
Evolving Neural Networks through Augmenting Topologies

Kenneth O. Stanley and Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 USAfkstanley, ristog@cs.utexas.edu

Technical Report TR-AI-01-290

June 28, 2001

Abstract

An important question in neuroevolution is how to gain an advantage from evolving neural network
topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT)
that outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task.
We claim that the increased efficiency is due to (1) employinga principled method of crossover of different
topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from mini-
mal structure. We test this claim through a series of ablation studies that demonstrate that each component
is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT
is also an important contribution to GAs because it shows howit is possible for evolution to both optimize
and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions
over generations, and strengthening the analogy with biological evolution.

1 Introduction

Neuroevolution (NE), the artificial evolution of neural networks using genetic algorithms, has shown great
promise in complex reinforcement learning tasks (Gomez andMiikkulainen 1999; Gruau et al. 1996; Mo-
riarty and Miikkulainen 1997; Potter et al. 1995; Whitley etal. 1993). Neuroevolution searches through
the space of behaviors for a network that performs well at a given task. This approach to solving com-
plex control problems represents an alternative to statistical techniques that attempt to estimate the utility
of particular actions in particular states of the world (Kaelbling et al. 1996). NE is a promising approach
to solving reinforcement learning problems for several reasons. Past studies have shown NE to be faster
and more efficient than reinforcement learning methods suchas Adaptive Heuristic Critic and Q-Learning
on single pole balancing and robot arm control (Moriarty 1997; Moriarty and Miikkulainen 1996). Because
NE searches for a behavior, it is effective in problems with large state spaces. In addition, memory is eas-
ily represented through recurrent connections in neural networks, making the method a natural choice for
learning non-Markovian tasks (Gomez and Miikkulainen 1999).

In traditional NE approaches, a topology is chosen for the evolving networks before the experiment be-
gins. Usually, the network topology is a single hidden layerof neurons, with each hidden neuron connected

1



to every network input and every network output. Evolution searches the space of connection weights of
this fully-connected topology by allowing high-performing networks to reproduce. The weight space is
explored through the crossover of network weight vectors and through the mutation of single networks’
weights. Thus, the goal of fixed-topology NE is to optimize the connection weights that determine the
functionality of a network.

However, connection weights are not the only aspect of neural networks that contribute to their behavior.
The topology, orstructure, of neural networks also affects their functionality. There has been a great deal
of interest in the evolution of both topologies and connection weights over the last decade (Angeline et al.
1993; Branke 1995; Gruau et al. 1996; Yao 1999). The basic question, however, remains: Can evolving
topologies along with weights provide an advantage over evolving weights on a fixed-topology? A fully
connected network can in principle approximate any continuous function (Cybenko 1989). So why waste
valuable effort permuting over different topologies?

The answers provided thus far are inconclusive. Some have argued that network complexity can af-
fect the speed and accuracy of learning (Zhang and Muhlenbein 1993). Although this assertion is true for
backpropagation, backpropagation does not matter when weights are being optimized by evolution andnot
backpropagation. On sparse reinforcement problems, backpropagation does not even apply, since target
outputs are not known.

A persuasive argument for the evolution of both topology andweights was put forward by Gruauet
al. (1996), who claimed that evolving structure saves the time wasted by humans trying to decide on the
topology of networks for a particular NE problem. Although almost all fixed-topology NE systems use a
fully connected hidden layer, deciding how many hidden nodes are needed is a trial-and-error process. Gruau
et al. supported their argument by evolving the topology and weights of an artificial neural network that
solved the hardest pole-balancing benchmark problem to date. However, later results suggested that structure
was not necessary to solve the difficult problem. A fixed-topology method called Enforced Subpopulations
was able to solve the same problem 5 times faster simply by restarting with a random number of hidden
neurons whenever it became stuck (Gomez and Miikkulainen 1999).

This article aims to demonstrate the opposite conclusion: if done right, evolving structure along with
connection weights can significantly enhance the performance of NE. We present a novel NE method called
NeuroEvolution of Augmenting Topologies (NEAT) that is designed to take advantage of structure as a way
of minimizing the dimensionality of the search space of connection weights. If structure is evolved such
that topologies are minimized and grown incrementally, significant gains in learning speed result. Improved
efficiency results from topologies being minimizedthroughout evolution, rather than only at the very end.

Evolving structure incrementally presents several technical challenges: (1) Is there a genetic representa-
tion that allows disparate topologies to cross over in a meaningful way? (2) How can topological innovation
that needs a few generations to be optimized be protected so that it does not disappear from the population
prematurely? (3) How can topologies be minimizedthroughout evolution without the need for a specially
contrived fitness function that measures complexity?

The NEAT method consists of solutions to each of these problems as will be described below. The
method is validated on pole balancing tasks, where NEAT performs 25 times faster than Cellular Encoding
and 5 times faster than ESP. The results show that structure is a powerful resource in NE when appropriately
utilized. NEAT is unique because structures become increasingly more complex as they become more
optimal, strengthening the analogy between GAs and naturalevolution.

2



2 Background

Many systems have been developed over the last decade that evolve both neural network topologies and
weights (Angeline et al. 1993; Braun and Weisbrod 1993; Dasgupta and McGregor 1992; Fullmer and
Miikkulainen 1992; Gruau et al. 1996; Krishnan and Ciesielski 1994; Lee and Kim 1996; Mandischer 1993;
Maniezzo 1994; Opitz and Shavlik 1997; Pujol and Poli 1998; Yao and Liu 1996; Zhang and Muhlenbein
1993). These methods encompass a range of ideas about how Topology and Weight Evolving Artificial
Neural Networks (TWEANNs) should be implemented. In this section, we address some of the ideas and
assumptions about the design of TWEANNs, and offer solutions to some unsolved problems. Our goal is to
find how a neuroevolution method can use the evolution of topology to increase its efficiency.

2.1 TWEANN Encoding

The question of how to encode networks using an efficient genetic representation must be addressed by all
TWEANNs. We will discuss several prototypical representational schemes.

TWEANNs can be divided between those that use a direct encoding, and those that use an indirect one.
Direct encoding schemes, employed by most TWEANNs, specifyin the genome every connection and node
that will appear in the phenotype (Angeline et al. 1993; Braun and Weisbrod 1993; Dasgupta and McGregor
1992; Fullmer and Miikkulainen 1992; Krishnan and Ciesielski 1994; Lee and Kim 1996; Maniezzo 1994;
Opitz and Shavlik 1997; Pujol and Poli 1998; Yao and Liu 1996;Zhang and Muhlenbein 1993). In contrast,
indirect encodings usually only specify rules for constructing a phenotype (Gruau 1993; Mandischer 1993).
These rules can be layer specifications or growth rules through cell division. Indirect encoding allows a
more compact representation than direct encoding, becauseevery connection and node are not specified in
the genome, although they can be derived from it.

2.1.1 Binary Encoding

Direct encodings usually require simpler implementationsthan indirect encodings. The simplest imple-
mentation is based on the traditional bit string representation used by GAs. For example, Dasgupta and
McGregor (1992) use such an encoding in their method, calledsGA (Structured Genetic Algorithm) where
a bit string represents the connection matrix of a network. sGA is notable for its simplicity, allowing it
to operate almost like a standard GA. However, there are several limitations as well. First, the size of the
connectivity matrix is the square of the number of nodes. Thus, the representation blows up for a large num-
ber of nodes. Second, because the size of the bit string must be the same for all organisms, the maximum
number of nodes (and hence connections as well) must be chosen by a human running the system, and if the
maximum is not sufficient, the experiment must be repeated. Third, using a linear string of bits to represent
a graph structure makes it difficult to ensure that crossoverwill yield useful combinations.

2.1.2 Graph Encoding

Because bit strings are not the most natural representationfor networks, most TWEANNs use encodings that
represent graph structures more explicitly. Pujol and Poli(1997) use a dual representation scheme to allow
different kinds of crossover in their Parallel DistributedGenetic Programming (PDGP) system. The first
representation is a graph structure. The second is a linear genome of node definitions specifying incoming
and outgoing connections. The idea is that different representations are appropriate for different kinds of

3



operators. Subgraph-swapping crossovers and topologicalmutations use the grid, while point crossovers
and connection parameter mutations use the linear representation.

As in sGA, PDGP has a finite limit on the number of nodes in the network, corresponding to the number
of nodes in the two-dimensional grid that represents the graph version of the genome. PDGP uses graph
encoding so that subgraphs can be swapped in crossover. Subgraph swapping is representative of a pre-
vailing philosophy in TWEANNs that subgraphs are functional units and therefore swapping them makes
sense because it preserves the structure of functional components. However, we cannot be sure whether the
particular subgraphs being combined in PDGP are the right ones to create a functional offspring.

2.1.3 Non-mating

Because crossover of networks with different topologies can frequently lead to a loss of functionality, some
researchers have given up on crossover altogether in what iscalled Evolutionary Programming (Yao and Liu
1996). Angelineet al. (1993) implemented a system called GNARL (GeNeralized Acquisition of Recurrent
Links), commenting that “the prospect of evolving connectionist networks with crossover appears limited
in general.” Although GNARL uses a graph encoding, it is fundamentally different from PDGP in that it
sidesteps the issue of crossover entirely. GNARL demonstrates that a TWEANN does not need crossover to
work, leaving the problem of demonstrating the advantages of crossover to other methods.

2.1.4 Indirect Encoding

Gruau’s Cellular Encoding method (CE; Gruau 1993) is an example of a system that utilizes indirect en-
coding of network structures. In CE, genomes are programs written in a specialized graph transformation
language. The transformations are motivated by nature in that they specifycell divisions. Different kinds
of connectivities can result from a division, so there are several kinds of cell divisions possible. A major
advantage of CE is that its genetic representations are compact. Genes in CE can be reused multiple times
during the development of a network, each time requesting a cell division at a different location. CE shows
that cell divisions can encode the development of networks from a single cell, much as organisms in nature
begin as a single cell that differentiates as it splits into more cells.

Although CE demonstrates that it is possible to evolve developmental systems, we chose direct encoding
for NEAT because, as Braun and Weisbrod (1993) argue, indirect encoding requires “more detailed knowl-
edge of genetic and neural mechanisms.” In other words, because indirect encodings do not map directly to
their phenotypes, they implicitly restrict the search to the class of topologies to which they can be expanded.
For the sake of efficiency, we need to be sure that indirect encodings do not restrict phenotype networks to
some suboptimal class of topologies. Further, experimental results suggest that CE is not necessarily more
efficient than direct encoding methods. (Section 4.3.3).

We now turn to several specific problems with TWEANNs and address each in turn.

2.2 Competing Conventions

One of the main problems for NE is theCompeting Conventions Problem, also known as thePermutations
Problem (Radcliffe 1993). Competing conventions means having morethan one way to express a solution
to a weight optimization problem with a neural network. Whengenomes representing the same solution do
not have the same encoding, crossover is likely to produce damaged offspring.

Figure 1 depicts the problem for a simple 3-hidden-unit network. The three hidden neuronsA,B, andC,

4


