Taming uncertainty in distributed systems with help from the network

Joshua B. Leners* Trinabh Gupta**

*The University of Texas at Austin

Abstract

Network and process failures cause complexity in distributed
applications. When a remote process does not respond, the
application cannot tell if the process or network have failed,
or if they are just slow. Without this information, applications
can lose availability or correctness. To address this problem,
we propose Albatross, a service that quickly reports to appli-
cations the current status of a remote process—whether it is
working and reachable, or not. Albatross is targeted at data
centers equipped with software defined networks (SDNs),
allowing it to discover and enforce network partitions: Al-
batross borrows the old observation that it can be better to
cause a problem than to live with uncertainty, and applies this
idea to networks. When enforcing partitions, Albatross avoids
disruption by disconnecting only individual processes (not
entire hosts), and by allowing them to reconnect if the appli-
cation chooses. We show that, under Albatross, distributed
applications can bypass the complexity caused by network
failures and that they become more available.

1 Introduction

In a distributed application, if a process stops responding, the
rest of the application cannot be sure what is going on. Has
the process crashed? Is there a network failure? Maybe there
are no failures, and the issue is that the process is slow or the
network is congested?

Unfortunately, if the application guesses incorrectly, it ends
up with problems. These include split-brain scenarios (an in-
correct guess that there was a problem can cause multiple
instantiations of a process), consistency violations (if clients
access the wrong server), and loss of availability (if the pro-
cess incorrectly guesses that there are no problems).

This uncertainty about whether a failure exists is a peren-
nial source of complexity in distributed systems (§2.2). In-
deed, many applications devote substantial code to the prob-
lem (e.g., they implement fault-tolerant protocols that are
impervious to uncertainty [12, 39, 48]). Other applications
avoid the problem by leveraging membership services that
track working processes. However, these services have vari-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

EuroSys 15, April 21-24, 2015, Bordeaux, France.

ACM 978-1-4503-3238-5/15/04.

http://dx.doi.org/10.1145/2741948.2741976

Marcos K. Aguilera'
tVMware Research Group

Michael Walfish?
INYU

ous limitations. They take tens of seconds' or longer to react
to failure [13, 36] (and faster reaction times would cause
collateral damage [13, §2.8]), they sometimes halt working
machines to eliminate uncertainty [26, 51],2 or they cannot
handle network problems [50].

In this paper, we propose a new membership service, called
Albatross. We target data center networks and assume the
presence of Software Defined Networks (SDNs). Albatross is
a new design point. To our knowledge, it is the first member-
ship service that achieves the following combination: (1) it
addresses common network failures (as discussed below, Al-
batross cannot address all network failures: doing so would
violate known impossibility results), (2) it is quick (it an-
swers in less than a second), which improves availability,
and (3) it avoids interfering with working processes and
machines, which also improves availability. Albatross is
a complete system and, as such, handles process failures
too, but we will not focus on this aspect, since it is well-
studied [9, 15, 26, 34, 50, 51, 67].

Albatross is based on two high-level insights. First, the
ability to monitor and configure network elements makes it
possible to provide (1)—(3), for reasons that will be explained
in the coming pages. Second, SDNs provide a standard inter-
face to the required network functionality.

1.1 Components and requirements

Albatross consists of a host module (installed on the hosts of
applications that use the service) and a few replicated servers,
called managers. The host module communicates with the
managers, and exposes an interface that a process can query
to learn the failure status of remote processes. Using SDN
functionality, the managers receive notifications about the
state of the network, determine which processes are reachable,
and enforce their determinations by installing drop rules on
switches. Albatross adopts several requirements:

(1) Provide guarantees that are well-defined and useful
to applications. Ideally, Albatross would be an oracle that
answers any query with perfect information, immediately.
But this ideal is impossible: Albatross may be ignorant of
a process’s true status, and Albatross cannot provide infor-
mation to processes that it cannot reach. Thus, Albatross
relaxes the strength and scope of its guarantees. First, rather
than promise perfect information, Albatross provides defini-
tive reports, which guarantee the failure status of a remote
process. To provide this guarantee, Albatross sometimes inter-

ITens of seconds can be an expensive outage: some Web properties make
tens or even hundreds of thousands of dollars per minute.
2This technique is called STONITH (for Shoot The Other Node In The Head).

feres with processes (as noted in the next requirement), which
amounts to applying an old technique (STONITH [26, 50, 51])
to a new context (SDN-enabled networks). Second, Albatross
provides asymmetric guarantees: it categorizes processes as
excluded or non-excluded and promises definitive answers
only to non-excluded processes. Third, Albatross allows re-
ports to be delayed in favor of being definitive, but it strives
to be quick (sub-second detection time). To our knowledge,
this combination is new, and we find that it is strong enough
to be useful to applications.

(2) Limit interference. Ideally, Albatross would only report
events, not influence them. On the other hand, a convenient
way to provide definitive responses is to interfere [26, 50, 51].
To balance these concerns, Albatross does several things.
First, it inspects the state of the network rather than relying on
coarse inferences from timeouts. Second, it manipulates that
state at fine grain; its technique here is to embed a name space
for applications in source MAC addresses, which enables
switches to block the traffic of individual processes. The result
is to avoid unwarranted interference with processes that use
Albatross, and to eliminate interference with processes that
do not use Albatross. Finally, Albatross allows disconnected
processes to later reconnect.

(3) Use few resources. Switches have limited space for drop
rules [35]. To work within this constraint, Albatross names
processes according to their starting time and enclosing appli-
cation; this naming scheme allows drop rules to be aggregated
when failures affect many processes. Furthermore, Albatross
must eventually garbage collect unused drop rules and other
resources. To this end, Albatross introduces a reference count-
ing scheme that handles distributed references and tolerates
faults.

(4) Tolerate failures within Albatross itself. Albatross is
itself a distributed system and, as such, is subject to the very
failures that it wishes to detect. To be useful, Albatross must
function under reasonable and common failures. (As an anal-
ogy, a fire alarm must function under usual types of fires.)
Albatross responds in various ways. First, Albatross is repli-
cated using Paxos [46]. Second, Paxos requires that a majority
of the servers are responsive and mutually connected, which
Albatross achieves by carefully placing servers (§5.3). Third,
Albatross has a principled design, to avoid architecture flaws
that lead to spurious failures.

Albatross cannot survive and report every conceivable net-
work and process problem: doing so would mean tolerating
arbitrary network partitions, which is impossible [29]. Alba-
tross’s limitations are, first, that it cannot survive failures that
disconnect or kill a majority of its managers (as explained
above). Second, to obtain service from Albatross, a host must
be able to reach a majority of Albatross managers. The upshot
is that Albatross does not work under catastrophic events (e.g.,
failure of power and backup); however, such failures take the
data center offline anyway. Albatross does tolerate failures
that affect only a restricted part of the network—which are

the common case, according to a study of the failure events
in the data centers of a large production service (§2.1).

1.2 Performance, results, and contributions

In evaluating Albatross (§7), we find that it has low cost: it re-
quires little state in the network (fewer than 5 rules per switch
to enforce disconnection), and uses little CPU and memory.
Yet, it detects network failures an order of magnitude more
quickly than the ZooKeeper membership service [36] (we
will refer to this membership service as simply ‘“ZooKeeper”).
This gain owes to the design of Albatross: if ZooKeeper were
to lower its timeouts to gain the same speed, its servers would
be overwhelmed (§7.2).

Furthermore, we demonstrate that Albatross’s guaran-
tees are useful to applications. We show that integrating
RAMCloud [59] with Albatross prevents clients from com-
municating with servers that have been declared failed; this
eliminates a consistency bug in RAMCloud. We also show
that Albatross can be used in place of existing membership
services in distributed algorithms, despite its different guaran-
tees.

The concrete contributions of this paper are as follows:

* Albatross, a service that provides a new combination: it
reports network (and process) failures definitively, quickly,
and with little interference (§3).

* A formalization of Albatross’s guarantees, so that applica-
tions can reason about reports (§4).

* The design and implementation of Albatross; the design
carefully composes novel techniques (a process naming
scheme, a way of dropping processes’ traffic at fine grain,
a readmission protocol, algorithms for garbage collection)
with existing ones (SDNs, Paxos [46], Falcon spies [50])
to produce a coherent system (§5-86).

* An experimental evaluation (§7) of the implementation.

There is one more contribution of this paper, and it is concep-
tual. Whereas the purpose of SDNs was originally simplifying
network management, this paper identifies a different use of
SDNs: enhancing classical distributed systems. This connec-
tion had not been observed before, and we think that it may
be more widely applicable.

2 Further motivation
2.1 What network partitions happen in data centers?

We analyzed a year-long trace of the failures that occurred
in several data centers of a company with a strong Internet
presence, using similar methods to Gill et al. [30]. Events
in the failure trace were generated by in-device monitoring
and were collected in a central repository using monitoring
protocols (such as SNMP) or manual intervention. Events are
tagged with metadata, including what type of device failed,
and whether the failure was masked by redundancy; we used
these tags to determine which events created partitions.

We found that larger data centers (more than a thousand net-

work elements) had about 12 partitions per month, of which
about half disconnected an entire rack and half disconnected
a single host. The partitions in the larger data centers never
disconnected more than a single rack (owing to path redun-
dancy), but we found that smaller data centers (fewer than 600
network elements) experienced multi-rack partitions. With
this information in mind, we focus attention on partitions in a
single data center that affect a subset of the network.

2.2 The whys, whats, and hows of membership services

One way to detect failures is by using end-to-end timeouts [9,
15, 34, 67]. However, timeouts are troublesome. First, a poor
choice can compromise availability: if the timeout is too long,
the system is forced to wait, and if the timeout is too short,
the system wastes time responding to non-failures. Worse, the
variability of response times means that there may be no good
choice of timeout [74]. A second problem with timeouts is
their inherent uncertainty: a timeout does not imply a failure.

To address this uncertainty directly, distributed systems
typically use one or more of the following three techniques.
The first technique uses a majority of processes to obtain
agreement among correct processes [11, 16, 39, 46, 47, 58].
This technique is useful in building high-performance sys-
tems [12, 48], but it imposes particular structures on appli-
cation developers. For example, applications must be built
using the replicated state machine approach [45, 64] or using
group communication primitives [11, 16].

A second technique is to use a mechanism like leases [13,
32, 36] or watchdogs [26] to ensure that suspected processes
kill themselves in effect or fact. This technique assumes that
the system has bounded timeliness. Also, short timeouts (as
needed for fast detection) consume many resources (§7.2).
Furthermore, with leases in particular, short timeouts can
trigger complicated corner cases (§7.1).

The third technique is to kill processes that are suspected
of having failed [50, 51]. A problem here is that killing tends
to be coarse-grained (e.g., shutting down a machine). Further-
more, this technique can founder under network partitions, as
the command to kill may not get through.

The aforementioned techniques bring complexity. Many
services have been built that place these techniques behind
a layer of abstraction that hides the complexity, allowing de-
velopers of distributed applications to interact with a clean
abstraction. We refer to these services as membership ser-
vices.> Membership services provide definitive reports about
which processes are working, in the sense that processes can
safely treat such reports as ground truth.

An alternative to end-to-end timeouts is to use information
local to a system’s components to detect failures [49, 50].
This approach allows a membership service, in the common
case, to react to failures as they happen without waiting for

3This name is inspired by group membership services [11] but expanded in
scope to include services such as ZooKeeper [36] and Chubby [13].

an end-to-end timeout to expire. However, prior attempts at
building membership services this way are incomplete: they
do not handle network problems [50], or they give ambiguous
reports [49]. (Section 9 elaborates.)

2.3 How does Albatross fit?

Albatross uses local information as hints but with a new mech-
anism for making reports definitive: before reporting a sus-
pected process as not working, Albatross modifies the network
to prevent the suspected process from sending messages to
working processes. Albatross uses SDNs for this purpose. For
its own fault-tolerance, Albatross uses majority-based tech-
niques internally, thus following the tradition of implementing
the complex technique once (§2.2).

As a concrete example, consider an application that uses
primary-backup replication [4];* we use primary-backup as a
running example for its conceptual simplicity, though mem-
bership services enable other fault-tolerance techniques (re-
covering from snapshots, raising an alarm, switching to a safe
state, etc). In this application, the primary receives a request,
replicates that request at the backup, and only then executes
the request and responds to the requesting node. This setup
provides fault-tolerance safely, via the invariant that replica-
tion happens before responding to the requestor.

However, for availability, the application needs a way to
make progress if the primary or backup fails. Here is where
the membership service enters. A standard choice would be
ZooKeeper [36], which uses leases, and is used by produc-
tion data center applications (e.g., [55]). The idea is that each
replica acquires a lease at ZooKeeper named by its role (“pri-
mary” or “backup”) and then monitors the other’s lease. The
backup learns that the primary is no longer working when the
“primary” lease expires, and the backup can safely take over
by acquiring the “primary” lease.

What if, as an alternative, the primary-backup application
uses Albatross? Then, when Albatross suspects a partition
(e.g., because a switch reports a link as down), it can install
rules to stop the primary from using the network and then re-
port the problem to the backup. The backup can then take over
immediately—without having to wait for a lease to expire—
because it knows that Albatross is preventing the primary
from using the network.

3 Overview of Albatross

Albatross is a service that a process of a distributed applica-
tion can query to learn about the status of a remote process.
The status can be “disconnected” or “connected”; roughly,
“disconnected” means crashed or partitioned, and “connected”
means alive and reachable. If Albatross reports a process as
“disconnected”, it is safe to assume that process cannot affect
the world. For the rest of this paper, a process refers to an

4More generally, membership services enable algorithms for consensus and
atomic broadcast that can tolerate f failures using only f+1 processes [14]
(versus 2f+1).

manager
network
interface (Fig 4)
client end-host
client
pl:glzess host module network
UrosN
/F,gz S Albatross target end-host
library target
‘\ prqo/zess host module
'

ya
/

/);o \ 7 Albatross
’7/10/ library

Figure 1—High-level view of Albatross. The host module provides
the API through which applications use Albatross; the host module
helps detect crashes of local processes. The manager is replicated at
dedicated servers and coordinates Albatross’s response to network
and host failures. The manager interacts with the network through
an abstract interface, and notifies clients about partitioned processes.

Function
becomeAlbatrossProcess(appid)
handle = init((IP, proto, port), cb)

Description

register target process of app
monitor a target, given by (IP,
proto, port). callback cb is
invoked when the target fails
or is partitioned

query(handle) return the state of target
startTimer(handle, timeout) start timeout on target
stopTimer(handle) cancel timeout on target
ackDisconnect() acknowledge disconnection

Figure 2—The Albatross APL

operating system process.

Environmental assumptions. We target data centers with
a single administrative domain. We presume the ability to
configure network switches (e.g., via SDNs). We assume that
minor modifications to end-host software are acceptable.

Components. Figure 1 depicts the components of Albatross.
We survey them briefly below. (Section 5 gives details).

The manager detects, enforces, and reports network fail-
ures. Detecting and enforcing happens via a network interface
that abstracts SDN-like features. Reporting happens by call-
ing back client processes that have registered for notifications.
The manager is a single logical entity that is replicated over
several servers, using state machine replication. A host mod-
ule detects and reports local process failures (to remote host
modules); like the manager, this component uses callbacks for
reporting. Much of the logic for detecting local process fail-
ures is borrowed [49, 50]. The host module also implements
the Albatross API, described immediately below.

Albatross API. Figure 2 shows the Albatross API; Figure 3
gives an example use of the API and explains what causes
communication among the components in Figure 1. A mon-

Action Resulting communication

1. target calls becomesAlbatrossProcess() target host module sends “reg-
ister” RPC to the manager
client host module sends
“monitor” RPC to the target’s
host module

2. client calls init(...), gets handle

(5]

. client calls query(handle),

gets “connected” none
4. target crashes target host module or manager
sends RPC to the client’s host
module; host module invokes
client callback (if any)

W

. client calls query(handle),
gets “disconnected” none

. target recovers, calls ackDisconnect() target host module sends “de-
register” RPC to the manager
(not shown)

client host module sends
“monitor” RPC to the target’s
host module

[=)}

7. client calls init(...), gets new handle

oo

. client calls query(handle),
gets “connected” none

Figure 3—Example sequence of actions using the Albatross API
and the resulting communication by Albatross.

itoring process is known as a client; a monitored process is
called a target. To request monitoring, a client calls init(); this
call generates a message to the target’s host. Albatross returns
notifications about the target via a client-supplied callback
function or in response to query().

The API serves three other purposes. First, pro-
cesses register as targets with Albatross, by invoking
becomeAlbatrossProcess(appid). This call may generate a
message to the manager (the manager tracks applications).
The specified appid should uniquely identify the application
and should be used by all processes of the application.

Second, clients use the API to set an end-to-end timeout
that serves as a backstop when Albatross cannot otherwise
detect a problem. Specifically, Albatross expects a client pro-
cess to call startTimer() when it is waiting for a message from
a target process and to call stopTimer() when it receives the
expected message. If the timer fires, Albatross disconnects
the target and reports “disconnected”.

Third, disconnected targets can reconnect, by calling
ackDisconnect() (possibly after rolling back state), at which
point monitoring clients must call init() again.

Informal contract. Albatross covers all host failures and
common network failures. Its reports are definitive but asym-
metric: it excludes some processes and promises definitive
reports (about whether a process is excluded) only to non-
excluded processes. Intuitively, the non-excluded processes
are the ones that a majority of Albatross manager replicas can
reach. These guarantees are formalized in Section 4.

In addition, Albatross provides fast (sub-second) detection
time, which it achieves through its overall architecture: visi-
bility into the network (which provides timely information),
callbacks (which enable low latency without the overhead of

frequent polling), etc. Of course, one way to provide speed
is to indiscriminately disconnect processes at any suspicion
of a problem, but Albatross also limits interference, using the
techniques summarized in Section 1.1.(2).

Rationale. Reporting all network failures is impossible [27].
Similarly, providing definitive, symmetric reports seems in-
feasible: how can a system give a report to a node that it
cannot reach? Of course, just because a contract is feasible
does not mean that it is useful to an application (Albatross
could promise to return the string “elephant” always, which
is feasible to implement but useless). Fortunately, Albatross’s
guarantees are useful to applications (§7.1), though there are
some small corner cases, covered in the next section.

4 Albatross’s contract

This section precisely describes Albatross’s guarantees. We
will define a set of excluded processes, and the guarantees
will be asymmetric: processes outside the excluded set receive
assurances that processes inside the set do not. The high-
level concepts of exclusion and asymmetric guarantees have
appeared before [10, 11, 16] but not, to our knowledge, in our
specific context, namely failure reports [14].

Albatross’s guarantees refer to a notion of time, which is a
logical time at the Albatross manager; we are not assuming
that entities in Albatross have synchronized clocks. We say
that a process p cannot reach process q at time t if a message
sent by p at time ¢ would fail to be delivered to g (because,
for example, g crashes before the packet arrives or there are
no routes to g, or the routes to ¢ disappear as the packet is
traveling, etc.). Observe that this definition of “reachable”
collapses a message’s future and fate into a label associated
with the sending time (#). We say that processes p and q are
partitioned at time t (or p is partitioned from ¢ at time ¢) if
either p cannot reach g or ¢ cannot reach p at time z.

The guarantees of Albatross are relative to a monotonically
increasing set E of excluded processes. Intuitively, these are
the processes that Albatross disconnects from the rest of
the system (and the outside world). We denote by E; the
membership of E at time ¢. Albatross ensures the following:

* (Exclusion Monotonicity) Processes are excluded perma-
nently. More precisely, if t < ¢’ then E; C E,.

* (Isolation) Non-excluded processes do not receive mes-
sages from excluded processes. More precisely, if p € E,,
q ¢ E,, and p sends a message to g at time ¢, then g never
receives that message. In particular, if g receives a message
from p, that message must have been sent before time ¢.

Exclusions are permanent, but in practice an application may

wish to reconnect the process. This is allowed and modeled

by having the process assume a new id.
The next property states that a process is indeed excluded

if something bad happens to it:

e (Exclusion Completeness) If a process has a problem for
sufficiently long, then it is eventually excluded. If g has
crashed, or g is permanently partitioned from a process that

is never excluded, then g € E; for some r.

The above property does not guarantee immediate exclu-
sion when the problem occurs, because the system may take
some time to detect the problem; in practice, it is desirable
that this delay be as small as possible. Also, exclusion is not
guaranteed if ¢ is partitioned temporarily, because the parti-
tion can heal before Albatross notices it. Similarly, exclusion
is not guaranteed if ¢ is partitioned from a process r that later
gets excluded, because the exclusion of r may happen before
Albatross notices the partition between g and r.

The final property states that queries by a non-excluded
process return “disconnected” or “connected” according to
whether the remote process is excluded.

* (Correspondence) If a process is excluded then eventually
a query about it by a non-excluded process always returns
“disconnected”. Moreover, a query about a process by a
non-excluded process returns “disconnected” only if the
process is excluded. More precisely, if g € E; then there
is a time 7, such that, for all ¥ > 1,, a query about g by
p € E, returns “disconnected”. If p & E, and a query about
q by p returns “disconnected” at time ¢, then g € E,.

All properties above are conditional; Albatross provides
them if the application follows the expectations in Section 3
(processes register, set backstop timeouts, etc.), and if a ma-
jority of Albatross managers remains alive and mutually con-
nected (per the fault-tolerance discussions in Sections 1.1
and 5.3).

Consequences of the guarantees, and an example

* Albatross may return incorrect answers to queries done
by excluded processes. This asymmetry is acceptable: to
the non-excluded part of the system—which includes the
outside world—these processes are as good as dead.

* Messages sent by an excluded process before Albatross
reports a partition may still be received by a non-excluded
process after Albatross’s report. However, all of the non-
excluded processes know that these messages causally pre-
cede Albatross’s report because of the Isolation property,
and can act accordingly (e.g., by dropping stale messages).

* Excluded processes may continue to interact with, and
affect, each other. Thus, prior to reconnecting, excluded
processes must rollback their state to some checkpoint that
causally precedes [45] Albatross’s “disconnected” report.
By rolling back their state, excluded processes accept their
effective deaths, and can be safely reintegrated using stan-
dard catch-up techniques (e.g., replay).

It is possible for a crashed process to be temporarily
reported as “connected”; the Completeness and Corre-
spondence properties together imply that if a process has
crashed or been partitioned, Albatross eventually reports it
as “disconnected”.

We now revisit the primary-backup example from Section 2.3,

focusing on corner cases. First, consider the case that the
backup receives a request from the primary affer it hears

that the primary is “disconnected”. The backup can safely
discard this message because it knows that the primary could
not have responded to the requesting node (causally) before
it was excluded (and if it responds to the requesting node
causally after exclusion, then the requesting node is also
excluded, by Isolation). The italicized phrase holds because
during the period when the primary was not excluded, it
would have correctly observed the backup as “connected” (by
Correspondence), and thus waited for an acknowledgment
from the backup before responding to the requesting node.

Second, suppose a backup “takes over” for a non-excluded
primary (a potential split-brain scenario). A correct backup
will take over only if it hears that the primary is “discon-
nected”; since the primary is not in fact excluded, then the
backup must be (by Correspondence). Thus, the “take-over”
by the backup is something akin to a delusion (experienced
by the backup and perhaps other excluded hosts).

What about reconnection? An excluded replica may even-
tually learn that it is excluded, for example, by querying its
own state or receiving a “you are disconnected” message from
the other replica. Then, the replica must determine a check-
point from before it was excluded and rollback to it before
reconnecting (via ackDisconnect()) and then replaying. For
an excluded backup, a suitable checkpoint would be the one
prior to the last request received from the primary.

S Detailed design

This section describes Albatross’s design, bottom up; we
begin with the scheme by which processes are named and end
with the core logic that enforces partitions and rehabilitates
processes. Section 6 describes notable implementation details.

5.1 Names and identifiers

Under Albatross, each target process receives a process id
(pid) when it registers (§3) with the host module. This pid
uniquely identifies the process in terms of its host, application,
and birth period. A pid contains the following fields:

* A host id (for example, an IP address);

* An application id (appid), which is programmer-supplied
and unique to applications within the given network (§3);

* A local id, which differentiates multiple processes of the
same application on the same host; and

* An epoch number, which identifies the epoch in which the
process registered.

Epochs are determined by the manager; an epoch corresponds
to a view of the network’s topology and partitions.

Pids are carried in packets. Albatross uses the fields of a
pid to create partitions (by filtering traffic). The choice of
field depends on the desired granularity of a partition. For
example, Albatross uses epochs when it needs to create a
partition affecting an entire rack of end-hosts. We describe
the interface for enforcing partitions next.

Primitive Description

CUT-APP(switch, appid, port) drop incoming traffic of
application appid entering port
of a switch

drop incoming traffic of epoch
entering port of a switch

drop all incoming traffic of
process pid at a switch
request topology information
and failure events to be sent to
a destination

CUT-EPOCH(switch, epoch, port)
BLOCK(switch, pid)

SUBSCRIBE(destination)

Figure 4—Network interface used by Albatross.

5.2 Network interface

As noted earlier, Albatross relies on SDN-like functionality
from the network (though SDNs per se are not required to
implement Albatross, as discussed in Section 8). Here, we
describe the functionality in terms of an abstract interface, de-
picted in Figure 4. (Section 6.2 describes an implementation
of this interface, using OpenFlow and NOX [33].)

CUT-APP and CUT-EPOCH tell a switch to block incom-
ing traffic that (a) enters the given port and (b) matches the
given appid or epoch (§5.1). BLOCK tells a switch to block
traffic belonging to a given process id on all ports. Albatross
also requires the ability to undo CUT-APP, CUT-EPOCH, and
BLOCK (not shown in Figure 4). SUBSCRIBE tells switches
where to send information about network topology and failure
events. Events of interest are link failure, indicating that a link
is deemed down; and end-host failure, indicating that a host
connected to a port is deemed down. The intent is that these
events are sent to the manager, described next.

5.3 Manager
Albatross’s manager coordinates the response to most failures.

Network failures. At a high level, the manager tracks the
network topology; when the topology experiences a partition,
the manager chooses a main partition, asks switches at the
edge of the main partition to block the traffic of Albatross
applications coming from outside the partition, and then calls
back clients to notify them about which processes have been
disconnected. This procedure does not affect applications that
do not use Albatross; it also does not affect applications that
use Albatross but are launched after the failure is resolved.
(One can think of this approach, loosely, as virtualizing parti-
tions, in that different applications see different views of the
network topology.)

In more detail, the manager runs the logic in Figure 5. The
manager maintains a model of the current network topology.
To that end, the manager, on starting up, requests notifications
about topology changes, using SUBSCRIBE (our implemen-
tation assumes that the manager also begins with a correctly
configured base topology; a less lazy implementation could
build the topology as switches join). When the manager re-

at startup call SUBSCRIBE(self)

function handle_failure_event(/ink):

remove [ink from topology

if topology has a new partition:
enforced := false
pick candidate excluded set P
while not enforced:

enforced := enforce_partition(P)

report_partition(P)

function enforce_partition(P):
for each switch.port connecting to P:
try:
if switch.port connects to an end-host:
for each appid in activeAppid running at end-host:
call CUT-APP(switch, appid, switch.port)
else: // switch.port connects to another switch
for each epoch in activeEpochs:
call CUT-EPOCH(switch, epoch, switch.port)
currentEpoch := get_inactive_epoch()
activeEpochs.insert(currentEpoch)
except call failure:
add switch to P
return false
return true

function report_partition(P):
broadcast list of hosts in P and activeEpochs

Figure 5—Logic for detecting, enforcing, and reporting partitions.

ceives an end-host failure or link failure event, it updates its
model. If the model has a partition, the manager chooses an
excluded set P of switches and hosts. P is chosen to be all
switches and hosts outside the largest strongly connected com-
ponent that is reachable by a majority of manager replicas.
Ties are broken arbitrarily.

Before Albatross reports a problem to clients, the manager
enforces the partition: it invokes CUT-APP or CUT-EPOCH
for every switch port bordering P. The choice of primitive
carries a trade-off. On the one hand, if the port bordering
P connects to an end-host, then the manager uses CUT-APP:
each end-host has a small set of applications, so enforcing a
partition requires few per-application rules. On the other hand,
if the port bordering P connects to another switch, then using
CUT-APP would require a rule for each application whose
traffic is carried by the switch—potentially hundreds of rules.
Instead, the manager handles this case by excluding at coarser
granularity: it uses CUT-EPOCH, which tells that switch, and
only that switch, to exclude all applications of active epochs.
While CUT-EPOCH compromises on surgical disconnection,
we note, first, that applications that begin in a new epoch are
not affected, since the use of CUT-EPOCH induces a change
of epoch. Second, CUT-EPOCH is invoked only when a switch
fails or is partitioned; the common case, end-host failures, is
handled with CUT-APP.

If the call to CUT-APP or CUT-EPOCH fails, the manager
adds the switch to P and continues.’ If the manager can-
not use the network interface to install rules at any switch,

5This failure can be detected via timeouts. These timeouts differ from end-

function handle_backstop_timeout(client, pid):
for switch in topology such that switch is connected to host of pid:
try: call BLOCK(switch, pid)
except call failure:
for link in switch:
handle_failure_event(link)
reply_to_client(client)

Figure 6—Logic to handle client backstop timeout on target pid.

then Albatross may be unable to report some failures, but
this case is rare and means that the whole network is likely
unusable (§1.1).

When the procedure finishes, the manager broadcasts the
list of hosts in P and the affected epochs. This information
is received by the Albatross host modules, which mark the
processes in P as down. The broadcast packets might be
dropped; in that case, Albatross can still detect failures using
the client’s backstop timeout (see below)—albeit more slowly.

Host and process failures. Albatross treats a host failure as
a one-host network failure, using the mechanism described
immediately above. Process crashes, however, are handled
differently; they separate into two cases. The first case is that
a backstop timeout (§3) fires; this event causes the monitoring
process to request help from the manager, which disconnects
the target process, using BLOCK. Figure 6 shows the detailed
logic. The second case is that a module running on the remote
host is aware of a process crash; this case does not involve
the manager at all and is covered in Section 6.3.

Example. Consider the example network below:

1 switch 1 D

(switch 2)

(switch 3)

| host 1 | | host 2 |

host 1 appids: 1, 2
host 2 appids: 2, 3
active epochs in network: 1, 3
appids of other hosts at switch 2: 447
appids of other hosts at switch 3: 13-63

If switch 3 reports an end-host failure event to the manager,
then the manager will install at switch 3 a CUT-APP rule for
appids 2 and 3. If switch 1 reports a link-failure event for
its link to switch 3, or the manager suspects that switch 3
has failed (e.g., because switch 3 failed to install a CUT-APP
rule), then the manager will install at switch 1 a CUT-EPOCH
rule for epochs 1 and 3 and choose an inactive epoch as the
current epoch. The manager use CUT-EPOCH instead of CUT-
APP because CUT-EPOCH requires two invocations, whereas

to-end timeouts (§2.2) because, first, they are monitoring a constrained
component, and, second, SDN management traffic can be prioritized, which
would make message latencies predictable and thus avoid spurious timeouts.

CUT-APP would require fifty-three (the fifty-one ids at switch
3 plus appids 2 and 3); this choice is important because, as we
will explain in Section 6.2, each invocation consumes scarce
resources at the switch. This example ignores how failures
might affect the manager; we describe the manager’s fault
tolerance next.

Fault tolerance. Recall that the manager is replicated for
fault-tolerance (§3), following the state machine replication
approach [45, 64], which is a majority-based technique for
fault-tolerance (see Section 2.2). If manager replicas are
placed at diverse parts of the network (such as different racks),
then under common network partitions (described in Sec-
tion 2.1), the majority of servers remains with the majority of
network elements.®

Revisiting the guarantees. The formal guarantees (§4) ref-
erence a set E. This set is never materialized explicitly. In-
stead, recall that the manager maintains a set P, which is a set
of (a) blocked processes, together with (b) a set of blocked
applications, switches, and hosts (keyed by epoch). Because
appids and epoch ids imply a set of processes, P implicitly
represents the membership of E.

Albatross provides Completeness through the backstop
timeout; if all else fails, a client will eventually request that
the manager block the target (Figure 6). Albatross guarantees
Isolation by configuring network switches to drop the traffic
of excluded processes (Figure 5). Albatross guarantees Mono-
tonicity because it never unblocks processes; it does recycle
identifiers, however, as described in the next section. The first
part of Correspondence is provided, also, by the backstop
timeout; if a report from the manager is dropped, the client
will eventually timeout and request blockage of the target
(forcing the manager to retry its message). The second half
of Correspondence is provided by the sequencing of events;
the manager reports partitions only after enforcing them.

Albatross provides speed by reacting to failure events as
opposed to end-to-end timeouts, in the common case. It limits
interference by inspecting network state, by using surgical
rules, and by allowing reconnection (described next).

5.4 Reconnecting processes and recycling identifiers

We now describe how Albatross reconnects processes and
recycles epochs and pids. Although epochs change infre-
quently, they are important to recycle since, in our implemen-
tation (§6.1), there are only a handful of them, network-wide.
Pids are scarce because the local id field—which identifies a
process within a given application on a given host—is small.

Reconnecting processes. When a process tries to recon-
nect by calling ackDisconnect(), its host module gives it a
new pid (§3,84). Although Albatross’s contract allows the
host module to return any unallocated pid, in the interest of
progress, the host module first checks that the new pid is not

Even if the manager-majority partition holds a minority of processes, the
minority can keep operating, under “f+-1" algorithms (see footnote 4).

being blocked by any switch. To this end, before allocating
a new pid, the host module asks the manager (a) what is the
current epoch, and (b) which of the host’s applications have
been excluded (via CUT-APP). If no applications have been
excluded, the host module returns a new pid with the current
epoch and appid. If applications have been excluded, the host
module locally blocks the processes belonging to those ap-
plications using a packet filter, asks the manager to undo the
blanket exclusion (meaning, undo the CUT-APP calls at the
edge switch), and only then returns the new pid. The order
of these steps is important to upholding the Isolation prop-
erty (§4); if the CUT-APP rules are undone before the excluded
processes are blocked by their host module locally, then the
excluded processes could affect non-excluded processes.

Garbage collecting epochs. Recall that when the manager
enforces a partition of more than one end-host, it must activate
a previously inactive epoch number. To allow the manager
to track which epochs are active, host modules inform the
manager which epochs they are using (by attaching a list to
their normal messages to the manager). When the manager
sees that an active epoch is not used by any host module, it
undoes the CUT-EPOCH for the epoch, and marks it inactive.

Garbage collecting pids. A host module must be careful
about when it reuses the pid of a process that has exited or
has acknowledged a disconnection. Suppose, for example,
that a host module were to give to a new process the pid of
a process that had recently terminated; later, a third process
could time out on the original terminated process, and have
the manager enforce a partition using that pid, which would
disrupt the new process. To avoid this and similar scenarios,
Albatross includes the following counting scheme.

Each pid has a counter that is physically stored at the host
module that allocated that pid (the local host); the counter
tracks references to that pid held by other hosts. The local
host module increments (or decrements) the counter when it
hears that a remote process has started (or stopped) monitor-
ing the associated process. A pid can be reused when these
conditions all hold: (1) the pid of the process has reference
count zero, (2) the local process has crashed or acknowledged
the disconnection, and (3) the manager is not blocking the
process’s pid (with BLOCK).

The challenge in keeping the counter accurate is that there
can be failures, both of clients referencing the pid and the host
module storing the counter. To handle both cases, the local
host module tracks, in a persistent write-ahead log, which
clients have references; periodically, the local host module
queries remote host modules to confirm that clients referenc-
ing its allocated pids are still running.

6 Selected implementation details

6.1 Packet marking

Figure 7 depicts the format of a pid. It consists of a 4-byte
host identifier (currently, the host’s IP address), together with
16 per-process bits. The per-process bits are the process’s

host id (IP addr) | epoch appid local id
(32 bits) (3 bits) | (10 bits) | (3 bits)

Figure 7—Format of a Albatross process id (pid). Pids are six bytes;
a process’s pid appears in the source MAC address field of packets
originated by the process. The number of epoch bits is small, but
epochs are recycled (§5.4). The local id disambiguates multiple
processes of the same application on the same host.

epoch number, the appid, and the local id.

Under Albatross, a process’s pid appears in the source
MAC address field of the packets that it originates. If a packet
is sent by a process that is not using Albatross (including
packets of ICMP, ARP, etc.), the bottom 16 bits are set to 0.
Only the source MAC fields are used this way; the destination
MAC field uses the usual MACs, obtained from ARP. This
scheme assumes a scalable layer-two network in the data
center (e.g., SEATTLE [41]).

The scheme has three features. First, it is easy to identify
the traffic of applications that use Albatross—by observing
a non-zero value in the bottom 16 bits. Second, blocking the
traffic of a process at a switch requires a single rule (to match
the source MAC); likewise, bit fields within the source MAC
can be used to block the traffic of an entire application or
epoch with one rule. Third, once the rule is installed, it need
not be updated based on how and where the process sends
data. By contrast, a scheme that blocked based on source
TCP or UDP ports would require one rule per port used by
the process, and updates in response to port changes. We
discuss how this scheme affects existing Layer 2 protocols in
Section 8.

6.2 Network interface implementation

Our implementation of Albatross assumes a network with
OpenFlow switches and a NOX controller [33]. Given this
environment, one can implement the network interface (Fig-
ure 4, §5.2) as follows. The CUT-APP(switch, appid, port) and
CUT-EPOCH(switch, epoch, port) primitives direct the NOX
controller to install an OpenFlow drop rule that matches on the
appid or epoch bits of the pid; similarly, the BLOCK(switch,
pid) primitive results in the installation of an OpenFlow drop
rule that matches the entire pid.

SUBSCRIBE(destination) is implemented by augmenting
the NOX controller to forward topology changes and failure
events to the destination (which is the Albatross manager).
Additionally, the destination needs to receive the link and
end-host failure events (§5.2). Link failure events correspond
to port- or link-down status events, and OpenFlow switches
(by nature) notify the controller of such events. The controller
simply forwards these notifications to the destination.

The more difficult case is end-host failure events. These
are not directly supported by OpenFlow, so our implementa-
tion must synthesize them. Our solution leverages SDN rule
timeouts, as follows. Each host module sends a special heart-
beat packet to its switch every Thegppeq: time units. On the
first heartbeat, the switch sends an unknown packet event to

the SDN controller. The SDN controller then configures the
switch to (a) drop these heartbeat packets, and (b) send a
timeout notification if the rule is not used for 7T},.;-check time
units. If the controller receives such a notification, it sends an
end-host failure event to the destination (the manager). Our
implementation sets Theqrtpeqr t0 10 ms and Tyercheck 0 1 s (the
smallest OpenFlow timeout), which provide reasonably fast
detection while tolerating dropped or delayed heartbeats.

6.3 Detecting process crashes

As noted in Section 5.3, process crash detection involves an
additional module. This module mostly reuses prior work;
we cover it for completeness. The core logic is a modified
Falcon spy [50]. A Falcon spy uses local information (e.g.,
an OS’s process table) to detect process crashes and report
them to clients monitoring the crashed (target) processes. In
particular, the Falcon spy inspects a process’s internal state
by invoking an application-specific function over IPC; this
mechanism detects problems that may be hidden externally,
such as deadlock. The modification from Falcon is that, in-
stead of terminating unresponsive processes, the spy drops
their traffic locally with a packet filter (using iptables). This
modification reduces the impact of a false suspicion.

6.4 Miscellaneous implementation details

* Each host module caches the status of monitored target
processes: when a client’s host module receives a notifica-
tion from a target’s host module or from the manager, the
client’s module invokes the relevant callback function (Fig-
ure 2) and stores the “disconnected” for future queries.

» Albatross’s manager is separate from the SDN controller.
The manager’s solution to replication makes use of a li-
brary [54]. (§8 discusses SDN controller fault-tolerance.)

* A final detail is interprocess communication (IPC). Alba-
tross must enforce Isolation even when processes are on
the same host. Thus, Albatross requires that all IPC be sent
through the host’s top-of-rack switch. If this requirement is
burdensome (e.g., if processes use IPC extensively), two lo-
cal processes can share the same Albatross pid, the tradeoff
being that Albatross treats such processes as a unit.

7 Evaluation of Albatross

Using empirics and experiments, our evaluation reprises the
arguments in Sections 2.2 and 2.3. First, we explain the bene-
fits of a membership service that provides definitive reports,
showing in the process that Albatross’s contract is sufficient
to derive these benefits (§7.1). Second, we investigate how
well Albatross does the job of providing this contract (§7.2).

All experiments run on a prototype network (with 13
switches connected in a complete ternary tree) implemented
using QEMU/KVM [62] virtual machines (version 1.0.1) and
CPgD OpenFlow 1.2 software switches [60]. The hypervi-
sor is a 64-core Dell PowerEdge R815 with AMD Opteron
Processors and 128 GB of memory, running Linux (kernel ver-

sion 3.7.10-gentoo-r1). The network controller is NOX [33],
modified to work with OpenFlow 1.2 [56].

71

On the one hand, the fact that membership services simplify
the design of the distributed applications that use them has
long been established: the fail-stop model (which assumes
that all processes can detect all crashes correctly) is known to
enable “easier” algorithms than the crash model. As just one
example, Chain Replication [69] (a form of primary-backup)
is simpler than Viewstamped Replication [57], Paxos-based
replication [46], and Raft [58].

On the other hand, Albatross’s contract (§4), with its asym-
metric guarantees, is not precisely the fail-stop model. Thus,
this section investigates whether Albatross’s contract is suf-
ficient to provide the same qualitative benefits. We do this
by illustrating what can go wrong without a membership ser-
vice; demonstrating that Albatross’s guarantees are sufficient
to simplify distributed algorithms; and describing the subtle
relationships among Albatross, ZooKeeper (as an alternate
membership service), and majority-based agreement.

What are the benefits of Albatross’s contract?

Without a membership service, what can go wrong? We
use RAMCloud [59] as a short case study. RAMCloud is a
storage system that keeps data in memory at a set of master
servers. These servers also process client requests to read and
write data. For durability, a master server writes copies of
data on the disks of multiple backup servers. A coordinator
manages the configuration of the servers (which servers are
masters for what data, etc.). To avoid losing writes or reading
stale data, RAMCloud must guarantee that exactly one mas-
ter server is responsible for a piece of data. One way to do
this would be to use a membership service, but RAMCloud
instead” uses several mechanisms internally: short timeouts,
self-killing, propagation of crash information, and coordina-
tion among backups. These mechanisms must be orchestrated
carefully to handle corner cases.

We first determine if RAMCloud ever returns stale (incor-
rect) data. We inject network failures at times carefully chosen
to trigger the following corner case: a master is transiently
disconnected from the coordinator, causing the coordinator to
initiate the master’s recovery. We find that RAMCloud can in-
deed return incorrect data; this bug was observed empirically
and confirmed by the RAMCloud developers. Specifically,
RAMCloud detects failures using a short timeout of hundreds
of milliseconds; if the coordinator times out on a master, the
coordinator starts data recovery, which is very fast. Because
the timeout is short and recovery is fast, the entire process may
complete before the old master realizes that it was replaced,
resulting in two masters: a split-brain scenario. Intuitively,
the issue is that RAMCloud does not make its suspicion of
failure definitive (e.g., by waiting for the old master to shut
down) before acting on that suspicion.

7RAMCloud uses ZooKeeper but only for coordinator failures [59, §3.10].

10

Algorithm Aab (§7.1) Zab [39]
Description length half page ~3 pages
phases 2 3

roundtrips on recovery 2 3

message types 3 9

timestamps/counters 1 2

At most one leader? yes no
failures (f) tolerated relative to total (1) f<n f<n/2

Figure 8—Comparison of atomic broadcast with and without defini-
tive reports. Aab uses Albatross (and would be similar if it used
any other membership service), and Zab [39] uses majority-based
agreement; both algorithms are described in the text.

We replaced RAMCloud’s failure detector with Albatross
(65 lines of C++) and found that RAMCIloud then worked
correctly: when the master is reported as “disconnected”, it
is excluded and cannot serve clients, by Correspondence and
Isolation (§4). This benefit is not unique to Albatross; other
membership services would eliminate this error too.

How do Albatross’s guarantees simplify algorithm de-
sign? As another case study, we examine atomic broad-
cast: it is a building block of many distributed systems,
and it has solutions with and without definitive reports [21].
We specifically compare (a) Zab [39], a protocol that uses
majority-based agreement (as opposed to definitive reports),
and (b) Aab, a protocol that uses Albatross.

Zab: atomic broadcast without definitive reports. Zab [39]
takes a standard approach, which we briefly summarize here.
A leader orders messages. Because partitions can result in
multiple leaders (one leader becomes disconnected, another
leader is elected, and the original reconnects), the protocol
relies on a majority (quorum) of processes to approve leader
actions. As a result, if two leaders try to act, only one succeeds
in getting approval from a majority.

Aab: atomic broadcast under Albatross. Under Albatross,
processes can select a unique leader by picking the smallest
process id among processes that Albatross considers to be
“connected”. This scheme works because, if there could be
two non-excluded leaders at the same time, let p be the one
with higher id; then p considers the other leader as “discon-
nected”, otherwise it would not have picked itself as leader.
Thus, by Correspondence (§4), the other leader is excluded—
contradiction. Thus, we have essentially unique leaders. We
say “essentially” because there could be many self-styled
leaders; however, all but one will be excluded.

Given (essentially) unique leaders, we can implement
atomic broadcast using a sequencer-based algorithm [21],
adapted to use Albatross. The algorithm proceeds in periods;
each period has a unique leader (chosen as described above).
In each period, a process that wants to broadcast a message
sends it to the leader and waits for an acknowledgment; if the
leader changes, the process resends to the new leader (in a
new period). The leader handles each period in two phases, re-
covery and order. In the recovery phase, the leader completes
the broadcast of pending messages from prior periods (if any).

where what failure is injected? what does the failure
injected? model?
network link failure network partition
network switch failure network partition
network misconfiguration that causesa operator error

partition
network host floods UDP traffic sudden traffic spike
network dropped OpenFlow messages problems in the SDN
network spurious failure event link flapping
end-host process crash (segfault) problem in the application
end-host host crash (kernel panic) machine crash or reboot
Albatross crash of host module bug in host module
Albatross crash of leader in manager bug in manager

Figure 9—Panel of synthetic failures. We inject failures in the net-
work, at the end hosts, and into Albatross itself.

In the order phase, the leader serves as a sequencer: it gets a
new message to broadcast, assigns it a sequence number, and
sends it to processes for delivery. Processes then deliver the
messages in sequence number order.

Comparison. Figure 8 compares the two algorithms. Aab
has a smaller description, fewer phases, fewer round-trips,
fewer message types, and fewer counters for ordering mes-
sages. Moreover, it tolerates the failure of all but one process;
Zab, by contrast, tolerates the failure of fewer than half of the
processes. (Equivalently, to tolerate f failures, the Albatross-
based Aab requires f + 1 processes, whereas Zab requires
2f+1 processes.) The fundamental source of these differences
is that Zab is built on majority-based agreement, which brings
complexity, as noted earlier (§2.2).

Albatross vs. ZooKeeper vs. consensus vs. atomic broad-
cast. The preceding comparison immediately raises a ques-
tion. Namely, Albatross also uses majority-based techniques
internally—in fact, the consensus-based algorithm for repli-
cating the manager (§3, §5.3) has the same qualitative com-
plexity as Zab. So why is this fact omitted in the Aab-vs-Zab
comparison? Because under Albatross, the complexity is lo-
calized to the manager, and handled once; the clients of Al-
batross are not exposed to the complexity, and the additional
resource cost is amortized over all clients of Albatross.

But can’t the same kind of amortization work for Zab? Yes
and no. On the one hand, ZooKeeper’s lease server abstraction
is built on Zab (Zab stands for “ZooKeeper atomic broadcast”;
Zab is used to order commands to a replicated lease server
state machine), and the intent is that many different applica-
tions can be clients of ZooKeeper’s lease server. On the other
hand, ZooKeeper cannot achieve the same performance under
the same number of clients as Albatross. The reason is that
short leases require frequent polling, which can overwhelm a
server with many clients; this is demonstrated in Section 7.2.

Can ZooKeeper be modified to use Albatross? Yes.
ZooKeeper is built on an atomic broadcast interface, which
is implemented by Zab (as noted above). We could replace

11

failure type

action taken by Albatross

link failure

switch failure

network
misconfiguration

network flooding

dropped OpenFlow
messages

spurious failure event

the network interface reports link failures (§5.2);
the mgr. detects a partition, enforces an excluded
set, and reports it to clients (Figure 5)

ditto

detected by client timeout (§3) and enforced by the
manager’s backstop logic (Figure 6)

no failure is detected

detected by an OpenFlow timeout in the SDN
controller; the controller treats this as a switch
failure and reports it to the manager as multiple link
failure events (Figure 5)

handled as a link failure (see above)

host crash

process crash

detected with an end-host failure event (§5.2), and
enforced by the manager (Figure 5)
Falcon spy [50] detects and reports failure (§6.3)

crash of host module

crash of manager
replica + partition

detected by backstop timeout (§3) and enforced by
the manager (§5.3)

replication library (§6.4) elects a new leader (§5.3),
then the manager handles the failure as above

Figure 10—Albatross’s reaction to the failure panel (Figure 9). Al-
batross detects all failures save network flooding (a non-failure), and
its enforcement actions affect only applications that use it.

Zab with Aab. However, the resulting system would inherit
the disadvantages of leases (§2.2, §2.3).

Can Albatross be built atop ZooKeeper? Yes. Albatross
could replicate its manager using ZooKeeper’s lease servers
(or Zab directly). This represents an alternative instantiation
of Albatross; it is essentially equivalent to the one covered in
the rest of this paper.

7.2 Is Albatross a good membership service?

We now experimentally investigate the qualities of Albatross:
(a) how it responds to failures, (b) how its timeliness com-
pares with two baseline mechanisms, (c) how well it limits
interference, and (d) what system resources it uses. The exper-
iments use a panel of synthetic failures, depicted in Figure 9.
These failures model problems in the network, at end-hosts,
and in Albatross itself; link and switch failures are derived
from our failure analysis (§2.1). While deploying Albatross
on physical hardware and measuring its response to failures
in the wild would be better than a synthetic evaluation, this
is beyond our scope, as we currently seek a more basic un-
derstanding of how Albatross performs. Thus, this evaluation
should be read as suggestive rather than conclusive.

How does Albatross respond to failures? We run an exper-
iment where a client process monitors a remote farget process;
we inject a failure of some chosen type, affecting the target
process, and we record Albatross’s response. We repeat the
experiment 25 times for each failure type.

We find that Albatross reacts the same way in the 25 repe-
titions for a given failure type; the reactions for each failure
type are in Figure 10.

(lower is better)

S = N W ks

Failure detection time (sec)

A F

link failure switch failure host crash

process crash

Figure 11—Detection time and coverage of Albatross (A), compared
to Falcon [50] (F) and ZooKeeper [36] (Z). Error bars are minimum
and maximum observed detection times. Two of Falcon’s bars are
labeled N/A because it does not detect link or switch failures. Alba-
tross detects failures quickly by using information at end-hosts and
in the network. ZooKeeper’s detection time reflects its timeout (4s);
a shorter one causes overload (see text).

How does Albatross compare with baseline mechanisms?
We take as baselines (1) ZooKeeper [36], and (2) Falcon [50],
both of which are described in Section 2.% For each failure
that Albatross detects (without using backstop timeouts), we
repeat the aforementioned experiments 100 times and mea-
sure the detection time from when the failure occurs to when
it is reported to the application. We experiment with Alba-
tross and with ZooKeeper. For Falcon, we report published
results [50] (because two of Falcon’s spies are incompatible
with the testbed used for Albatross).

Figure 11 shows the results. Network problems are de-
tected by Albatross quickly, usually in less than a second.
The specifics of these numbers depend on the implementa-
tion of our testbed’s switches, which are software; deploying
Albatross on real hardware may have different performance
characteristics, though we expect the order of magnitude will
be similar.

Process failures are detected by Falcon and Albatross
quickly; Albatross is faster than Falcon here (even though
Albatross uses a Falcon spy to detect these failures) because
Falcon’s published results include a delay for confirming that
a process has left the process table whereas Albatross needs
only to install an iptables rule (§6.3).

On host failures (e.g., kernel panics), Albatross takes 1s
longer than Falcon; the difference is that Albatross detects
host failures using OpenFlow rule timeouts (§6.2), which
have a minimum duration of 1s. Unlike Albatross, Falcon
cannot detect switch or link failures [50].

ZooKeeper’s detection speed reflects its timeout, which we
configure to be 4 seconds, as suggested in its tutorial [1]. This
choice is not arbitrary: if one lowers ZooKeeper’s timeout
to match Albatross’s detection speed, ZooKeeper would be
overloaded by keep-alives. To establish this, we experiment
with ZooKeeper. We find, first, that ZooKeeper can monitor
1500 targets, each using a 4s timeout on their leases. But
when we reduce the timeout to 500 ms, ZooKeeper drops the

8We do not use Pigeon [49] as a baseline because it lacks definitive reports
for network failures and because it targets Layer 3 networks.

12

max additional rules installed at a switch

rules installed 1 rule
CPU usage per component (§5)

host module 1.8 %
manager 0.03 %
bandwidth used

at each end-host 61.0 kBps
at manager 6.9 kBps

Figure 12—Summary of Albatross’s costs under link failure. Alba-
tross uses few resources. Scalability is discussed in the text.

connections of about 70 targets, even though the network is
not saturated. We believe this effect is similar to Burrows’s
observations [13]: timeouts shorter than 12s overwhelmed
Chubby’s servers in Google’s clusters (which monitors many
more targets). In contrast, we find that Albatross’s manager
can monitor over 1500 targets. Essentially, ZooKeeper polls
clients with ping messages whereas Albatross watches for the
causes of dropped pings (crashes, partitions, etc.), and can
thus react quickly.

How well does Albatross limit interference? We evaluate
whether some common network behaviors might cause Al-
batross to disconnect processes without cause. We inject two
non-failures into our testbed: (a) heavy traffic (modeling con-
gestion) and (b) a spurious link failure event (modeling link
flapping), for a link whose removal splits the network. We
observe that Albatross does not disconnect processes under
heavy traffic. Albatross does not detect a problem because
the duration of the spike in traffic is less than the client pro-
cess’s end-to-end timeout. Albatross does disconnect under
the spurious failure. While this behavior is not ideal, it is not
disastrous because, first, a known down link may be better
than persistent link flapping; second, Albatross does not inter-
fere if there are alternate paths or the link is not used by Alba-
tross processes; and third, applications can reconnect (§5.4).
Reconnection takes about one second in our experiments.

What are Albatross’s costs? We measure Albatross’s re-
source cost for detecting and enforcing a partition for a single
application. Figure 12 shows the results. As expected, Alba-
tross installs one rule per application id before reporting the
target process as “disconnected”.

We must also consider what happens when there are more
applications and hosts. In general, the number of rules grows
with the number of disconnected processes; for example, a
switch with 40 disconnected end-hosts, each with 20 distinct
applications, would have 800 rules. On the one hand, numbers
like these are acceptable: the HP ProCurve J9451A switch,
for example, has capacity of 1500 OpenFlow rules [35]. On
the other hand, the linear in-network costs could become
undesirable. In that case, Albatross could reduce the number
of rules that it uses; on links that connect to end-hosts, it could
block at the granularity of epochs instead of appids (§5.3), at
the cost of possibly blocking additional processes.

Albatross uses few resources at the manager replicas in
terms of CPU and network bandwidth. Albatross’s cost at

end-hosts is higher, as the host module generates heartbeat

packets (§6.2). However, the effect is local: these packets are

dropped by a host’s switch before entering the network.
Albatross is implemented with 4044 lines of C++ code.

8 Discussion and future work

Does Albatross have all the features of existing membership
services? While Albatross implements the basics of a member-
ship service, there are other features of existing membership
services that Albatross does not implement, including meta-
data storage [13, 36], message ordering [11, 16], and access
control [36]. However, Albatross can be used within existing
services to help reduce both failure detection time (§7.2) and
implementation complexity (§7.1).

Does Albatross require SDNs? While the current imple-
mentation of Albatross uses OpenFlow, Albatross requires
relatively few things from the network: the ability to receive
failure events and to block traffic based on packet fields.
These requirements are made explicit by the network inter-
face (§5.2), and Albatross can work in any network where
this interface can be implemented.

Is the SDN controller a single point of failure? This issue
is mostly orthogonal to Albatross. Albatross currently uses
NOX, which is centralized and thus a single point of failure.
However, Albatross could instead use recent fault-tolerant
controllers (see Section 9).

Must Albatross repurpose the source MAC field? Alba-
tross’s embedding of process identifiers in packets’ source
MAC field (§6.1) is not fundamental. Albatross could use
other space in packets: MPLS labels, a shim layer for Alba-
tross, bits in an RPC header, etc. The only requirement is that
switches can filter packets based on these fields.

How does Albatross’s MAC rewriting scheme affect exist-
ing Layer 2 protocols? Under existing Layer 2 protocols, such
as IEEE 802.1d [37], switches will use the source MAC ad-
dresses of incoming packets to learn the mapping between
MAC addresses and output ports, for future forwarding de-
cisions. Since Albatross’s MAC-rewriting scheme creates
source addresses that will never be used as destination ad-
dresses (§6.1), a Layer 2 protocol deployed alongside Al-
batross should be modified to never learn from these pack-
ets. Fortunately, Albatross works in the context of SDNs, so
many Layer 2 protocol changes would require only software
changes at the SDN controller.

Can Albatross work across data centers? One challenge
is that wide-area delays will worsen detection time when
the monitoring and target processes are far apart. Another
challenge is finding reasonable guarantees for Albatross to
provide when the data centers are partitioned. Addressing
these challenges is future work.

Can Albatross work with virtual machine migration? Alba-
tross assumes that processes and end-hosts remain stationary,
which conflicts with virtual machine migration [17]. This is-
sue is surmountable, if the manager and migration mechanism

13

collaborate to migrate filter rules. This, too, is future work.

Does Albatross consider network policy? Albatross models
only the physical network topology (§5.3). Yet policies (e.g.,
ACLs) can constrain communication. The Albatross manager
might thus be unable to detect unreachability: it might think
a path exists, when in reality it is prohibited. This problem
would be handled by the client’s backstop timeout (§3, §5.3).
Using policy information in Albatross is future work.

Can cooperating applications have inconsistent views of
the network? As mentioned in Section 5.3, one can think
of Albatross as virtualizing partitions. A natural question is
whether the discrepancies in the views of applications create
problems when applications communicate. The answer is no.
Albatross guarantees that, if a process is partitioned away, it
is partitioned for all applications.

What are the security implications of Albatross? Processes
can block any Albatross-enabled process by starting and never
canceling an end-to-end timeout (Figure 2). Adding access
control to Albatross’s API is future work.

Does Albatross contradict the end-to-end argument? No,
because Albatross’s guarantees are (a) about the state of the
network and (b) require help from the network, two cases that
fall outside the end-to-end argument’s jurisdiction.

9 Related work

Albatross leverages software-defined networking [33, 61] (as
described earlier). Albatross also builds on the distributed
systems literature, borrows from the networking literature,
and relates to work at their intersection.

Distributed systems. Earlier (§2.2), we walked through dis-
tributed systems solutions that relate to Albatross generally.
Here, we delve into closely related approaches.

Albatross can be seen as a type of failure detector, a service
that indicates the operational status of remote processes. This
service has a well-developed theory (e.g., [14]), including
some extensions for network partitions [3, 5], and a well-
developed practice [9, 15, 34, 67], based on timeouts (§2.2).
Unlike Albatross, this work does not leverage information
and mechanisms in the network.

Falcon [50] and Pigeon [49] are failure detectors that, like
Albatross, rely on local (or inside) information. Albatross has
some debts to Falcon, most notably the spy module to detect
process crashes (§6.3). A minor difference is that Albatross
better limits interference (Falcon kills end-hosts, whereas Al-
batross merely disconnects processes). The major innovations
over Falcon are: Albatross’s handling of network failures
(Falcon handles only process failures; it hangs if there are par-
titions), its precisely articulated contract, its design (process
naming, fine-grained dropping using SDNs, etc.), and using
SDNss to enhance classical distributed systems.

Like Albatross, Pigeon [49] is designed to handle network
failures; unlike Albatross, Pigeon does not leverage SDNG.
Another major difference is that Pigeon does not report fail-
ures definitively: under network problems, its interface pro-

vides only hints (§2.2). We built a membership service atop
Pigeon, in the form of a lease server [49, §5.2]. Under host
failures, inside information allows quick lease breakage; un-
der network failures, however, this membership service waits
for the lease to expire, as in ZooKeeper. One might be able to
build a better membership service atop Pigeon; we plan to in-
vestigate this in future work. But even if such an improvement
is possible, it would represent a different design point from
our work here. Among other things, we expect the response
times of this membership service to be longer (since it would
achieve definitiveness via agreement as opposed to killing).

Various systems introduce abstractions that can be used
in place of a failure detector. For example, cluster manage-
ment services (ZooKeeper, Chubby, etc.) can be used to assist
primary-backup replication, as explained in Section 2.3. An-
other example is FUSE [25], which reports the failures of
process groups in overlay networks. Unlike Albatross, FUSE
has symmetric guarantees for failure notification. However,
the semantics of these reports cannot be used to implement
primary-backup (since FUSE may report failure even if the
primary and the backup are both up). One body of work
that deserves special mention is group communication ser-
vices [11, 16] (GCS); these maintain a view of processes and
provide multicast within a view. GCS have an exclusion con-
cept similar to Albatross, but the mechanisms are different:
a GCS uses timeouts and distributed algorithms (§2.2) while
Albatross observes and modifies the network.

Another related system is Fault-Tolerant CORBA (FT-
CORBA) [2]. FT-CORBA has a hierarchical monitoring
scheme, which is reminiscent of how Albatross implements
end-host failure events (§6.2); FI-CORBA also includes
object-specific monitoring functions, which are similar to the
spy that Albatross borrows from Falcon (§6.3). However, Al-
batross and FT-CORBA have different goals and mechanisms:
Albatross provides a membership service by leveraging SDN
whereas FT-CORBA replicates objects.

Networking. The general area of resilience in networking
has received much research attention. This work is largely
orthogonal to Albatross, as Albatross concerns how to reliably
report partitions to applications. However, some of this work
has a similar ethos to Albatross. For instance, NetPilot [72]
seeks to turn partial failures into total failures (called fail-
ure mitigation). Nevertheless, the two systems take different
approaches, in the service of complementary goals: NetPi-
lot restarts switches and ports, to mitigate network failures,
whereas Albatross blocks traffic to make its reports accurate,
when such failures do occur.

A large body of work (far more than we can cover in depth,
but see [7, 8, 18, 19, 22, 31, 42, 43, 52, 53, 66, 71, 75, 76]) is
concerned with extracting intelligence about the network, and
reporting it to operators or applications. Although some of Al-
batross’s elements are reminiscent of some of this work, gen-
erally the goals are different. For instance, some work [65, 70]
monitors routing state to track topology (as does the Albatross

14

manager), but their goal is different: analysis and diagnosis
for researchers and operators. In Network Exception Handlers
(NEH) [40], the network notifies hosts of state changes, but
the purpose is end-host participation in traffic engineering.
Like Albatross, Packet Obituaries (POs) [6] report network
failure information to end-hosts, but POs do so at a differ-
ent level of abstraction (which packets were dropped versus
which processes are reachable).

Distributed systems and networking. Research that com-
bines distributed systems and networking tends to apply dis-
tributed systems techniques to make better networks (whereas
Albatross works the other way around).

Consistent networking aims to keep the network in a valid
state at all times, under configuration changes. For instance,
consensus routing [38] uses Paxos [46] to apply updates to
BGP routers to avoid black holes and loops. More recent
work has examined primitives for consistent updates to Open-
Flow networks, to preserve routing state [63] and bandwidth
guarantees [28]. These goals are different from Albatross’s.

Distributed SDN. Some researchers have used techniques
from distributed systems to replicate and distribute the SDN
controller [20, 23, 24, 44, 68, 73]. This work would comple-
ment Albatross, as noted in Section 8.

10 Conclusion
For all averred, I had killed the bird

—"“The Rime of the Ancient Mariner”, Samuel Taylor
Coleridge

Albatross leverages software defined networks to give dis-
tributed applications reports about the reachability of their
component processes. These reports are timely and definitive,
and cover network problems—a combination that we believe
is new in membership services. Furthermore, Albatross as
built handles failures at end-hosts, making it a complete solu-
tion for failure detection in a data center environment.

Albatross also brings up a potential direction for future
work. A number of projects have applied distributed systems
techniques to obtain better networks. However, we think that
Albatross is the first to apply modern networking techniques
to refine the guarantees of distributed systems. Perhaps there
are other opportunities along these lines.

Acknowledgments

Youngjin Kwon helped implement an early prototype of Albatross.
Many people helped to improve this work, including Sebastian
Angel, Mahesh Balakrishnan, Manos Kapritsos, Jeftf Mogul, John
Ousterhout, Rama Ramasubramanian, Ryan Stutsman, Yang Wang,
Emmett Witchel, and Edmund L. Wong. The presentation of this pa-
per was greatly improved by the careful comments of Dejan Kostié,
Jinyang Li, Scott Shenker, Riad Wahby, and the anonymous review-
ers of EuroSys, OSDI, and SIGCOMM. The research was supported
in part by NSF grants CNS-1055057, CNS-1040083, and CCF-
10482609.

References

(1]

2

—

(3]

[4

—

(6

—_

[7

—
e}
—_ =

[9

[}

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

http://zookeeper.apache.org/doc/current/
zookeeperStarted.html.

Faut tolerant CORBA. OMG Specification formal/2010-05-07,
Object Management Group, 2010.

M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat
failure detector for quiescent reliable communication and
consensus in partitionable networks. Theoretical Computer
Science, 220(1):3-30, June 1999.

P. A. Alsberg and J. D. Day. A principle for resilient sharing of
distributed resources. In International Conference on Software
Engineering (ICSE), pages 562-570, 1976.

L. Arantes, P. Sens, G. Thomas, D. Conan, and L. Lim. Partition
participant detector with dynamic paths in mobile networks. In
IEEE International Symposium on Network Computing and
Applications (NCA), pages 224-228, July 2010.

K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing
packet obituaries. In ACM Workshop on Hot Topics in Networks
(HotNets), Nov. 2004.

H. Ballani and P. Francis. Fault management using the CONMan
abstraction. In INFOCOM, Apr. 2009.

T. Benson, A. Akella, and D. Maltz. Unraveling the complexity
of network management. In Symposium on Networked Systems
Design and Implementation (NSDI), pages 335-348, Apr. 2009.
M. Bertier, O. Marin, and P. Sens. Implementation and
performance evaluation of an adaptable failure detector. In
International Conference on Dependable Systems and Networks
(DSN), pages 354-363, June 2002.

K. Birman, A. Schiper, and P. Stephenson. Lightweight causal
and atomic group multicast. ACM Transactions on Computer
Systems (TOCS), 9(3):272-314, Aug. 1991.

K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in
distributed systems. In ACM Symposium on Operating Systems
Principles (SOSP), pages 123-138, Nov. 1987.

W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and
P. Li. Paxos replicated state machines as the basis of a
high-performance data store. In Symposium on Networked
Systems Design and Implementation (NSDI), pages 141-154,
Apr. 2011.

M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Symposium on Operating Systems Design
and Implementation (OSDI), pages 335-350, Dec. 2006.

T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225-267,
Mar. 1996.

W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. I[EEE Transactions on Computers,
51(5):561-580, May 2002.

G. V. Chockler, 1. Keidar, and R. Vitenberg. Group
communication specifications: a comprehensive study. ACM
Computing Surveys, 33(4):427-469, Dec. 2001.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
Symposium on Networked Systems Design and Implementation
(NSDI), pages 273-286, May 2005.

D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski.
A knowledge plane for the Internet. In ACM SIGCOMM, pages
3-10, Aug. 2003.

E. Cooke, R. Mortier, A. Donnelly, P. Barham, and R. Isaacs.
Reclaiming network-wide visibility using ubiquitous end system
monitors. In USENIX Annual Technical Conference, June 2006.
A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,

P. Sharma, and S. Banerjee. DevoFlow: Scaling flow
management for high-performance networks. In ACM
SIGCOMM, pages 254-265, Aug. 2011.

X. Défago, A. Schiper, and P. Urban. Total order broadcast and

[22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

[38]

(39]

multicast algorithms: Taxonomy and survey. ACM Computing
Surveys, 36(4):372-421, Dec. 2004.

A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot.
Troubleshooting network unreachabilities using end-to-end
probes and routing data. In ACM Conference on Emerging
Networking EXperiments and Technologies (CoNEXT), Dec.
2007.

A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella.
Towards an elastic distributed SDN controller. In SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(HotSDN), pages 7-12, Aug. 2013.

C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and
A. Krishnamurthy. ETTM: A scalable fault tolerant network
manager. In Symposium on Networked Systems Design and
Implementation (NSDI), Apr. 2011.

J. Dunagan, N. J. A. Harvey, M. B. Jones, D. Kosti¢, M. Theimer,
and A. Wollman. FUSE: Lightweight guaranteed distributed
failure notification. In Symposium on Operating Systems Design
and Implementation (OSDI), pages 151-166, Dec. 2004.

C. Fetzer. Perfect failure detection in timed asynchronous
systems. IEEE Transactions on Computers, 52(2):99-112, Feb.
2003.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the
ACM, 32(2):374-382, Apr. 1985.

S. Ghorbani and M. Caesar. Walk the line: Consistent network
updates with bandwidth guarantees. In SIGCOMM Workshop on
Hot Topics in Software Defined Networking (HotSDN), pages
67-72, Aug. 2012.

S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM
SIGACT News, 33(2):48-51, June 2002.

P. Gill, N. Jain, and N. Nagappan. Understanding network
failures in data centers: Measurement, analysis, and implications.
In ACM SIGCOMM, pages 350-361, Aug. 2011.

S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.
Path-quality monitoring in the presence of adversaries. In
SIGMETRICS, pages 193-204, June 2008.

C. Gray and D. Cheriton. Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency. In ACM
Symposium on Operating Systems Principles (SOSP), pages
202-210, Dec. 1989.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: Towards an operating
system for networks. ACM Computer Communications Review
(CCR), 38(3):105-110, July 2008.

N. Hayashibara, X. Défago, R. Yared, and T. Katayama. The ¢
accrual failure detector. In IEEE Symposium on Reliable
Distributed Systems (SRDS), pages 66—78, Oct. 2004.

D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity switch
models for software-defined network emulation. In SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(HotSDN), pages 43-48, Aug. 2013.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In USENIX
Annual Technical Conference, pages 145-158, June 2010.
Standard for local an metropolitan area networks: media access
control (MAC) bridges. IEEE Standard 802.1d, Institute of
Electrical and Electronics Engineers, 2004.

J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and
A. Venkataramani. Consensus routing: The Internet as a
distributed system. In Symposium on Networked Systems Design
and Implementation (NSDI), pages 351-364, Apr. 2008.

F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup systems. In
International Conference on Dependable Systems and Networks

http://zookeeper.apache.org/doc/current/zookeeperStarted.html
http://zookeeper.apache.org/doc/current/zookeeperStarted.html

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

(DSN), pages 245-256, June 2011.

T. Karagiannis, R. Mortier, and A. Rowstron. Network exception
handlers: Host-network control in enterprise networks. In ACM
SIGCOMM, pages 123-134, Aug. 2008.

C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: a
scalable Ethernet architecture for large enterprises. In ACM
SIGCOMM, pages 3—14, Aug. 2008.

R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP
fault localization via risk modeling. In Symposium on Networked
Systems Design and Implementation (NSDI), May 2005.

R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren.
Detection and localization of network black holes. In
INFOCOM, pages 2180-2188, May 2007.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and

S. Shenker. Onix: a distributed control platform for large-scale
production networks. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 351-364, Oct. 2010.
L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21:558-565,
July 1978.

L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133-169, May 1998.

L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos and
primary-backup replication. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 312-313, Aug. 2009.

E. K. Lee and C. Thekkath. Petal: Distributed virtual disks. In
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 84-92, Dec. 1996.

J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish.
Improving availability in distributed systems with failure
informers. In Symposium on Networked Systems Design and
Implementation (NSDI), pages 427-442, Apr. 2013.

J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and

M. Walfish. Detecting failures in distributed systems with the
FALCON spy network. In ACM Symposium on Operating Systems
Principles (SOSP), pages 279-294, Oct. 2011.

Linux-HA, High-Availability software for Linux.
http://www.linux-ha.org.

H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iPlane: An
information plane for distributed services. In Symposium on
Operating Systems Design and Implementation (OSDI), pages
367-380, Nov. 2006.

H. V. Madhyastha, E. Katz-Bassett, T. Anderson,

A. Krishnamurthy, and A. Venkataramani. iPlane Nano: path
prediction for peer-to-peer applications. In Symposium on
Networked Systems Design and Implementation (NSDI), pages
137-152, Apr. 2009.

D. Mazieres. Paxos made practical. http:
//wuw.scs.stanford.edu/~dm/home/papers/paxos.pdf, as
of Sept. 2011.

T. Muraus. Service registry behind the scenes why we built it.
http://www.rackspace.com/blog/
service-registry-behind-the-scenes-why-we-built-it,
Nov. 2012.

NOX Zaku with OpenFlow 1.2 support.
http://github.com/CPgD/nox120f1lib.

B. M. Oki and B. Liskov. Viewstamped replication: A general
primary copy. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 8—17, Aug. 1988.

D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In USENIX Annual Technical Conference,
pages 305-309, June 2014.

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and

16

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

M. Rosenblum. Fast crash recovery in RAMCloud. In ACM
Symposium on Operating Systems Principles (SOSP), pages
29-41, Oct. 2011.

OpenFlow 1.2 Software Switch.
http://github.com/CPqD/of12softswitch.

Openflow. http://www.openflow.org/.

Kernel based virtual machine. http://www.linux-kvm.org/.
M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and

D. Walker. Abstractions for network update. In ACM
SIGCOMM, pages 323-334, Aug. 2012.

F. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys,
22(4):299-319, Dec. 1990.

A. Shaikh and A. Greenberg. OSPF monitoring: Architecture,
design, and deployment experience. In Symposium on Networked
Systems Design and Implementation (NSDI), pages 57-70, Mar.
2004.

A. Shieh, E. G. Sirer, and F. B. Schneider. NetQuery: A
knowledge plane for reasoning about network properties. In
ACM SIGCOMM, pages 278-289, Aug. 2011.

K. So and E. G. Sirer. Latency and bandwidth-minimizing
failure detectors. In European Conference on Computer Systems
(EuroSys), pages 89-99, Mar. 2007.

A. Tootoonchian and Y. Ganjali. HyperFlow: A distributed
control plane for OpenFlow. In Internet Network Management
Workshop / Workshop on Research on Enterprise Networking
(INM/WREN), Apr. 2010.

R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Symposium on
Operating Systems Design and Implementation (OSDI), pages
91-104, Dec. 2004.

D. Watson, F. Jahanian, and C. Labovitz. Experiences with
monitoring OSPF on a regional service provider network. In
International Conf. on Distributed Computing Systems (ICDCS),
pages 204-213, May 2003.

M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
information plane for networked systems. In ACM Workshop on
Hot Topics in Networks (HotNets), Nov. 2003.

X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan,
and M. Zhang. NetPilot: Automating datacenter network failure
mitigation. In ACM SIGCOMM, pages 419—430, Aug. 2012.

M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
flow-based networking with DIFANE. In ACM SIGCOMM,
pages 351-362, Aug. 2010.

L. Zhang. Why TCP timers don’t work well. In ACM
SIGCOMM, pages 397-405, Aug. 1986.

M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang.
PlanetSeer: Internet path failure monitoring and characterization
in wide-area services. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 167-182, Dec. 2004.
Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end
network diagnosis. In ACM SIGCOMM, pages 219-230, Sept.
2006.

http://www.linux-ha.org
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.rackspace.com/blog/service-registry-behind-the-scenes-why-we-built-it
http://www.rackspace.com/blog/service-registry-behind-the-scenes-why-we-built-it
http://github.com/CPqD/nox12oflib
http://github.com/CPqD/of12softswitch
http://www.openflow.org/
http://www.linux-kvm.org/

	1 Introduction
	1.1 Components and requirements
	1.2 Performance, results, and contributions

	2 Further motivation
	2.1 What network partitions happen in data centers?
	2.2 The whys, whats, and hows of membership services
	2.3 How does Albatross fit?

	3 Overview of Albatross
	4 Albatross's contract
	5 Detailed design
	5.1 Names and identifiers
	5.2 Network interface
	5.3 Manager
	5.4 Reconnecting processes and recycling identifiers

	6 Selected implementation details
	6.1 Packet marking
	6.2 Network interface implementation
	6.3 Detecting process crashes
	6.4 Miscellaneous implementation details

	7 Evaluation of Albatross
	7.1 What are the benefits of Albatross's contract?
	7.2 Is Albatross a good membership service?

	8 Discussion and future work
	9 Related work
	10 Conclusion

