
Demo: Graph Cuts versus Dynamic
Programming

Adrian Quark

February 8, 2007 / CS 395T Demo

Demo: Graph Cuts versus Dynamic
Programming

Adrian Quark

February 8, 2007 / CS 395T Demo

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

1. Note pages are interleaved with slides. These notes cover some of the
verbal content of the talk.

Quilting: A Tail of Two Algorithms
• Quilting problem: given two overlapping images, how do

I blend the images in the overlapping area to create the
illusion of a single continuous image

• Possibilities
• Linear blending or feathering
• Seam carving with dynamic programming (Efros &

Freeman 2001)
• Graph cuts (Kwatra et al 2003)

• Let’s compare some simplified examples
• Main references:

• Efros and Freeman. ”Image Quilting for Texture Synthesis
and Transfer”

• Kwatra et al. ”Graphcut Textures: Image and Video
Synthesis Using Graph Cuts”

Quilting: A Tail of Two Algorithms
• Quilting problem: given two overlapping images, how do

I blend the images in the overlapping area to create the
illusion of a single continuous image

• Possibilities
• Linear blending or feathering
• Seam carving with dynamic programming (Efros &

Freeman 2001)
• Graph cuts (Kwatra et al 2003)

• Let’s compare some simplified examples
• Main references:

• Efros and Freeman. ”Image Quilting for Texture Synthesis
and Transfer”

• Kwatra et al. ”Graphcut Textures: Image and Video
Synthesis Using Graph Cuts”20

08
-0

2-
07

Demo: Graph Cuts versus Dynamic Programming

Introduction

Quilting: A Tail of Two Algorithms

1. Feathering: often used in panoramic stitching. May provide adequate
results if the patches are well-matched, but it creates blur if
high-frequency areas of patches don’t match. Not suitable for quilting.

2. I’ll ignore more complicated solutions like warping or sampling; we’ll
assume pixels are fixed and all we get to do is choose which patch owns
each pixel.

3. Use contrived ”toy” examples of patches only a few pixels wide. This
will make it easier to illustrate strengths and weaknesses of these
algorithms. I’ll try to make it clear how these extrapolate to real images.

4. I’ll ignore the problem of positioning patches. The choice of overlap
may make the seam-finding problem really easy or effectively
impossible. But I’ll just assume we’ve found the best possible overlap
already.



Outline
• Seam carving by dynamic programming

• Description
• Examples
• Limitations

• Seam carving by graph cuts
• Description
• Examples
• When and why is it better that dynamic programming?

Outline
• Seam carving by dynamic programming

• Description
• Examples
• Limitations

• Seam carving by graph cuts
• Description
• Examples
• When and why is it better that dynamic programming?

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Introduction

Outline

1. This talk will cover both algorithms and then compare them.

Dynamic Programming
• Useful to optimize over a single dimension
• Requires problem structure:

• Solutions to small problems can be used to find solutions to
larger problems: optimal substructure

• Solutions to sub-problems are reused: overlapping
sub-problems

• Example: Fibonacci sequence

Dynamic Programming
• Useful to optimize over a single dimension
• Requires problem structure:

• Solutions to small problems can be used to find solutions to
larger problems: optimal substructure

• Solutions to sub-problems are reused: overlapping
sub-problems

• Example: Fibonacci sequence

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Overview
Dynamic Programming

1. Dynamic programming = recursion + memoization
2. Optimal substructure: new Fibonacci numbers are based on previous

ones.
3. Overlapping subproblems: each Fibonacci number is used twice (to

compute its successor and its successor’s successor).



Seam Carving
• Given an overlap in one direction:

1 Compute the error surface

E = ‖(I1 − I2)2‖

2 Use dynamic programming to find minimum seam along
direction of overlap

Ci,j = Ei,j + min(Ci−1,j−1, Ci−1,j, Ci−1,j+1)

• O(n) performance (for n overlapping pixels)
• Implemented in Java using Sun’s Advanced Imaging

library

Seam Carving
• Given an overlap in one direction:

1 Compute the error surface

E = ‖(I1 − I2)2‖

2 Use dynamic programming to find minimum seam along
direction of overlap

Ci,j = Ei,j + min(Ci−1,j−1, Ci−1,j, Ci−1,j+1)

• O(n) performance (for n overlapping pixels)
• Implemented in Java using Sun’s Advanced Imaging

library

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Overview
Seam Carving

1. This algorithm is described in Efros and Freeman.
2. The algorithm used in Avidan and Shamir is of course quite similar but

uses a different error function appropriate to their domain.
3. Assume: somebody else already found a good overlap for us. Overlap

must be rectangular and go from one side of the patch to the other. This
is obviously a serious limitation if you want to fit patches into irregular
spaces.

4. For any pixel, the error is the amount the two images disagree on the
value of that pixel. Choosing a path which minimizes error means
finding a path where the disagreement on pixels is lowest, on other
words the two images are most similar.

5. Working from one end of the overlap to the other, for each pixel
compute the minimum cost of all the possible paths ending at that pixel.
After doing this for the whole image we can pick the minimum-cost
path ending in the last row, and then work backwards to enumerate it.

6. The implementation is simple and requires just two passes over the
overlapping area.

Quilting Example

Quilting Example

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Overview
Quilting Example

1. Illustrate dynamic programming applied to quilting two brick images.
2. NEXT: limitations



Irregular Contours
• Seam cannot vary more than 45 degrees from direction

orthogonal to overlap, so cannot follow some contours

Irregular Contours
• Seam cannot vary more than 45 degrees from direction

orthogonal to overlap, so cannot follow some contours

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Limitations
Irregular Contours

1. The dynamic programming algorithm only minimizes along one
dimension, so it can’t decide to turn to follow a minimum-error surface
orthogonal to the seam.

2. These two images are each 10 pixels square, and we’d like to overlap
them completely and combine them, respecting image boundaries.
You can imagine that these are white and grey objects, and the black
line is a boundary between two objects.

3. The ideal solution respects the object boundaries.
4. Because our dynamic programming algorithm is unable to “turn the

corner” we get something less nice.

Irregular Contours
• What if we minimize along the entire row?

Irregular Contours
• What if we minimize along the entire row?

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Limitations
Irregular Contours

1. We allow the path to jump as far left or right as is necessary to move to
the next good pixel. That would work fine for our above example.

2. But in general this doesn’t work because it doesn’t account for the fact
that we’re implicitly creating a horizontal seam, and we need to make
sure the horizontal seam isn’t visible either.

3. NEXT: another limitation



Error Function
• Error is calculated at pixels, but seam will lie between

pixels

Error Function
• Error is calculated at pixels, but seam will lie between

pixels

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Limitations
Error Function

1. We’re minimizing the difference at a given pixel, but our seam will
actually lie to one side or the other of that pixel. This is annoying
theoretically but not usually a problem in practice.

2. Two 10-pixel square images again. Let’s call them red and green objects
against a blue background. As before, we will overlap these completely
and would like our seam to respect object boundaries.

3. We’d like to get the green object against the darker blue background.
4. But because the narrow white line on the objects matches slightly better

than the background, our algorithm decides to put the seam there.
5. In real images, this means the algorithm is slightly more “local” than it

should be. We’ll see this in a more realistic example later.

Error Function
• Can we make our error function slightly less local?

E′i,j = Ei−1,j + Ei,j

• We can also incorporate gradient:

E′′i,j =
E′i,j

‖Gx
1i−1,j‖+ ‖Gx

1i,j‖+ ‖Gx
2i−1,j‖+ ‖Gx

2i,j‖+ 1

Error Function
• Can we make our error function slightly less local?

E′i,j = Ei−1,j + Ei,j

• We can also incorporate gradient:

E′′i,j =
E′i,j

‖Gx
1i−1,j‖+ ‖Gx

1i,j‖+ ‖Gx
2i−1,j‖+ ‖Gx

2i,j‖+ 1

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Limitations
Error Function

1. We can correct this problem by using an error function which takes into
account the neighborhood of the seam rather than just one side of it.

2. This equation says that the error for a seam to the left of a pixel is the
sum of the error on both sides of that seam. For other kinds of seams or
overlap we’d need different functions.

3. With the same example as before, we get a “better” result.
4. NEXT: comparing these error functions



Error Functions: Comparison
At pixels Across pixels Gradient-weighted

Error Functions: Comparison
At pixels Across pixels Gradient-weighted

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Limitations
Error Functions: Comparison

1. Averaging error across seam does seem to improve results.
2. DISCUSS: can we use an error function which accounts for error in

more than one direction (not just left-right but up-down)

Error Functions: Comparison
At pixels Across pixels Gradient-weighted

Error Functions: Comparison
At pixels Across pixels Gradient-weighted

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Limitations
Error Functions: Comparison

1. Gradient-weighting improves the results slightly by encouraging the
seam to follow object boundaries where appropriate. Notice that the
simple error function does this naturally but has other problems.

2. NEXT: another limitation



Previous Seams
• Seams can end up reinforcing previous seams
• First seam

• Second seam

Previous Seams
• Seams can end up reinforcing previous seams
• First seam

• Second seam

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Dynamic Programming

Limitations
Previous Seams

1. When new seams are chosen assuming that old seams are part of the
original image, you can get “drift” which reinforces the old seams.

2. Not clear how to fix this in a dynamic programming algorithm.
3. Probably not an issue in practice if old-seam overlaps are limited and

regular, as in Efros & Freeman
4. NEXT: graph cuts

Graph Cut
• Existing image is source, new patch is sink
• Vertices correspond to overlapping pixels
• Edges given weights corresponding to error at connected

pixels
• Min-cut algorithm finds seam with least error

Graph Cut
• Existing image is source, new patch is sink
• Vertices correspond to overlapping pixels
• Edges given weights corresponding to error at connected

pixels
• Min-cut algorithm finds seam with least error

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Overview
Graph Cut

1. Translating our image problem into a graph problem lets us make use
of well-understood algorithms.



Min-cut Algorithms
• The maximum amount of flow is equal to the capacity of a

minimal cut. (Elias, Feinstein & Shannon 1956)
• “Augmenting flow”

1956 Ford & Fulkerson O(E ·maxflow)
1972 Edmonds & Karp O(VE2)
2004 Boykov & Kolmogorov O(VE2 ·mincut)

• “Push-relabel”
1970 Dinic O(V2E)
1980 Sleator & Tarjan O(VE log(V))
1988 Goldberg & Tarjan O(VE log(V2

E ))

• I used Edmonds & Karp’s O(n3) algorithm as implemented
by JUNG (Java Universal Network/Graph Framework)

Min-cut Algorithms
• The maximum amount of flow is equal to the capacity of a

minimal cut. (Elias, Feinstein & Shannon 1956)
• “Augmenting flow”

1956 Ford & Fulkerson O(E ·maxflow)
1972 Edmonds & Karp O(VE2)
2004 Boykov & Kolmogorov O(VE2 ·mincut)

• “Push-relabel”
1970 Dinic O(V2E)
1980 Sleator & Tarjan O(VE log(V))
1988 Goldberg & Tarjan O(VE log(V2

E ))

• I used Edmonds & Karp’s O(n3) algorithm as implemented
by JUNG (Java Universal Network/Graph Framework)20

08
-0

2-
07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Overview
Min-cut Algorithms

1. The max-flow min-cut theorem intuitively means that the capacity of a
network is limited by its bottlenecks.

2. Augmenting flow: find a path with available capacity and send flow
along it, until there are no more. Improvements come from finding
augmenting paths more efficiently.

3. Push-relabel: each node gets a height: push sends water from high
ground to low, relabel raises the height of a node. Repeat as necessary.
Improvements come from changing the rules for when to relabel and
using better data structures.

Other Applications
• Generally useful for energy minimization
• First applied to computer vision (image restoration) by

Greig et al 1989
• Also applied to:

• Segmentation
• Stereo correspondence
• Object recognition
• Shape reconstruction
• Augmented reality
• Texture generation (of course)
• Video textures (of course)

(Boykov & Kolmogorov 2004)

Other Applications
• Generally useful for energy minimization
• First applied to computer vision (image restoration) by

Greig et al 1989
• Also applied to:

• Segmentation
• Stereo correspondence
• Object recognition
• Shape reconstruction
• Augmented reality
• Texture generation (of course)
• Video textures (of course)

(Boykov & Kolmogorov 2004)

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Overview
Other Applications

1. The ability of graph cuts to handle graphs with arbitrary structure, not
just 2D image grids, makes them very powerful.



Example

Example

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Overview
Example

1. Two 10-pixel images will be completely overlapped.
2. A graph is constructed for the overlapping area, with edge weights

corresponding to error across a seam cutting that edge.
3. The graph is cut. Graph cut algorithms are for directional graphs so we

introduce reverse edges. Only one edge will be cut (the one pointing
towards the new image).

Irregular Contours
• Irregular contours are handled better

• But not always perfectly

Irregular Contours
• Irregular contours are handled better

• But not always perfectly

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Advantages

Irregular Contours

1. Because we consider total cost of the cut, not average cost, the
algorithm prefers a shorter cut with some high-error segments to a
longer one with uniform error.

2. Real images tend to be more continuous so this may not matter in
practice.



Error Function
• Better than error function which ignores neighbors, but

still has pathological cases.

• Possible enhancements:
• Incorporate gradient to favor high-frequency areas?

(Kwatra et al 2003)
• Minimize average error across seam rather than total error?
• Use gaussian to distribute error?
• Hierarchical approach?

Error Function
• Better than error function which ignores neighbors, but

still has pathological cases.

• Possible enhancements:
• Incorporate gradient to favor high-frequency areas?

(Kwatra et al 2003)
• Minimize average error across seam rather than total error?
• Use gaussian to distribute error?
• Hierarchical approach?

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Advantages

Error Function

1. DISCUSS: what makes a good error function for quilting?
2. DISCUSS: how can we improve the min-cut error function

Previous Seams
• Old seams become new vertices
• Edges from seams to new patch use old error
• Min-cut is forced to decide, for each seam, whether the

error at that seam can be reduced by replacing either side
(or both) with pixels from the new image

Previous Seams
• Old seams become new vertices
• Edges from seams to new patch use old error
• Min-cut is forced to decide, for each seam, whether the

error at that seam can be reduced by replacing either side
(or both) with pixels from the new image

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Advantages

Previous Seams

1. I find this easiest to understand by abandoning any geometric intuition
and just thinking in terms of: what is the min-cut forced to optimize at a
given area of the image?



Versus Dynamic Programming
DP / pixel error DP / seam error GC / seam error

Versus Dynamic Programming
DP / pixel error DP / seam error GC / seam error

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Advantages

Versus Dynamic Programming

1. The error function makes a difference in eliminating the tiny ”double
edge” near the middle.

2. The algorithm allows graph cuts to find a slightly better path, but the
difference is minimal.

Versus Dynamic Programming
DP / pixel error DP / seam error GC / seam error

Versus Dynamic Programming
DP / pixel error DP / seam error GC / seam error

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Advantages

Versus Dynamic Programming

1. The results are surprisingly close.



Versus Dynamic Programming
DP / pixel error DP / seam error GC / seam error

Versus Dynamic Programming
DP / pixel error DP / seam error GC / seam error

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

Advantages

Versus Dynamic Programming

1. The results are surprisingly close.

An Interesting Bug

An Interesting Bug

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

An Interesting Bug

An Interesting Bug

1. I noticed that some isolated regions of the foreground image were being
included in the quilt.

2. Closer investigation reveals that these are regions surrounded by
zero-error seams.

3. Is this bad? Not as long as the regions are small.
4. NEXT: obvious solution which doesn’t work.



A Solution?
• Zero-capacity edges don’t work? Avoid them!
• Just add 1 to the capacity of all edges (or all zero-capacity

edges).
• Results:

Original error Error +1

A Solution?
• Zero-capacity edges don’t work? Avoid them!
• Just add 1 to the capacity of all edges (or all zero-capacity

edges).
• Results:

Original error Error +1

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

An Interesting Bug

A Solution?

1. Adding error to all nodes adds bias in favor of shorter paths.
2. This can have surprisingly bad results.
3. In general I noticed that graph cuts are much more sensitive to the error

function than dynamic programming, because the error function affects
how much the algorithm penalizes longer paths.

Correct Solution
• Source partition of is assumed to be those nodes reachable

from the source in the residual graph.
• This doesn’t account for segments of the graph isolated by

zero-capacity edges.
• A real fix (untested):

1 Let V be the set of nodes in the graph.
2 Let S be the set of nodes reachable from the source in the

residual graph.
3 Let T be the set of nodes reachable from the sink via reverse

edges in the original graph without traversing nodes in S.
4 Then T is the sink partition and V \ T is the source

partition.

Correct Solution
• Source partition of is assumed to be those nodes reachable

from the source in the residual graph.
• This doesn’t account for segments of the graph isolated by

zero-capacity edges.
• A real fix (untested):

1 Let V be the set of nodes in the graph.
2 Let S be the set of nodes reachable from the source in the

residual graph.
3 Let T be the set of nodes reachable from the sink via reverse

edges in the original graph without traversing nodes in S.
4 Then T is the sink partition and V \ T is the source

partition.

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Graph Cuts

An Interesting Bug

Correct Solution

1. I haven’t yet implemented this fix but hopefully it’s obvious that it’s
correct.



Inherent Limitations
• Depends on good placement of images
• Strongly constrained by features of original image
• Doesn’t always agree with human perception

Inherent Limitations
• Depends on good placement of images
• Strongly constrained by features of original image
• Doesn’t always agree with human perception

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Conclusion

Inherent Limitations

1. DISCUSS: which is more important, finding seams or placing patches?
2. DISCUSS: how important is human perception in the quality of a seam?

Conclusion
• Dynamic programming: fast but restricted
• Graph cuts: slow but flexible
• What is the best approach for quilting? Results are

surprisingly inconclusive
• Future work: Implement Kwatra et al’s multi-pass texture

generation using dynamic programming to find seams
instead of graph cuts

• Questions?

Conclusion
• Dynamic programming: fast but restricted
• Graph cuts: slow but flexible
• What is the best approach for quilting? Results are

surprisingly inconclusive
• Future work: Implement Kwatra et al’s multi-pass texture

generation using dynamic programming to find seams
instead of graph cuts

• Questions?

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Conclusion

Conclusion

1. I think the reasons Kwatra et al’s results look better, in order of
importance, are: multiple iterations with larger patch size, better error
functions, splining near seams, and last, maybe, graph cuts



Discussion points
• Which is more important, choosing the seams or choosing

the overlap (position of patches)?
• What makes a good error function for quilting?
• How would a hierarchical error estimate work? Would it

make a difference?
• Are the limitations discussed here a problem in practice?
• Can dynamic programming handle video resizing?
• Can 3D graph cuts handle video resizing?
• Are there any other optimization algorithms that might be

good for quilting? A∗? Least-squares solution to linear
equations?

• Other vision applications for dynamic programming?
• Other vision applications for graph cuts?

Discussion points
• Which is more important, choosing the seams or choosing

the overlap (position of patches)?
• What makes a good error function for quilting?
• How would a hierarchical error estimate work? Would it

make a difference?
• Are the limitations discussed here a problem in practice?
• Can dynamic programming handle video resizing?
• Can 3D graph cuts handle video resizing?
• Are there any other optimization algorithms that might be

good for quilting? A∗? Least-squares solution to linear
equations?

• Other vision applications for dynamic programming?
• Other vision applications for graph cuts?

20
08

-0
2-

07

Demo: Graph Cuts versus Dynamic Programming

Conclusion

Discussion points

1. Questions intended to stimulate post-talk discussion.


	Introduction
	Dynamic Programming
	Overview
	Limitations

	Graph Cuts
	Overview
	Advantages
	An Interesting Bug

	Conclusion

