch, counting bloom filter,
multi-stage filter, ...

.+ Update (k,u): T,[h(R]+=u (forall j)
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K-ary Sketch (cont'd)
+ Estimate v(S, k): sum of updates for key k

unbiased estimator of v(S,k) with low variance

T;[h,;(k)]—sum/ K

median
L ‘ —_
boost v(S, k) + compensate v(S, k)/K +
confidence  noise for signal loss E(noise)
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K-ary Sketch (cont'd)
- Estimate the second moment (F.,)
ES)= Zk [V(S’k)]2

- Sketches are linear
- Can combine sketches
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- Can aggregate data from different
times, locations, and sources



Forecast Model: EWMA

» Compute forecast error sketch: S,

4 ) 4 )

Serror(t"| ) Sobserved(t'1 )

* Update forecast sketch: S ..

- | *A +

Sforecast(t'-I )

\

*(1-a)

11



Other Forecast Models

+ Simple smoothing methods

- Moving Average (MA)

- S-shaped Moving Average (SMA)

- Non-Seasonal Holt-Winters (NSHW)

+ ARIMA models (p,d,q)
- ARIMA O (p <2,d=0,q<?2)
- ARIMA 1 (p<2,d=1,9<2)
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Find Big Changes
- Top N

- Find N biggest forecast errors
- Need to maintain a heap

* Thresholding

- Find forecast errors above a threshold

k) > Threshx,/F, (S

( error ? error
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Evaluation Methodology

* Accuracy
- Metric: similarity to per-flow analysis results

- This talk focuses on
» TopN (Thresholding is very similar)

- Accuracy on real traces (Also has data-independent
probabilistic accuracy guarantees)

- Efficiency
- Meftric: tfime per operation
- Dataset description

#Hrecords

Data | Duration | #routers| Total Range
Netflow | 4 hours 10 190M | 861K - 60M




Experimental parameters

Parameter | Values
H 1,5,9,25
K 8K, 32K, 64K
N 50, 100, 500, 1000
Interval | 1min., 5 min.
Model 6 forecast models
Router 10 (this talk: Large, Medium)
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Accuracy

H=5, K=32768, Router = Large
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Accuracy Summary

 For small N (50, 100), even small K (8K)
gives very high accuracy

* For large N (1000), K = 32K gives about
95% accuracy

 Router, interval, and forecast model make
ittle difference

* H generally has little impact
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Efficiency

Nanoseconds per operation

Operation 400MHz 900MHz
(H=5, K = 64K) SGI R12k Ultrasparc-IT
Hash computation 34 89
Update cost 81 45
Estimate cost 269 146

1 Gbps = 320 nsec per 40-byte packet

Can potentially work in near real time.
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Conclusion
SkeTch based change detection

————————————————————————————————————————————————————————————————

Error :

(k, u) Sketches Sketch | change Alarms
. Sketch Forecast ‘ detection ]
module module(s) module |

________________________________________________________________

Scalable
- Can handle tens of millions of time series

Accurate
- Provable probabilistic accuracy guarantees
- Even more accurate on real Internet traces

Efficient

- Can potentially work in near real time
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Ongoing and Future Work

+ Refinements

- Avoid boundary effects due to fixed interval
- Automatically reconfigure parameters

- Combine with sampling

+ Extensions

- Online detection of multi-dimensional
hierarchical heavy hitters and changes

+ Applications
- Building block for network anomaly detection
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Thank you!



Heavy Hitter vs. Change Detection

* Change detection for heavy hitters

- Can potentially use different parameters for
different flows

- Heavy hitter # big change

* Need small threshold to avoid missing changes
- Aggregation is difficult
» Sketch-based change detection

- All flows share the same model parameters
- Aggregation is very easy due to linearity
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