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Abstract

The paper describes the design, implementation, and
evaluation of Depot, a cloud storage system that mini-
mizes trust assumptions. Depot tolerates buggy or mali-
cious behavior by any number of clients or servers, yet it
provides safety and liveness guarantees to correct clients.
Depot provides these guarantees using a two-layer archi-
tecture. First, Depot ensures that the updates observed by
correct nodes are consistently ordered under Fork-Join-
Causal consistency (FJC). FJC is a slight weakening of
causal consistency that can be both safe and live despite
faulty nodes. Second, Depot implements protocols that
use this consistent ordering of updates to provide other
desirable consistency, staleness, durability, and recovery
properties. Our evaluation suggests that the costs of these
guarantees are modest and that Depot can tolerate faults
and maintain good availability, latency, overhead, and
staleness even when significant faults occur.

1 Introduction
This paper describes the design, implementation, and
evaluation of Depot, a cloud storage system in the spirit
of S3 [1], Azure [4], and Google Storage [3] but with a
crucial difference: Depot clients do not have to trust, that
is assume, that Depot servers operate correctly.

What motivates Depot is that cloud storage service
providers (SSPs), such as S3 and Azure, are fault-prone
black boxes operated by a party other than the data
owner. Indeed, clouds can experience software bugs [9],
correlated manufacturing defects [56], misconfigured
servers and operator error [52], malicious insiders [67],
bankruptcy [5], undiagnosed problems [14], Acts of God
(e.g., fires [20]) and Man [49]. Thus, it seems prudent
for clients to avoid strong assumptions about an SSP’s
design, implementation, operation, and status—and in-
stead to rely on end-to-end checks of well-defined prop-
erties. In fact, removing such assumptions promises to
help SSPs too: today, a significant barrier to adopting
cloud services is precisely that many organizations hesi-
tate to place trust in the cloud [18].

Given this motivation, Depot assumes less than any
prior system about the correctness of participating hosts:
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• Depot eliminates trust for safety. A client can ensure
safety by assuming the correctness of only itself. De-
pot guarantees that any subset of correct clients ob-
serves sensible, well-defined semantics. This holds
regardless of how many nodes fail and no matter
whether they are clients or servers, whether these
are failures of omission or commission, and whether
these failures are accidental or malicious.

• Depot minimizes trust for liveness and availability.
We wish we could say “trust only yourself” for live-
ness and availability. Depot does eliminate trust for
updates: a client can always update any object for
which it is authorized, and any subset of connected,
correct clients can always share updates. However, for
reads, there is a fundamental limit to what any storage
system can guarantee: if no correct, reachable node
has an object, that object may be unavailable. We cope
with this fundamental limit by allowing reads to be
served by any node (even other clients) while preserv-
ing the system’s guarantees, and by configuring the
replication policy to use several servers (which pro-
tects against failures of clients and subsets of servers)
and at least one client (which protects against tempo-
rary [8] and permanent [5, 14] cloud failures).
Though prior work has reduced trust assumptions in

storage systems, it has not minimized trust with respect
to safety, liveness, or both. For example, quorum and
replicated state machine approaches [15, 19, 30] toler-
ate failures by a fraction of servers. However, they sac-
rifice safety when faults exceed a threshold and live-
ness when too few servers are reachable. Fork-based
systems [12, 13, 43, 44] remain safe without trusting a
server, but they compromise liveness in two ways. First,
if the server is unreachable, clients must block. Second,
a faulty server can permanently partition correct clients,
preventing them from ever observing each other’s subse-
quent updates.

Indeed, it is challenging to guarantee safety and live-
ness while minimizing trust assumptions: without some
assumptions about correct operation, providing even a
weak guarantee like eventual consistency—the bare min-
imum of what a storage service should provide—seems
difficult. For example, a faulty storage node receiving an
update from a correct client might quietly fail to prop-
agate that update, thereby hiding it from the rest of the
system. Perhaps surprisingly, we find that eventual con-
sistency is possible in this environment.
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In fact, Depot meets a contract far stronger than even-
tual consistency even under assorted and abundant faults
and failures. This set of well-defined guarantees under
weak assumptions is Depot’s top-level contribution, and
it derives from a novel synthesis of prior mechanisms and
our own. Depot is built around three key ideas:

(1) Reduce misbehavior to concurrency. As in prior
work [12, 13, 43, 44], the protocol requires that an up-
date be signed and that it name both its antecedents and
the system state seen by the updater. Then, misbehavior
by clients or servers is limited to forking: showing di-
vergent histories to different nodes. However, previous
work detects but does not repair forks. In contrast, De-
pot allows correct clients to join forks, that is, to incorpo-
rate the divergence into a sensible history, which allows
them to keep operating in the face of faults. Specifically,
a correct node regards a fork as logically concurrent up-
dates by two virtual nodes. At that point, correct nodes
can handle forking by faulty nodes using the same tech-
niques [11, 23, 37, 60, 66] that they need anyway to han-
dle a better understood problem: logically concurrent up-
dates during disconnected operation.

(2) Enforce Fork-Join-Causal consistency. To allow
end-to-end checks on SSP behavior, we must specify
a contract: When must an update be visible to a read?
When is it okay for a read to “miss” a recent update? De-
pot guarantees that a correct client observes Fork-Join-
Causal consistency (FJC) no matter how many other
nodes are faulty. FJC is a slight weakening of causal
consistency [7, 40, 55]. Depot defines FJC as its consis-
tency contract because it is weak enough to enforce de-
spite faulty nodes and without hurting availability. At the
same time, FJC is strong enough to be useful: nodes see
each other’s updates in an order that reflects dependen-
cies among both correct and faulty nodes’ writes. This
ordering is useful not only for end users of Depot but
also internally, within Depot.

(3) Layer other storage properties over FJC. Depot
implements a layered architecture that builds on the or-
dering guarantees provided by FJC to provide other de-
sirable properties: eventual consistency, bounded stale-
ness, durability, high availability, integrity (ensuring that
only authorized nodes can update an object), snapshot-
ting of versions (to guard against spurious updates from
faulty clients), garbage collection, and eviction of faulty
nodes.1 For all of these properties, the challenge is to
precisely define the strongest guarantee that Depot can
provide with minimal assumptions about correct opera-
tion. Once each property is defined, implementation is
straightforward because we can build on FJC, which lets
us reason about the order in which updates propagate
through the system.

1We are not explicitly addressing confidentiality and privacy, but,
as discussed in §3.1, existing approaches can be layered on Depot.

The price of providing these guarantees is tolerable, as
demonstrated by an experimental evaluation of a proto-
type implementation of Depot. Depot adds a few hundred
bytes of metadata to each update and each stored object,
and it requires a client to sign and store each of its up-
dates. We demonstrate that Depot can tolerate faults and
maintain good availability, latency, overhead, and stale-
ness even when significant faults occur. Additionally, be-
cause Depot makes minimal assumptions about servers,
we can implement Teapot, a variation of Depot that pro-
vides many of Depot’s guarantees using an unmodified
SSP, such as Amazon’s S3. The difference between De-
pot and Teapot suggests several modest extensions to
SSPs’ interfaces that would strengthen their guarantees.

2 Why untrusted storage?
When we say that a component is untrusted, we are not
adopting a “tinfoil hat” stance that the component is op-
erated by a malicious actor, nor are we challenging the
honesty of storage service providers. What we mean is
that the system provides guarantees, usually achieved by
end-to-end checks, even if the given component is in-
correct. Since components could be incorrect for many
reasons (as stated in the introduction), we believe that
designing to tolerate incorrectness is prudence, not para-
noia. We now answer some natural questions.

SSPs are operated by large, reputable companies, so
why not trust them? That is like asking, “Banks are large,
reputable repositories of money, so why do we need bank
statements?” For many reasons, customers and banks
want customers to be able to check the bank’s view of
their account activity. Likewise, our approach might ap-
peal not only to customers but also to SSPs: by requiring
less trust, a service might attract more business.

How likely are faults in the SSP? We do not know
the precise probability. However, we know that providers
do fail (as mentioned in the introduction). More broadly,
they carry non-negligible risks. First, they are opaque (by
nature). Second, they are complex distributed systems.
Indeed, coping with known hardware failure modes in
local file systems is difficult [58]; in cloud storage, this
difficulty can only grow. Given the opacity and complex-
ity, it seems prudent not to assume the unfailing correct-
ness of an SSP’s internals.

Even if we do not assume that SSPs are perfect, the
most likely failure is the occasional corrupted or lost
block, which can be addressed with checksums and repli-
cation. Do you really need mechanisms to handle other
cases (that all of the nodes are faulty, that a fork happens,
that old or out-of-order data is returned, etc.)? Replica-
tion and checksums are helpful, and they are part of De-
pot. However, they are not sufficient. First, failures are
often correlated: as Vogels notes, uncorrelated failures
are “absolutely unrealistic . . . as [failures] are often trig-
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Key−value store interface, like that of S3 or Azure Storage

Customer 1’s volume 1

Customer 1’s volume 2

X

Storage service provider (SSP)
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Data center 1 Data center m

Customer n’s volume

FIG. 1—Architecture of Depot. The arrows between servers
indicate replication and exchange.

gered by external or environmental events” [68]. These
events include the litany in the introduction.

Second, other types of failures are possible. For exam-
ple, a machine that loses power after failing to commit its
output [51, 71] may lose recent updates, leading to forks
in history. Or, a network failure might delay propagation
of an update from one SSP node to another, causing some
clients to read stale data. In general, our position is that
rather than try to handle every possible failure individu-
ally, it is preferable to define an end-to-end contract and
then design a system that always meets that contract.

The above events seem unlikely. Is tolerating them
worth the cost? One of our purposes in this paper is to
report for the first time what that cost is. Whether to “pur-
chase” the guarantees is up to the application, but as the
price is modest, we anticipate, with hope, that many ap-
plications will find it attractive.

What about clients? We also minimize trust of clients
(since they are, of course, also vulnerable to faults).

3 Architecture, scope, and use
Figure 1 depicts Depot’s high-level architecture. A set of
clients stores key-value pairs on a set of servers. In our
target scenario, the servers are operated by a storage ser-
vice provider (SSP) that is distinct from the data owner
that operates the clients.2 Keys and values are arbitrary
strings, with overhead engineered to be low when values
are at least a few KB. A Depot client exposes an interface
of GET and PUT to its application users.

2Because Depot does not require nodes to trust each other, different
data centers in Figure 1 could be operated by different SSPs. Doing so
might reduce the risk of correlated failures across replicas [6, 38]. For
simplicity, we describe and evaluate only single-SSP configurations.

For scalability, we slice the system into groups of
servers, with each group responsible for one or more vol-
umes. Each volume corresponds to a range of one cus-
tomer’s keys, and a server independently runs the proto-
col for each volume assigned to it. Many strategies for
partitioning keys are possible [22, 36, 50], and we leave
the assignment of keys to volumes to the layers above
Depot.

The servers for each volume may be geographically
distributed, a client can access any server, and servers
replicate updates using any topology (chain, mesh, star,
etc.). As in Dynamo [22], to maximize availability, De-
pot does not require overlapping read and write quorums.
In fact, as the dotted lines suggest, Depot can even func-
tion under complete server unavailability: the protocol
permits clients to communicate directly with each other.
If the SSP later recovers, clients can continue using the
SSP (after sending the missed updates to the servers).
This raises a question: why have the SSP at all? We point
to the usual benefits of cloud services: cost, scalability,
geographic replication, and management.

We use the term node to mean either a client or a
server. Clients and servers run the same basic Depot pro-
tocol, though they are configured differently.

3.1 Issues addressed
One of our aims in this work is to push the envelope in the
trade-offs between trust assumptions and system guaran-
tees. Specifically, for a set of standard properties that one
might desire in a storage system, we ask: what is the min-
imum assumption that we need to provide useful guaran-
tees, and what are those guarantees? The issues that we
examine are as follows:
• Consistency (§4–§5.2) and bounded staleness (§5.4):

Once a write occurs, the update should be visible to
reads “soon”. Consistency and staleness properties
limit the extent to which the storage system can re-
order, delay, or omit making updates visible to reads.

• Availability and durability (§5.3): Our availability
goal is to maximize the fraction of time that a client
succeeds in reading or writing an object. Durability
means that the system does not permanently lose data.

• Integrity and authorization (§5.5): Only clients autho-
rized to update an object should be able to create valid
updates that affect reads on that object.

• Data recovery (§5.6): Data owners care about end-to-
end reliability. Consistency, durability, and integrity
are not enough when the layers above Depot—faulty
clients, applications, or users—can issue authorized
writes that replace good data with bad. Depot does
not try to distinguish good updates from bad ones,
nor does it innovate on the abstractions used to de-
fend data from higher-layer failures. We do however
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explore how Depot can support standard techniques
such as snapshots to recover earlier versions of data.

• Evicting faulty nodes (§5.7): If a faulty node provably
deviates from the protocol, we wish to evict it from the
system so that it will not continue to disrupt operation.
However, we must never evict correct nodes.
Depot provides the above properties with a layered

approach. Its core protocol (§4) addresses consistency.
Specifically, the protocol enforces Fork-Join-Causal con-
sistency (FJC), which is the same as causal consis-
tency [7, 40, 55] in benign runs. This protocol is the
essential building block for the other properties listed
above. In §5, we define these properties precisely and
discuss how Depot provides them.

Note that we explicitly do not try to solve the confiden-
tiality/privacy problem within Depot. Instead, like com-
mercial storage systems [1, 4], Depot enforces integrity
and authorization (via client signatures) but leaves it to
higher layers to use appropriate techniques for the pri-
vacy requirements of each application (e.g., allow global
access, encrypt values, encrypt both keys and values, in-
troduce artificial requests to thwart traffic analysis, etc.).

We also do not claim that the above list of issues is ex-
haustive. For example, it may be useful to audit storage
service providers with black box tests to verify that they
are storing data as promised [38, 61], but we do not ex-
amine that issue. Still, we believe that the properties are
sufficient to make the resulting system useful.

3.2 Depot in use: Applications & conflicts
Depot’s key-value store is a low-level building block over
which many applications can be built. For example, hun-
dreds of widely used applications—including backup,
point of sale software, file transfer, investment analytics,
cross-company collaboration, and telemedicine—use the
S3 key-value store [2], and Depot can serve all of them: it
provides a similar interface to S3, and it provides strictly
stronger guarantees.

An issue in systems that are causally consistent and
weaker—a set that includes not just Depot and S3
but also CVS, SVN, Git, Bayou [55], Coda [37], and
others—is handling concurrent writes to the same object.
Such conflicts are unfortunate but unavoidable: they are
provably the price of high availability [26].

Many approaches to resolving conflicting updates
have been proposed [37, 60, 66], and Depot does not
claim to extend the state of the art on this front. In fact,
Depot is less ambitious than some past efforts: rather
than try to resolve conflicts internally (e.g., by picking
a winner, merging concurrent updates, or rolling back
and re-executing transactions [66]), Depot simply ex-
poses concurrency when it occurs: a read of key k returns
the set of updates to k that have not been superseded by

any logically later update of k.3

This approach is similar to that of S3’s replication
substrate, Dynamo [22], and it supports a range of
application-level policies. For example, applications us-
ing Depot may resolve conflicts by filtering (e.g., reads
return the update by the highest-numbered node, reads
return an application-specific merge of all updates, or
reads return all updates) or by replacing (e.g., the ap-
plication reads the multiple concurrent values, performs
some computation on them, and then writes a new value
that thus appears logically after, and thereby supersedes,
the conflicting writes).

3.3 System and threat model
We now briefly state our technical assumptions. First,
nodes are subject to standard cryptographic hardness as-
sumptions, and each node has a public key known to all
nodes. Second, any number of nodes can fail in arbitrary
(Byzantine [41]) ways: they can crash, corrupt data, lose
data, process some updates but not others, process mes-
sages incorrectly, collude, etc. Third, we assume that any
pair of timely, connected, and correct nodes can even-
tually exchange any finite number of messages. That is,
a faulty node cannot forever prevent two correct nodes
from communicating (but we make no assumptions about
how long “eventually” is).

Fourth, above we used the term correct node. This
term refers to a node that never deviates from the pro-
tocol nor becomes permanently unavailable. A node that
obeys the protocol for a time but later deviates is not
counted as correct. Conversely, a node that crashes and
recovers with committed state intact is equivalent to a
correct node that is slow. Fifth, to ensure the liveness of
garbage collection, we assume that unresponsive clients
are eventually repaired or replaced. To satisfy this as-
sumption, an administrator can install an unresponsive
client’s keys and configuration on new hardware [15].

4 Core protocol
In Depot, clients’ reads and updates to shared objects
should always appear in an order that reflects the logic of
higher layers. For example, an update that removes one’s
parents from a friend list and an update that posts spring
break photos should appear in that order, not the other
way around [21]. However, Depot has two challenges.
First, it aims for maximum availability, which fundamen-
tally conflicts with the strictest orderings [26]. Second, it
aims to provide its ordering guarantees despite arbitrary
misbehavior from any subset of nodes. In this section,

3Note that Depot neither creates concurrency nor makes the prob-
lem worse. If an application cannot deal with conflicts, it can still use
Depot but must restrict its use (e.g., by adding locks and sending all
operations through a single SSP node), and it must sacrifice the ability
to tolerate faults (such as forks) that appear as concurrency.
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we describe how the protocol at Depot’s core achieves a
sensible and robust order of updates while optimizing for
availability and tolerating arbitrary misbehavior.

As mentioned above, this basic protocol is run by both
clients and servers. This symmetry not only simplifies
the design but also provides flexibility. For example, if
servers are unreachable, clients can share data directly.
For simplicity, the description below does not distinguish
between clients and servers.

4.1 Basic protocol
This subsection describes the basic protocol to propagate
updates, ignoring the problems raised by faulty nodes.
The protocol is essentially a standard log exchange pro-
tocol [10, 55]; we describe it here for background and to
define terms.

The core message in Depot is an update that changes
the value associated with a key. It has the following form:

dVV, {key, H(value), logicalClock@nodeID, H(history)}σnodeID

Updates are associated with logical times. A node as-
signs each update an accept stamp of the form logical-
Clock@nodeID [55]. A node N increments its logical
clock on each local write. Also, when N receives an up-
date u from another node, N advances its logical clock to
exceed u’s. Thus, an update’s accept stamp exceeds the
accept stamp of any update on which it depends [40]. The
remaining fields, dVV and H(history), and the writer’s
signature, σnodeID, defend against faults and are discussed
in subsections 4.2 and 4.3.

Each node maintains two local data structures: a log
of updates it has seen and a checkpoint reflecting the cur-
rent state of the system. For efficiency, Depot separates
data from metadata [10], so the log and checkpoint con-
tain collision-resistant hashes of values. If a node knows
the hash of a value, it can fetch the full value from an-
other node and store the full value in its checkpoint. Each
node sorts the updates in its log by accept stamp, sort-
ing first by logicalClock and breaking ties with nodeID.
Thus, each new write issued by a node appears at the end
of its own log and (assuming no faulty nodes) the log
reflects a causally consistent ordering of all writes.

Information about updates propagates through the sys-
tem when nodes exchange tails of their logs. Each node
N maintains a version vector VV with an entry for each
node M in the system: N.VV[M] is the highest logical
clock N has observed for any update by M [54]. To trans-
mit updates from node M to node N, M sends to N the
updates from its log that N has not seen.

Two updates are logically concurrent if neither ap-
pears in the other’s history. Concurrent writes may con-
flict if they update the same object; conflicts are handled
as described in Section 3.2.

4.2 Consistency despite faults

There are three fields in an update that defend the pro-
tocol against faulty nodes. The first is a history hash,
H(history), that encodes the history on which the update
depends using a collision-resistant hash that covers the
most recent update by each node known to the writer
when it issued the update. By recursion, this hash cov-
ers all updates included by the writer’s current version
vector. Second, each update is sent with a dependency
version vector, dVV, that indicates the version vector that
the history hash covers. Note that while dVV logically
represents a full version vector, when node N creates an
update u, u’s dVV actually contains only the entries that
have changed since the last write by N. Third, a node
signs its updates with its private key.

A correct node C accepts an update u only if it meets
five conditions. First, u must be properly signed. Sec-
ond, except as described in the next subsection, u must
be newer than any updates from the signing node that
C has already received. This check prevents C from ac-
cepting updates that modify the history of another node’s
writes. Third, C’s version vector must include u’s dVV.
Fourth, u’s history hash must match a hash computed
by C across every node’s last update at time dVV. The
third and fourth checks ensure that before receiving up-
date u, C has received all of the updates on which u de-
pends. Fifth, u’s accept stamp must be at most a constant
times C’s current wall-clock time (e.g., u.acceptStamp <
1000 ∗ currentTimeMillis()). This check defends against
exhaustion of the 64-bit logical time space.

Given these checks, attempts by a faulty node to fabri-
cate u and pass it as coming from a correct node, to omit
updates on which u depends, or to reorder updates on
which u depends will result in C rejecting u. To compro-
mise causal consistency, a faulty node has one remaining
option: to fork, that is, to show different sequences of
updates to different communication partners [43]. Such
behavior certainly damages consistency. However, the
mechanisms above limit that damage, as we now illus-
trate with an example. Then, in subsection 4.3 we de-
scribe how Depot recovers from forks.

Example: The history hash in action A faulty node M
can create two updates u1@M and u′1@M such that neither
update’s history includes the other’s. M can then send
u1@M and the updates on which it depends to one node,
N1, and u′1@M and its preceding updates to another node,
N2. N1 can then issue new updates that depend on up-
dates from one of M’s forked updates (here, u1@M) and
send these new updates to N2. At this point, absent the
history hash, N2 would receive N1’s new updates with-
out receiving the updates by M on which they depend: N2
already received u′1@M , so its version vector appears to al-
ready include the prior updates. Then, if N2 applies just
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N1’s writes to its log and checkpoint, multiple consis-
tency violations could occur. First, the system may never
achieve eventual consistency because N2 may never see
write u1@M . Further, the system may violate causality be-
cause N2 has updates from N1 but not some earlier up-
dates (e.g., u1@M) on which they depend.

The above confusion is prevented by the history hash
. If N1 tries to send its new updates to N2, N2 will be
unable to match the new updates’ history hashes to the
updates N2 actually observed, and N2 will reject N1’s
updates (and vice-versa). As a result, N1 and N2 will be
unable to exchange any updates after the fork junction
introduced by M after u0@M .

Discussion At this point, we have composed mecha-
nisms from Bayou [55] and PRACTI [10] (update ex-
change), SUNDR [43] (signed version vectors), and
BFT2F [44] (history hashes, here used by clients and
modified to apply to history trees instead of linear histo-
ries) to provide fork-causal consistency (FCC) under ar-
bitrary faults. We define FCC precisely in Appendix A.
Informally, it means that each node sees a causally con-
sistent subset of the system’s updates even though the
whole system may no longer be causally consistent.
Thus, although the global history has branched, as each
node peers backward from its branch to the beginning of
time, it sees causal events the entire way.

Unfortunately, enforcing even this weakening of
causal consistency would prohibit eventual consistency,
crippling the system: FCC requires that once two nodes
have been forked, they can never observe one another’s
updates after the fork junction [43]. In many environ-
ments, partitioning nodes this way is unacceptable. In
those cases, it would be far preferable to further weaken
consistency to ensure an availability property: connected,
correct nodes can always share updates. We now de-
scribe how Depot achieves this property, using a new
mechanism: joining forks in the system’s history.

4.3 Protecting availability: Joining forks
To join forks, nodes use a simple coping strategy: they
convert concurrent updates by a single faulty node into
concurrent updates by a pair of virtual nodes. A node that
receives these updates handles them as it would “normal”
concurrency: it applies both sets of updates to its state
and, if both branches modify the same object, it returns
both conflicting updates on reads (§3.2). We now fill in
some details.

Version-and-hash vectors Each node N’s locally main-
tained N.VV[M] contains not only the highest logical
clock that N has observed for M but also a hash of M’s
update at that logical clock. As a result, if a faulty node
creates logically different updates with the same accept
stamp, other nodes can detect the discrepancy through

update exchange.

Identifying a fork First consider a two-way fork. A fork
junction comprises exactly three updates where a faulty
node M has created two updates (e.g., u1@M and u′1@M)
such that (i) neither update includes the other in its his-
tory and (ii) each update’s history hash links it to the
same previous update by that writer (e.g., u0@M). If a
node N2 receives from a node N1 an update whose his-
tory is incompatible with the updates it has already re-
ceived, and if neither node has yet identified the fork
junction, N1 and N2 identify the three forking updates as
follows. First, N1 and N2 perform a binary search on the
updates included in the nodes’ version vectors to identify
the latest version vector, VVc, encompassing a common
history. Then, N1 sends its log of updates beginning from
VVc. Finally, at some point, N2 receives the first update
by M (e.g., u1@M) that is incompatible with the updates
by M that N2 has already received (e.g., u0@M and u′1@M).

Tracking forked histories After a node identifies the
three updates in the fork junction, it expands its version
vector to include three entries for the node that issued the
forking updates. The first is the pre-fork entry, whose in-
dex is the index (e.g., M) before the fork and whose con-
tents will not advance past the logical clock of the last
update before the fork (e.g., u0@M). The other two are
the post-fork entries, whose indices consist of the index
before the fork augmented with the history hash of the re-
spective first update after the fork. Each of these entries
initially holds the logical clock of the first update after
the fork (e.g., of u1@M and u′1@M); these values advance
as the node receives new updates after the fork junction.

Note that this approach works without modification
if a faulty node creates a j-way fork, creating updates
u1

1@M , u2
1@M , . . ., uj

1@M that link to the same prior up-
date (e.g., u0@M). The reason is that, regardless of the
order in which nodes detect fork junctions, the branches
receive identical names (because branches are named by
the first update in the branch). A faulty node that is re-
sponsible for multiple dependent forks does not stymie
this construction either. After i dependent forks, a virtual
node’s index in the version vector is well-defined: it is
M || H(ufork1) || H(ufork2) || . . . || H(uforki) [55].

Log exchange revisited The expanded version vector
allows a node to identify which updates to send to a peer.
In the basic protocol, when a node N2 wants to receive
updates from N1, it sends its current version vector to
N1 to identify which updates it needs. After N2 detects a
fork and splits one version vector entry into three, it sim-
ply includes all three entries when asking N1 for updates.
Note that N1 may not be aware of the fork, but the history
hashes that are part of the indices of N2’s expanded ver-
sion vector (as per the virtual node construction above)
tell N2 to which branch N1’s updates should be applied
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and tell N1 which updates to actually send. Conversely, if
the sender N1 has received updates that belong to neither
branch, then N1 and N2 identify the new fork junction as
described above.

Bounding forks The overhead of this coping strategy
is the extra space, bandwidth, and computation to deal
with larger version vectors and with conflict detection.
As shown in §7.3, this overhead is negligible. Moreover,
the number of forks is curtailed by three mechanisms that
together bound the number of forks correct nodes will
accept before the faulty node is evicted from the system
(see also §5.7). First, once a correct node learns that a
faulty node has created a fork, it has a proof of misbehav-
ior from that node, and it will not communicate with and
thus not accept any new updates directly from that node.
Second, once a correct node is aware of a fork, it accepts
a new update by the forking node only if some other node
signs an i-vouch-for-this certificate that accepts responsi-
bility for receiving the update before learning of the fork.

Third, we bound the number of i-vouch-for-this cer-
tificates. Correct nodes create at most one such certificate
per faulty node: when a node first learns of a fork, it cre-
ates an i-vouch-for-this certificate covering all previously
received updates by the faulty node. Then, the i-vouch-
for-this certificate propagates with the forking writes via
the log exchange protocol, allowing each node to main-
tain the invariant that, for all updates that it has received
by the faulty node after the fork junction, it has received
i-vouch-for-this certificates covering those updates. If all
nodes other than M are correct, this mechanism ensures
that M can introduce at most n − 1 forks in an n-node
system before all nodes stop communicating with it.

Note, however, that a faulty node M2 could create in-
consistent i-vouch-for-this certificates and thereby intro-
duce additional forks by M into the system. A correct
node treats such conflicting i-vouch-for-this certificates
roughly as it would treat forking writes: it treats the con-
flicting i-vouch-for-this certificates as a proof of misbe-
havior by M2, stops communicating directly with M2,
creates an i-vouch-for-this certificate for the writes that
it has already received from M2, supplies M2’s conflict-
ing i-vouch-for-this certificates to peers during log ex-
change, and demands i-vouch-for-this certificates for any
new writes by M2 that it receives. Thus, a faulty node
(that creates forks) collaborating with k faulty nodes (that
create inconsistent i-vouch-for-this certificates) can in-
ject fewer than k · n forks into the history of updates ob-
served by correct nodes.

5 Properties and guarantees
This section describes how Depot enforces needed prop-
erties with minimal trust assumptions. Figure 2 summa-
rizes these properties and lists the required assumptions.

Safety/ Correct nodes
Dimension Liveness Property required
Consistency Safety Fork-Join Causal Any subset

Safety Bounded staleness Any subset
Safety Eventual consistency (s) Any subset

Availability Liveness Eventual consistency (l) Any subset
Liveness Always write Any subset
Liveness Always exchange Any subset
Liveness Write propagation Any subset
Liveness Read availability / A correct node

durability has object

Integrity Safety Only auth. updates Clients

Recoverability Safety Valid discard Any subset

Eviction Safety Valid eviction Any subset
Safety Bounded forks Any subset

FIG. 2—Summary of properties provided by Depot.

Below, we define these properties and describe how De-
pot provides them. The key idea is that the replication
protocol enforces Fork-Join-Causal consistency (FJC).
Given FJC, we can constrain and reason about the order
that updates propagate and use those constraints to help
enforce the remaining properties.

5.1 Fork-Join-Causal consistency
Clients expect a storage service to provide consistent ac-
cess to stored data. Depot guarantees a new consistency
semantic for all reads and updates to a volume that are
observed by any correct node: Fork-Join-Causal consis-
tency (FJC). A formal description of FJC appears in Ap-
pendix A. Here we describe its core property:

• Dependency preservation. If update u1 by a correct
node depends on an update u0 by any node, then u0 be-
comes observable before u1 at any correct node. (An
update u of an object o is observable at a node if a read
of o would return a version at least as new as u [25].)

To explain FJC, we contrast it with causal consistency
(CC) in fail-stop systems [7, 40, 55]. CC is based on a
dependency preservation property that is identical to the
one above, except that it omits the “correct nodes” quali-
fication. Thus, to applications and users, FJC appears al-
most identical to causal consistency with two exceptions.
First, under FJC, a faulty node can issue forking writes w
and w′ such that one correct node observes w without
first observing w′ while another observes w′ without first
observing w. Second, under FJC, faulty nodes can issue
updates whose stated histories do not include all updates
on which they actually depend. For example, when cre-
ating the forking updates w and w′ just described, the
faulty node might have first read updates uC1 and uC2
from nodes C1 and C2, then created w that claimed to
depend on uC1 but not uC2, and finally created update w′

that claimed to depend on uC2 but not uC1. Note, however,
that once a correct node observes w (or w′), it will include
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w (or w′) in its subsequent writes’ histories. Thus, as cor-
rect nodes observe each others’ writes, they will also ob-
serve both w and w′ and their respective dependencies in
a consistent way. Specifically, w and w′ will appear as
causally concurrent writes by two virtual nodes (§4.3).

Though FJC is weaker than linearizability, sequential
consistency, or causal consistency, it still provides prop-
erties that are critical to programmers. First, FJC implies
a number of useful session guarantees [65] for programs
at correct nodes, including monotonic reads, monotonic
writes, read-your-writes, and writes-follow-reads. Sec-
ond, as we describe in the subsections below, FJC is the
foundation for eventual consistency, for bounded stale-
ness, and for further properties beyond consistency.

Stronger consistency during benign runs. Depot
guarantees FJC even if an arbitrary number of nodes
fail in arbitrary ways. However, it provides a stronger
guarantee—causal consistency—during runs with only
omission failures. Of course, causal consistency itself is
weaker than sequential consistency or linearizability. We
accept this weakening because it allows Depot to remain
available to reads and writes during partitions [22, 26].

5.2 Eventual consistency
The term eventual consistency is often used informally,
and, as the name suggests, it is usually associated with
both liveness (“eventual”) and safety (“consistency”).
For precision, we define eventual consistency as follows.
• Eventual consistency (safety). Successful reads of an

object at correct nodes that observe the same set of
updates return the same values.

• Eventual consistency (liveness). Any update issued or
observed by a correct node is eventually observable by
all correct nodes.
The safety property is directly implied by FJC. The

liveness property is ensured by the replication proto-
col (§4), which entangles updates to prevent selective
transmission, and by the communication heuristics (§6),
which allow a node that is unable to communicate with a
server to communicate with any other server or client.

5.3 Availability and durability
In this subsection, we consider availability of reads, of
writes, and of update propagation. We also consider
durability. We begin by noting that the following strong
availability properties follow from the protocol in §4 and
the communication heuristics (§6):
• Always write. An authorized node can always update

any object.
• Always exchange. Any subset of correct nodes can ex-

change any updates that they have observed, assuming
they can communicate as per our model in §3.3.

• Write propagation. If a correct node issues a write,
eventually all correct nodes observe that write, assum-
ing that any message sent between correct nodes is
eventually delivered.
Unfortunately, there is a limit to what any storage sys-

tem can guarantee for reads: if no correct node has an ob-
ject, then the object may not be durable, and if no correct,
reachable node has an object, then the object may not be
available. Nevertheless, we could, at least in principle,
still have each node rely only on itself for read avail-
ability and durability: nodes could propagate updates and
values, and all servers and all clients could store all val-
ues. However, fully replicating all data is not appealing
for many cloud storage applications.

Depot copes with these limits in two ways. First, De-
pot provides guarantees on read availability and durabil-
ity that minimize the required number of correct nodes.
Second, Depot makes it likely that this number of cor-
rect nodes actually exists. The guarantees are as follows
(note that durability—roughly, “the system does not per-
manently lose my data”—manifests as a liveness prop-
erty):
• Read availability. If during a sufficiently long syn-

chronous interval any reachable and correct node has
an object’s value, then a read by a correct node will
succeed.

• Durability. If any correct hoarding node, as defined
below, has an object’s value, then a read of that object
will eventually succeed. That is, an update is durable
once its value reaches a correct node that will not pre-
maturely discard it.

A hoarding node is a node that stores the value of a ver-
sion of an object until that version is garbage collected
(§5.6). In contrast, a caching node may discard a value at
any time.

To make it likely that the premise of the guarantees
holds—namely that a correct node has the data—Depot
does three things. First, its configuration replicates data
to survive important failure scenarios. All servers usually
store values for all updates they receive: except as dis-
cussed in the remainder of this subsection, when a client
sends an update to a server and when servers transmit
updates to other servers, the associated value is included
with the update. Additionally, the client that issues an
update also stores the associated value, so even if all
servers become unavailable, clients can fetch the value
from the original writer. Such replication allows the sys-
tem to handle not only the routine failure case where a
subset of servers and clients fail and lose data but also the
client disaster and cloud disaster cases where all clients
or all servers fail [5, 14] or become unavailable [8].

Second, receipts allow a node to avoid accepting an
insufficiently-replicated update. When a server processes
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an update and stores the update’s value, it signs a receipt
and sends the receipt to the other servers. Then, we ex-
tend the basic protocol to require that an update carry
either (a) a receipt set indicating that at least k servers
have stored the value or (b) the value, itself.

Thus, in normal operation, servers receive and store
updates with values, and clients receive and store updates
with receipt sets. However, if over some interval, fewer
than k servers are available, clients will instead receive,
store, and propagate both updates and values for updates
created during this interval. Finally, although servers nor-
mally receive updates and values together, there are cor-
ner cases where—to avoid violating the always exchange
property—they must accept an update with only a receipt
set. Thus, in the worst case Depot can guarantee only
that an object value not stored locally is replicated by the
client that created it and by at least k servers.

Third, if a client has an outstanding read for version
v, it withholds assent to garbage collect v (§5.6) until the
read completes with either v or a newer version.

5.4 Bounded staleness
A client expects that soon after it updates an object, other
clients that read the object see the update. The following
guarantee codifies this expectation:
• Bounded staleness. If correct clients C1 and C2 have

clocks that remain within ∆ of a true clock and C1
updates an object at time t0, then by no later than t0 +
2Tann + Tprop + ∆, either (1) the update is observable
to C2 or (2) C2 suspects that it has missed an update
from C1.

Tann and Tprop are configuration parameters indicating
how often a node announces its liveness and how long
propagating such announcements is expected to take;
both are typically a few tens of seconds.

Depot uses FJC consistency to guarantee that a client
always either knows it has seen all recent updates or sus-
pects it has not. Every Tann seconds, each client updates
a per-client beacon object [43] in each volume with its
current physical time. When C2 sees that C1’s beacon
object indicates time t, then C2 is guaranteed—by FJC
consistency—to see all updates issued by C1 before time
t. On the other hand, if C1’s beacon object does not show
a recent time, C2 suspects that it may not have seen other
recent updates by C1.

When C2 suspects that it has missed updates from C1,
it switches to receiving updates from a different server.
If that does not resolve the problem, C2 tries to contact
C1 directly to fetch any missed updates and the updates
on which those missed updates depend.

Applications use the above mechanism as follows. If
a node suspects missing updates, then an application that
calls GET has two options. First, GET can return a warn-
ing that the result might be stale. This option is our de-

fault; it provides the bounded staleness guarantee above.
Alternatively, an application that prefers to trade worse
availability for better consistency [26] can retry with dif-
ferent servers and clients, blocking until the local client
has received all recent beacons.

Note that a faulty client might fail to update its bea-
con, making all clients suspicious all the time. What,
then, are the benefits of this bounded staleness guar-
antee? First, although Depot is prepared for the worst
failures, we expect that it often operates in benign con-
ditions. When clients, servers, and the network operate
properly, clients are given an explicit guarantee that they
are reading fresh data. Second, when some servers or
network paths are faulty, suspicion causes clients to fail-
over to other communication paths to get recent updates.
Additionally, stale reads can be reported to the client’s
administrator who may attempt to diagnose the problem
(e.g., is C1 down, is my network down, is my ISP down,
or is the SSP down?) and repair it.

Bounded staleness v. FJC. Bounded staleness and
FJC consistency are complementary properties in Depot.
Without bounded staleness, a faulty server could serve a
client an arbitrarily old snapshot of the system’s state—
and be correct according to FJC. Conversely, bounding
staleness without a consistency guarantee (assuming that
is even possible; we bound staleness by relying on con-
sistency) is not enough. For engineering reasons, our
staleness guarantees are tens of seconds; absent consis-
tency guarantees, applications would get confused be-
cause there could be significant periods of time when
some updates are visible, but related ones are not.

5.5 Integrity and authorization
Under Depot, no matter how many nodes are faulty, only
authorized clients can update a key/value pair in a way
that affects correct clients’ reads: the protocol requires
nodes to sign their updates, and correct nodes reject
unauthorized updates.

A natural question is: how does the system know
which nodes are authorized to update which objects?
Our prototype takes a simple approach. Volumes are
statically configured to associate ranges of lookup keys
with specific nodes’ public keys. This lets specific clients
write specific subsets of the system’s objects, and it pre-
vents servers from modifying clients’ objects. Imple-
menting more sophisticated approaches to key manage-
ment [47, 70] is future work. We speculate that FJC will
make it relatively easy to ensure a sensible ordering of
policy updates and access control decisions [24, 70].

5.6 Data recovery
Even if a storage system retains a consistent, fresh view
of the data written to it, data owners care about end-to-
end reliability, and the applications and users above the
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storage system pose a significant risk. For example, many
of the failures listed in the introduction may corrupt or
destroy data. Depot does not try to distinguish “good”
and “bad” updates or advance the state of the art in pro-
tecting storage systems from bad updates. Depot’s FJC
consistency does, however, provide a basis for applying
many standard defenses. For example, Depot can keep
all versions of the objects in a volume, or it can provide
a basic backup ladder (all versions of an object kept for a
day, daily versions kept for a week, weekly versions kept
for a month, and monthly versions kept for a year).

Given FJC consistency, implementing laddered back-
ups is straightforward. Initially, servers retain every up-
date and value that they receive, and clients retain the
update and value for every update that they create.
Then, servers and clients discard the non-laddered ver-
sions by unanimous consent of clients. Every day, clients
garbage collect a prefix of the system’s logs by produc-
ing a checkpoint of the system’s state (using techniques
adopted from Bayou [55]). The checkpoint includes in-
formation needed to protect the system’s consistency and
a candidate discard list (CDL) that states which prior
checkpoints and which versions of which objects may be
discarded. The job of proposing the checkpoint rotates
over the clients each day.

The keys to correctness here are (a) a correct client
will not sign a CDL that would delete a checkpoint pre-
maturely and (b) a correct node discards a checkpoint or
version if and only if it is listed in a CDL signed by all
clients. These checks ensure the following property:
• Valid discard. If at least one client is correct, a correct

node will never discard a checkpoint or a version of an
object required by the backup ladder.
Note that a faulty client cannot cause the system to

discard data that it needs: the above approach provides
the same read availability and durability guarantees for
backup versions as for the current version (§5.3). How-
ever, a faulty client can delay garbage collection. If a
checkpoint fails to garner unanimous consent, clients no-
tify an administrator, who troubleshoots the faulty client
or, if all else fails, replaces it with a new machine. Thus,
faulty clients can cause the system to consume extra
storage—but only temporarily, assuming that unrespon-
sive clients are eventually repaired or replaced (§3.3).

5.7 Evicting faulty nodes
A faulty node can weaken consistency by issuing a pair
of illegal forking writes such that neither write depends
on the other. Depot guarantees that if at least one correct
node observes an update from each fork, then eventu-
ally all correct nodes will observe a proof of misbehavior
(POM) against the faulty node, and refuse to accept new
updates from that node.

As §4.3 describes, Depot bounds the number of dis-

tinct forks that a faulty node can introduce into the sys-
tem either directly (e.g., by sending them directly to a
faulty node) or indirectly (e.g., by “laundering” them
through an accomplice node that ignores POMs). To pro-
vide this bound, Depot requires that if a correct node ac-
cepts updates by a provably faulty node, then the updates
must be covered by i-vouch-for-this certificates. Depot
further requires each correct node to issue at most one
i-vouch-for-this certificate per faulty node, and Depot
treats conflicting i-vouch-for-this certificates by a node
as a proof of misbehavior against that node.

As noted in §4.3, a faulty node that creates forks col-
laborating with k faulty nodes that create inconsistent i-
vouch-for-this certificates can inject fewer than k ·n forks
into the history of updates observed by correct nodes.
Thus, k faulty nodes can never cause correct nodes to ob-
serve more than k2 · n forks, though we would typically
expect POMs to circulate and cut off faulty nodes much
more quickly than that. Thus, Depot ensures:
• Bounded forks. In a n-node system with k faulty nodes,

no correct node will observe more than O(k2 · n) forks
introduced by faulty nodes.
Eviction occurs only if nodes sign messages consti-

tuting a cryptographic proof of misbehavior. If a faulty
node is merely unresponsive, that is handled exactly as
SLA violations are today. Thus, Depot ensures:
• Valid eviction. No correct node is ever evicted.

6 Implementation
Our prototype is implemented in Java. It keeps every ver-
sion written so does not implement laddered backups or
garbage collection (§5.6). It is otherwise complete (but
not optimized). It uses Berkeley DB (BDB) for local stor-
age and does so synchronously: after writing to BDB,
Depot calls commit before returning to the caller, and we
configure BDB to call fsync on every commit.4

Implementation of GET & PUT. Depot clients expose
a PUT and GET API and implement these calls over the
log exchange protocol (§4). Recall that Depot separates
data from metadata and that an update is only the meta-
data. Each client node chooses a (usually nearby) pri-
mary server and fetches updates via background gossip.

On a PUT, a client first locally stores the update and
value. As an optimization, rather than initiate the log ex-
change protocol, a client just sends the update and value
of each PUT directly to its primary server. If the update
passes all consistency checks and the value matches the
hash in the update, the server adds these items to its
log and checkpoint. Otherwise, the client and server fall

4This approach aids, but does not quite guarantee, persistence of
committed data: “synchronous” disk writes in today’s systems do not
always push data all the way to the disk’s platter [51]. Note that if a
node commits data and subsequently loses it because of an ill-timed
crash, Depot handles that case as it does any other faulty node.
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Depot adds modest latency relative to a baseline system. De-
pot’s additional GET latency is comparable to checksumming
data with SHA-256. For PUTs, 99-percentile latency for 10KB
objects increases from 14.8 ms to 27.7 ms.

§7.1

Depot’s main resource overheads are client-side storage and
client- and server-side CPU use.

§7.1

Depot imposes little additional cost for read-mostly workloads.
For example, Depot’s weighted dollar cost of 10KB GETs and
PUTs are 2% and 56% higher than the baseline.

§7.2

When failures occur, Depot continues operating correctly, with
little impact on latency or resource consumption.

§7.3

FIG. 3—Summary of main evaluation results.

back on log exchange. Similarly, servers send updates
and bodies to each other “out of band” as they are re-
ceived; if two servers detect that they are out of sync,
they fall back on log exchange.

On a GET, a client sends the requested lookup key,
k, to its primary server along with a staleness hint. The
staleness hint is a set of two-byte digests, one per log-
ically latest update of k that the client has received via
background gossip; note that unless there are concurrent
updates to k, the staleness hint contains one element. If
the staleness hint matches the latest updates known to
the server, the server responds with the corresponding
values. The client then checks that these values corre-
spond to the H(value) entries in the previously received
updates. If so, the client returns the values to the appli-
cation, completing the GET. If the server rejects the stal-
eness hint or if the values do not match, then the client
initiates a value and update transfer by sending to its pri-
mary server (a) its version vector and (b) k. The server
replies with (a) the missing updates, which the client ver-
ifies (§4.2), and (b) the most recent set of values for k.

If a client cannot reach its primary server, it randomly
selects another server (and does likewise if it cannot
reach that server). If no servers are available, the client
enters “client-to-client mode” for a configurable length
of time, during which it gossips with the other clients. In
this mode, on a PUT, the client responds to the applica-
tion as soon as the data reaches the local store. On a GET,
the client fetches the values from the clients that created
the latest known updates of the desired key.

7 Experimental evaluation
In evaluating Depot, our principal question is: what is the
“price of distrust?” That is, how much do Depot’s guar-
antees cost, relative to a baseline storage system? We
measure latency, network traffic, storage at both clients
and servers, and CPU cycles consumed at both clients
and servers (§7.1). We then convert the resource over-
heads into a common currency [29] using a cost model
loosely based on the prices charged by today’s storage
and compute services (§7.2). We then move from “stick”
to “carrot”, illustrating Depot’s end-to-end guarantees

Baseline Clients trust the server to handle their PUTs and
GETs correctly. Clients neither maintain local state
nor perform checks on returned data.

B+Hash Clients attach SHA-256 hashes to the values that
they PUT and verify these hashes on GETs.

B+H+Sig Clients sign the values that they PUT and verify
these signatures on GETs.

B+H+S+Store The same checks as B+H+Sig, plus clients locally
store the values that they PUT, for durability and
availability despite server failures.

FIG. 4—Baseline variants whose costs we compare to Depot’s.

under faults (§7.3). Figure 3 summarizes our results.

Method and environment Most of our experiments
compare our Depot implementation to a set of baseline
storage systems, described in Figure 4. All of them repli-
cate key-value pairs to a set of servers, using version vec-
tors to detect precedence, but omit some of Depot’s safe-
guards. In none of the variants do clients check version
vectors or maintain history hashes. These baselines use
the same code base as Depot, so they are not heavily op-
timized. For example, as in Depot, the baselines separate
data from metadata, causing writes to two Berkeley DB
tables on every PUT, which may be inefficient compared
to a production system. Such inefficiencies may lead to
our underestimating Depot’s overhead.

Our default configuration is as follows. There are 8
clients and 4 servers with the servers connected in a mesh
and two clients connecting to each server. Servers gossip
with each other once per second; a client gossips with its
primary server every 5 seconds. We experiment with a
slightly older implementation that runs without receipts
(§5.3) and beaconing (§5.4). Since receipts require signa-
ture checks, our evaluation slightly understates overhead.

Our default workload is as follows. Clients issue a se-
quence of PUTs and GETs against a volume preloaded
with 1000 key-value pairs. We partition the write key set
into several non-overlapping ranges, one for each client.
As a result, a GET returns a single value, never a set. A
client chooses write keys randomly from its write key
range and read keys randomly from the entire volume.
We fix the key size at 32 bytes. In each run, each client is-
sues 600 requests at roughly one request per second. We
examine three different value sizes (3 bytes, 10 KB, and
1 MB) and the following read-write percentages: 0/100,
10/90, 50/50, 90/10, and 100/0. (We do not report the
10/90 and 90/10 results; their results are consistent with,
and can be predicted by, those from the other workloads.)

We use a local Emulab [69]. All hosts run Linux
FC 8 (version 2.6.25.14-69) and are Dell PowerEdge
r200 servers, each with a quad-core Intel Xeon X3220
2.40 GHz processor, 8 GB of RAM, two 7200RPM local
disks, and one Gigabit Ethernet port.
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FIG. 6—Latencies ((a) mean and standard deviation and (b) 99th percentile) for GETs and PUTs for various object sizes in Depot
and the four baseline variants. For small- and medium-sized requests, Depot introduces negligible GET latency and sizeable latency
on PUTs, the extra overhead coming from signing, synchronously storing a local copy, and Depot’s additional checks.

Latency (ms) CPU
Operation Size (µ± σ) (ms/req)

SHA-256 3B 0.1±0.2 0.0
SHA-256 10KB 0.2±0.4 0.0
SHA-256 1MB 15.7±0.5 14.2

RSA-Sign 300B 4.2±0.7 3.2
RSA-Verify 300B 0.3±0.5 0.0

BDB local get 3B 0.2±0.5 1.0
BDB local get 10KB 0.3±0.9 1.2
BDB local get 1MB 7.6±8.6 10.1

BDB local put 3B 1.3±1.9 1.0
BDB local put 10KB 2.6±2.4 1.2
BDB local put 1MB 19.3±12.4 9.4

FIG. 5—Statistics for the costly low-level operations that De-
pot uses, which contribute to end-to-end costs.

7.1 Overhead of Depot

Microbenchmarks To put our results in perspective, we
begin by measuring the costs of low-level cryptographic
and storage operations that Depot and the baseline sys-
tems compose to execute a single PUT or GET. The cryp-
tographic operations are SHA-256, RSA-Sign, and RSA-
Verify and use the Sun Java security library. We issued
1000 operations, measuring CPU time and latency. Sim-
ilarly for local BDB storage operations, we issue 1500
local “DB get” or “DB put” operations on a dummy ta-
ble on randomly chosen keys from a set of 1000 keys,
measuring latency and CPU utilization for various object
sizes. We set the BDB cache to 100 MB. The statistics
from these runs are reported in Figure 5. The BDB laten-
cies have significant variance, which we speculate comes
from variation in disk access times.

Latency To evaluate latencies in Depot and the baseline
systems, we measure from the point of view of the appli-
cation, from when it invokes GET or PUT at the local li-
brary until that call returns. Note that for a PUT, the client
commits the PUT locally (if it is a Depot or B+H+S+Store
client) and only then contacts the server, which replies
only after committing the PUT. We report means, stan-
dard deviations, and 99th percentiles, from the GET (i.e.,
100/0) and PUT (i.e., 0/100) workloads.

Figure 6 depicts the results. For the GET runs, the dif-
ference in means between Baseline and B+Hash are 0.0,
0.2, and 15.2 ms for 3B, 10KB, and 1MB, respectively,
which are explained by our measurements (Figure 5) of
mean SHA-256 latencies in the cryptographic library that
Depot uses: 0.1, 0.2, and 15.7 ms for those object sizes.
Similarly, the means of RSA-Verify operations explain
the difference between B+Hash and B+H+Sign for 3B
and 10KB, but not for 1MB; we are still investigating
that latter case. Depot’s GET latency is lower than that of
the strongest two baselines because Depot clients verify
signatures in the background, whereas the baselines do
so on the critical path. Note that for GETs, Depot does
not introduce much latency beyond applying a collision-
resistant hash to data stored in an SSP—which prudent
applications likely do anyway.

For PUTs, the latency is higher. Each step from
B+Hash to B+H+Sign to B+H+S+Store to Depot adds
significantly to mean latency, and for large requests, go-
ing from Baseline to B+Hash does as well. For example,
the mean latency for 10KB PUTs ascends 3.8 ms, 3.9 ms,
8.5 ms, 9.7 ms, 13.0 ms as we step through the sys-
tems; 99%-tile latency goes 14.8 ms, 15.1 ms, 20.4 ms,
37.9 ms, 27.8 ms.

We can explain the observed Depot PUT latency with
a model based on our measurements above of the main
steps in the protocol (see Figure 5).For example, for
10KB PUTs, the client hashes the value (mean measured
time: 0.2 ms), hashes history (≈ 0.1 ms), signs the update
(4.2 ms), stores the body (2.6 ms, with the DB cache en-
abled), stores the update (≈ 1.5 ms), and transfers the
update and body over the 1 Gbps network (≈ 0.1 ms);
the server verifies the signature (0.3 ms), hashes the value
(0.2 ms), hashes history (≈ 0.1 ms), and stores the body
(2.6 ms) and update (≈ 1.5 ms). The sum of the means
(13.4 ms) is close to the observed latency (13.0 ms). The
model is similarly accurate for the 3B experiments but
off by 20% for 1MB; we hypothesize that the divergence
owes to queues that build in front of BDB during periodic
log exchange.

These PUT latencies could be reduced. For example,
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FIG. 7—Per-request average resource use of Baseline (B), B+Hash (H), B+H+Sig (S), B+H+S+Store (St), and Depot (D) in the
100/0 (GET) and 0/100 (PUT) workloads with 10KB objects. The bar heights represent resource use normalized to Depot. The labels
indicate the absolute per-request averages. (C) and (S) indicate resource use at clients and servers, respectively. (C-S) and (C-S) are
client-server and server-server network use, respectively. For storage costs, we report the cost of storing a version of an object.

we have not exploited obvious pipelining opportunities.
Also, we experiment on a 1Gbit/s LAN; in many cloud
storage deployments, WAN delays would dominate la-
tencies, shrinking Depot’s percentage overhead.

Resource use Figure 7 depicts the average use of var-
ious resources in the experiments above for 10KB ob-
jects. We measure CPU use at the end of a run, summing
the user and system time from /proc/<pid>/stat on
Linux and dividing by the number of requests. We mea-
sure network use as the number of bytes handed to TCP.

Depot’s overheads are small for network use, server
storage, and server CPU on GETs. They are also small
for client CPU on GETs, relative to the B+H+Sign base-
line. The substantial client storage overheads result from
clients’ storing data for the PUTs that they create and
metadata for all PUTs. The substantial PUT CPU over-
heads are due to additional Berkeley DB accesses (which
cost CPU cycles, per our microbenchmarks) and crypto-
graphic checks, which happen intensively during gossip-
ing. Since the request rate is low relative to the gossip
rate, each request pays for a lot of gossip work. With
increased request rate (and/or larger objects), this CPU
overhead is lower, as shown by the measurements sum-
marized immediately below.

Throughput Most of our evaluation is about Depot’s
underlying costs as opposed to the performance of the
prototype, so we treat throughput only briefly. We ran
separate measurements in which we saturated a single
Depot server with requests from many clients. For 10KB
GETs, a single Depot server can handle 11k requests per
second, at which point network bandwidth is the bottle-
neck. For 10KB PUTs, peak throughput is 700 requests
per second. This disappointing number is not surprising
given the resource use measured above, but a well-tuned
version ought to see sequential disk bandwidth with the
bottleneck being signature checks (0.3 ms per core).
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FIG. 8—Dollar cost to GET 1TB of data, PUT 1TB of data, or
store 1TB of data for 1 month. Each object has a small key
and a 10KB value. 1TB of PUTs or GETs corresponds to 108

operations, and 1TB of storage corresponds to 108 objects.

7.2 Dollar cost
Is Depot’s added consumption of CPU cycles and client-
side storage truly costly? To answer this question, we
must weight Depot’s resource use by the costs of the var-
ious resources. To do so, we convert the measured over-
heads from the prior subsection into dollars (to pick a
convenient currency). We use the following cost model,
loosely based on what customers pay to use existing
cloud storage and compute resources.

Client-server network bandwidth $.10/GB
Server-server network bandwidth $.01/GB
Disk storage (one client or server) $.025/GB per month
CPU processing (client or server) $.10 per hour

For intuition, note that 4ms of CPU time to sign a small
message costs about the same as sending 1KB between
a client and a server or storing 4KB at one node for a
month.

Figure 8 shows the overheads from Figure 7 weighted
by these costs. Depot’s overheads are modest for read-
mostly workloads. Depot’s GET costs are only slightly
higher than Baseline’s: $108.10 v. $106.50 for 108 GET
operations on 10KB objects. However, Depot’s PUT costs
are over 50% higher: $234.40 v. $150.50 for 108 opera-
tions on 10KB objects. Most of the extra cost is from
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FIG. 9—The effect of total server failure (t = 300) on (a) staleness and (b) latency. The workload is 50/50 R/W and 10KB objects.
For space, we do not depict PUT latency for this experiment. Depot maintains availability through client-to-client transfers whereas
the baseline system blocks, and GET latency actually improves (at the expense of staleness).

gossiping, so the relative overheads would fall for larger
objects or more frequent updates. Depot’s storage costs
are 31% higher than Baseline’s: $138.50 v. $105.50 to
store 108 10KB objects for a month. Most of the extra
cost is from storing a copy of each object at the issuing
client; the rest is from storing metadata.

7.3 Experiments with faults
We now examine Depot’s behavior when servers become
unavailable and when clients create forking writes.

Server unavailability In this experiment, 8 clients ac-
cess 8 objects on 4 servers. The objects are 10KB, and
the workload is 50/50 GET/PUT. Servers gossip with ran-
dom servers every second, and clients gossip with their
chosen partner (initially a server) every 5 seconds. 300
seconds into the experiment, we stop all servers. By post-
processing logs, we measure the staleness of GET results,
compared to instantaneous propagation of all updates:
the staleness of a GET’s result is the time since that re-
sult was overwritten by a later PUT. If the GET returns
the most recent update, the staleness is 0.

Figure 9(a) depicts the staleness observed at one
client. Before the servers fail, GETs in both Depot
and B+H+S+Store have low staleness. After the failure,
B+H+S+Store blocks forever. Depot, however, switches
to client-to-client mode, continuing to service requests.
Staleness increases noticeably because (1) disseminating
updates takes more network hops and (2) the lower gos-
sip frequency increases the delay between hops.

Figure 9(b) depicts the latency of GETs observed by
the same client. Prior to the failure, Depot’s GET latency
is significantly higher than in the experiments in §7.1 be-
cause each object is often updated (because there are few
objects in the workload), so the optimization described
in §6 often fails, making the client and server perform
a log exchange to complete the GET. When the servers
fail, Depot continues to function, and GET latency actu-
ally improves: rather than requesting the “current value”
from the server (which requires a log exchange to get the
new metadata for validating the newest update), in client-
to-client mode, a client fetches the version mentioned in

the update it already has from the writer. Though not de-
picted, Depot’s PUT latency also improves in client-to-
client mode: PUTs return as soon as the update and value
are stored locally, with no round trip to a server.

Client fork In this experiment, 8 correct clients (8C0F),
6 correct clients and 2 faulty clients (6C2F), and 6 cor-
rect clients (6C0F) access 1000 objects on 4 servers. The
objects are 10KB, and the workload is 50/50 GET/PUT.
300 seconds into the experiment, faulty clients begin to
issue forking writes. When a correct client observes a
fork, it publishes a proof of misbehavior (POM) against
the faulty client, and when servers or other clients re-
ceive the POM, they stop accepting new writes directly
from the faulty client.

Figure 10 depicts the results for GETs. Forks intro-
duced by faulty clients do not have obvious effect on GET
or PUT latency; note that the spikes in GET latency prior
to t = 300 are unrelated to client failures.

Figure 11 shows CPU consumption at a correct
client during this experiment. Any additional processing
caused by the forking clients is small compared to the
normal variation that we see across time for all configu-
rations of this experiment.

8 Teapot for legacy SSPs
Depot runs on both clients and SSP nodes, but it would
be desirable to provide Depot’s guarantees using unmod-
ified legacy SSPs such as S3, Azure Storage, or Google
Storage. Intuitively, such an approach appears possible.
In Depot, servers must (1) propagate updates among
clients and (2) provide update bodies (i.e., values) in re-
sponse to GET requests. We should be able to use an
SSP’s abstract key-value map as a communication chan-
nel and as storage for update bodies. And because Depot
clients verify everything that they receive from servers,
we should still be able to provide most of the properties
discussed in §5. In this section, we give a brief overview
of Teapot, a variation of Depot that uses legacy SSPs. We
then compare Teapot and Depot and discuss how legacy
SSPs could be extended to support all of Depot’s proper-
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ties.
Teapot assumes an API like that of S3: LPUT(k, v, b)

(associate v with k in a bucket b owned by a given client)
and LGET(k, b) (return v). On a PUT, the Teapot client
creates and locally stores the metadata u (a Depot up-
date) and the data d (a Depot value). The client then
stores both to the SSP by calling LPUT(H(u), u, bc) and
LPUT(H(d), d, bc), where bc is a bucket that only c can
write. The client then identifies its latest update by stor-
ing it to a distinguished key, k∗c (that is, the client exe-
cutes LPUT(k∗c , u, bc)). In the background, the client peri-
odically fetches the other clients’ latest updates by read-
ing their k∗c entries and then fetching and validating the
updates’ dependencies. On a GET, the Teapot client uses
LGET to retrieve the value(s) associated with the latest
update(s) that it has received.

We have prototyped Teapot using S3 and a variation on
the arrangement just sketched. As shown in Figure 12,
accessing S3 through Teapot rather than through LPUT
and LGET introduces little latency over S3; the baseline
latencies to S3 are already scores of milliseconds, so the
additional overheads are small. The resource costs are
similar to those of Depot (§7.1).

Discussion Teapot has two key differences from Depot.
First, if a client fails in particular ways, Teapot cannot
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FIG. 12—Average latencies (with standard deviations) per-
ceived by Teapot for GET and PUT operations with 10KB pay-
load when using Amazon S3 for storage.

guarantee valid discard (§5.6). A client can, for exam-
ple, issue a PUT, allow the update to be observed by
other clients, and then delete the associated value.This
unilateral deletion may cause the correct SSP to discard
the current value of a key. In contrast, Depot meets valid
discard as long as at least one client is correct. Second,
Teapot servers cannot provide the durability receipts that
Depot clients use to avoid depending on insufficiently
replicated data (§5.3). Note that Teapot tolerates arbi-
trary SSP failures and many other client failures (crashes,
forks, etc.), so Teapot’s additional vulnerability over De-
pot is limited and may be justified by its deployability.

We now ask: what incremental extensions to SSPs
would allow us to run code only on clients but recover
Depot’s full guarantees? We speculate that the following
suffices. First, to allow a correct client to avoid depend-
ing on updates that a faulty client could delete, the SSP
could implement LINK(K, bc, bc′), UNLINK(k, bc, bc′),
and VERIFY(k, H, bc). LINK causes every existing or new
key/value pair in a keyrange K in one client’s bucket
(bc) to be linked to another client’s bucket (bc′ ), where a
key/value pair linked to another bucket may not be mod-
ified or deleted. UNLINK removes such a link. VERIFY
checks that the SSP stores a value with hash H for key
k in bucket bc. Then, if a client LINKs to other clients’
buckets when it joins the system and VERIFIES an up-
date’s value before accepting the update into its history,
we can restore unanimous consent for garbage collect-
ing versions (§5.6). Second, to assure clients that updates
are sufficiently replicated, the SSP could return a receipt
in response to LPUT that the clients could use like re-
ceipt sets (§5.3). These extensions seem plausible. Oth-
ers have proposed receipts [38, 57, 61, 73], and the pro-
posed LINK and UNLINK calls have correlates on Unix
file systems, suggesting utility beyond Teapot.

This discussion illustrates that clients can use an SSP-
supplied key-value map as a black box to recover most of
Depot’s properties. To recover all of them, the SSP needs
to be incrementally augmented not to delete prematurely.
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9 Related work

We organize prior work in terms of trade-offs between
availability and fault-tolerance.

Restricted fault-tolerance, high availability. A num-
ber of systems provide high availability but do not tol-
erate arbitrary faults. For example, key-value stores in
clouds [16, 21, 22] take a pragmatic approach, using
system structure and relaxed semantics to provide high
availability. Also, systems like Bayou [66], Ficus [60],
PRACTI [10], and Cimbiosys [59] can get high avail-
ability by replicating all data to all nodes. Unlike Depot,
none of these systems tolerates arbitrary failures.

Medium fault-tolerance, medium availability. An-
other class of systems provides safety even when only
a subset (for example, 2/3 of the nodes) is correct. How-
ever, the price for this increased fault tolerance compared
to the prior category is decreased liveness and availabil-
ity: to complete, an operation must reach a quorum of
nodes. Such systems include Byzantine-Fault Tolerant
(BFT) replicated state machines (see [15, 19, 30, 33])
and Byzantine Quorums [45]. Note that researchers are
keenly interested in reducing trust: compared to clas-
sic BFT systems, the recently proposed A2M [17],
TrInc [42], and BFT2F [44] all tolerate more failures, the
former two by assuming trusted hardware and the latter
by weakening guarantees. However, unlike Depot, these
systems still have fault thresholds, and none works dis-
connectedly. PeerReview [31] requires a quorum of wit-
nesses with complete information (hindering liveness),
one of which must be correct (a trust requirement that
Depot does not have).

High fault-tolerance, low availability. In fork-based
systems, such as SUNDR [43] and FAUST [12], the
server is totally untrusted, yet even under faults provides
a safety guarantee: fork-linearizability, fork-sequential
consistency, etc. [53]. However, these systems provide
reduced liveness and availability compared to Depot.
First, in benign runs, their admittedly stronger seman-
tics (versus Depot’s causal consistency during such runs)
means that they cannot be available during a network par-
tition or server failure. Second, after a fork, nodes are
“stranded” and cannot talk to each other, effectively stop-
ping the system. A related strand of work focuses on ac-
countability and auditing (see [38, 57, 61, 73]), providing
proofs to participants if other participants misbehave. All
of these systems detect misbehavior, whereas our aim is
to tolerate and recover from it—which we view as a re-
quirement for availability.

Systems with similar motivations. Venus [62] allows
clients not to trust a cloud storage service. While Venus
provides consistency semantics stronger than Depot’s
(causal consistency for pending operations, lineariz-
ability for completed operations (roughly)), it makes

stronger assumptions than Depot. Specifically, Venus re-
lies on an untrusted verifier in the cloud; assumes that a
core set of clients does not permanently go offline; and
does not handle faulty clients, such as clients that split
history. SPORC [24] is designed for clients to use a sin-
gle untrusted server to order their operations on a sin-
gle shared document and provides causal consistency for
pending operations (and stronger for committed opera-
tions). Unlike Depot, SPORC does not consider faulty
clients, allow clients to talk to any server, or support arbi-
trary failover patterns. However, SPORC provides innate
support for confidentiality and access control, whereas
Depot layers those on top of the core mechanism.

A number of other systems have sought to minimize
trust for safety and liveness. However, they have not
given a correctness guarantee under arbitrary faults. For
example, Zeno [63] does not operate with maximum live-
ness or minimal trust assumptions: it assumes f +1 avail-
able servers per partition, where f is the number of faulty
servers. TimeWeave [46] ensures that correct nodes can
pass the blame of any mal-activity to culprit nodes, and
S2D2 [35] uses tamper-evident history summaries to de-
tect forks. However, unlike Depot, these two systems
neither repair forks nor target cloud storage (which re-
quires addressing staleness, durability, and recoverabil-
ity). Other systems target scenarios similar to cloud stor-
age but do not protect consistency [28, 34, 64].

Some systems have, like Depot, been designed to re-
sist large-scale correlated failures. Glacier [32] can tol-
erate a high threshold, but still no more than this thresh-
old, of faulty nodes, and it stores only immutable objects.
OceanStore [39] is designed to minimize trust for dura-
bility but does not tolerate nodes that fail perniciously.

Distributed revision control. Distributed repositories
like Git [27], Mercurial [48], and Pastwatch [72] have a
data model similar to Depot’s and could be augmented
to resist faulty nodes (e.g., forcing clients to sign updates
in Git would prevent servers from undetectably altering
history). However, all of these systems are geared toward
replicating a source code repository. Our context brings
concerns that these systems do not address, including
how to avoid clients’ storing all data, how to perform up-
date exchange in this scenario, how to provide freshness,
how to evict faulty nodes, how to garbage collect, etc.

10 Conclusion
Depot began with an attempt to explore a radical point
in the design space for cloud storage: trust no one. Ulti-
mately we fell short of that goal: unless all nodes store
a full copy of the data, then nodes must rely on one an-
other for durability and availability. Nonetheless, we be-
lieve that Depot significantly expands the boundary of
the possible by demonstrating how to build a storage sys-
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tem that eliminates trust assumptions for safety and min-
imizes trust assumptions for liveness.

A Fork-join-causal consistency
We express fork join causal (FJC) consistency semantics
in terms of a set of conditions that must hold for the ob-
server graph that we associate with each execution of a
system.

The observer graph of an execution captures how in-
formation flows during the execution: the graph’s ver-
tices represent the read and write operations executed
by the nodes, and the edges encode dependencies among
these operations. The graph is not an actual data structure
that our protocol maintains, but it is useful for presenta-
tion purposes.

Definition 1 An observer graph is an execution and an
edge assignment.

Definition 2 An execution is a set of read and write ver-
tices, with one vertex for each read or write operation by
any node.

1. Write vertices are tuples of the form (n, s, oId, val),
where n is the node issuing the write operation, s is
a per-node sequence number that monotonically in-
creases with every operation issued by n, oId is the
identifier of the object being written, and val is the
value written to object oId .

2. Read vertices are tuples of the form (n, s, oId, wl)
where n, oId, and s define the node issuing the read,
the object read, and the sequence number of the op-
eration and where wl denotes the list of write vertices
whose values are returned by the read. We say a read r
reads from a write w if r.wl includes w.

Definition 3 An edge assignment for an execution is a
set of directed edges connecting vertices of an execution.

An edge assignment is an abstract representation of
the data flow in an execution. Notice that the definition
does not specify how the edge assignment is produced.
A given consistency semantic is defined by a consistency
check that determines the set of observer graphs it allows.
In particular, showing than an execution is consistent un-
der some semantics simply requires showing that an ora-
cle can produce an edge assignment that passes the con-
sistency check. On the other hand, showing that a system
enforces some consistency semantics requires presenting
an algorithm that, for every possible execution of the sys-
tem, constructs an edge assignment that passes the con-
sistency check.

Definition 4 A consistency check for a consistency se-
mantics C is a set of conditions that an observer graph
must satisfy to be called consistent with respect to C.

Definition 5 An execution α is C-consistent iff there ex-
ists an edge assignment for α such that the resulting ob-
server graph satisfies C’s consistency checks.

A final bit of housekeeping:

Definition 6 We say that vertex u precedes vertex v in
observer graph G (denoted as u ≺G v) if there is a di-
rected path from u to v in G. By extension, we say that
the operation corresponding to u precedes the one corre-
sponding to v. If u ≺G v, then v depends on u. If u 6≺G v
and v 6≺G u, then we say that u and v are concurrent.

Definition 7 An operation u is said to be observed by a
correct node p in G if either p executes u or if p executes
an operation v such that u ≺G v.

We now define the set of executions admitted by FJC
consistency semantics in terms of its consistency checks.

Fork-join-causal consistency: An execution α is said
to be fork-join-causal (FJC) consistent if there exists an
edge assignment for α that produces an observer graph
G that satisfies the following consistency check:

1. Serial ordering at each correct node. The ordering of
operations by any correct node is reflected in the ob-
server graph. Specifically, if p is a correct node and v
and v′ are vertices corresponding to operations by p,
then v.s < v′.s⇔ v ≺G v′.

2. Reads by correct nodes return the latest preced-
ing concurrent writes. For any read operation r =
(p, s, oId, wl) issued by a correct node p, and writes
w and w′ to object oId, the following condition holds:

w ∈ wl⇔ w ≺G r∧ 6 ∃w′ : w ≺G w′ ≺G r

Comparison with fork-causal consistency Fork-
causal consistency (FCC) enforces the following three
conditions:

1. Serial ordering at each correct node.
2. Reads by correct nodes return the latest preceding

concurrent writes.
3. Correct nodes observe every node issue totally or-

dered writes.
The first two conditions are identical to those required

by FJC. The third condition trivially holds for writes is-
sued by correct nodes, since, by the first condition, such
writes are totally ordered. However, it is possible for a
faulty node p to issue writes w0, w1, and w2 such that
w0 precedes both w1 and w2, but neither w1 ≺G w2 nor
w2 ≺G w1. FCC’s third condition prevents any correct
node from observing both w1 and w2: hence, once two
correct nodes have observed w1 and w2 respectively, they
become partioned from each other.

This restriction does not exist in FJC; there, w1 and w2
are treated as concurrent writes, allowing a correct node
to observe both.
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FIG. 13—(a) An execution with a faulty node p2 and (b) an observer graph that is FJC and FCC. There is no causally consistent
observer graph because in the exeuction w0, w1, w2 and w3 are not serially ordered according to any possible history of node p2.
The observer graph in (b) is both FJC and FCC consistent because FJC and FCC do not require total ordering of p2’s operations.

Comparison with causal consistency. Causal consis-
tency enforces conditions that are analogous to the one
enforced by FJC, but it requires them to hold for opera-
tions issued by all nodes—not just correct nodes. Specif-
ically, an execution α is said to be causally consistent if
there exists an edge assignment for α that produces an
observer graph G that satisfies the following consistency
check:

1. Serial ordering at each node. The ordering of opera-
tions by any node is reflected in the observer graph.
Specifically, if p is a node and v and v′ are vertices
corresponding to operations by p, then v.s < v′.s ⇔
v ≺G v′.

2. Reads return the latest preceding concurrent writes.
For any read operation r = (p, s, oId, wl) issued by a
node p, and writes w and w′ to object oId, the follow-
ing condition holds:

w ∈ wl⇔ w ≺G r∧ 6 ∃w′ : w ≺G w′ ≺G r

Figure 13(a) shows an execution that is both FJC and
FCC but not causally consistent. In this example, node
p2 is faulty and produces four writes w0, w1, w2, and w2.
Node p1 observes w0, w1, and w2 but not w3, and node p3
observes w0, w1, and w3 but not w2. As Figure 13(b) illus-
trates, we can produce an edge assignment and observer
graph that passes all FJC/FCC tests by dispensing with

the serial ordering constraint at the faulty node. Con-
versely, it is impossible to produce an edge assignment
to produce an observer graph G′ that passes the causal
consistency checks.
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M. Dahlin, and T. Riché. UpRight cluster services. In SOSP,
2009.

[20] B. Cook. Seattle data center fire knocks out Bing Travel, other
web sites. http://www.techflash.com/seattle/2009/
07/Seattle_data_center_fire_knocks_out_Bing_

Travel_other_Web_sites_49876777.html, July 2009.
[21] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,

P. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.
PNUTS: Yahoo!’s Hosted Data Serving Platform. In VLDB,
2008.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: Amazon’s highly available key-value store.
In SOSP, 2007.

[23] M. Demmer, B. Du, and E. Brewer. TierStore: a distributed
filesystem for challenged networks in developing regions. In
FAST, 2008.

[24] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
SPORC: Group collaboration using untrusted cloud resources.
In OSDI, Oct. 2010.

[25] M. Frigo and V. Luchangco. Computation-Centric Memory
Models. In SPAA, 1998.

[26] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of Consistent, Available, Partition-tolerant web services. In
ACM SIGACT News, 33(2), 2002.

[27] Git: The fast version control system. http://git-scm.com/.
[28] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS:

Securing Remote Untrusted Storage. In Network and
Distributed System Security (NDSS) Symposium. Internet
Society (ISOC), 2003.

[29] J. Gray and P. Shenoy. Rules of Thumb in Data Engineering. In

Data Engineering, pages 3–12, 2000.
[30] R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The next

700 BFT protocols. In Eurosys, 2010.
[31] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview:

Practical accountability for distributed systems. In SOSP, 2007.
[32] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly

durable, decentralized storage despite massive correlated
failures. In NSDI, 2005.

[33] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-Overhead
Byzantine Fault-Tolerant Storage. In SOSP, 2007.

[34] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu.
Plutus: Scalable secure file sharing on untrusted storage. In
Conference on File and Storage Technologies (FAST), 2003.

[35] B. Kang. S2D2: A framework for scalable and secure optimistic
replication. PhD thesis, UC Berkeley, Oct. 2004.

[36] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In STOC, 1997.

[37] J. Kistler and M. Satyanarayanan. Disconnected Operation in
the Coda File System. ACM TOCS, 10(1):3–5, Feb. 1992.

[38] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A durable and
practical storage system. In USENIX Technical, 2007.

[39] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for
Global-Scale Persistent Storage. In ASPLOS, 2000.

[40] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. CACM, 21(7), July 1978.

[41] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals
Problem. ACM TPLS, 4(3):382–401, 1982.

[42] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc:
small trusted hardware for large distributed systems. In NSDI,
2009.

[43] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In OSDI, 2004.

[44] J. Li and D. Mazières. Beyond one-third faulty replicas in
Byzantine fault tolerant systems. In NSDI, 2007.

[45] D. Malkhi and M. Reiter. Byzantine Quorum Systems.
Distributed Computing, 11(4):203–213, Oct. 1998.

[46] P. Maniatis. Historic Integrity in Distributed Systems. PhD
thesis, Stanford, 2003.

[47] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In SOSP,
1999.

[48] Mercurial. http://mercurial.selenic.com/.
[49] R. Miller. FBI siezes servers at Dallas data center. http:

//www.datacenterknowledge.com/archives/2009/04/

03/fbi-seizes-servers-at-dallas-data-center/,
Apr. 2009.

[50] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Subtleties in
Tolerating Correlated Failures in Wide-area Storage Systems. In
NSDI, 2006.

[51] E. Nightingale, K. Veeraraghavan, P. Chen, and J. Flinn. Rethink
the sync. ACM TOCS, 26(3), 2008.

[52] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do
Internet services fail, and what can be done about it? In USITS,
2003.

[53] A. Oprea and M. Reiter. On consistency of encrypted files. In
DISC, 2006.

[54] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, S. Kiser, D. Edwards, and
C. Kline. Detection of Mutual Inconsistency in Distributed
Systems. IEEE TSE, 9(3):240–247, May 1983.

[55] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and
A. J. Demers. Flexible Update Propagation for Weakly
Consistent Replication. In SOSP, 1997.

[56] E. Pinheiro, W. Weber, and L. Barroso. Failure trends in a large

19

http://status.aws.amazon.com/s3-20080720.html
http://groups.google.com/group/google-appengine/browse_thread/thread/e9237fc7b0aa7df5/ba95ded980c8c179
http://groups.google.com/group/google-appengine/browse_thread/thread/e9237fc7b0aa7df5/ba95ded980c8c179
http://groups.google.com/group/google-appengine/browse_thread/thread/e9237fc7b0aa7df5/ba95ded980c8c179
http://www.circleid.com/posts/20090226_cloud_computing_hype_security/
http://www.circleid.com/posts/20090226_cloud_computing_hype_security/
http://www.techflash.com/seattle/2009/07/Seattle_data_center_fire_knocks_out_Bing_Travel_other_Web_sites_49876777.html
http://www.techflash.com/seattle/2009/07/Seattle_data_center_fire_knocks_out_Bing_Travel_other_Web_sites_49876777.html
http://www.techflash.com/seattle/2009/07/Seattle_data_center_fire_knocks_out_Bing_Travel_other_Web_sites_49876777.html
http://git-scm.com/
http://mercurial.selenic.com/
http://www.datacenterknowledge.com/archives/2009/04/03/fbi-seizes-servers-at-dallas-data-center/
http://www.datacenterknowledge.com/archives/2009/04/03/fbi-seizes-servers-at-dallas-data-center/
http://www.datacenterknowledge.com/archives/2009/04/03/fbi-seizes-servers-at-dallas-data-center/


disk drive population. In FAST, Feb. 2007.
[57] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang.

Enabling security in cloud storage SLAs with CloudProof.
Technical Report MSR-TR-2010-46, Microsoft Research, May
2010.

[58] V. Prabhakaran, L. Bairavasundaram, N. Agrawal, H. Gunawi,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau. IRON file systems.
In SOSP, 2005.

[59] V. Ramasubramanian, T. Rodeheffer, D. B. Terry,
M. Walraed-Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat.
Cimbiosys: A platform for content-based partial replication. In
NSDI, 2009.

[60] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek.
Resolving File Conflicts in the Ficus File System. In USENIX
Summer, 1994.

[61] M. Shah, M. Baker, J. Mogul, and R. Swaminathan. Auditing to
keep online storage services honest. In HotOS , 2007.

[62] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and
D. Shaket. Venus: Verification for untrusted cloud storage. In
CCSW, Oct. 2010.

[63] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and
P. Maniatis. Zeno: Eventually consistent Byzantine fault
tolerance. In NSDI, Apr. 2009.

[64] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, and
G. Ganger. Self-securing storage: protecting data in
compromised systems. In OSDI, 2000.

[65] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session guarantees for weakly
consistent replicated data. In ICPDS, 1994.

[66] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In SOSP,
1995.

[67] US Secret Service report on insider attacks. http:
//www.sei.cmu.edu/about/press/insider-2005.html,
2005.

[68] W. Vogels. Life is not a state-machine: The long road from
research to production. In PODC, 2006.

[69] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks.
In OSDI, Dec. 2002.

[70] T. Wobber, T. L. Rodeheffer, and D. B. Terry. Policy-based
access control for weakly consistent replication. In EuroSys,
2010.

[71] J. Yang, C. Sar, and D. Engler. EXPLODE: A lightweight,
general system for finding serious storage system errors. In
OSDI, 2006.

[72] A. Yip, B. Chen, and R. Morris. Pastwatch: A distributed
version control system. In NSDI, 2006.

[73] A. Yumerefendi and J. Chase. Strong accountability for network
storage. ACM Transactions on Storage (TOS), 3(3), Oct. 2007.

20

http://www.sei.cmu.edu/about/press/insider-2005.html
http://www.sei.cmu.edu/about/press/insider-2005.html

	1 Introduction
	2 Why untrusted storage?
	3 Architecture, scope, and use
	3.1 Issues addressed
	3.2 Depot in use: Applications & conflicts
	3.3 System and threat model

	4 Core protocol
	4.1 Basic protocol
	4.2 Consistency despite faults
	4.3 Protecting availability: Joining forks

	5 Properties and guarantees
	5.1 Fork-Join-Causal consistency
	5.2 Eventual consistency
	5.3 Availability and durability
	5.4 Bounded staleness
	5.5 Integrity and authorization
	5.6 Data recovery
	5.7 Evicting faulty nodes

	6 Implementation
	7 Experimental evaluation
	7.1 Overhead of Depot
	7.2 Dollar cost
	7.3 Experiments with faults

	8 Teapot for legacy SSPs
	9 Related work
	10 Conclusion
	A Fork-join-causal consistency

