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Among the methods for data analysis, and mainly for the understanding of the shape of the data, as
obtained by sampling of some underlying structure (the intended final object of such a study) the so
called persistent homology has gained an ever increasing popularity, since its introduction in 2002 by
Edelsbrunner, Letscher and Zomorodian (7). Given its mathematical foundation and computational
capability, (3),(30), it is little wonder that it has risen towards prominence amongst such methods
and was applied to a variety of fields (4), (2) and not least among them, to the study of Complex
Networks (10), (21), (22).

However, beyond its merits, persistent homology also suffers from a number of drawbacks, that are
not popularized by its proponents, who might be only partially aware of them, due to the numerous
successes of the method. Amongst these less advantageous features, first and foremost one has to
number the fact, that as its very name proclaims, this approach allows, by its very definition, for
the recognition/reconstruction of manifolds only up to homology. However, the knowledge of the
homotopy would endow us with a more powerful tool (see, e.g. (16)).

We suggest here an approach that, at least in the case of networks, is preferable to the persistent
homotopy, from more than one viewpoint. The proposed method is based on our adaptation and
extension of Forman’s Ricci curvature (8) to the case of complex networks (29), (35), (36). Recall
that, for proper (1-dimensional) networks, its expression is very simple:
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While the full force of Forman’s curvature resides precisely in its ability do deal with weighted vertices
and edges at the same time, the combinatorial case, namely ω(e) = ω(v) = 1, e ∈ E(G), v ∈ V (G)
is, however, extremely important since it is still employed by many scientist, especially in the Social
and Biological Networks communities. Since, in this case, #{ê|ê‖e} = deg(v1 ∼ e)+ deg(v2 ∼ e),
we immediately obtain

RicF(e) = 2−
∑
v∼e

deg(v) .

For the case of 2-dimensional complexes, the formula is somewhat more complicated:

RicF(e) = ω(e)

∑
e∼f

ω(e)

ω(f)
+
∑
v∼e

ω(v)

ω(e)

 −∑
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where σ < τ means that σ is a face of τ , and where || denotes parallelism, i.e. it means the two cells
have a common “parent" (higher dimensional face) or a common “child" (lower dimensional face),
but not both a common parent and common child. In the special case of unweighted networks, i.e.
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ω(f) = ω(e) = ω(v) = 1, ∀f ∈ F (G), e ∈ E(G), v ∈ V (G), the terms simplify to merely the
counting of adjacent parents and children, respectively. We get

RicF(e) = #{f > e}+#{v < e}︸ ︷︷ ︸
=2

−

#{ê|ê‖e} −#{v|v ∼ e, v ∼ ê , e||ê}︸ ︷︷ ︸
=0


= #{f > e} −#{ê|ê‖e}+ 2 .

While the markedly combinatorial nature of Forman’s curvature is somewhat confusing to the classical
differential geometer, the formula for the 1-dimensional case clearly reveals that Forman’s Ricci
curvature captures and discretizes the quantification of the geodesics dispersal aspect of the classical
Ricci curvature. The formulas above show the first advantage of using Forman’s curvature: It is very
simple, inexpensive and straightforward to compute. We still have, however, to show why, at least in
the networks setting, it is preferable to the persistent homology approach.

As we alluded above, one essential such advantage resides in the fact that, for 2-and higher dimen-
sional complexes, Forman’s curvature captures not only homology, but also the fundamental (i.e. first
homotopy) group – see (8).

Another problem with persistent homology resides precisely in the very feature that makes it attractive
to the applications-inclined user, namely the (industrial, automatic) barcodes associated with the
persistent homology (11), and on which its application is largely based. While seemingly ideal for
experimentation, such barcodes require special attention at certain critical radii. In contrast, the
Forman based approach is deterministic and its result is clear: Once the data (the network/complex)
is imputed, the result of the computation is clear and unequivocal.

This brings us to the next advantage of using Forman’s curvature: One is not restricted in using only
simplicial complexes, like in persistent homology, instead this curvature is applicable to general
polyhedral complexes. In truth, the use of simplicial complexes, while a classical and preferential
construct of Algebraic Topology is also somewhat restrictive and, as such limited in its modeling
capability, since raw data may very well not admit a simplicial complex structure, as it is often the
case, for instance in Biollgical Networks (see (36)). In stark contrast, Forman curvature is defined for
the large class of (regular) weighted CW complexes (8).

Here yet another advantage of our approach is revealed: One can either operate with the data “as is",
or by adding higher dimensional faces in the manner detailed below. However, even when adding
simplices, the process is much more economical, effective and lacking any arbitrariness. Indeed,
even when one adds higher dimensional simplices to a network, this is not done in an arbitrary or
automatic manner, bur rather, as we suggested in (36), this should be done only to model correlations
of higher order (edges encoding correlations between couples of nodes/data points).

As we have noted above, Forman curvature based analysis outperforms persistent homology in a
number of crucial aspects. In addition, we should emphasize a number of further advantages of the
approach proposed above: It is applicable both to directed and undirected networks (in case this is
the intended object of study); comes coupled with a Laplacian (thus standard spectral methods can
also be extracted out from it); it comes equiped with a Ricci flow, both in the “pure” network case, as
well as for the augmented, higher dimensional one, see (35), (36); and, last, but certainly not least, it
incorporates the analytic power not only of (Algebraic) Topology, but also of Geometry, thus gaining
more expressive power and analytic force.

A legitimate question is whether the method above is restricted to data sampled obtained, typically, by
sampling objects endowed solely with a “simple” geometric structure, or whether it can be extended
to more general structures. An indication of the wider applicability of the Forman-Ricci curvature
based approach is given by the fact that it can be defined, as we have already seen, not just for simple
combinatorial structures, nor to pure metric graphs, but also the very general weighted (both on the
nodes and on the edges) graphs.

Indeed, “weighted” data arises in many context, where the weights in question might represent
probability distributions or measures, inherent in the very process of acquisition (s.a. in the case
of many types of MRI images, where their density equals to the very proton density); quantifying
uncertainty or noise; describing certain features of texture in natural images, but also introduced as
ad hoc tools in Graphics and Imaging that are employed at various stages of the implementation of a
variety of tasks, such as smoothing, (elastic) registration, warping, segmentation, etc.
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Such phenomena are usually modeled as weighted manifolds, (a.k.a. as manifolds with densities or
smooth metric measure spaces). However, given that the data is, in truth, acquired via a sampling
process, the natural question arises whether there exists a simple and efficient method of sampling
the metric and the measure at the same time. More precisely one would like to an effective com-
putation of the necessary and optimal sampling density (akin to the Nyquist rate in classical Signal
Processing). Given that such methods, in Manifold Learning (17), Graphics and related field (5),
and Communications and Information Theory (28) are based on curvature, one is conduced to the
question whether there exist a proper notion of curvature for manifolds with densities, that permits
for the generalization of the classical, unweighted methods.

It turns out that one classical notion of curvature generalizes particularly well to case of weighted
manifolds, namely the so called Ricci curvature, a concept that quantifies both the growth of volumes
and the dispersion of geodesics. Using the growth of volumes aspect, a number of related notions of
generalized Ricci curvature for manifolds with densities were developed (14) and (31), and, using
a somewhat different approach, in (15). Since in the classical case sampling by the rate prescribed
by (the inverse of) Ricci curvature produces a discretization of the original manifold that allows for
its reconstruction up to homotopy equivalence (9), one is naturally induced to ask whether, mutatis
mutandis the same holds for weighted manifolds, with the generalized Ricci curvature en lieu of the
classical one.

Fortunately enough, this proves to be the case (measures replacing volumes, naturally) (24), (25), and,
moreover, the approximation is good in the metric, geometric (i.e. curvature related) and topological
senses. Moreover, this a result easy adaptable to practice in Imaging and its related fields (13).

In fact, by employing the (generalized) Ricci curvature, one has an additional benefit: While more
traditional sampling methods, based on more common notions of curvature, permit the reconstruction
of a manifold only up to homology (see, e.g. (17)), the method of Grove end Peterson (9) – and its
generalization to weighted manifolds – allows, as we have noted above, for reconstruction up to
homotopy type, which represents a stronger results (see, e.g. (16)).

As we have already mentioned, the graphs (technically called ε-nets) obtained via the sampling and
approximation technique sketched above (see (24), (25) for details) allow for good (geo-)metrical
and topological approximation of the original space. The natural question is whether such schematic
approximations/backbones can also carry a significant (differential) geometric structure, that ideally
would also approximate/sample the original one. If one restricts himself to the case of classical
Riemannian manifolds, i.e. to “pure” differential geometric structure, then the answer is positive,
and more than one solution has been given, depending on the type of curvature one would attempt to
recover. (The literature on this subject is too vast for any catalogue on the subject, however brief, to
be included here, therefore we suggest only (27) and the bibliography therein.) In contrast, for the
case we are concerned with, namely with approximations and discretizations of weighted manifolds,
no answer seems to exist in the literature.

However, a simple and direct way of producing a meaningful curvature, that captures both the
metric and the measure aspect of the given structure presents itself naturally in the form of Forman-
Ricci curvature. Indeed, by incorporating both node and edge weights, this represents a notion of
curvature ideally suited for discretizations of metric measure spaces, where the edge weights are
abstractizations of lengths, whereas node weights quantify the measure (concentrated at the atoms
= nodes). In particular, if one starts from a simple geometric context, these weights can represent
e.g. volumes (concentrated at the center of a Voronoi cell, for instance), or curvature measures (the
very curvatures used in the sampling process – see for instance (25), or associated to the star of a
vertex in a polygonal mesh – see, e.g. (32)). Note also that, if a better reconstruction (in the sense of
dimensionality preservation) of the original structure is required, one can make appeal to the original
formula of Forman’s Ricci curvature (8).

Thus this process allows, by using the generalized Ricci curvature, to pass from a weighted manifold
to a discrete structure, namely to a graph/network that captures both the essential metric and measure
properties of the given space. Furthermore, the obtained weighted network can be geometrized
using the Forman-Ricci curvature, to obtain a discretization of the original weighted manifold, that
quantizes its metric, measure, as well as curvature properties. Moreover, by adding the relevant
higher dimensional faces, one can better recapture the dimensionality, as well as interplay between
the geometry and the topology of the given underlying manifold.
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The capability of taking into account faces of various dimension, not necessarily the same represents
yet another crucial, advantage of the Forman curvature approach, and at a fundamental level: Since
the very beginning of acceptance and adoption by the relevant communities of the geometric approach
to understanding and handling high-dimensional data (23), (33), the manifold assumption has been
essential. However, as is by now well known in the field, and as it is so well illustrated by the
already famous (or rather infamous) swiss-roll example, one can not, in general, deduce or obtain
unequivocally the dimension of the data, without some prior knowledge or arbitrary assumptions or
decisions. (For instance, in the swiss-roll case, the data can be interpreted – or can really represent
– noisy sampling/representation of a planar curve, a surface, or a volume is space, as well as some
other, more complicated and less easier to define possibilities – see also the discussion below.)

We propose a solution to this problem, that is based on Y. Ollivier’s definition (18), (19), (20) of
local and statistical dimension. (For background material, see, e.g. (34).) We begin with the first
fundamental definition: Given the random walk {mx(·)} on a space X , its local dimension at a point
x ∈ X is defined as follows:

nx =
σ2(x)

sup{V armx
f | f is 1− Lipschitz}

;

where f : Supp(mx)→ R. We also define:

n = inf
x
nx .

(Here V armxf denotes, as usual, the variance of the function f with respect to the measure mx.)

We bring a couple of essential observations regarding the definitions above: (i) nx ≥ 1; and (ii) The
meaning of the definition above is that, if the local dimension is n, then the typical variation of a
Lipschitz function is 1/

√
n× the typical distance between two points. Let us also bring a number of

basic examples, to help better understand the notion introduced above: (i) For the simple random
walk on a graph, nx ≈ 1; For the discrete Brownian motion on a (smooth, complete) Riemannian
manifold of dimension N , given by randomly jumping in a ball of radius ε, centered at x, we have
that nx ≈ N ; (iii) For discrete geometric data, such as encountered in Manifold Learning, Pattern
Recognition, Imaging, etc., the natural random walk one should consider is the one given by proximity
(as extracted, say, by the k-nearest neighbors algorithm, or already encoded in the data given as a
mesh; network (1), (12)).

Before proceeding further, let us observe that, at first sight, one might dismiss the locality condition as
superfluous, at least in the context we are interested in. However, the manifold approach to learning
(in all its aspects and applications in various fields) hides a concealed assumption that is crucial
for the method, but also deeply problematic. This veiled – or rather so obvious that people fail to
notice – assumption resides in the existence of an implicit manifold structure of the data. However,
while a convenient and expedient tool, so natural that it is presumed implicitly even in more critical
views of the method (such as (6), (26)), this hypothesis is far from evident and even fallacious in
many instances. Without going in details concerning types of data for which no true determination
of dimensionality and structure is possible so far, such as in Astronomy and Cosmology, one is
confronted with this problem in everyday Medical Imaging practice, when a volumetric element on a
hidden surface (e.g. colon) might be a tumor or a result of noise and faulty preprocessing.

To address this problem, we invoke Ollivier’s notion of statistical dimension of a metric measure
space (X, d, µ):

StatDim(X,d, µ) =
1
2

∫ ∫
d(y, z)dmx(y)dmx(z)

sup{V arµf | f is 1− Lipschitz}

Note that, in general, the two notions of dimension introduced above do not coincide. Indeed, we
have the following example: If (X, d, µ) is the discrete cube {0, 1}N with the Gaussian measure,
then nx ≈ 1, while StatDim(X,d, µ) ≈ N .

To summarize, the approach we proposed above allows us to ascertain the true (though perhaps
hidden) dimensionality of the data, without imposing the strong assumption of manifold structure,
thus of uniqueness of dimension (and of the identity between local and global dimension) and without
presuming some extraneous, “deus ex machina” knowledge regarding the data and its presumed
dimensionality.
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