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1 Introduction
In their early days, distributed systems were designed
under a synchronous (message-passing) model, which
assumes bounds on processing and communication de-
lays. These assumptions allowed processes to handle un-
responsive processes easily with end-to-end timeouts.
However, current distributed systems cannot meet end-
to-end timing properties because they are composed of
a diverse stack of layers, each with complex timing be-
havior. At best, these systems have predictable timing in
the common case, but even slight deviations from normal
load or operating conditions can produce long delays that
violate the model’s assumptions (§2.1). Since the model
fails to represent reality, even systems that are correct un-
der the model can produce errors in practice.

Because of this mismatch, many algorithms and sys-
tems have been designed under the asynchronous model,
in which there are no assumptions on responsiveness
and no way to distinguish slow from crashed processes.
While this generality is appealing, we argue in this paper
that the asynchronous model is poorly suited to building
real systems (§2.2): the case people make for this model
is problematic, the model can actually be detrimental be-
cause it hides useful timing information within the layers
of the system, and the model leads to complex systems
because of the inability to distinguish slow from crashed
processes. Our arguments are supported by the fact that
systems that are safe under asynchrony are rare, even
when they incorporate components, like Paxos [9], that
are specifically designed to tolerate asynchrony (§2.3).

We advocate a different model, namely the asyn-
chronous model augmented with a perfect failure detec-
tor (PFD) [4], which enables a process to tell whether an-
other process has crashed or is merely slow. This model
allows for arbitrary delays, thereby accommodating the
timing complexity of current layered systems, yet it
avoids a main source of complexity in the asynchronous
model: the uncertainty caused by slow processes (§3.1).

Failure detection in systems is often implemented us-
ing end-to-end timeouts on heartbeat messages. Such an
approach fails to yield a PFD if messages have arbi-
trary delays (§3.1). We propose a scheme that replaces
end-to-end timeouts with a more informed, accurate, and
powerful mechanism: spy modules or spies (§3.2). A
spy uses specialized information—including timing as-
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sumptions that are local to a layer and reliable—to learn
whether a process within a layer is alive. If a process
appears crashed, the spy assassinates it and then reports
“crashed” with confidence. Spies at many layers form a
spy network that localizes problems and, if assassination
is needed, kills the smallest possible component.

The contributions of this paper are revisiting conven-
tional wisdom about asynchronous systems (§2), advo-
cating a model that departs from pure asynchrony (via
perfect failure detectors) as a practical and better alterna-
tive (§4), and introducing spy modules as a way to real-
ize this model in practice (§3). We begin our argument by
critiquing synchrony and asynchrony in §2; this dilemma
highlights the need for a middle ground.

This paper is mostly focused on the scenario of data
centers and enterprise networks. However, we think that
the ideas are useful more broadly, and in §5 we discuss
their extension to wide area networks. Also, this paper
assumes that a process or node fails by crashing; what to
do in Byzantine environments is future work.

2 Synchrony vs. asynchrony: a dilemma
In the synchronous model (or “under synchrony”), there
are strict timing guarantees on process execution speeds
and communication delays. Thus, a system or process
can use the passage of time to infer accurate informa-
tion. In particular, if a process sends a request to another
process but the response does not arrive within a known
period, a timeout occurs and the first process infers that
the second process crashed.

In contrast, the asynchronous model is defined by two
properties:
A1 There are no timing guarantees, implying processing

delays and communication delays are arbitrary;
A2 Crashed and slow processes cannot be distinguished.
Note that A1 alone does not characterize the asyn-
chronous model: there are models where A1 holds but
not A2 (e.g., [4]).

In this section, we argue that synchrony and asyn-
chrony are both problematic, creating a dilemma. We
also underscore our points about asynchrony with some
empirical observations. We describe a proposed resolu-
tion to the dilemma in §3.

2.1 Synchrony is dangerous
For a synchronous model to hold, the corresponding
timing guarantees must hold in reality. Real-time sys-



tems provide these guarantees by constraining load, pre-
allocating resources, controlling the scheduling of tasks,
and using special hardware. But outside of the real-time
context, synchrony can be dangerous. The reasons are
well-known; we briefly review them here.

The main problem is that the synchronous model leads
to systems that use end-to-end timeouts. These timeouts
are hard to set: end-to-end timing reflects the composi-
tion of many layers in the system, including communica-
tion layers (i.e., the protocol stack) and computation lay-
ers (e.g., threads, processes, virtual machines). And, the
timing at each layer often depends on internal factors un-
known to the application, such as load, intermittent fail-
ures, and background tasks (e.g., garbage collection).

But getting timeouts wrong compromises performance
or correctness. If timeouts are too long then, when a pro-
cess crashes, the system waits longer than necessary, un-
dermining availability. If timeouts are too short (these
are called premature timeouts) then a process acts on the
false premise that the timed-out event will not happen,
which can lead to complications, including loss of safety.

2.2 Reconsidering asynchrony
To counter the problems of synchrony, many designers
have adopted asynchrony. Indeed, the current conven-
tional wisdom is that to design systems under asynchrony
guarantees safety and to do otherwise courts danger. But
we think that this view should be reconsidered. We begin
with the usual case for the asynchronous model and then
argue that this model can actually detract from safety.

At a high level, people design algorithms that are
safe under asynchrony because they want a guarantee of
safety; the asynchronous model can provide that guaran-
tee because it is general, in two ways. First, the model
makes almost no assumptions. Note that it explicitly
avoids timing assumptions so avoids the problems re-
viewed in §2.1. Second, the assumptions that it does
make—A1 and A2—are such that if a system is safe un-
der those assumptions, it is also safe if those assump-
tions are violated. For example, if a system is safe when
communication delays are arbitrary, then it is also safe if
communication delays are short.

However, we contend that asynchrony can detract
from safety. We give three arguments. We begin the
first by observing that certain problems, such as con-
sensus [6], do not have solutions that are both safe and
live in an asynchronous model. Given this constraint, the
conventional wisdom is to take what we call the async-
safety approach: design components that never violate
safety (i.e., they are safe under asynchrony) but are live
only in the presence of some synchrony. The trouble with
treating liveness as a second-order concern is that, in a
real system, the highest layers are typically human users
or organizations, which have limited lifespans or time-

sensitive goals. In these systems, a loss of liveness at a
lower layer can cause a higher layer to miss a deadline,
thus violating whole-system safety. (This point has been
articulated in the real-time community.)

Our second argument is that, when designing a layer
or component under the asynchronous model, designers
must expose a narrow interface that hides useful infor-
mation in that layer or below. In particular, the interface
does not allow its users to differentiate slowness from
crashes in that layer or below. As a result, when the sys-
tem is unresponsive, the highest layers (humans, orga-
nizations) are forced to guess whether a crash occurred,
and incorrect guesses can lead to a loss of safety.

For example, consider a human making a purchase
within a Web application. Assume the network and
server are asynchronous. If the server is slow, the user
can “timeout”, incorrectly guess that the server is faulty,
and press the “purchase” button a second time. Mean-
while, if the original request had been successful, the re-
sult is a repeated purchase, violating safety. Graying out
the “purchase” button or tracking duplicate order ids at
the server mitigates but does not eliminate this problem
because the human can still open a different browser and
issue a similar request. The only way to eliminate it is
to “freeze” the human, forcing her to wait for confirma-
tion of all requests before issuing any others. Such an un-
bounded wait causes angry customers and lost business,
which are another kind of safety violation.

Our third argument is that asynchrony leads to com-
plex systems, as evidenced by the literature on replica-
tion and distributed algorithms. For example, consider
Paxos, which is designed to be safe under asynchrony.
While expressing the Paxos synod in pseudo-code is sim-
ple [10], using it to build a state machine and a system is
not [3, 9, 12]. Complexity leads to design flaws or imple-
mentation mistakes, which lead to safety violations.

2.3 Empirical observations
We now make two empirical observations to support the
points that the asynchronous model is problematic and
that a better alternative ought to exist.

The first observation concerns the conventional advice
to follow the async-safety approach (defined in §2.2 as
upholding safety under asynchrony and achieving live-
ness only when synchrony holds). We observe that this
approach is a custom more honored in the breach than the
observance. As a case study, we considered Paxos [9]—a
popular consensus algorithm designed under the async-
safety approach—and we examined four systems that
employ it: Petal [11], FAB [13], Chubby [2], and Con-
sensus Routing [7]. As shown in Figure 1, Petal, Chubby,
and Consensus Routing are not safe under asynchrony:
they require some synchrony even for safety. FAB ap-



Chubby. Chubby is a replicated lock service that uses
Paxos to elect a master replica and to order updates
going to each replica. Chubby relies on synchrony,
by assuming that no clock has a drift rate beyond an
anticipated maximum. If this assumption is violated,
Chubby can have two masters. In that case, one of the
masters could respond to a client read with stale data,
or a client’s supposedly coherent cache might contain
stale data (a violation of safety).
Petal. Petal is a distributed block storage system that
replicates data. It uses Paxos for servers to agree on:
which servers are alive (liveness module), a list of disk
volumes, and, for each volume, which servers store
which blocks. Petal relies on synchrony, by assum-
ing clocks with bounded drift. Without such clocks,
the following could happen: (1) a primary server P be-
comes slow; (2) the liveness module times out on P
and declares P dead; (3) as a result, P stops receiving
you-are-alive messages; (4) most clients now write to
the backup B; (5) however, P remains active (its clock
is slow so it does not timeout on the you-are-alive mes-
sages), some clients read from P, and they obtain stale
data (a violation of safety).
Consensus routing. Consensus routing [7] is a rout-
ing protocol that seeks to avoid inconsistent routes,
which can cause loops and unnecessary black holes.
The protocol proceeds in epochs; in each epoch, nodes
use distributed snapshots and Paxos to agree on a set
of updates for the next epoch, such that the resulting
routes will never be inconsistent. Consensus routing
relies on synchrony to ensure that (a) nodes respond
to the distributed snapshot protocol on time, and (b)
nodes receive the Paxos decision on time. Under com-
plete asynchrony, no useful routing paths are installed,
causing the scheme to use a fall-back transient mode
in which loops and unnecessary black holes are again
possible (a violation of safety).

Figure 1: Use of synchrony for safety in systems that use Paxos.

pears to be safe under asynchrony but devotes consider-
able complexity to being so.

What can we conclude from these designers’ depar-
ture from async-safety? One conclusion is that applying
this approach in practice is hard. Indeed, for a system to
be safe under asynchrony, every component must be safe
under asynchrony, yet meeting this requirement, even for
a confined component such as a consensus module, ne-
cessitates elaborate solutions. Another conclusion is that
the generality of “safety under asynchrony” is unneces-
sary in reality, because true asynchrony does not arise in
practice or arises so infrequently that not handling it is a
tolerable risk to safety.

Our second observation in this section is that the world

is synchronous in a fundamental way. At the sub-atomic
level, electrons go around in periodic intervals. At the
single component level, CPUs have clocks. And at higher
levels, as mentioned above, human users and organiza-
tions have deadlines. Given this synchrony, it is not sur-
prising that the systems that we studied above appear to
work, even though they are safe only under synchrony.

These two observations suggest to us that the gener-
ality of asynchrony might not be needed for safety. But
we still have a dilemma. As practiced today, synchrony is
problematic because end-to-end timeouts are ad-hoc and
dangerous (§2.1). Yet the alternative, asynchrony, causes
harm because a process is allowed to block indefinitely
without other processes knowing that the process has
blocked indefinitely (§2.2). To resolve this dilemma, the
next section proposes a principled way to practice “safe
synchrony”. Note that relying on synchrony for safety,
though against the current conventional wisdom, is con-
sistent with our empirical observations above.

3 A middle ground
We advocate an asynchronous model augmented with
perfect failure detectors (PFDs), described in §3.1. PFDs
have been proposed before [4], but conventional wisdom
is that they are impossible to implement in reality. We ar-
gue otherwise, by proposing an implementation in §3.2.
We describe the benefits of the approach in §4.

3.1 Perfect failure detectors
A PFD is an oracle. A query includes a process name;
the PFD’s response is whether the process is crashed or
alive, where a “process” could be a thread, OS process,
machine, etc. The oracle never says that an alive process
is crashed, but if there is a crash, the oracle will report
the crash after some detection time. Our design of PFDs
strives to keep the detection time as small as possible.
PFDs give a way out of the dilemma above because they
eliminate premature timeouts (they never report a slow
process as dead) yet do not require other processes to
wait forever (they report crashed processes as such).

A model without end-to-end timing assumptions but
with PFDs keeps A1 but negates A2; we call this the PFD
model. Our goal in this section is to realize this model,
which requires realizing a PFD, which is challenging.

Previous PFD implementations use end-to-end time-
outs on heartbeat messages plus some scheme to avoid
failure detector mistakes due to slow messages. One
scheme is to run the PFD on a synchronous subsys-
tem [14], but this requires a synchronous network, which
may be impractical or costly. Another scheme is to use
watchdogs and process suicide [5]. Here, picking the
right timeout is hard: small timeouts cause frequent sui-
cides, and large timeouts cause large detection times; in
both cases, availability suffers.



3.2 Realizing the PFD model: spies

Given the problems just mentioned, we seek a PFD im-
plementation that does not incorporate end-to-end time-
outs. Our scheme is based on four key ideas:

(1) Insider information can sometimes indicate
crashes without using timeouts. For example, if a pro-
cess has disappeared from the OS’s process table then we
know that it has died. Or if an important thread has ex-
ited, the process is effectively dead. To identify such fail-
ures may require implementation-specific knowledge. To
encapsulate such knowledge, we propose to use tailored
modules, called spies, that peek at a layer’s internal state
to tell if a process within the layer has crashed. For exam-
ple, an OS-level spy views the kernel’s process table, and
a process-level spy observes an application’s key threads.

(2) Use local, not end-to-end, timeouts. As an analogy,
consider a supermarket’s checkout service. A customer
who cannot see the cashier cannot distinguish slow ser-
vice from “crashed” service. To address this problem, the
usual approach is to assume that each customer takes at
most T time and the line length is at most N, and to guess
that the cashier is dead after a timeout of N×T . Our ap-
proach is for the customer to use information internal to
the service: our customer would examine the cashier to
determine if he is alive, taking his pulse and using tim-
ing assumptions particular to the human body (e.g., no
pulse for 10 minutes means death). Such internal time-
outs are more reliable than end-to-end ones because the
latter must reflect the composed behavior of many layers.
Internal timeouts may be service-specific; that is why we
encapsulate them within service-specialized spies.

(3) Kill if necessary. A spy may not know all the im-
plementation details of a service, and sometimes it may
think that a process is crashed without being sure. In
these cases, the spy assassinates the process, to ensure
that it is indicating a real crash. Assassination has been
proposed before (e.g., [5]), but it was coarse-grained and
indiscriminate. As we explain below, our strikes are “sur-
gical”: we kill only what is necessary, when necessary.

(4) Infiltrate many layers. Spies are deployed at many
scopes and layers, forming a network where broader-
scope spies monitor narrower-scope ones. For example,
a process-level spy can die with the process, so it would
not respond to queries, but the OS-level spy monitors
process-level spies. Moreover, this spy network can as-
sassinate components “surgically”, to kill the smallest
non-responsive component (in contrast with [5]). For ex-
ample, if an OS is responsive but a process is not, only
the process is killed, not the machine. If neither OS nor
process is responsive, the OS is killed by a network driver
spy. If everything is unresponsive, a spy in the switch
disconnects the machine from the network. If this spy is
unresponsive, there is a network partition and the PFD
blocks until the spy responds.

Spies are deployed at the following layers:
–– A spy in the network switch tells whether there is

link-layer communication between the switch and the
machine’s network card. It can assassinate by logi-
cally disconnecting a network card from the network.

–– A spy in the network card responds to a special
packet; the spy says whether the network driver is
running (e.g., by saying whether past interrupts were
serviced). It can assassinate the network driver by
powering down the machine (e.g., with lights-out
management).

–– A spy in the network driver has some knowledge of
the life signs of a working OS. It gives its diagnosis
in response to a new ICMP message type. It can as-
sassinate the OS by rebooting it.

–– A spy in the operating system tells whether a given
process is dead, say by looking at the process table in
the kernel. It can assassinate the process.

–– A spy within a process is a thread that responds to
OS signals. The spy determines if the other threads
are alive using application-specific knowledge. For
example, threads can post their state and progress in
shared variables. The spy can assassinate the process.

These spies collaborate to implement a PFD, as fol-
lows. Suppose process pA in machine mA wants to know
if process pB in machine mB is alive. The PFD in pA
tries to talk to the process spy in pB, as follows: pA sends
a TCP message to a helper process on mB, which then
sends a Unix signal to the spy within pB, waits for a re-
sponse, and sends it back via TCP to the PFD in pA. Be-
cause the process spy in pB may not respond (e.g., if pB
is dead), the PFD in pA, simultaneous with the actions
above, queries the OS spy on mB, by sending a TCP mes-
sage to the kernel of mB, asking if process pB is alive.

If the kernel says that process pB is dead, the PFD out-
puts this information. Otherwise, the PFD in pA keeps
querying the OS spy until the OS spy says that process
pB is dead or the process spy in pB responds. Because
the OS spy on mB may not respond (if mB has crashed),
the PFD in pA simultaneously queries the network driver
spy on mB, asking if the OS on mB is alive. (For effi-
ciency, it can start this query after a moment, to give a
chance for the process spy to respond, so the PFD does
not query all spies at all levels simultaneously.) Again,
these queries continue until either the network driver spy
says the OS on mB is dead or the process spy responds.
This continues down the spy network until the last spy (at
the network switch). If this spy is unresponsive, there is
a network partition and the PFD blocks until it responds.

Summary. Our goal is to eliminate assumption A2, by
building a PFD, while keeping A1. One could certainly
build a PFD via indiscriminate assassination. However,
with such an approach, many processes would die need-
lessly, so availability would suffer. Instead, we propose



a network of spies. This network can observe the system
internals—including internal timing—at many levels to
reveal failures and, if necessary, perform surgical assas-
sinations that affect the smallest possible component.

4 Benefits
We now briefly review the benefits of the PFD model (de-
fined in §3.1), which are well-known. The novelty is only
that the model is practical so the benefits are achievable.

Like the asynchronous model, the PFD model is fairly
general and has broad coverage because it does not rely
on end-to-end timing assumptions. Like synchronous
models, the PFD model allows applications to know for
sure when a process crashed, which is useful because
slow processes that appear to be crashed are a source of
complexity, inefficiency, and loss of availability.

Here are some concrete examples of the benefits:
–– No need for end-to-end timeout values. As discussed

in §2.1, finding the right timeout value is often hard.
–– Good availability. With PFDs, processes often learn

about a crash quickly so fail-over the system quickly.
For example, if an OS spy sees that a process was
killed, it reports the process as crashed immediately.

–– Simple fail-over protocols. Because PFDs never re-
port a crash inaccurately, the protocols for fail-over
are simple (fail-over protocols are complex only when
they need to handle the case that a component has
taken over from a still-working component).

–– Cheap and simple replication. As an example of the
previous point, PFDs enable replication with a simple
approach—primary-backup, where the PFD indicates
when the backup should replace the primary—instead
of schemes based on consensus protocols, which are
complex, as mentioned in §2.3.

–– Simple and live distributed algorithms. Many systems
rely on algorithms for atomic broadcast, atomic com-
mit, and leader election. These algorithms often use
complex techniques to handle slow processes that ap-
pear crashed. PFDs obviate these techniques.

5 Critique and conclusion
One critique of our approach is that deploying spies re-
quires access to system infrastructure (software, operat-
ing systems, routers, etc.). Another critique is that, un-
der network partitions, our proposed PFD blocks at the
network-switch spy until the partition heals. We think
that neither is a major concern in the data center and
enterprise environments that we initially target. First, a
central entity controls the infrastructure. Second, parti-
tions within a data center are rare and, when they occur,
the system is likely to block anyway because a critical
service (e.g., a file server) becomes unreachable.

In the wide area, these concerns are graver. To ad-
dress them, we would need spies in Internet routers and

switches. Here, the path to deployment will be slower, re-
quiring standardization efforts. However, we are hopeful
because feedback from the network to end-hosts about
network state is consistent with current trends in network
architecture (e.g., [1, 8]) and because spies’ benefits (§4)
could provide the needed incentives.

One way to summarize our work is as follows. The
synchronous model is no longer applicable because it is
impossible to ensure bounded end-to-end delays in prac-
tice. One response is the asynchronous model, defined
by properties A1 and A2, but this model is also poorly
matched to reality because it is too weak. As a result,
many designers implicitly relax A1. That approach is
dangerous. We propose to explicitly relax A2. By mak-
ing our deviation from asynchrony explicit, we can de-
pend on synchrony in a safe, principled way. Doing so
leads to simple, safe, and live algorithms.
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