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Abstract

We present a new deterministic sorting algorithm that interleaves the partitioning of a sample
sort with merging. Sequentially, it sorts n elements in O(n log n) time cache-obliviously with
an optimal number of cache misses. The parallel complexity (or critical path length) of the
algorithm is O(log n log log n), which improves on previous bounds for deterministic sample
sort. Given a multicore computing environment with a global shared memory and p cores, each
having a cache of size M organized in blocks of size B, our algorithm can be scheduled effectively
on these p cores in a cache-oblivious manner.

We improve on the above cache-oblivious processor-aware parallel implementation by using
the Priority Work Stealing Scheduler (PWS) that we presented recently in a companion paper
[11]. The PWS scheduler is both processor- and cache-oblivious (i.e., resource oblivious), and it
tolerates asynchrony among the cores. Using PWS, we obtain a resource oblivious scheduling
of our sorting algorithm that matches the performance of the processor-aware version. Our
analysis includes the delay incurred by false-sharing. We also establish good bounds for our
algorithm with the randomized work stealing scheduler.

1 Introduction

We present a new parallel sorting algorithm, which we call Sample, Partition, and Merge Sort
(SPMS). It has a critical path length of O(log n log log n) and performs optimal O(n log n) op-
erations with optimal sequential cache misses. More importantly, using the PWS scheduler for
multicores developed and analyzed in [11], and new algorithmic techniques given in this paper, we
can schedule it resource-obliviously on a multicore while maintaining these performance bounds.
We present background information on multicores, cache-efficiency and resource-obliviousness in
Section 2.

The core of the sorting algorithm is a recursive multi-way merging procedure. A notable and
novel aspect of this procedure is that it creates its recursive subproblems using a sample sort
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methodology. We view the sorting algorithm as interleaving a merge sort with a sample sort in a
natural way.
Previous Work. Sorting is a fundamental algorithmic problem, and has been studied extensively.
For our purposes, the most relevant results are sequential cache-oblivious sorting, for which provably
optimal algorithms are known [12], optimal sorting algorithms addressing pure parallelism [3, 10],
and recent work on multicore sorting [5, 4, 6, 13].

The existing multicore algorithms take two main approaches. The first is merge sort [4, 6, 5],
either simple or the pipelined method from [10]. The second is deterministic sampling [13]: this
approach splits the input into subsets, sorts the subsets, samples the sorted subsets, sort the
sample, partitions about a subsample, and recursively sorts the resulting sets. Our algorithm can
be viewed as applying this approach to the problem of merging a suitable number of sorted sets,
which eliminates the need for the first two steps, resulting in significant speed-up.

More specifically, the algorithm in [6] is a simple multicore mergesort; it has polylog parallel
time, and good, though not optimal cache efficiency; it is cache-oblivious for private caches (the
model we consider in this paper). The algorithm in [4] achieves the optimal caching bound on an
input of length n, with O(log n) parallel time (modulo dependence on cache parameters), but it
is both cache-aware and core-aware; this algorithm is based on [10]. The algorithm in [5] is cache
oblivious with O(log2 n) parallel time, but due to an additive term the cache performance is not
optimal on a multicore. The algorithm in [13] is designed for a BSP-style version of a cache aware,
multi-level multicore. It uses a different collection of parameters, and so it is difficult to compare
with it directly.

Roadmap. In Section 2 we present some background on multicores, and then state our main
sorting result. In Section 3 we give a high level description of our parallel sorting algorithm,
omitting the details needed to have a resource oblivious implementation. In Section 4, we review
the computation model, the work stealing scheduler PWS, and the class of BP algorithms, as
developed in [11].

In Section 5, we return to the sorting algorithm, describing the details needed for a resource
oblivious implementation. We then begin the analysis by considering the processor aware case,
and give a matching lower bound for the number of cache misses in the multicore setting. In the
following sections we analyze the fully oblivious complexity, in Section 6 with respect to the PWS
scheduler, and in Section 7 with respect to the randomized work stealing scheduler. Finally, in
Section 8, we discuss the results and the extent to which they are optimal.

2 Statement of our Results

Before stating our main result, we give some background, as developed in [11].

Multicore with Private Caches. We model a multicore as consisting of p cores (or processors)
with an arbitrarily large main memory, which serves as a shared memory. Additionally, each core
has a private cache of size M . Data in the main memory is organized in blocks of size B, and
the initial input of size n is in main memory, in n/B blocks. When a core C needs a data item x
that is not in its private cache, it reads in the block β that contains x from main memory. This
new block replaces an existing block in the private cache, which is evicted using an optimal cache
replacement policy (LRU suffices for our algorithms). If another core C ′ modifies an entry in β,
then β is invalidated in C’s cache, and the next time core C needs to access data in block β, an
updated copy of β is brought into C’s cache.
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Cache and Block Misses. We distinguish between two types of cache-related costs incurred in
a parallel execution.

The term cache miss denotes a read of a block from shared-memory into core C’s cache, when a
needed data item is not currently in the cache, either because the block was never read by core C,
or because it was evicted from C’s cache to make room for new data. This is the standard type of
cache miss that occurs, and is accounted for, in sequential cache complexity analysis.

The term block miss denotes an update by a core C ′ 6= C to an entry in a block β that is in core C’s
cache; this entails core C ′ acquiring block β; if C has a subsequent write, it needs to reacquire the
block. This type of ‘cache miss’ does not occur in a sequential computation, and is a problematic
situation that can occur quite often, especially in the resource oblivious setting that we seek.

Resource Obliviousness. We have claimed that our multicore algorithms are resource oblivious:
we mean that the algorithm is specified without any mention of the multicore parameters (p, M and
B) and further, the PWS scheduler we use schedules tasks on available idle cores, without reference
to the multicore parameters. Since multicores with a wide range of parameters are expected to
appear on most desktops, such a resource oblivious feature in multicore algorithms appears to be
helpful in supporting the portability of program codes. The PWS scheduler uses work-stealing
[8, 7], where load balance is achieved by cores stealing tasks from other cores as needed.

Our main result, the SPMS sorting algorithm and its resource-oblivious performance, has the
bounds stated below in Theorems 2.1 and 2.2. Our analysis uses the following parameters. We
suppose that each core performs a single operation in O(1) time, a cache miss takes at most b time,
a steal request takes at most s time (whether successful or not). We consider a multicore with p
cores, each having a private cache of size M organized in blocks of size B, with all caches sharing
an arbitrarily large global memory. The input, of size n ≥ Mp (this restriction ensures that both
cores and caches can be fully utilized), is in the shared memory at the start of the computation.

PWS schedules the algorithm in rounds, where a round, roughly speaking, corresponds to a
parallel step. The scheduler has additional work at the start of each round, work which takes at
most S time per round. Then:

Theorem 2.1. When scheduled under PWS, on an input of length n, assuming M ≥ B2 (the ‘tall
cache’), for p ≤ n

max{log log n, M} , the sorting algorithm SPMS takes parallel time

O

(

1

p

(

n log n + b · n log n

B log M

)

+ (b + s + S) log n log log n + bβ(n, p,B)

)

.

The fourth term, β(n, p,B) = O(B log n + n
pB

log n
log M ) is the block miss cost, and is bounded by the

optimal sequential cache complexity provided p ≤ n
B2 log M

(i.e., with a slightly ‘taller’ cache —

M ≥ B2 log B suffices). This cost may also be reduced to match the optimal sequential cache
complexity without this additional restriction on p if system support is provided for the locking of a
block during writes, and limiting the minimum task size to be at least B.

If we ignore the block miss cost for the moment, this bound represents the optimal work bound,
plus the optimal cache miss bound, plus the critical path length times the cost of one cache miss
plus one steal plus one scheduling event. Further, we note that there is no need for a global clock, or
tight synchronization on the part of the cores, though the scheduler certainly imposes a significant
degree of synchronization. The computation is entirely resource-oblivious in that the algorithm
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makes no mention of p, M or B, and PWS services idle cores without any reference to the number
available or their cache parameters.

Extending the analysis of the randomized work stealer in [7, 1], we can obtain:

Theorem 2.2. On an input of length n, assuming M ≥ B2, for p ≤ n
max{log log n, M} , the sorting

algorithm SPMS when scheduled by the randomized work stealer, and taking into account both cache
and block misses, takes expected parallel time

O

(

1

p

(

n log n + b · n log n

B log M

)

+

(

s +
M

B
· b

) (

bB

s

log n

log B
+

(b + s)

s
log n log log n

))

.

Discussion. Our sorting algorithm is optimal in all respects except for the critical pathlength.
The sorting algorithm for PEM in [4] achieves optimal O(log n) parallel steps, but is both cache-
and core-aware. Achieving the same bound in a resource-oblivious manner appears considerably
more challenging, and it is not clear if it is possible. We leave this as a topic for further research.

Another challenging topic is to extend our results to resource-oblivious scheduling on a multi-
level caching hierarchy. Given the conflicting requirements of private and shared caches noted in
[5, 9], it appears that some mechanism of supplying scheduler hints within the algorithm, and
having a scheduler that uses the machine parameters effectively is needed. One such approach is
used in [9]; however, that scheduler is not resource-oblivious, in contrast to our results.

In comparing our PWS scheduling to the PEM and Multi-BSP models, we note that these
models both compute in a bulk-synchronous manner. We can easily adapt our results to work
on either PEM or multi-BSP with the same performance as achieved with the PWS scheduler.
However, our PWS framework adapts much more gracefully to differences in speeds among the
cores than these bulk-synchronous models. Thus, if we have a few cores that execute faster than
others (perhaps because they have smaller cache miss cost due to the cache layout), then PWS
would enable the faster cores to take over (i.e, steal) work from the slower cores, balancing the
work across the cores more effectively.

3 SPMS, A New Deterministic Sample, Partition, and Merge Sort

The heart of the algorithm is a procedure for computing a merging subproblem MS, whose input
comprises r sorted lists L1, L2, · · · , Lr, of total length m, with m ≤ rc, where c ≥ 6 is a constant.

The sorting algorithm simply calls the merging procedure with r = m = n.
The merging algorithm performs two successive collections of recursive

√
r-way merges, each

merge being on lists of total length at most rc/2. To enable this, suitable samples of the input
lists will be sorted by a logarithmic time procedure, which then allows the original problem to be
partitioned into smaller subproblems that are merged recursively. More precisely:
Step 1. Partition the original problem MS into k = O(m/r

c
2
−1) disjoint merging subproblems,

M1,M2, · · · ,Mk, each comprising r sorted lists, with each subproblem having at most r
c
2 items in

its r sorted lists. In addition, the items in Mi precede those in Mi+1, for 1 ≤ i < k.
Step 2. For each subproblem Mi, group its lists into disjoint subsets of

√
r lists, and then in

parallel merge the lists in each group. As Mi contains at most r
c
2 items, this bound applies to each

of the individual groups too. Thus the
√

r-way merge in each group can be performed recursively.
The output, for each subproblem Mi, is a collection of

√
r sorted lists of total length at most r

c
2 .

Step 3. For each subproblem Mi, recursively merge the
√

r sorted lists computed in Step 2.
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Step 1 details. The basic idea is to take a deterministic sample S of the input set comprising
every r

c
2 -th item in each list, to sort S, and to partition the r input lists about the items in S

thereby forming smaller r-way merging subproblems. Some of these subproblems may have size
as large as r

c
2
+1, rather than the desired r

c
2 . Any such subproblems are partitioned further, as

needed, via samples S′ of size m′/r
c
2
−1 for each subproblem of size m′ ≥ r

c
2 . The samples S and

S′ are sorted by performing all pairwise comparisons. More precisely:
Step 1.1. Let S comprise every r

c
2 -th item in each of the input lists. Extract S from the input

lists and then sort S, using a simple logarithmic time, quadratic work algorithm.
Step 1.2. Partition the r input lists L1, L2, · · · , Lr about S, creating subproblems M ′

1,M
′
2, · · · ,M ′

k′ ,
where k′ = |S| + 1, and M ′

i contains r sublists holding the items between the (i − 1)th and ith
items in S.
Step 1.3. Further partition any subproblem M ′

i of size more than r
c
2 , creating an overall collection

of merging subproblems M1,M2, · · · ,Mk, each of size at most r
c
2 , with the further property that

the items in Mi precede those in Mi+1, for 1 ≤ i < k. This is done using a sample comprising every
r

c
2
−1-th item in M ′

i .

Lemma 3.1. The merging algorithm, on an input of r sorted lists of total length m ≤ rc, uses
O(m log r) operations and O(log r log log r) parallel time, if c ≥ 6.

Proof. The parallel run time T (r,m) is given by: T (r,m) ≤ log r+2T (
√

r, rc/2) = O(log r log log r).
Clearly, Steps 1.1 and 1.2 take O(m) operations. To see the same bound applies to Step 1.3,

we argue as follows. Each subproblem M ′
i of size m′ generates a sorting task of size m′/r

c
2
−1 ≤

r
c
2
+1/r

c
2
−1 = r2. Performing all these sorting tasks requires at most r2 ·∑m′/r

c
2
−1 ≤ r2 ·m/r

c
2
−1 ≤

m operations, if c ≥ 6.
Let W (r,m) be the operation count for a collection of merging problems of total size m, where

each comprises the merge of r lists of combined size at most rc. Then we have: W (r,m) ≤
m + 2W (r1/2,m) = O(m log r). �

Corollary 3.1. The sorting algorithm, given an input of size n, performs O(n log n) operations
and has parallel time complexity O(log n log log n), if c ≥ 6.

4 The Computation Model and PWS Scheduling

Before giving the resource oblivious implementation, we need to review the computation model and
the PWS scheduling environment, mainly as developed in [11], although we make some changes
here to address some new algorithmic features in SPMS.

The building blocks for our algorithms are computations on balanced binary trees such as for
prefix sums. Such a computation is carried out by tasks: initially there is one task at the root
of the tree; it forks two subtasks for each of its subtrees, and when they are done, it resumes
and concludes the computation at the root. We will also use a tree of forking tasks to initiate a
collection of parallel recursive calls, as needed in the merging and sorting algorithms.

Initially the root task for such a tree is given to a single core. Subtasks are acquired by other
cores via task stealing. To this end, each core C has a task queue. It adds forked tasks to the
bottom of the queue, while tasks are stolen from the top of the queue. So in particular, when C,
on executing τ , generates forked tasks τ1 and τ2, it places the larger of τ1 and τ2 on its queue, τ2

say, and continues with the execution of τ1. This is a small generalization from [11], where the two
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forked tasks were assumed to be of the same size. When C completes τ1, if τ2 is still on its queue,
it resumes the execution of τ2, and otherwise there is nothing on its queue so it seeks to steal a
new task. Except for one routine, our algorithm will be constructed from BP trees [11], which are
trees of equal-sized forking nodes with an O(1) operation computation at each node, and with the
leaf nodes having either an O(1) operation task or a recursive computation as their task. There is
a mirror image tree for the joins which also performs O(1) operations at each node. We will often
talk of a subtree of the BP tree, when we really intend a subtree plus the mirror image subtree.

Let τ be a task associated with such a subtree. As in [11], by the size of τ , |τ |, we mean the
amount of data τ accesses in its computation. In contrast to [11], sometimes we will use the virtual
size of τ , vs(τ); always vs(τ) ≥ |τ |. Efficiency is ensured by the following BP tree property: if τ ′ is
forked by τ , then vs(τ ′) ≤ 1

2vs(τ).
To help with the scheduling, each node in a BP tree receives the integer priority log vs(τ). These

are strictly decreasing from parent to child. We will use the Priority Work-Stealing Scheduler (PWS)
[11], which only allocates tasks of highest priority in response to steal requests. As noted in [11],
task priorities are strictly decreasing on each task queue, and thus there will be at most one steal
of a task of priority d from each core, and so at most p steals of tasks of priority d, for any d. This
is key to bounding the overhead of the PWS scheduler.

As noted in Section 2, the I/O cost of an individual task τ is measured in cache misses, which
we upper bound by how many blocks the core executing τ has to read into its cache, assuming none
are present at the start of τ ’s execution, and block misses, which capture the cost of multiple cores
writing to the same block.

As we shall see, each BP task τ in the sort algorithm incurs O(vs(τ)/B +
√

vs(τ)) cache misses
when executed sequentially. Each task incurs only O(B) block miss delay: for most of the tasks
this follows from [11] because they are write-once computations that engage in consecutive writes
to a linear array, where a write-once computation is one that writes into any given location at most
once. We will establish the same O(B) block miss delay for the other class of tasks that arise in the
sorting algorithm. We will use the following Fact from [11] about block miss delay in write-once
computations.

Fact 4.1. Let τ be a write-once computation executing on a core C. Each shared block in τ can
cause C to incur a delay due to block misses that is no greater than that due to B−1 cache misses.
If b is an upper bound on the cost of a cache miss, then each shared block in τ causes C to incur a
delay of at most b · (B − 1).

We will use the following bounds derived in [11] for a collection of parallel BP computations of
total size n and sequential cache complexity Q, when scheduled under PWS. Here, the maximum
(virtual) size of any root task in the BP collection is x, and any task of size s incurs O(s/B +

√
s)

cache misses and shares O(1) blocks with other tasks:

Fact 4.2. For the I/O cost for a computation of the type stated above:

1. The cache miss bound is O(Q + p · (min{M,x}
B + log min{x,B} +

√
x)).

2. The block miss bound is O(p · min{B,x} · (1 + log min{x, n
p}).

4.1 Ideal PWS Costing

The merging algorithm MS is built by combining (collections of parallel) BP computations, first
by sequencing, and second by allowing the leaves of a BP tree to be recursive calls to the merging
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algorithm. This generalizes the above tree computation to a dag which is a series-parallel graph.
The formal definition of such an ‘HBP’ computation is given in [11]. While we do not need the
details of a general HBP computation here, we do need to define priorities carefully in view of the
possible differences in the sizes of the recursive subproblems generated by a call to MS. We define
these priorities in a natural way so that they are strictly decreasing along any path in the MS
computation dag, and all tasks with the same priority have roughly the same size, as detailed in
Section 6.1.

The recursive subproblems generated in Step 2 of MS need not be of the same size, so this
portion of the algorithm does not exactly fit the BP frame-work of [11]. To handle this, we will
first determine the cache-miss overhead for the natural parallel implementation of the algorithm,
which we call the ideal PWS costing, and then add in the additional cache-miss cost for the PWS
schedule. (The cost of block misses is discussed later.)

Definition 4.1. The ideal costing assumes that a BP computation uses at most 2n/M cores, one
for each distinct subtree of size M and one for each node ancestral to these subtrees.

The cache miss cost in the ideal costing is O(M/B) per subtree, plus O(1) for each ancestral
node, for a total of O(n/B) cache misses. The block miss cost in the ideal costing is O(B) per
subtree, which is O(M/B) if M ≥ B2.

We generalize this BP analysis to MS and SPMS by analyzing the algorithm in terms of parallel
collection of tasks, each task of virtual size M . The cost of each task collection is bounded in turn:
each task is costed as if it was allocated to a distinct core. As we will see, each such collection
has total virtual size O(n), and hence incurs O((n/B) + n

M

√
M) cache misses, which is O(n/B) if

M ≥ B2.
To analyze the cache and block miss cost of the PWS scheduling of MS, we separate the cost

of steals of small tasks τ (those with vs(τ) ≤ M), which we bound later, and consider the impact
of steals of large tasks. To bound this cost for a large stolen task τ , we overestimate by supposing
that no small tasks are stolen from τ . Then (the possibly overestimated) τ executes one or more
of the size M subtrees that are executed as distinct tasks in the ideal PWS costing, plus zero or
more nodes ancestral to these subtrees. Clearly, τ ’s cache and block miss cost is at most the sum
of the cache and block miss costs of the corresponding distinct tasks in the ideal PWS costing. An
analogous claim holds for the root task. Summing over the costs of the root task and of the large
stolen tasks, yields that their total cost is bounded by the ideal PWS costing. We bound the cost
of steals of small tasks using Fact 4.2, and results we derive in this paper.

A final point concerns the management of local variables in recursive calls. We assume that if a
task τ stolen by a core C has local variables, then the space allocated by the memory manager for
these variables does not share any blocks with space allocated to other cores. Further, if the data
resides in cache till the end of C’s execution of τ , then the now unneeded local variables are not
written back to the shared memory. This assumption reduces the cost of block misses for stolen
tasks corresponding to small recursive subproblems, as we shall see.

5 The Cache-Oblivious Parallel Implementation of SPMS

5.1 Additional Features in the Sorting Algorithm

To achieve efficient oblivious performance, the merging algorithm MS needs to be implemented
using tasks achieving the optimal ideal costing, as defined above. Many of the steps in MS are
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standard BP computations; their ideal costing is O(n/B) and their PWS overhead can be bounded
directly using Fact 4.2. However, here we address three types of computations in MS that do not
fall within the framework in [11].

1. The recursion may well form very unequal sized subproblems. However, to achieve a small cache
miss cost, the PWS scheduling requires forking into roughly equal sized subtasks. Accordingly we
present the method of grouping unequal sized tasks, which groups subproblems in a task tree so as
to achieve the balanced forking needed to obtain good cache-miss efficiency.

2. Balancing I/O for reads and writes in what amount to generalized transposes, which we call
transposing copies. This is needed in the partitioning in Steps 1.2 and 1.3. An issue that arises
here is the need to address the delay due to block misses in a multicore implementation.

3. One collection of tasks for sorting the samples in Step 1 uses non-contiguous writes. Fortunately,
they use relatively few writes. We develop the sparse writing technique to cope.

Grouping Unequal Sized Tasks. We are given k ordered tasks τ1, τ2, · · · , τk, where each τi

accesses O(|τi|/B) blocks in its computation (they are all recursive merges). We require that
ti ≤ t2ave for all tasks, where tave is the average size of the tasks.

The tasks need to be grouped in a height O(log k) binary tree, called the u-tree, with leaves
holding the tasks in their input order. The u-tree is used for the forking needed to schedule the
tasks. The u-tree will use virtual sizes for scheduling its subtasks and has the bounds given below.
The proof of the following Lemma is given in Section 5.2.

Lemma 5.1. The ideal PWS costing for scheduling the u-tree plus the cost of executing tasks τi of
size M or less is O(

∑k
i=1 ti/B), where ti = |τi|.

The Transposing Copy. The problem, given a vector A consisting of the sequence A11, · · · , A1k,
· · · , Ah1, · · ·Ahk of subvectors, is to output the transposed sequence A11, · · · , Ah1, · · · , A1k, · · · , Ahk,
where we are given that the average sequence length l = |A|/hk ≥ h.

This is done by creating
⌈

|Aij |
l

⌉

tasks of virtual size l to carry out the copying of Aij . The tasks

are combined in column major order, i.e. in the order corresponding to destination locations. The
result is that each task accesses O(1) shared blocks in its writing, and gives an acceptable block
miss cost of O(B) cache misses for a task. We now bound the cache miss cost.

Lemma 5.2. Let τ be a task copying lists of combined size s in the transposing copy. Then τ
incurs O(s/B +

√
s) cache misses.

Proof. Suppose that τ copies g lists. Then τ incurs O(s/B + g) cache misses. Note that s ≥ g · l
as each list has virtual size at least l.
Case 1. g ≤ l.
Then s ≥ g · l ≥ g2. So in this case the cache miss bound is O(s/B +

√
s).

Case 2. g > l.
Case 2.1. l ≥ B.
As s ≥ g · l, s/B ≥ g, thus τ incurs O(s/B) cache misses in this case.
Case 2.2. l < B.
The core, if using an optimal cache replacement policy, would keep in cache the most recently read
block from each row, for which it has sufficient space, assuming that M ≥ B2, as h ≤ l ≤ B. As a
result, the task uses at most 2h partially read blocks, giving an overall bound of O(s/B + h) cache
misses. And O(s/B + h) = O(s/B + l) = O(s/B +

√
g · l) = O(s/B +

√
s).
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It is straightforward to argue that an LRU policy for cache block replacement will also yield
this bound if l ≤ B/2, which still results in the O(s/B +

√
s) cache miss bound. �

Sparse Writing. Let A be an s × s array in which each of locations c · s, 1 ≤ c ≤ s is written
exactly once, but not in any particular order. A sequential execution incurs at most s cache misses.

Now consider a BP execution of this computation in which each leaf is responsible for one write.
We claim that the I/O cost for all writes to A is O(s2/B + B) regardless of the ordering of the
writes. We establish this bound as follows.

If s ≥ B, each write into A incurs one cache miss, for a total cost of O(s) ≤ O(s2/B) cache
misses. There are no block misses in this case.

If s < B, there are only s accesses, but these can incur block misses. Let i be the integer
satisfying s · i ≤ B < s · (i+1). Then, at most i writes occur within a single block. Each such write
to a block may incur a block wait cost equal to that of Θ(i) cache misses. Hence the overall delay
in this case is at most that of O(s · i) = O(B) cache misses.

5.2 The u-Tree Construction

Suppose k ordered tasks τ1, τ2, · · · , τk are given, where each τi accesses O(|τi|/B) blocks in its
computation (they are all recursive merges). The tasks need to be grouped in a height O(log k)
binary tree, called the u-tree, with leaves holding the tasks in their input order.

The u-tree will satisfy the following properties: (i) the virtual sizes at least double from child
to parent; (ii) the virtual size of a node is at least the actual size of the single task it holds if it is
a leaf node; (iii) the virtual size of the root task is O(

∑k
i=1 ti), where ti denotes |τi|.

Let tmax be the size of the largest task and tav be the average size of a task. We show how to
group the tasks so as to achieve a balanced grouping. This will increase the work by at most an
additive O(

∑k
i=1 ti) factor, so long as tmax ≤ t2av.

First, the size of each task is rounded up to be a multiple of tav . The sizes are further increased
by additive factors of tav (at most 2tav per task) so that the total of the tasks sizes is of the form
2ktav for some integer k (this is readily done by means of a prefix sum-style computation). For
each task τi, the resulting size provides its enlarged size and is denoted by t′i.

Let t′′i = t′i/tav and t′′max = maxi t
′′. The tasks are then spread out, as follows, into an initially

all zero array T of length s′′ =
∑k

i=1 t′′i , with the ith task at location s′′i =
∑i−1

h=1 t′′h + ⌈t′′i /2⌉
(obtained via a prefix sums computation), so the ith task is in the middle of an interval, called Ii,
of length t′′i .
1. Write (τi, s

′′
i ) to M [i · t′′max], using a size t′′max task.

2. Create k · t′′max size one tasks. The jth task reads M [j] and if the entry is nonzero, (τi, s
′′
i ) say,

copies τi to location T [s′′i ].

Note that as tmax ≤ t2av, k · t′′max ≤ k · tav = O(
∑k

i=1 ti).
Let li =

∑i
h=1 t′′h; interval Ii = (li−1, li] is associated with task τi.

Now a standard binary tree B is placed over the s′′ cells of array T ; its nodes are stored in
inorder. We define the interval I(u) of a node u to be the interval of leaves spanned by the subtree
rooted at u. The virtual size of u, vs(u), is defined to be 4 · tav · I(u).

Tree B is then trimmed, removing task-free portions, and compressing single child paths, keeping
the bottommost node on paths ending at an internal node, and the topmost node on paths ending at
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a leaf. Thus the leaf node for task τi in the trimmed tree is the following node from the untrimmed
tree: the highest ancestor u of location s′′i whose interval I(u) is wholly contained in Ii.

Next, we show that the just defined virtual size has the properties we seek.

Lemma 5.3. i. If u is the parent of v in the trimmed B, then vs(u) ≥ 2 · vs(v).
ii. Let r be the root of B. Then vs(r) ≤ 4

∑

i t
′
i = O(

∑

i ti).
iii. Let ui be the leaf node in the trimmed tree corresponding to task τi. Then vs(ui) > t′i.

Proof. (i) follows immediately from the definition of I(u). (ii) follows because vs(r) = 4·tav ·|I(r)| ≤
4 · tav ·

∑

i t
′′
i = 4 · ∑i t

′
i.

To see (iii) we argue as follows. Since interval I(ui) is the longest such interval wholly contained
in Ii, 4 · |I(ui)| > |Ii|, and thus vs(ui) = 4 · tav · |I(ui)| > tav · |Ii| = tav · t′′i = t′i. �

The computation of the final tree structure is done via an up-pass over tree B. Clearly the tree
building is a BP computation and thus incurs O(s′′/B) cache-misses (this depends on storing B’s
nodes in inorder).
Lemma 5.1. The ideal PWS costing of the u-tree including the cost of executing tasks τi of size
M or less is O(

∑k
i=1 ti/B).

Proof. There are O(
∑k

i=1 ti/M) internal nodes in the u-tree having virtual size M or more. The
fringe nodes (the nodes having virtual size in the range (M/2,M ] plus smaller second children of
larger nodes, if any), each incur O(M/B) cache misses. Since virtual sizes at least double from
child to parent, there are O(

∑k
i=1 ti/M) such nodes. Thus executing the tasks associated with

these nodes incurs a total of O(
∑k

i=1 ti/M · M/B) = O(
∑k

i=1 ti/B) cache misses. �

5.3 Details of Step 1 in SPMS

Now, we describe the algorithm in detail.
Each substep (except one) uses a BP computation or a collection BP computations running in

parallel. We characterize the complexity of each size x (collection of) computations. Clearly it will
have depth O(log x), and unless otherwise specified will incur O(x/B) cache misses. The only other
cache miss cost that occurs is O(x/B +

√
x), and this arises only in the transposing copy.

Our design approach for achieving these cache miss bounds is to constrain each ordered collection
of parallel tasks, except for those used in a transposing copy, as follows. We ensure that any sequence
of tasks, having combined virtual size x, incurs O(x/B) cache misses; this implies that a single core
executing such a sequence of tasks also incurs at most this cost. The most common pattern achieving
this is for such a collection of tasks to read one contiguous length O(x) array segment in left to
right order. Another pattern allows one or more subsegments σ to be read several times, with the
contribution to the virtual size of the tasks being O([number of times σ is read] · |σ|).

Some additional notation is helpful. Let L1, L2, · · · , Lr be the r sorted input lists of total length
m ≤ rc. The r lists are stored in sequential order. Let S = {e1, e2, · · · , es} comprise every r

c
2 th

item in the sequence of sorted lists; recall that S is sorted in Step 1.1, and then used to partition
the r lists in Step 1.2.

Step 1.1. Sort S.

1.1.1. Construct arrays S1, S2, · · · , Ss; each Si is an array of length s which contains a copy of the
sequence of elements in S.
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(a) Compact the s samples within the list sequence L1, · · · , Lr, using prefix sums for the compaction.
The result is an array S1[1..s] containing the s samples. This uses a sequence of 2 BP computations
of size m.
(b) Form arrays Si, 2 ≤ i ≤ s, where each Si is a copy of S1. This is a BP computation of size
s2 ≤ m.

1.1.2. In parallel for each i, compute rank of ei in Si.
First, for each Si, compare ei to each element in Si. Then count the number of ej ≥ ei, the desired
rank of ei in Si. This uses two BP computations, and over all i, 1 ≤ i ≤ s, they have combined size
O(s2).

1.1.3. Create the sorted array S[1..s] where S[i] contains the element ej with rank ρj = i.
The simple way to implement this step is for each element ei to index itself into location S[ρi]. This
will incur s cache misses, which can be argued is acceptable with a tall cache, since s2 = O(m).
But this implementation could incur s · B block misses, which is excessive. To reduce the block
miss cost, we split this step into two substeps:
(a) Initialize an all-zero auxiliary array A′[1..m] and write each ei into location A′[ρi · rc/2].
This is the sparse writing setting analyzed earlier, and results in O(s2/B + B) = O(m/B + B)
cache and block misses in a depth log s computation.
(b) Compact array A′ into S[1..s], which gives the desired sorted array of the samples. This is a
prefix sums computation, a BP computation of size O(m).

Step 1.2. Partition L1, L2, · · · , Lr about S.
Further notation: Let rank(e, U) denote the rank of e in sorted set U if e ∈ U and of the predecessor
of e in U otherwise. Let SLi denote S ∩ Li.

1.2.1. Find the rank of each e ∈ S in each list Li.
This step uses a distinct copy of the sorted S for each list Li.
For each pair of successive items from SLi, ej and ek say, it forms the subproblem of partitioning
the r

c
2 items of Li lying between ej and ek (readily identified from rank(ej , SLi)) w.r.t. those items

of S in the range (ej , ek). This is anywhere from 0 to r
c
2 items in S. For e in this range, define

i-rank(e) = rank(e, SLi)).
For each item e ∈ S, compare it to those items in Li with rank in the range [r

c
2 × i-rank(ej) +

1, r
c
2 × i-rank(ej) + (r

c
2 − 1)]. As this entails too many comparisons, the comparisons are done in

two stages:
First, e compares itself to every r

c
2
−1-th item in the relevant range, that is to r items. e thereby

identifies the two items f ′ and f ′′ straddling it; then e compares itself to the r
c
2
−1 items between

f ′ and f ′′.
Obtaining the sets of r and r

c
2
−1 items that e wants to compare to itself is nontrivial. We

proceed as follows.

a. Every r
c
2
−1-th item is extracted from Li, forming a list L′

i. Each item e ∈ S needs to compare
itself to r of these items.

The extraction is a compaction, done as in Step 1.1.1a. It uses a size m BP computation. Then,
for each list Li and each e ∈ S, the relevant r items are copied into a subarray. For each Li, the
copying subtasks (of size r) for each e ∈ S, are nodes in a BP tree, with the subtasks in the same
order as the sorted items in S.

b. For each e ∈ S, the relevant collection of all r
c
2
−1 items needs to be extracted from Li, as follows.
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b1. Each item e determines if it is the leftmost item seeking this interval of r
c
2
−1 items. If so, it

marks the corresponding left boundary item in L′
i.

For each i, this is a BP computation of virtual size rs. Each leaf node is given virtual size r,
and the virtual size of an internal node is just the sum of the virtual sizes of its children. This
ensures that the length of the interval accessed in the writes is always O(task size).

b2. A prefix sum of the marked items is calculated. Each item in L′
i creates a task of virtual

size r
c
2
−1. The task for an unmarked item does nothing. The task for a marked item copies the

corresponding interval of r
c
2
−1 items to the location indicated by the prefix sum (multiplied by

r
c
2
−1).
A task for x consecutive items in L′

i, marked or unmarked, accesses a subarray of length at
most x · r c

2
−1, and so the BP computation for L′

i has virtual size |L′
i| · r

c
2
−1. Over all i, this gives

a combined size of s · r · r c
2
−1 = O(m).

c. The leftmost items from (b1) read the location where their size r
c
2
−1 data is written, and

disseminate the location by means of a scan to the other items in S wanting to read the same data.
For each i, the BP computation for L′

i has size |L′
i| · r

c
2
−1.

d. Each item in S copies the r
c
2
−1 data items it needs. For each i, this is a BP computation of size

s · r c
2
−1.

1.2.2. Perform the partitioning by means of a transposing copy.

Step 1.3. For each subproblem M ′
i with |M ′

i | > r
d
2 create a task to further partition M ′

i . It is

analogous to Steps 1.1 and 1.2 except that it uses a sample S′ of size m′
i/r

d
2
−1, where m′

i = |M ′
i |.

5.4 Ideal PWS Costing for the Merge

Summarizing the above discussion of the cache-miss costs for the merge (MS) gives the following
bound for the number of cache misses in the ideal PWS costing.

Lemma 5.4. In the ideal PWS costing, the merging algorithm MS, in performing a collection of
merging tasks of total size n ≥ Mp, in which each task comprises the merge of r lists of combined

length at most rc, incurs O(
⌈

n
B

⌉

⌈

log r
log M

⌉

) cache-misses, if c ≥ 6 and M ≥ B2.

Proof. As argued in the description of the algorithm, for each merging problem of size m = Ω(M),
Substep 1 incurs O(m/B +

√
m) = O(m/B) cache-misses, as M ≥ B2; smaller subproblems fit in

cache and so incur O(⌈m/B⌉) cache-misses.
Now let C(r, n) be the cache-miss count for performing such a collection of merges for problems

of merging r lists each of combined size at most rc. Then, as the algorithm uses O(n) space, we
have, for a suitable constant γ > 1: for n ≤ γM : C(r, n) = ⌈n/B⌉, and for n ≥ γM : C(r, n) ≤
n
B + 2C(r1/2, n). �

5.5 Analysis of Processor-Aware Cache-Oblivious SPMS

For a processor-aware, cache-oblivious implementation of SPMS, there is only a constant number
of block misses per task executed by a core, costing O(bB) per task by Fact 4.1, and the number
of tasks in a p-core processor-aware implementation is O(p · log n

log(n/p)). Thus, the block miss cost is
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dominated by the cache miss cost under our assumption that n ≥ Mp and M ≥ B2. Hence, with
the above analysis and the parallel time bounds for the basic SPMS algorithm, as well as for the
BP computations in the implementations given in this section, we obtain the result that SPMS can
be scheduled on p cores, for p ≤ n

max{M,log log n} , to obtain optimal speed-up and cache-oblivious
cache-efficiency, including the block miss cost. Note that in such a processor-aware schedule, there
is no need for steals, and hence there is no further overhead beyond the cache-miss, block miss, and
depth bounds that we have established for the computation.

Lower Bound for Cache Misses. We can adapt the I/O lower bound for sorting given in [2]
to the multicore setting. It is not immediately evident their bound applies to our setting, for the
bound in [2] concerns a machine with a single cache of size M , whereas the multicore setting has p
caches each of size M . Conceivably, these p caches could have the same power as a single size pM
cache in the original setting. In fact, they do not as we show.

Recall that the lower bound in [2] is obtained by counting the reduction in the number of
permutations consistent with the new comparisons enabled by a single read into a cache of size M .
We can similarly analyze the effect in the multicore setting by serializing the I/O, and noting that
each memory access is performed by some core with a cache of size M .

For completeness, we summarize the result obtained in [2]: a bound of Ω( n
B

log n/B
log M/B ) cache misses

for sorting in the comparison model. As we assume that n ≥ M ≥ B2, this is also a bound of
Ω( n

B
log n
log M ) cache misses. When an input block is first brought into a local memory, the number of

permutations is reduced by B! simply due to the permutation of its B elements. This can happen
n/B times. Additionally, each time a block is loaded into a local memory it reduces the number

of possible permutations by a factor of at most

(

M
B

)

, the number of ways of inserting B sorted

items into M −B sorted items. Thus if C is the number of cache misses the algorithm incurs, then

(B!)n/B

(

M
B

)C

≥ n!

yielding C = Ω( n
B

log n/B
log M/B ).

In the multicore setting, there is, in addition, a choice of p memories (i.e., caches), one per core.
However, each read of a block causes that block to be brought into some specific cache, and this
causes the same decrease in the number of permutations as in the sequential case. Hence the lower
bound remains the same in the multicore setting.

Finally, we note that a parameter P is used in [2] . This denotes the number of parallel disks (i.e.,
external memories), and is unrelated to p, the number of parallel caches (i.e., internal memories).

6 Resource Oblivious Scheduling under PWS

6.1 Assigning Priorities

The goal for the scheduling priorities is to ensure that computations which are meant to occur in
parallel have the same priority. In our companion paper [11], the priority of a task was simply
its depth in the computation dag. However, in the merging algorithm, leaves of u-trees may have
different sizes and as a result be at different depths. But we need to ensure the start of the leaf
computations form an implicit synchronization point, by giving all of them equal priority.
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To this end, for each recursive invocation I of the merge procedure, we keep two counters. One
counter records the number of non-recursive procedure calls made directly from I; let s denote this
counter.

The second counter, named r, records the maximum number of successive recursive calls of
the merge procedure on any path from the start of the computation to I. Both r and s are local
to invocation I. The counter s is initialized to 0. Whenever a new BP procedure or a new u-
tree computation is invoked by I, s is incremented. The counter r receives its initial value as
part of the input associated with I’s invocation. The first call in the whole computation has r = 1.
Immediately prior to its invocation of a recursive call, I increments r and this new value is the input
to the recursive call being made by I. On return from the recursive call, I inherits the increased
value of r. To ensure consistency on return from a collection of parallel recursive calls, I computes
the maximum of these returned values. This is readily done during the up-pass of the u-tree.

The priority of a task τ is given by the triple (r, s,depth), ordered lexicographically, where
the depth refers to the depth in a BP computation, if τ is a subtask of a BP computation, or to
log vs(·) if τ is a subtask of a u-tree computation. (Note that the first two parameters are ordered
by decreasing value, that is larger values have lower priority, and the third field is ordered by
decreasing depth/increasing size.)

6.2 The Analysis of the PWS overhead

In addition to the results in Fact 4.2, the companion paper [11] shows that:
1. The cost of each up-pass is bounded by that of the corresponding downpass in BP and HBP

algorithms.
2. The idle work (the time spent by a core when it is not computing nor writing on a cache or

block miss), in a (parallel collection of) BP computations, aside the waiting already accounted for
in the up-pass, is bounded by O(p ·((s+S +b) log x+bmin{x,B})) where x is the size of the largest
task in the collection, s bounds the time for a steal, S bounds the time to initiate a scheduling
round, and b bounds the time for a cache miss.

3. Additional cache miss costs due to small tasks taking over the work of large tasks on an
up-pass are bounded by the cache miss costs in the downpass.

And, as already noted in this paper, for the present algorithm:
4. The delay due to block misses for a stolen task τ is bounded by the time for O(B) cache

misses. This follows from results in Fact 4.1, for block misses, and from our method for Step 1.1.3,
described earlier.

Lemma 6.1. Assuming that M ≥ B2, the additional cache misses, CM (n, rc), due to stolen tasks
of size M or less in the merging algorithm for a collection of merging problems each of size at most
rc, and of total size n ≥ Mp is bounded by:

p
M

B

log rc

log M
if rc ≥ M

p(
rc

B
+ rc/2) if B ≤ rc < M

prc/2 if rc < B.

Proof. Using Fact 4.2 (which states the bounds in [11]), the top level BP computation causes the
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following number, CT(n, rc), of cache misses:

p
M

B
if rc ≥ M

p

(

rc

B
+ log B + rc/2

)

if B ≤ rc < M

p(rc/2) if rc < B.

And CM is given by the following recurrence equation:

CM (n, rc) ≤ CT(n, rc) + 2CM (n, rc/2).

Induction confirms the claimed bound. �

We now bound the block miss delay in the merging algorithm.

Lemma 6.2. Let M ≥ B2. The delay BMM (n, rc) due to block misses in the merging algorithm
for a collection of merging problems each of size at most rc, and of total size n ≥ Mp, is bounded
by: pB log rc(log log n

p − log log B) if rc ≥ B and B ≤ n
p < rc, pB log rc(log log rc − log log B) if

rc ≥ B and n
p ≥ rc, and by prc log rc if n/p, rc < B.

Proof. Using the bounds in Fact 4.2 for block misses, and since M ≥ B2 the top level BP compu-
tation causes the following number, BMT(n, rc), of block misses: pB log n

p if n
p ≤ rc and rc ≥ B,

pB log rc if n
p > rc and rc ≥ B, and prc log rc if rc < B.

Since BMM (n, rc) ≤ BMT(n, rc) + 2BMM (n, rc/2), induction confirms the claimed bound. �

Corollary 6.1. Let M ≥ B2. The delay BMM (n, rc) due to block misses in the merging algorithm
for a collection of merging problems each of size at most rc, and of total size n ≥ Mp, is bounded
by: pB log n + n

B
log n
log M .

Proof. By Lemma 6.2, the cost is bounded by pB log n(log log n
p − log log B). We now bound this

expression.

Case 1. n/p ≥ M3.
Then

Bp log n(log log n/p − log log B) ≤ Bp
(n/p)/(log n/p log log n/p)

M3/(log M3 log log M3)
log n log log n/p

≤ n

B

log n/ log n/p

M3/(B2 log M3 log log M3)

≤ n

B
(log n/ log M).

Case 2. M3 ≥ n/p ≥ (B log M)3.
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Then

Bp log n(log log n/p − log log B) ≤ Bp
(n/p)/(log log n/p)

(B log M)3/(log log(B log M)3)
log n log log n/p

≤ n

B

log n/ log M

(B log M)/(log log(B log M)3)

≤ n

B

log n

log M
.

Case 3. n/p ≤ (B log M)3 and log M ≥ B.
Then

Bp log n(log log n/p − log log B) ≤ Bp log n log log(log M)6 ≤ Mp

B

log n

log M

B2 log M log log(log M)6

M

≤ n

B

log n

log M
.

Case 4. n/p ≤ (B log M)3 and log M ≤ B.
Then Bp log n(log log n/p − log log B) = O(Bp log n). �

Finally, we bound the idle time in each recursive call to a collection of merging problems.

Lemma 6.3. The idle time, IM (n, rc), in the merging algorithm for a collection of merging problems
each of size at most rc, and of total size n is bounded by: O(p log rc log log rc(S +s+b)+pbB log rc

log B ).

Proof. The top level BP computation causes the following idle time, IT(n, rc): O(p log rc(S + s +
b) + pbmin{B, rc}). And IM is given by the following recurrence equation:

IM (n, rc) ≤ IT(n, rc) + 2IM (n, rc/2).

Induction confirms the claimed bound. �

Corollary 6.2. The costs CS(n, rc), BMS(n, rc), IS(n, rc) for respectively, the cache misses, the
block misses and the idle time of the sorting algorithm when run on a collection of sorting problems
each of size at most rc, and of total size n ≥ max{Mp, rc−1} have the same asymptotic bounds as
the merging algorithm.

Adding the costs given by Lemmas 5.4–6.3 and Corollary 6.1 yields our main result:

Theorem 2.1. When run on p ≤ min{ n
log log n , n

M } cores using the PWS scheduler on an input of

size n ≥ Mp, where M ≥ B2, the merging algorithm runs in time

O

(

n log n

p
+

bn

Bp

log n

log M
+ log n log log n(s + S + b) + bB log n

)

.

The same bound applies to the sorting algorithm.
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7 Analysis for the Randomized Work Stealing Scheduler

In our companion paper [11] we present an analysis of the expected running time, including the
effect of block misses, when the randomized work stealing scheduler is used in computations that
expose parallelism with binary forking of tasks. The following theorem is obtained by applying the
result in [11] to the sorting algorithm.

Theorem 2.2 On an input of length n, assuming M ≥ B2, for p ≤ n
max{log log n, M} , the sorting

algorithm SPMS executed with the randomized work stealer, takes expected parallel time

O

(

1

p

(

n log n + b · n log n

B log M

)

+

(

s +
M

B
· b

) (

bB

s

log n

log B
+

(b + s)

s
log n log log n

))

.

Proof. Let σ be the expected number of attempted steals performed by the randomized work stealer
when SPMS is executed on an input of length n. Then, by our earlier analysis, the expected overhead
in the number of cache misses due to attempted steals beyond the sequential cache complexity is
O

(

σ · b · M
B

)

. The cost of the attempted steals is O(sσ), as a single attempted steal costs O(s).

In [11] it is shown that σ = O(p · ⌈T ′
∞

s ⌉), where s is the cost of an attempted steal. Here, T ′
∞ is

the augmented critical path length of the computation, which is bounded by b times the standard
critical pathlength T∞, plus a bound γ on the total cost of the block misses on any path in the
computation dag, plus 2s times a bound φ on the number of forks on any path.

For SPMS, we have T∞ = O(log n · log log n), and φ is bounded by the same bound. For γ,
we observe that any path in the SPMS computation has a sequence of O(log n) BP computations.

Of these BP computations, Θ
(

log n
log B

)

have size B or larger, and each incurs O(1) block misses on

the given path, each causing a delay of O(bB). Further, Θ
(

2i log n
log B

)

of the BP computations on a

path have size B1/2i

, each incurring O(1) block misses, and each causing a delay of O(b · B1/2i

),
for this is the amount of data in the recursive subproblem to which the BP computation belongs.

Summing over all i yields γ = O(bB log n
log B ). Thus T ′

∞ = O
(

bB log n
log B + (b + s) log n log log n

)

. This

also establishes the second term in the bound in the theorem as the bound for the expected cache-
miss overhead for the steals plus the overhead for the attempted steals.

The overhead for block misses in a stolen task is dominated by that for cache misses, since there
are only O(1) block misses per task, giving rise to a cost of O(b ·B), which is O(b · (M/B)) with a
tall cache. Thus the cost of the overhead due to attempted steals under randomized work-stealing
is

O

((

1 +
M

B
· b

s

)(

bB
log n

log B
+ (b + s) log n log log n

))

.

Adding in the remaining cost of (1/p) times (work + processor-aware cache-oblivious cache and
block miss cost) gives the result stated in the theorem. �

Comment. In the randomized work stealing environment, task priorities are not used. Also, the
u-tree construction for grouping unequal sized tasks is not needed; instead, the straightforward
pairwise grouping suffices.
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8 Discussion

In this paper we have presented a new sorting algorithm which combines elements from merge-sort
and sample-sort. The algorithm has optimal sequential running time, optimal sequential cache
complexity, and optimal parallel speed-up up to critical pathlength O(log n log log n).

We analyzed the parallel cache complexity, including the additional overhead due to block misses
(or ‘false-sharing’), and we matched the sequential cache miss bound of Θ

(

n
B logM n

)

, when each
core has a private cache of size M , with the sequential requirement of M ≥ B2 (a tall cache). With
p cores, these bounds hold when the input size n ≥ Mp, since with a smaller input size, either the
cores or the cache capacity will not be used fully effectively. We also showed that our cache miss
bound continues to be optimal in the multicore setting.

Finally, we analyzed the performance of the sorting algorithm when executed resource-obliviously
using work-stealing. When executed using the deterministic Priority Work Stealing (PWS) sched-
uler described in our companion paper [11], our sorting algorithm runs resource obliviously while
matching the bounds of the processor-aware version as long as the cache is slightly taller with
M ≥ B2 log B. These bounds again include the effect of block misses.

We have also analyzed the resource-oblivious performance of our algorithm when executed using
the randomized work-stealer, and when including the cost of block misses.

When implemented with PWS our algorithm is essentially optimal in all respects except for the
critical pathlength, which is Θ(log n log log n) for our algorithm. It appears to be quite challenging
to achieve O(log n) critical pathlength while retaining cache-optimality and resource obliviousness.
We have not considered a multi-level cache hierarchy, and here a multicore-oblivious implementation
as in [9] is achievable, but a resource-oblivious version does not appear to be likely.
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