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Abstract

The popularity of the Web and the large number of documents available
in electronic form has motivated the search for hidden knowledge in text
collections. Consequently, there is growing research interest in the general
topic of text mining. In this paper, we develop a text-mining system by
integrating methods from Information Extraction (IE) and Data Mining
(Knowledge Discovery from Databases or KDD). By utilizing existing IE and
KDD techniques, text-mining systems can be developed relatively rapidly
and evaluated on existing text corpora for testing IE systems.

We present a general text-mining framework called DiscoTEX which
employs an IE module for transforming natural-language documents into
structured data and a KDD module for discovering prediction rules from the
extracted data. When discovering patterns in extracted text, strict matching
of strings is inadequate because textual database entries generally exhibit
variations due to typographical errors, misspellings, abbreviations, and other
sources. We introduce the notion of discovering “soft-matching” rules from
text and present two new learning algorithms. TextRISE is an inductive
method for learning soft-matching prediction rules that integrates rule-based
and instance-based learning methods. Simple, interpretable rules are discov-
ered using rule induction, while a nearest-neighbor algorithm provides soft
matching. SoftApriori is a text-mining algorithm for discovering associa-
tion rules from texts that uses a similarity measure to allow flexible match-
ing to variable database items. We present experimental results on inducing
prediction and association rules from natural-language texts demonstrating
that TextRISE and SoftApriori learn more accurate rules than previous
methods for these tasks. We also present an approach to using rules mined
from extracted data to improve the accuracy of information extraction. Ex-
perimental results demonstate that such discovered patterns can be used to
effectively improve the underlying IE method.
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Chapter 1

Introduction

The recent abundance of digital information available electronically has
made the organization of textual information into an important task. Text
mining is a burgeoning new technology for discovering knowledge from text
data. With the fast growth of the number of pages on the World Wide Web,
text mining plays a key role in managing information and knowledge, and
is therefore attracting increasing attention (Berry, 2003b, 2003a; Feldman,
1999; Hearst, 2003, 1999; Grobelnik, 2001, 2003; Mladenić, 2000; Muslea,
2004).

1.1 Text Data Mining and Information Extraction

Data Mining (DM) or Knowledge Discovery in Databases (KDD) is the
process of identifying novel and understandable patterns in data (Han &
Kamber, 2000; Witten & Frank, 1999). Data mining seeks not only infor-
mation or answers to the question which the user already knows to ask,
but discovers deep knowledge embedded within the data. In order to do
that, data mining applies computational techniques, usually in the form of
a learning algorithm, to find potentially useful patterns in the data. Most
existing data mining approaches look for patterns in a relational table of
data (Agrawal, Imielinsky, & Swami, 1993).

Text mining or text data mining, the process of finding useful or inter-
esting patterns, models, directions, trends, or rules from unstructured text,
is used to describe the application of data mining techniques to automated
discovery of knowledge from text (Chakrabarti, 2002; Han & Kamber, 2000).
Generally text mining has been viewed as a natural extension of data mining
(Hearst, 2003, 1999). This reflects the fact that the advent of text mining
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relies on the burgeoning field of data mining to a great degree.
However, unlike data mining, which focuses on the well-structured col-

lections that exist in either relational databases or data warehouses, text
mining excavates data that is far less structured. Much of today’s electronic
data resides not in traditional relational databases, but “hidden” in the Web
and natural-language documents. In this paper, we present a new frame-
work for text mining based on the integration of traditional data mining and
Information Extraction (IE).

The goal of an IE system is to find specific data in natural-language texts.
The data to be extracted is typically given by a template which specifies a
list of slots to be filled with substrings taken from the document. IE is useful
for a variety of applications, particularly given the recent proliferation of In-
ternet and web documents. Recent applications include course and research
project homepages (Freitag, 1998a; Thompson, Smarr, Nguyen, & Man-
ning, 2003), seminar announcements (Freitag, 1998b), apartment rental ads
(Soderland, 1999), job announcements (Califf & Mooney, 1999), geographic
web documents (Etzioni, Cafarella, Downey, Kok, Popescu, Shaked, Soder-
land, Weld, & Yates, 2004), government reports (Pinto, McCallum, Wei, &
Croft, 2003), and medical abstracts (Bunescu, Ge, Kate, Marcotte, Mooney,
Ramani, & Wong, 2004).

Traditional data mining assumes that the information to be “mined”
is already in the form of a relational database. Unfortunately, for many
applications, electronic information is only available in the form of unstruc-
tured natural-language documents rather than structured databases. IE
addresses the problem of transforming a corpus of textual documents into
a more structured database, thereby suggesting an obvious role that can be
played in text mining when combined with standard KDD methods. In this
paper, we suggest using an IE module to locate specific pieces of data in
raw text, and to provide the resulting database to the KDD module for rule
mining.

1.2 Heterogeneity of Text Data

In comparison with relational databases, natural-language corpora avail-
able on the internet are heterogeneous and noisy. Entries in many textual
database fields could exhibit minor variations that can prevent mining algo-
rithms from discovering important regularities. Variations can arise from ty-
pographical errors, misspellings, abbreviations, as well as from other sources.

Variations are particularly pronounced in data that is automatically
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extracted from unstructured or semi-structured documents or web pages
(Ghani, Jones, Mladenić, Nigam, & Slattery, 2000; Nahm & Mooney, 2000).
For example, in data on local job offerings that we automatically extracted
from newsgroup postings, Windows operating system is variously referred
to as “Microsoft Windows”, “MS Windows”, “Windows 95/98/ME”, etc..

Some previous work has addressed the problem of identifying similar
or duplicate records, where it is referred to as record linkage (Winkler,
1999), the merge/purge problem (Hernández & Stolfo, 1995), duplicate de-
tection (Monge & Elkan, 1997), hardening soft databases (Cohen, Kautz,
& McAllester, 2000), and reference matching (McCallum, Nigam, & Un-
gar, 2000b). Typically, a fixed textual similarity metric is used to determine
whether two values or records are similar enough to be duplicates. In this ap-
proach, “Microsoft Windows”, “MS Windows”, and “Windows 95/98/ME”
are mapped to a unique term as a pre-processing step.

We propose the alternative method of directly mining “dirty” data by
discovering “soft-matching” rules whose antecedents and consequents are
evaluated based on sufficient similarity to database entries. Similarity of
text can be measured using standard “bag of words” metrics (Salton, 1989)
or edit-distance measures (Gusfield, 1997); other standard similarity metrics
can be used for numerical and additional data types. For instance, soft-
matching rules such as “If Windows is in the list of required skills for a
job, then knowledge for IIS is also required for that job.” are discovered
from a set of job announcements. In this case, “Windows” and “IIS” can
be matched to similar strings such as “MS Windows” or “IIS Services”
respectively.

1.3 Our Contribution

While there is a growing interest in the general topic of text mining, there are
few working systems or detailed experimental evaluations. This paper intro-
duces DiscoTEX, a new framework for text mining based on the integration
of Information Extraction (IE) and traditional Knowledge Discovery from
Databases (KDD), a.k.a. data mining. We explore the interaction between
these two important techniques to perform text mining tasks by present-
ing an approach to using an automatically learned IE system to extract a
structured databases from a text corpus, and then mine this database with
traditional KDD tools. We show that text-mining systems can be developed
relatively rapidly and evaluated on existing IE corpora, by utilizing existing
IE and KDD technology.
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To address the heterogeneity problem, we present a method, TextRISE,
for learning soft-matching rules from text using a modification of the RISE

algorithm (Domingos, 1996), a hybrid of rule-based and instance-based
(nearest-neighbor) learning methods. Similarly, we introduce an algorithm,
SoftApriori that discovers soft-matching association rules given a user-
supplied similarity metric for each field. SoftApriori is a natural ex-
tension of the traditional association rule mining algorithm (Agrawal &
Srikant, 1994) with soft-matching based on a specified similarity metric.
With encouraging results from experiments in several domains, we show
how these approaches can induce accurate predictive rules despite the het-
erogeneity of automatically extracted textual databases. By illustrating that
soft-matching allows discovery of additional interesting rules, capturing cer-
tain relationships more accurately, we show that allowing the discovery of
soft-matching rules can eliminate the need for certain types of tedious data
cleaning prior to knowledge discovery.

We also explore a less obvious interaction between IE and KDD in the
proposed text-mining framework. KDD can in turn provide benefits to IE as
the predictive relationships between different slot fillers discovered by KDD
provide additional clues about what information should be extracted from
a document. This paper reports experiments in computer-related job and
resumé domains demonstrating that predictive rules acquired by applying
KDD to an extracted database can be used to improve the performance of
the underlying information extraction system.

1.4 Organization

The rest of the paper is organized as follows. Chapter 2 will give a brief in-
troduction to Text Mining and Information Extraction. An implementation
of the DiscoTEX framework which simply combines IE and KDD will be
described in Chapter 3 to demonstrate that the knowledge discovered from
such an automatically extracted database is close in accuracy to the knowl-
edge discovered from a manually constructed database. Chapter 4 presents
and analyzes experimental results obtained with TextRISE, a more sophis-
ticated implementation of the proposed text mining framework with partial
matching rules incorporated in the prediction rule-learning algorithm. In
Chapter 5, another approach called SoftApriori will be overviewed. Sof-

tApriori discovers association rules from noisy textual databases. In Chap-
ter 6, we will address the performance and the scalability issues which are
important in real-world applications. Several optimization techniques em-
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ployed in our system to speed up the running time will be discussed. After
that, we will give experimental results obtained with our systems on inter-
net documents such as Usenet newsgroup postings in Chapter 7. Chapter 8
presents initial results on the less obvious interaction between KDD and
IE. We will show that rules mined by KDD can be used to improve the
performance of the underlying IE. We will then review some related work
or research problems briefly in Chapter 9 followed by a discussion on pos-
sible directions for future work in Chapter 10. Finally, we will discuss the
significance of our research and make conclusions in Chapter 11.
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Chapter 2

Background on Text Mining

and Information Extraction

We will start by giving some basic concepts and overview for information
extraction and existing text mining technology.

2.1 Information Extraction

The task of information extraction aims to find specific structured data
in natural-language text. DARPA’s Message Understanding Conferences
(MUC) has concentrated on IE by evaluating the performance of participat-
ing IE systems based on blind test sets of text documents (DARPA, 1998).
The data to be extracted is typically given by a template which specifies a
list of slots to be filled with substrings taken from the document.

Usually the data to be extracted is described by a template specifying a
list of slots to be filled, though sometimes it is specified by annotations in
the document. In either case, slot-fillers may be of two types: they may be
one of a set of specified values or they may be strings taken directly from
the document.

Figure 2.1 shows a paired (shortened) document and template from an
information extraction task in the job-posting domain. This template in-
cludes only slots that are filled by strings taken directly from the docu-
ment. Several slots may have multiple fillers for the job-posting domain as
in (programming) languages, platforms, applications, and areas.

IE has been shown to be useful in a variety of applications, e.g. seminar
announcements, restaurant guides, course homepages, job postings, apart-
ment rental ads, and news articles on corporate acquisition (Califf, 1999;
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Document

Title: Web Development Engineer

Location: Austin, TX

This individual is responsible for design and implementation

of the web-interfacing components of the AccessBase server,

and general back-end development duties.

A successful candidate should have experience that includes:

One or more of: Solaris, Linux, plus Windows/NT

Programming in C/C++, Java

Database access and integration: Oracle, ODBC

CGI and scripting: one or more of Javascript,

Perl, PHP, ASP

Exposure to the following is a plus: JDBC, FrontPage and/or

Cold Fusion.

A BSCS and 2+ years experience (or equivalent) is required.

Filled Template

• title: “Web Development Engineer”

• location: “Austin, TX”

• languages: “C/C++”, “Java”, “Javascript”, “Perl”, “PHP”, “ASP”

• platforms: “Solaris”, “Linux”, “Windows/NT”

• applications: “Oracle”, “ODBC”, “JDBC”, “FrontPage”, “Cold Fu-
sion”

• areas: “Database”, “CGI”, “scripting”

• degree required: “BSCS”

• years of experience: “2+ years”

Figure 2.1: Sample text and filled template for a job posting
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Ciravegna & Kushmerick, 2003; Kushmerick, 2001; University of South-
ern California, 1998). IE is also a suitable technology for automatically
annotating web pages for the Semantic Web (Berners-Lee, Hendler, & Las-
sila, 2001; Stevenson & Ciravegna, 2003).

In particular, machine learning techniques have been suggested for ex-
tracting information from text documents in order to create easily searchable
databases from the information, thus making the online text more accessi-
ble (Califf & Mooney, 1999). For instance, information extracted from job
postings on the Web can be used to build a searchable database of jobs1.

2.2 Learning for Information Extraction

Although most information extraction systems have been built entirely by
hand until recently, automatic construction of complex IE systems has be-
gun to be considered by many researchers lately (Califf, 1999; Ciravegna,
Basili, & Gaizauskas, 2000; Kushmerick, 2001). By training on a corpus of
documents annotated with their filled templates, they acquire a knowledge
base of extraction rules that can be tested on novel documents.

Recent proliferation of research on information extraction implies the
possibility of using a successfully-built IE component as part of a larger text-
mining system. For instance, Rapier (Califf, 1998) was were demonstrated
to perform well on realistic applications such as USENET job postings and
seminar announcements.

Rapier (Robust Automated Production of Information Extraction Rules)
(Califf, 1998) is a bottom-up relational rule learner for acquiring informa-
tion extraction rules from a corpus of labeled training examples. It learns
patterns describing constraints on slot fillers and their surrounding context
using a specific-to-general search. Constraints on patterns can specify the
specific words, part-of-speech, or semantic classes of tokens. The hypernym
links in WordNet (Fellbaum, 1998) provide semantic class information and
documents are annotated with part-of-speech information using the tagger
of Brill (1994).

The learning algorithm of Rapier was inspired by several inductive logic
programming systems (Lavrac & Dzeroski, 1994). First, Rapier creates
most-specific patterns for each slot in each example specifying the complete
word and tag information for the filler and its full context. New rules are
created by generalizing pairs of existing rules using a beam search. When
the best rule does not produce incorrect extractions, Rapier adds it to the

1http://flipdog.monster.com/
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rule base and removes existing rules that it subsumes. Rules are ordered
by an information-theoretic heuristic weighted by the rule size. By training
on a corpus of documents annotated with their filled templates, Rapier

acquires a knowledge base of extraction rules that can then be tested on
novel documents.

2.3 Rule Mining

Among various data mining techniques, we focus on the problem of finding
useful rules from given data sets because rules are more comprehensible to
human users. For a data set describing customer behavior in a supermarket,
a rule or pattern might be, “10 percent of the customers buy diapers and
beer together,” and for the Web log data set, a rule could be, “If a person
visits the UTCS web site, there is a 30% chance the person will visit the
UTCS AI lab web site in the same week.” There has been a large volume
of research on association rule mining (Agrawal et al., 1993) and predictive
rule induction (Mitchell, 1997).

2.3.1 Inductive Rule Learning

IF-THEN rules are one of the most expressive representations for learned hy-
potheses (Mitchell, 1997). For example, given a database of customer credit
information, classification rules can be learned to label customers having low
credit ratings. The rules can be used to categorize previously unseen data,
e.g. future customers. In general, classification rule learning methods either
extract rules from decision trees, adopt sequential set covering algorithms,
or translate neural nets into human-readable rules. Most of them assume
that examples are represented as “feature vectors”, the components of which
are either real numbers or nominal values.

Two widely-used schemes for rule-learning are C4.5rules (Quinlan,
1993) and Ripper (Cohen, 1995). Both of them generate concise and
human-readable outputs, rule sets. C4.5rules induces rules from binary
data by learning decision trees and translating them into pruned rules. The
algorithm generates a set of rules for each path from a tree learned by C4.5.
It then checks if the rules can be generalized by dropping conditions. C4.5

can handle training data with continuous attributes or missing attribute val-
ues and has been successfully applied to a wide variety of machine-learning
tasks (Mitchell, 1997).

Ripper is a fast rule learner with an ability to handle set-valued features
(Cohen, 1996b). Ripper, based on the incremental reduced error pruning
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algorithm, splits the available training data into a growing set and pruning
set before learning rules. It is shown that Ripper scales nearly linearly with
the number of examples in the training set. Particularly on noisy data sets,
Ripper was shown to be equally accurate but more efficient than C4.5rules

(Cohen, 1995).

2.3.2 Association Rule Mining

Association rule mining is one of the most popular techniques in data mining
(Han & Kamber, 2000; Witten & Frank, 1999). The problem of mining
association rules is to discover all association rules that have support and
confidence greater than the user-specified minimum support and minimum
confidence.

An association rule is intended to capture dependence among items in a
database. Specifically, we say that i1 ⇒ i2 if 1) i1 and i2 occur together in
at least s% of the n baskets where baskets of items are subsets of the set of
all items and 2) of all the bakskets containing i1, at least c% also contains
i2. We call the probability that a basket contains both items (s) the support
and the probability that a basket containing one item also contains the other
(c) the confidence. The associations between items can be easily generalized
to those among item sets.

The classical application of association rule mining techniques is mar-
ket basket analysis about finding associations between items purchased by
customers. Each basket in the previous definition may be viewed as a trans-
action that occurs in the supermarket. An association rule from a supermar-
ket database, “beer ⇒ pretzels [20%, 80%]” indicates that 20% (support) of
customers bought beer and pretzels together and 80% (confidence) of those
who bought beer also bought pretzels.

One of the popular algorithms for discovering association rules is Apri-

ori (Agrawal & Srikant, 1994) where the downward closure property was
utilized to prune unnecessary branches for further consideration. Apriori

is based on breadth-first search and therefore ensures that the support val-
ues of all subsets of a candidate are known in advance. At each stage k,
all candidates of a cardinality k are counted in a scan over the database.
Apriori prunes all candidate itemsets such that any subset of that itemset
is not frequent.
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2.4 Rule Mining from Text

Much text mining or knowledge discovery in text paradigms have been based
on simple forms of text categorization as in KDT (Feldman & Dagan, 1995).
However, recently several researchers have applied traditional rule induction
methods to discover relationships from textual data. FACT (Feldman &
Hirsh, 1996) discovers rules from text using association rule mining. For
example, it discovered rules such as “Iraq ⇒ Iran”, and “Kuwait and Bahrain
⇒ Saudi Arabia” from a corpus of Reuters news articles.

Ahonen, Heinonen, Klemettinen, and Verkamo (1998) also applied exist-
ing data mining techniques to discover episode rules (Mannila, Toivonen, &
Verkamo, 1997) from text. For example: “chemicals, processing ⇒ storage
[2 - 3]” (If “chemicals” and “processing” occurs within two words, the word
“storage” co-occurs within three words.) is an episode rule discovered from
a collection of Finnish legal documents. Episode rule mining is used for
language analysis because it preserves the sequential structure of terms in a
text document.

In addition, decision tree methods such as C4.5 and C5.0, and rule
learners such as Foil and Ripper have been used to discover patterns from
textual data (Nahm & Mooney, 2000; Ghani et al., 2000). Using C5.0,
Ghani et al. (2000) discovered interesting patterns, e.g. “Aerospace/defense
companies are located in Florida”, from the Hoovers.com online resource
about companies. A first-order rule learner, Foil was used to learn function-
free Horn clauses (Quinlan & Cameron-Jones, 1993).

The relevant application areas of text mining include biomedical appli-
cations (Hahn, Romacker, & Schulz, 2002; Leroy, Chen, & Martinez, 2003;
Muresan & Klavans, 2002; Scheffer & Leser, 2003; Schwartz & Hearst, 2003),
web mining and personalization (Chakrabarti, 2002; Chiang, Laender, &
Lim, 2003; Eirinaki & Vazirgiannis, 2003; Grobelnik, 2003), tools for natural
language processing e.g. question-answering systems (Harabagiu, Bunescu,
& Maiorano, 2001; Lin & Pantel, 2001), and business applications (Sullivan,
2000) such as customer relationship management and opinion mining (Dave,
Lawrence, & Pennock, 2003).

2.5 Similarity Metrics

Most of the existing text mining techniques discover rules requiring an exact
match. However, due to the heterogeneity problem disussed in Section 1.2, a
form of soft-matching is needed to construct an effective text mining system.
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Soft-matching requires a method to determine the “distance” between two
textual items or documents.

Similarity of text can be measured using standard “bag of words” (BOW)
metrics (Salton, 1989) or edit-distance measures (Sankoff & Kruskal, 1983)
such as character edit distance used in the Cora research paper search
engine (McCallum, Nigam, Rennie, & Seymore, 2000a). This section gives
a brief overview of these standard text-similarity metrics.

2.5.1 Edit Distance

Edit distance is a well-known measure of the similarity of strings. It is based
on elementary edit operations such as insertions, deletions, and substitutions
where costs are associated with these edit operations. The distance between
two strings is defined as the transformation from one string to another using
edit operations with minimal costs. The greater the distance, the more
different the strings are.

However, edit-distance cannot be used directly since it returns 0 if the
strings are identical and greater values when they are different. Therefore,
we define similarity(x, y) as follows:

similarity(x, y) = 1 − normalized edit distance(x, y) (2.1)

where normalized edit-distance is scaled to always be between 0 and 1 based
on the lengths of the two strings:

normalized edit distance(x, y) =
edit distance(x, y)

maximum distance(x, y)
(2.2)

The notion of maximum edit distance (as a dissimilarity measure) is intro-
duced. Maximum distance between two strings (maximum distance(x, y))
is defined as the maximum possible value for edit distance between two
strings x′ and y′, where |x| = |x′| and |y| = |y′|.

Levenshtein distance (Levenshtein, 1966) is one of the well-known edit-
distance functions. Levenshtein distance is defined to be the number of char-
acter deletions, insertions, or substitutions required to transform a string s1

into another, s2. For example, if s1 is “windows” and s2 is “windows”, then
Levenshtein distance between s1 and s2 is 0, because no transformations
are needed. If s1 is “windows” and s2 is “windowsnt”, then the distance is
2, because two insertions (“n” and “t”) are sufficient to transform s1 into
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s2. The Levenshtein edit-distance algorithm has been used in several text-
processing tasks such as spell checking (Schulz & Mihov, 2002) and speech
recognition (Robertson, Wong, Chung, & Kim, 1998).

Among various edit-distance functions, we use affine gap cost (Monge
& Elkan, 1996; Needleman & Wunsch, 1970), an edit distance originally
developed for gene/protein sequence comparison. Affine gap cost incurs
one penalty for starting a new gap (i.e. sequence of deletions) and a typ-
ically smaller penalty for continuing an existing gap (i.e. contiguous dele-
tions). Different edit operations have varying significance in different do-
mains (Bilenko & Mooney, 2003). It is known that affine gap cost provides
more intuitive results than other standard edit-distances, such as Leven-
shtein distance, for text strings (Nahm, Bilenko, & Mooney, 2002).

The computation of affine gap cost is performed by dynamic program-
ming in time O(nm) when n and m are the lengths of the two input strings
as shown in Figure 2.2 (Needleman & Wunsch, 1970).

2.5.2 Vector Space

The vector-space model is typically used in Information Retrieval (IR) (Salton,
1989) to determine the similarity of two documents. In this model, a text
is represented as a vector of real numbers, where each component corre-
sponds to a word that appears in the set of all documents and the value is
its frequency in the document. This is also known as a bag-of-words rep-
resentation. The similarity of two documents x and y is the cosine of the
angle between two vectors ~x and ~y representing x and y respectively, and
calculated by the following formula:

similarity(x, y) =
~x · ~y

| ~x | × | ~y |
(2.3)

where | ~x | and | ~y | are the norms of each document vector. Cosine distance
is defined as one minus the cosine of the included angle between vectors.

cosine distance(x, y) = 1 − cosine similarity(x, y) (2.4)

The TFIDF (Term Frequency, Inverse Document Frequency) weighting
scheme (Salton, 1989) is used to assign higher weights to distinguished terms
in a document. TFIDF makes two assumptions about the importance of a
term. First, the more a term appears in the document, the more important
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Input: s1 and s2 are the given strings.
Output: cost is the affine gap cost between s1 and s2.
Parameters: match cost, mistmatch cost, gap start cost, gap extend cost.

Function AffineGapCost (s1, s2)

m := length(s1).; n := length(s2).
If (m = 0) or (n = 0)

cost := gap start cost + (m + n − 1) × gap extend cost.
Return cost.

For (j := 0; j < n + 1; j++) do
I[0][j] := MAX.; D[0][j] := MAX.

For (j := 0; j < m + 1; j++) do
I[j][0] := MAX.; D[j][0] := MAX.

T [0][0] := 0.; T [0][1] := gap start cost.; T [1][0] := gap start cost.
For (j = 2; j < n + 1; j++) do

T [0][j] := T [0][j−1] + gap extend cost.
For (j := 2; j < m + 1; j++) do

T [j][0] := T [j−1][0] + gap extend cost.
For (i := 1; i < m + 1; i++) do

For (j = 1; j < n + 1; j++) do
If (D[i−1][j] + gap extend cost > T [i−1][j] + gap start cost)

D[i][j] := T [i−1][j] + gap start cost.
Else

D[i][j] := D[i−1][j] + gap extend cost.
If (I[i][j−1] + gap extend cost > T [i][j−1] + gap start cost)

I[i][j] := T [i][j−1] + gap start cost.
Else

I[i][j] : I[i][j−1] + gap extend cost.
If (s1[i−1] = s2[j−1])

sub cost := match cost.
Else

sub cost := mismatch cost.
If (T [i−1][j−1] + sub cost < D[i][j]) and (T [i−1][j−1] + sub cost < I[i][j])

T [i][j] := T [i−1][j−1] + sub cost.
Else If D[i][j] < I[i][j] Then T [i][j] := D[i][j].

Else T [i][j] := I[i][j].
cost := T [m][n].
Return cost.

Figure 2.2: The algorithm for computing affine gap cost

17



it is (term frequency). Second, the more it appears through the entire col-
lection of documents, the less important it is since it does not characterize
the particular document well (inverse document frequency). In the TFIDF
framework, the weight for term tj in a document di, wij is defined as follows:

wij = tfij × log2
N

n
(2.5)

where tfij is the frequency of term tj in document di, N is the total number
of documents in a collection, and n is the number of documents in which
term tj occurs at least once.
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Chapter 3

DiscoTEX: Combining IE

and KDD for Text Mining

In this chapter, we suggest a new framework for text mining based on the
integration of Information Extraction (IE) and traditional Knowledge Dis-
covery from Databases (KDD). We first present the idea of combining IE
and KDD serially for text mining, explain how a document in this sytem
can be represented as a vector of textual elements, and empirically show
that rules mined from IE-extracted data are nearly as accurate as those
discovered from manually extracted data.

3.1 Introduction

As previously stated in Chapter 1, the assumption of traditional data min-
ing that the information to be mined is already in the form of a relational
database does not hold in many cases. For a number of applications, elec-
tronic information is available only in the form of unstructured natural-
language documents which cannot be directly analyzed by statistical data
mining methods. Information Extraction, a task that has attracted in-
creasing attention since the start of the Message Understanding Conferences
(MUCs) (DARPA, 1998), addresses the problem of transforming a corpus
of textual documents into a more structured database.

Since structured databases transformed from unstructured texts by in-
formation extraction can be supplied to traditional data mining as input, IE
can play an essential role in data preparation for text mining as illustrated in
Figure 3.1. In the proposed IE-based text-mining framework, called Disco-

TEX (Discovery from Text EXtraction), the IE module identifies specific
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Figure 3.1: Overview of IE-based text mining framework

pieces of data in raw text, and the resulting database is provided to the
KDD module for further mining of knowledge. Although constructing an IE
system is a difficult task, there has been significant recent progress in using
machine-learning methods to help automate the construction of IE systems
as shown in Section 2.2. By manually annotating a small number of doc-
uments with the information to be extracted, a fairly accurate IE system
can be induced from this labeled corpus and then applied to a large body
of raw text to construct a large database for mining. In this way, a small
amount of labeled training data for an IE learning system can be automat-
ically transformed into a large database of structured information ready to
be mined with traditional KDD methods.

General IE learning systems such as Rapier (Califf & Mooney, 1999) or
BWI (Freitag & Kushmerick, 2000) can be used to construct an IE module
for DiscoTEX. After constructing an IE system that extracts the desired
set of slots for a given application, a database is constructed from a corpus
of texts by applying the extractor to each document to create a collection of
structured records. Standard KDD techniques such as C4.5rules (Quinlan,
1993) or Ripper (Cohen, 1995) can then be applied to the resulting database
to discover interesting relationships.
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Book Description from Amazon.com

Title: Harry Potter and the Order of the Phoenix (Book 5)
Author: J. K. Rowling, Mary GrandPre
Comments: This book was the best book I have ever read.

If you are in for excitement this book is the one you want to read.
Synopsis: As his fifth year at Hogwarts School of Witchcraft and Wizardry

approaches, 15-year-old Harry Potter is in full-blown adolescence.
Harry is feeling especially edgy at the lack of news from the magic
world, wondering when the freshly revived evil Lord Voldemort will
strike. Returning to Hogwarts will be a relief... or will it?

Subject: Fiction, Mystery, Magic, Children, School,
Juvenile Fiction, Fantasy, Wizards

Publication Year: 2003

Figure 3.2: An example of a book description

3.2 Data Representation

3.2.1 Representation

An interesting question is how to represent a document or a textual data in
text-mining systems. Most existing IE learning systems represent a docu-
ment as a sequence of characters or tokens (Califf & Mooney, 1999; Freitag
& Kushmerick, 2000; Muslea, 1999). Since the DiscoTEX framework relies
on an IE system as a preprocessing module, a natural way to handle data
is to treat the slot-values as sequences of characters, i.e. strings. However,
for many applications, much larger strings are often identified as shown in
Figure 3.2 1. In this example, slots such as comments or synopsis contain
long strings which are difficult to deal with when they are simply treated as
sequences of characters.

A classical way of handling long strings is to treat them as “bag-of-words”
(Salton, 1989). Standard approaches to text categorization and information
retrieval makes use of the bag-of-words (BOW) text representation tech-
nique that maps a document to a high dimensional feature vector, where
each entry of the vector represents the frequency of a term. This approach
only retains the frequency of the terms in the document while losing the
information on the order of the terms. The BOW model is usually ac-
companied by the removal of non-informative words (stop-words) and by

1http://www.amazon.com/

21



the optional replacing of words by their stems. On the other hand, many
wrapper-learning systems represent a document as a linear sequence of to-
kens (Cohen, Hurst, & Jensen, 2002; Muslea, Minton, & Knoblock, 1999) as
they are more concerned with the structural cues based on special characters
such as carriage returns.

One problem is that different applications need different representations.
To allow more flexibility in our text mining framework, we augment the
feature vector model of traditional machine learning approaches (Mitchell,
1997; Witten & Frank, 1999) with the bag-of-words model which is the most
common scheme for representing long documents, the token-based model
for preserving the order of terms, and the simple sequence-of-characters
model for shorter strings. Users are able to specify which model should
be applied to each slot in advance. For example, we can use string edit-
distance as the similarity metric for shorter strings and cosine similarity
for longer fields. One advantage of this approach is that a new type of
document representation and its similarity metric can be easily plugged into
the system.

Specifically, we represent an IE-processed document as a vector of slot-
values, one for each slot filler. A rule can be represented as an antecedent
that is a conjunction of slot-values for some subset of slots and a conclusion
that is a predicted slot-value for another slot. Sometimes multiple fillers
can be identified for a slot in many domains. In that case, a slot-value
corresponds to a set of textual items. For example, the author slot of the
example shown in Figure 3.2 could have two fillers or items, “J. K. Rowling”
and “Mary Grandpre” rather than treating them as one big bag of words or
a long string. To allow multiple items for each slot, we extend the simple
“vector-of-slot-values” model so that a slot-value can contain a set of distinct
items.

To summarize, we model documents as vectors of slot-values where each
slot-value corresponds to each slot of the information extraction system as
shown in Figure 3.3 with the Backus Naur Form (BNF) notation. Each slot
can be either an item or a set of items which can be either long documents,
short strings, or numbers. In our system, we modeled each filler as either 1)
long documents which are represented using the vector-space model (BOW
Model), 2) a list of tokens (Token Model), 3) short strings as a list of char-
acters (String Model), or 4) numbers including dates (Numerical Model).
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Representation

<document> :: <document> <slot-value> | empty .

<slot-value> :: <item> | <slot-value> <item> .

<item> :: <bow> | <string> | <token> | <number> .

Figure 3.3: Document representation

Model Representation Similarity Metric

BOW Bag-of-Words Cosine Similarity

String Sequences of Characters Character-level Edit-Distance

Token Sequences of Tokens Token-level Edit-Distance

Number Numbers Numeric Distance

Table 3.1: Document models and corresponding similarity metrics

3.2.2 Data Types

Table 3.1 summarizes the models and the corresponding similarity metrics
for textual items.

BOW Model

The BOW model follows the vector space model of handling long strings
as “bags-of-words” (Salton, 1989). In the BOW model, we eliminate 524
commonly-occurring stop-words (e.g. “the”, “is”, and “you”) but do not
perform stemming. Standard set-operations are extended to bags in the
obvious way (Peterson, 1976). For example, the intersection of two bags
is defined as a bag that contains as many as the minimum of elements in
both bags. The similarity between two slot-values with the BOW model is
measured by computing the cosine similarity of two BOWs.

String Model

The string model represents short strings as a list of characters. The simi-
larity metric for the string model is the character-level edit distance.

Token Model

The token model used in some wrapper learning system is also introduced.
In our model, a token list is defined as an ordered sequence of tokens x1, x2,
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... xn, where xi in T (set of tokens) is a term. Similarly, a string is defined
as an ordered sequence of characters y1, y2, ..., yn, where yj is a character.
Note that the token space for the token model shares the same set of terms
in the BOW model. The edit-distance measure described in Section 2.5.1
can be applied to both sequences of tokens and characters for computing
simliarities between two items.

Number Model

The number model represents numerical values. The numerical difference is
used to measure the similarity between two numbers.

3.3 Data Sets

In this section, we present the four data sets, job-postings, resumés, book
descriptions, and movie descriptions used in the experiments that will be
presented later.

3.3.1 Job-postings Data Set

600 computer-science job postings to the newsgroup austin.jobs originally
collected and manually annotated for training Rapier (Califf, 1998) were
used. Information on programming languages, platforms, applications, ar-
eas, company, recruiter, job title, required years of experience, desired years
of experience, salary, post date, city, state and country were identified to
construct a textual database of job requirements.

Since austin.jobs is not a moderated newsgroup, not all posted doc-
uments are relevant to our task. Some of them are resumés posted by job-
seekers, advertisements, or non-computer-science job postings. Therefore,
before constructing a database using an IE system, we filtered out irrelevant
documents from the newsgroup using a trained text categorizer. First, 1,000
postings were collected and classified by a human expert as relevant or irrel-
evant. Next, a bag-of-words Naive-Bayes text categorizer (Mitchell, 1997;
McCallum & Nigam, 1998) was trained on this data to identify relevant
documents (spam postings, resumés, or non-cs job postings). The result-
ing categorizer has an accuracy of over 99% and is used to filter irrelevant
documents from the original postings.

24



Slot Model

Job title String

Programming languages String (Multiple)

Platforms Strings (Multiple)

Applications Strings (Multiple)

Areas String (Multiple)

Company String

Recruiter String

Required years of experience Number

Desired years of experience Number

Salary Number

Post date String

City String

State String

Country String

Table 3.2: Slots and slot-value types for job-postings data set

3.3.2 Resumé Data Set

300 user-annotated computer-science resumé postings to the newsgroup misc.job.resumes,
alt.resumes, and us.job.resumes were collected. We used a simple web-
crawler for spidering groups.google.com web site in order to collect doc-
uments from the newsgroups. A bag-of-words Naive-Bayes text categorizer
(McCallum & Nigam, 1998) is used again to identity relevant documents.
Similar information to that of the job-postings data set are extracted as
shown in Table 3.3.

Slot Model

Name String

Programming languages String (Multiple)

Platforms Strings (Multiple)

Applications Strings (Multiple)

Areas String (Multiple)

Hardware String (Multiple)

Company String

Recruiter String

City String

State String

Table 3.3: Slots and slot-value types for resumé data set
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Slot Model

Title String

Author Token (Multiple)

Type Strings

Publisher String

Publication date String

Subjects String (Multiple)

Related books String (Multiple)

Related authors String (Multiple)

Price Number

Average rating Number

Reviews BOW (Multiple)

Synopsis BOW (Multiple)

Comments BOW (Multiple)

Table 3.4: Slots and slot-value types for book-descriptions data set

3.3.3 Book Data Set

12,000 book descriptions automatically extracted from the Amazon.com on-
line bookstore for a book recommending system (Mooney & Roy, 2000) are
used. The information extractor (wrapper) for Amazon was developed man-
ually and is highly accurate. 10 fields (title, author, type, publisher, pub-
lication date, subjects, related books, related authors, price, and average
rating, reviews, synopsis, comments) are identified as shown in Table 3.4.

3.3.4 Movie Data Set

The movie data set is drawn from the Internet Movie Database (IMDb.com).
7,000 movie descriptions with plot summaries are automatically extracted.
7 fields (title, director, writer, genres, keyword, plot, year) are identified as
shown in Table 3.4.

3.4 Initial DiscoTEX

System Architecture

In the experiments in this section, Rapier (Califf & Mooney, 1999) is used
to construct an IE module for DiscoTEX. Rapier was trained on only 60
labeled documents, at which point its accuracy at extracting information is
somewhat limited; extraction precision (percentage of extracted slot fillers
that are correct) is about 91.9% and extraction recall (percentage of all of the
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Slot Model

Title String

Director String (Multiple)

Writer Strings (Multiple)

Genres String (Multiple)

Keyword String (Multiple)

Plot BOW

Year Number

Table 3.5: Slots and slot-value types for movie-descriptions data set

correct fillers extracted) is about 52.4% . We purposely trained Rapier on a
relatively small corpus in order to demonstrate that labeling only a relatively
small number of documents can result in a learned extractor capable of
building a database from which accurate knowledge can be discovered.

In order to discover prediction rules, we treat each slot-value pair in the
extracted database as a distinct binary feature. For instance, given a set
of n job postings, we could go through every posting and list the job skills
that it has and does not have. We can represent a single postings’s list of
required job skills by a simple binary vector which has a 1 in the ith slot if
the postings has the ith skill specified, and a 0 otherwise. In this way, the n
job-posting messages are converted into n different binary vectors. After a
set of binary vectors are obtained through the conversion, rules are learned
for predicting each feature of the vectors from all other features.

Similar slot fillers are first collapsed into a pre-determined standard term.
For example, “Windows 98” is a popular filler for the platform slot, but it
often appears as “MS Win 98”, “Win 98”, “Win98”, and so on, and “DBA”
in the title slot is an abbreviation for “DataBase Administrator”. These
terms are collapsed to unique slot values before prediction rules are mined
from the data. A small domain-dependent synonym dictionary is used to
identify such similar terms. Trivial cases such as “Databases” → “Database”
and “Client/Server” → “Client-Server” are handled by manually contrived
synonym-checking rules.

We have applied C4.5rules (Quinlan, 1993) and Ripper (Cohen, 1995)
to induce rules from the resulting binary data. Ripper runs significantly
faster since it has an ability to handle set-valued features (Cohen, 1996b)
to avoid the step of explicitly translating slot fillers into a large number of
binary features. Specifically, rules are induced for predicting each piece of
information in each database field given all other information in a record. In
general, any standard classification rule-learning methods can be employed
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• Oracle ∈ application and QA Partner ∈ application → SQL ∈ language

• C + + ∈ language and C∈language and CORBA ∈ application →
Windows inplatform

• HTML ∈ language and WindowsNT ∈ platform and Active Server Pages ∈ appli-
cation → Database∈area

• UNIX /∈ platform and Windows /∈ platform and Games ∈ area → 3D∈area

• Java ∈ language and ActiveX ∈ area and Graphics ∈ area → Web ∈ area

Figure 3.4: Sample rules mined for computer-science job postings

for this task.

Sample Rules

Discovered knowledge describing the relationships between slot values is
written in a form of production rules. If there is a tendency for Web Design

to appear in the area slot when Director appears the in applications slot,
this is represented by the production rule, Director∈application → Web

Design∈area. Rules can also predict the absence of a filler in a slot. Sample
rules mined by C4.5rules from a database of 600 jobs extracted from the
USENET newsgroup austin.jobs are shown in Figure 3.4.

In the initial DiscoTEX, documents annotated by the user are provided
to Rapier as training data. IE rules induced from this training set are stored
in the IE rule base and subsequently used by the extraction module. The
learned IE system then takes unlabeled texts and transforms them into a
database of slot-values, which is provided to the KDD component (i.e. C4.5
or Ripper) as a training set for constructing a knowledge base of prediction
rules. The training data for KDD can include the user-labeled documents
used for training IE, as well as a larger IE-labeled set automatically extracted
from raw text.

3.5 Automatically Extracted Data vs. Manually

Extracted Data

The accuracy of current IE systems, whether built manually or induced
from data, is limited. Therefore, an automatically extracted database will
inevitably contain significant numbers of errors. An important question is
whether the knowledge discovered from this “noisy” database is significantly
less reliable than knowledge discovered from a cleaner traditional database.
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Slots AvgNumFiller AvgNumDoc NumFiller

language 0.13 2.30 80
platform 0.17 7.11 104

application 0.30 3.76 179
area 0.60 1.17 361

total 1.21 1.38 724

Table 3.6: Statistics on slot-fillers

In this section, we present experiments on the job postings domain (Sec-
tion 3.3.1) demonstrating that knowledge discovered from an automatically
extracted database is close in accuracy to that discovered from a manu-
ally constructed database with a simple implementation of the DiscoTEX

framework. Since all the extracted items in this domain are short strings,
they are represented as simple strings (sequences of characters).

3.5.1 Experimental Methodology

Discovered knowledge is only useful and informative if it is accurate. Discov-
ering fluke correlations in data is not productive, and therefore it is impor-
tant to measure the accuracy of discovered knowledge on independent test
data. The primary question we address in the experiments in this section
is whether knowledge discovered from automatically extracted data (which
may be quite noisy) is relatively reliable compared to knowledge discovered
from a manually constructed database.

Ten-fold cross validation was used to generate training and test sets for
extraction from the set of documents. Rules were mined for predicting the
fillers of the languages, platforms, applications, and areas slots, since
these are usually filled with multiple items that have potential predictive
relationships. The total number of slot-values used in the experiment is 476:
48 slot-values are for languages slot, 59 for platforms, 159 for applications,
and 210 for areas. Statistics on these slot-fillers are shown in Table 3.6,
including the average number of fillers per document, average number of
documents per filler, and the total number of distinct filler strings in the
corpus.

In order to test the accuracy of the discovered rules, they are used to
predict the information in a disjoint database of user-labeled examples. For
each test job, each possible slot-value is predicted to be present or absent
given information on all of its other slot-values. Average performance across
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Figure 3.5: The system architecture for evaluation

all features and all test examples is then computed. The rules produced
by Ripper and C4.5rules were found to be of similar accuracy, and the
experiments in this section employ Ripper since its computational time and
space complexity is significantly less. The overall architecture of the system
for evaluation is shown in Figure 3.5.

The classification accuracy for predicting absence or presence of slot
fillers is not a particularly informative performance metric since high ac-
curacy can be achieved by simply assuming every slot filler is absent. For
instance, with 60 user-labeled examples, DiscoTEX gives a classification
accuracy of 92.7% while the all-absent strategy has an accuracy of 92.5%.
This is because the set of potential slot fillers is very large and not fixed in
advance, and only a small fraction of possible fillers is present in any given
example. Therefore, we evaluate the performance of DiscoTEX using the
IE performance metrics of precision, recall, and F-measure with regard to
predicting slot fillers. These metrics are defined as follows:

precision =
number of present slot values correctly predicted

number of slot values predicted to be present
(3.1)
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Present Absent

Predicted To Be Present m × p (n − m) × p

Predicted To Be Absent m × (1 − p) (n − m) × (1 − p)

Table 3.7: The expected outcome for random guessing

recall =
number of present slot values correctly predicted

number of present slot values
(3.2)

F-measure is the harmonic mean of precision and recall and is computed as
follows (when the same weight is given to precision and recall):

F−measure =
2 × precision × recall

precision + recall
(3.3)

In order to obtain non-trivial bounds on precision and recall, a simple
random guessing method is used as a benchmark. This approach guesses
a slot-value based on its frequency of occurrence in the training data. For
instance, if “Java” occurs as a programming language in 29% of jobs in the
training data, then this approach guesses that it occurs 29% of the time for
the test data. Instead of simulating this method, we analytically calculated
its expected precision and recall for each slot-value. The expected outcome
for this strategy for a given slot-value is summarized in Table 3.7, where p
is the percentage of times the slot-value appears in the training examples, n
is the total number of the test examples and m is the number of times the
slot-value occurs in the test data.

Using the information in the table, the precision and the recall for
random-guessing is determined as follows:

precision =
m × p

(m × p) + ((n − m) × p)
= m/n (3.4)

recall =
m × p

(m × p) + (m × (1 − p))
= p (3.5)

Therefore, the benchmark precision for a slot-value is its probability of oc-
currence as estimated from the test data and the recall is its probability of
occurrence as estimated from the training data. The only difference between
the two is due to sampling error.

3.5.2 Results and Discussion

Because of the two different training phases used in DiscoTEX, there is a
question of whether or not the training set for IE should also be used to train
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Figure 3.6: Precision and recall with disjoint IE training set

the rule-miner. In realistic situations, there is no reason not to use the IE
training data for mining since the human effort has already been expended
to correctly extract the data in this text. However, to clearly illustrate the
difference between mining human-labeled and IE-labeled data, we first show
a comparison with a disjoint IE training set. In this experiment, the IE
training data are thrown away once they have been used to train Rapier,
since the extractor is unlikely to make the normal number of extraction
errors on this data. Ten-fold cross-validation is performed on the remaining
540 examples in order to evaluate data mining. In order to clearly illustrate
the impact of mining automatically extracted data, the same set of training
examples was provided to both KDD systems. The only difference between
them is the training data for the rule-miner of DiscoTEX is automatically
extracted by Rapier after being trained on a disjoint set of 60 user-labeled
examples. Both systems are tested on user-labeled data to identify the
quality of the rules produced. Figure 3.6 shows the learning curves for
precision and recall.

Even with an extractor trained on a small amount of user-labeled data,
the results indicate that DiscoTEX achieves a performance fairly compa-
rable to the rule-miner trained on a manually constructed database, while
random-guessing does quite poorly. Figure 3.6 indicates that DiscoTEX
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Figure 3.7: F-measure for DiscoTEX by slots

does relatively worse with the first 60 training examples with respect to
recall, but quickly improves with 60 additional examples. The results also
show that the precision of DiscoTEX seems to start leveling off a bit sooner,
this is presumably due to the fact that extraction errors put a somewhat
lower ceiling on the performance it can eventually achieve.

Figure 3.7 presents F-measures for DiscoTEX’s performance on indi-
vidual slots. Not surprisingly, the Programming Languages slot with the
least number of possible values shows the best performance, and the Area
slot with as many as 210 values does poorly. More interesting is the fact
that different slots show quite different learning rates.

Figure 3.8 shows the learning curves for precision and recall under the
“more natural” scenario in which the training set provided to Rapier, con-
sisting of 60 user-labeled examples, is also provided to the rule-miner as a
part of its training set. However, as DiscoTEX proceeds to discover knowl-
edge from data it automatically extracts from raw text, it fairly closely tracks
the performance of a system trained on additional data laboriously extracted
by a human expert. Since in this case DiscoTEX has the advantage of a
small set of relatively noise-free data to start with, its performance is even
somewhat closer to that achieved by mining a hand-built database.
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Figure 3.8: Precision and recall with reused IE training set

3.6 Summary

In this chapter we demonstrated that combining IE and KDD is a viable
approach to text mining by showing that mined rules from an automati-
cally extracted database are fairly accurate in comparison with those dis-
covered from a manually constructed database. We first presented a frame-
work called DiscoTEX employing an IE module for transforming natural-
language documents into structured forms and a KDD module for mining
prediction rules. While information retrieval approaches view texts as sets of
terms, each of which behaves based on some form of frequency distribution,
traditional machine learning approaches view texts as sets of features whose
combinations are usually learned by inductive methods. In order to exploit
richer information provided by an underyling IE system about the structure
of individual documents, we combined traditional ways of representing docu-
ments with the feature vector model. Finally, experimental results obtained
on a corpus of USENET job postings with an initial implementation of the
DiscoTEX framework are presented and discussed.

34



Chapter 4

TextRISE: Learning

Soft-Matching Rules From

Text

As discussed in Section 3.5, one step that is performed manually in the ini-
tial experiments is collapsing similar slot-fillers in the extracted data into a
canonical form. For example, “NT,” “Windows NT,” and “Microsoft Win-
dows NT” are typically extracted fillers for the platform slot in the USENET
job announcement domain. All of those are mapped to a unique term by a
synonym-checking dictionary before the rule mining step and treated as the
same attribute afterwards. Such collapsing could be automated by clustering
slot fillers using a textual similarity metric (Bilenko & Mooney, 2003).

An alternative approach we adopted in this thesis is to allow partial
matching of slot-fillers during the discovery process, instead of requiring
or creating canonical slot-fillers that must match exactly. In this chapter,
we will present an implementation of such a soft-matching rule mining al-
gorithm, called TextRISE (Nahm & Mooney, 2001). In TextRISE, a
flexible metric is used to find examples that are close but not exact matches
to the conditions of a rule. We consider a problem of predicting a textual
slot value such as BOWs, tokens, strings, or numbers for each slot, instead
of predicting the presence or absence of a specific slot value like a standard
rule learner.
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4.1 RISE

The need for soft matching of text strings in discovered rules is an aspect
of text mining that requires changes to existing rule induction methods.
In this section, we explore the discovery of rules that allow soft matching
of slot-fillers by adapting the RISE algorithm of unifying rule-based and
instance-based learning methods (Domingos, 1996).

Instance-based learning, or memory-based learning techniques work es-
sentially by keeping typical examples for each class (Aha, Kibler, & Albert,
1991). In general, three characteristics are defined for instance-based learn-
ing algorithms: 1) a similarity function telling the algorithm how close two
instances are, 2) a typical instance selection function indicating which of
the instances are typical or atypical, and 3) a classification function decid-
ing how a new case is related to the learned cases. Instance-based learning
algorithms are conceptually simple and easy to test although they suffer
from the “incomprehensibility” problem due to not producing concepts in
a human readable format. They also sometimes require moderately large
amount of storage.

The RISE (Rule Induction from a Set of Exemplars) algorithm was
proposed to overcome the well-known small disjuncts problem and splin-
tering problem of rule induction, and mitigating instance-based learning’s
vulnerability to noise and irrelevant features at the same time. Unlike other
combined model approaches, RISE is a unified single algorithm which is
able to behave both as an instance-based classifier and a rule induction sys-
tem. In extensive experiments, RISE was fairly consistently more accurate
than alternative methods, including standard rule-based and instance-based
algorithms (Domingos, 1996).

Instead of requiring rules to match exactly in order to make a prediction,
RISE makes predictions by selecting the closest matching rule according to
a standard distance metric typically used in nearest-neighbor methods (a
modified Euclidian distance). By generating generalized rules instead of
remembering specific instances and by using a similarity metric rather than
exact matching to make predictions, it elegantly combines the properties of
rule induction and instance-based learning.

Flexible-matching rules are acquired using a specific-to-general (bottom-
up) induction algorithm that starts with maximally specific rules for every
example and then repeatedly minimally generalizes each rule to cover the
nearest example it does not already cover, unless this results in a decrease
in the performance of the overall rule base. Performance of a rule base is
measured by conducting leave-one-out testing on the training data using the
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Input: ES is the training set.
Output: RS is the rule set.

Function RISE (ES)

RS := ES.
Compute Accuracy(RS,ES).
Repeat

For each rule R ∈ RS do
Find the nearest example E to R (not covered).
R′ := MostSpecificGeneralization(R, E).
RS′ := RS with R replaced by R′.
If Accuracy(RS ′, ES) ≥ Accuracy(RS,ES)

RS := RS′.
Delete R′ from RS if it is a duplicate.

Until no increase in Accuracy(RS,ES) is obtained.
Return RS.

Figure 4.1: The RISE rule-learning algorithm

closest-matching rule for making predictions. This process repeats until any
additional generalization does not increase performance. When classifying
test examples, the nearest rule to each example is found, and the rule’s
class is assigned to the example. The RISE algorithm for learning rules is
summarized in Figure 4.1.

Figure 4.2 and Figure 4.3 presents the algorithm for generalizing rules
and computing the accuracy of a rule set. In RISE, an example or an
instance is simply a rule in which the consequent is the example’s class. In
the remainder of this chapter, the word “rule” is used to refer both to rules
of the general type and the stored examples.

For a walk-through example, consider the following training set for voting
records.

1) y y n n y -> republican

2) n y y n n -> republican

3) n n n y n -> republican

4) y n n n n -> democrat

5) n n y y n -> democrat

These input/output pairs associate patterns of voting decision with party

37



Input: R = (A1, A2, ..., An) is a rule.

E = (E1, E2, ..., En) is an example.
Ai and Ei are either ? or symbolic values (ri).

Output: R′ is the generalized rule.

Function MostSpecificGeneralization (R, E)

For each attribute i do
If Ai = ? Then Ri

′ := ?.
Else if Ei = ri Then Ri

′ := Ri.
Else if Ei 6= ri Then Ri

′ := ?.
R′ := (R1

′, R2
′, ..., Rn

′).
Return R′.

Figure 4.2: Generalization of a rule to cover an example

Input: ES is the example set.
RS is the rule set.

Output: Acc is the accuracy.

Function Accuracy (ES, RS)

Sum := 0
For each example E ∈ ES do

Find the nearest rule R to E (except R s.t. R = E).
C(R) := class label of R.
If C(R) = C(E)

Sum := Sum + 1.

Acc := Sum
size(ES) .

Return Acc.

Figure 4.3: The accuracy-computing algorithm
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allegiance. The output variable shows whether the politician that cast the
votes was Republican or Democrat. Within the input, a ‘y’ indicates a vote
in favor while a ‘n’ indicates a vote against.

We assume that the Manhattan distance is used to find the closest rule.
The initial rule set for the RISE algorithm is the same as the training set
since RISE starts with maximally specific rules. The initial accuracy of the
rule set is 0 because no example is correctly classified by this rule set with
the leave-one out method.

After calculating the initial accuracy, we locate the most similar example
for the first rule in the current rule base (among those that have the same
class). Example 1) is not considered as a candidate because it is already
covered by this rule. The closest example in the training examples is 2,
that is generalized with rule 1 in the current rule set. The generalized rule
between these two is:

1’) ? y ? n ? -> republican

By replacing rule 1) with 1)′, the rule set to be compared with the original
one is updated as follows.

1’) ? y ? n ? -> republican

2) n y y n n -> republican

3) n n n y n -> republican

4) y n n n n -> democrat

5) n n y y n -> democrat

We calculate the global accuracy of the updated rule set in order to
determine if the old rule should be replaced with the generalized one. Every
example in the training set is matched successively to rules in those rule sets.
Since the generalized rule increases the accuracy by classifying the second
example (which used to be classified incorrectly as democrat by the old rule
set) correctly, we accept this updated rule base and repeat this process with
all the remaining rules. As a result, we get the second-stage rule set like the
following (after eliminating duplicated rules). Rule 2 is the generalization
of rule 2 (n y y n n → republican) and rule 3 (n n n y n → repubilcan) in
the above rule set while rule 3 is the generalization of rule 4 and rule 5.

1) ? y ? n ? -> republican

2) n ? ? ? n -> republican

3) ? n ? ? n -> democrat

The algorithm is terminated at this point because no rules can be gener-
alized with any examples in the training set to increase the overall accuracy.
Generalizations of rule 1 or rule 2 with the closest training example,
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? ? ? ? ? -> republican

cause false predictions (classifying demoract as republican), resulting in a
decrease in the global accuracy.

If we are now presented with the following test case,

y y y y y ->

the output value is republican because the closest rule to this test example
is rule 1 in the final rule base and its class is republican.

Domingos (1996) empirically shows that the RISE algorithm can create
synergistic effects between rule induction and instance-based learning. RISE

has two major advantages over rule induction. First, RISE is better at
dealing with exceptions while rule induction suffers from the small disjuncts
problem. Second, it mitigates the splintering problem of having a dwindling
number of available examples during the induction process, by evaluating
each rule set with respect to the accuracy on the entire training set. Training
is reasonably computationally efficient, requiring time O(e2, a2) where e is
the number of examples, and a the number of attributes.

4.2 The TextRISE Algorithm

RISE is not directly applicable to mining rules from extracted text because:
1) its similarity metric is not text-based and 2) it learns rules for classifi-
cation rather than text prediction. TextRISE presented in this section
addresses both of these issues.

4.2.1 Rule Generalization

First of all, a text-based similarity metric is required to apply RISE to
textual data. RISE assumes a Euclidean similarity metric to measure the
similarity between two examples. As shown in Section 3.2, a standard vector-
space metric from information retrieval (IR) (Baeza-Yates & Ribeiro-Neto,
1999) is used to provide an appropriate similarity metric for TextRISE. For
shorter strings, a string edit-distance is employed. Classification accuracy
as a measure of performance is replaced with the average similarity of the
text predicted to fill a slot and the actual filler.

Computing Generalization

In the BOW model (Section 3.2.2), extracted text is represented as a bag-
of-word (BOW), assuming a single slot filler for each slot. To compute the
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minimal generalization of two BOWs, bag intersection is used. For instance,
the generalization of the title slot in Figure 3.2 ({“harry”, “potter”, “or-
der”, “phoenix”, “book”}) and that of “Harry Potter and the Goblet of Fire
(Book 4)” (Title = {“harry”, “potter”, “goblet”, “fire”, “book”}) is a sim-
ple intersection of those two, which is Title = {“harry”, “potter”, “book”}.
The minimal generalization of two examples or rules is the minimal gener-
alization of the BOWs in each of their corresponding slots.

In the string model (Section 3.2.2), strings are represented as sequences
of characters. The minimal generalization of two strings is a string that
has the same distance to both strings. Figure 4.4 shows the pseudocode
for computing the generalization based on the affine gap cost function (See
Figure 2.2 for the pseudocode of computing affine gap cost function). The
generalization algorithm first computes the distance matrix and then traces
back to the point at which the two given strings have the same distances.
This algorithm can be applied to the token model (Section 3.2.2) as well.

For example, “Windows” and “Windows 98/2000” are generalized by
finding an intermediate string such as “Windows 98/2”. In this case, the dis-
tance between “Windows” and “Windows 98/2” must be the same with the
distance between “Windows 98/2” and “Windows 98/2000” (AffineGapCost
(“Windows”, “Windows 98/2”) = AffineGapCost (“Windows 98/2”, “Win-
dows 98/2000”) ). Given “Windows” and “Windows 98/2000”, the algo-
rithm first computes the distance between two strings (AffineGapCost
(“Windows”, “Windows 98/2000”) ) by repeatedly inserting extra charac-
ters such as “ ”, “9”, “8”, “/”, “2”, “0”, “0”, and “0” to the original string,
“Windows”. Applied operations are recorded in order. Next, an intermedi-
ate string is found by attempting to reconstruct the original string (“Win-
dows”) from the target string (“Windows 98/2000”), applying the recorded
operations in a reverse manner. As soon as the distances of the intermediate
string to the original and the target strings are equal, the algorithm stops.
The same generalization algorithm can be applied to the token model, which
represents an extracted slot as a sequence of tokens.

Computing Similarity

RISE finds the nearest example to generalize a given rule, satisfying two
requirements: that the example should not be already covered by that rule,
and the class assigned to the example is the one predicted by that rule.
Since TextRISE does not learn simple categorization rules, the second
requirement must be changed: the similarities between the slot-filler of an
example and the consequent of the rule should be maximized. To combine
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Input: s1 and s2 are the given strings.
Output: snew is the generalized string.
Parameters: match cost, mistmatch cost, gap start cost, gap extend cost.

Function GeneralizationWithAffineGapCost (s1, s2)

T [m][n] := AffineGapCost(s1, s2).

half distance := T [m][n]
2 .

stop := no.
For (i := m, j := n; i > 0 and j > 0 and stop = no; ) do

If (s1[i − 1] == s2[j − 1]) Then sub cost := match cost.
Else sub cost := mismatch cost.
If ((T [i − 1][j − 1] + sub cost < D[i][j]) and (T [i − 1][j − 1] + sub cost < I[i][j]))

If (s1[i − 1] 6= s2[j − 1])
snew[j − 1] := s1[i − 1].; i := i - 1.; j := j - 1.

Else
If (D[i][j] < I[i][j])

T [i][j] := D[i][j].
len := length(snew).
For k := len to j + 1 do

snew[k] := snew[k − 1].; snew[j] := s1[i − 1].; i := i - 1.
Else

T [i][j] := I[i][j]
len := length(snew)
For k := j − 1 to len − 1 do

snew[k] := snew[k + 1].; j := j - 1.
If (T [i][j] ≤ half distance) Then stop := yes
len := length(snew).
If (i == 0)

For(k := j;k > 0 and stop = no;k−−) do
len := len - 1.

If (T [0][k] ≤ half distance) Then stop := yes.
Else if j = 0

For (k := i;k > 0 and stop = no;k−−) do
snew[len] := s1[i − 1].; len := len + 1.

If (T [k][0] ≤ half distance Then stop := yes.
Return snew.

Figure 4.4: The algorithm for computing generalizations of two strings with
affine gap cost
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Inputs: R = (A1, A2, ..., An, CR) is a rule
E = (E1, E2, ..., En, CE) is an example.
Ai, Ei, CR, and CE are fillers, possibly empty.

Output: R′ is the generalized rule.
Function MostSpecificGeneralization (R, E)

For i := 1 to n do
If i is using the BOW model

Ai
′ := Ai ∩ Ei.

Else if i is using the token model or the string model
Ai

′ := GeneralizationWithAffineGapCost(Ai , Ei).
Else if i is using the numeric (number model)

Ai
′ := NumericalAverage(Ai , Ei).

R′ := (A1
′, A2

′, ..., An
′, Generalization(CR , CE)).

Return R′.

Figure 4.5: Generalization of a rule to cover an example

this requirement with the goal of the original task which is to find the nearest
example of a given rule, we calculate the similarity between each example
and the given rule to find an example with minimal distance to the rule.

The distance between a rule and an example is formally defined as fol-
lows. Let E = (E1, E2, ..., En, EC) be an example with Ei for the ith at-
tribute. Let R = (A1, A2, ..., An, RC) be a rule. EC and RC the consequents
of E and R respectively. Ai as well as Ei, EC , and RC is either a BOW
(BOW Model), a sequence of tokens (Token Model), a string (String Model),
or a numeric value (Number Model). The distance ∆(R,E) between R and
E is then defined as:

∆(R,E) =
n

∑

i=1

δ(i) + δ(RC , EC) (4.1)

where the component distance δ(i) for the ith attribute is:

δ(i) =











cosine distance(Ri, Ei) if i is using the BOW Model
affine gap cost(Ri, Ei) if i is using the Token Model or the String Model
δnum(i) if i is using the Number Model

(4.2)
where cosine distance(Ri, Ei) and affine gap cost(Ri, Ei) are computed
by Equation 2.5.2 and the affine gap cost function described in Figure 2.2
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Input: ES is the training set.
Output: RS is the rule set.

Function TextRISE (ES)

RS := ES.
Compute TextAccuracy(RS,ES).
Repeat

For each rule R ∈ RS do
Find the nearest example E to R (not covered).
R′ := MostSpecificGeneralization(R, E).
RS′ := RS with R replaced by R′.
If TextAccuracy(RS ′, ES) ≥ TextAccuracy(RS,ES)

RS := RS′.
If R′ is identical to another rule in RS

delete R′ from RS.
Until no increase in TextAccuracy(RS,ES) is obtained.
Return RS.

Figure 4.6: The TextRISE rule-learning algorithm

respectively, and δnum(i) is the difference in the ith value normalized by its
largest observed value:

δnum(i) =
| Ei − Ri |

Maxi − Mini

(4.3)

where Maxi and Mini being respectively the maximum and minium values
for the attribute found in the training set. We also define the distance from
a missing value to any other as 0. δ(RC , EC) is the distance between RC

and EC .

4.2.2 The Algorithm

A rule is said to cover an example if all of its antecedents are satisfied by the
example’s corresponding fillers. To extend the algorithm from classification
to text prediction, we define a new measure for the accuracy of a rule set
on an example set: TextAccuracy(RS,ES) is the average similarity of the
predicted fillers for the examples in ES to the corresponding fillers predicted
by a rule set RS. The algorithms for generalizing a rule to cover an example
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Input: ES is the example set.
RS is the rule set.

Output: Acc is the accuracy.

Function TextAccuracy (ES, RS)

Sum := 0.
For each example E ∈ ES do

Find the nearest rule R to E (except R s.t. R = E).
Rcons := consequent of R.

Sum := Sum + Similarity(Rcons, Econs).

Acc := Sum
size(ES) .

Return Acc.

Figure 4.7: The accuracy-computing algorithm

and for learning rules are described in Figure 4.5 and Figure 4.6 respectively.

The algorithm is a straightforward modification of RISE using the new
similarity and predictive-accuracy metrics and is used to induce soft-matching
rules for predicting the filler of each slot given the values of all other slots.
The algorithm for computing the accuracy of a rule set is given in Figure 4.7.
Unlike RISE, TextRISE computes the accuracy of a rule set by accumulat-
ing the similarity between the consequent of an example and the consequent
of the corresponding rule.

For an example, consider the set for book descriptions in Figure 4.8. Let
us assume that all slots are represented as strings except for the “synopsis”
slot which is represented as BOWs. We also assume that the “synopsis” slot
is to be predicted from the “author” and the “title” slot. As in RISE, the
initial rule set for the TextRISE algorithm is the same as the training set
since TextRISE starts with maximally specific rules. When we locate the
most similar example with the first rule in the current rule base, we find
example 3) is the closest one with example 1). The generalized rule between
these two is

1’)

Author = Isa Asimov

Title = Norby and the Lost Princess (19

→

Synopsis = {"book", "jeff", "robot", "norby", "rescue", "princess",

45



Author Title Synopsis
“In this third book of
the Norby series, Jeff

1 Isaac Asimov Norby and the Lost Princess and Norby rescue a young
princess trapped on
a planet.”
“In this book, Jeff Starr
and his partner travel to

2 I Asmiov Lucky Starr a planet to investigate
accidents and setbacks of
a research project.”
“In this book, Space Cadet

3 Janet Asimov Norby and the Lost Princess (1985) Jeff and his robot Norby
rescue a princess trapped
on another planet.”
“Shevek, a brilliant

4 Ursula Le Guin The Dispossessed physicist, risks his life
by traveling to the utopian
planet of Urras.”

Figure 4.8: A set of book descriptions

"trapped", "planet"}

By replacing rule 1) with 1)′, the rule set to be compared with the original
one is updated as follows.

1’)

Author = Isa Asimov

Title = Norby and the Lost Princess (19

→

Synopsis = {"book", "jeff", "robot", "norby", "rescue", "princess",

"trapped", "planet"}

2)

Author = I. Asimov

Title = Lucky Starr

→

Synopsis = {"book", "david", "starr", "parner", "travel", "planet",

"investigate", "accidents", "setbacks", "research", "project"}
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3)

Author = Janet Asimov

Title = Norby and the Lost Princess (1985)

→

Synopsis = {"book", "space", "cadet", "jeff", "robot", "norby",

"rescue", "princess", "trapped", "planet"}

4)

Author = Ursula Le Guin

Title = The Dispossessed

→

Synopsis = {"shevek", "brilliant", "physicist", "risks", "life",

"traveling", "utopian", "planet", "urras"}

We calculate the global accuracy of the updated rule set to see if the
old rule should be replaced with the generalized one. Every example in the
training set is matched successively to rules in those rule sets. Since the
generalized rule increases the accuracy by predicting the consequent slot
of the second example more closely, we accept this updated rule base and
repeat this process to all the remaining rules. After eliminating duplicates,
we obtain the following rule set as a result.

1’)

Author = Isa Asimov

Title = Norby and the Lost Princess (19

→

Synopsis = {"book", "jeff", "robot", "norby", "rescue", "princess",

"trapped", "planet"}

2)

Author = I. Asimov

Title = Lucky Starr

→

Synopsis = {"book", "david", "starr", "parner", "travel", "planet",

"investigate", "accidents", "setbacks", "research", "project"}

4)

Author = Ursula Le Guin

Title = The Dispossessed
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→

Synopsis = {"shevek", "brilliant", "physicist", "risks", "life",

"traveling", "utopian", "planet", "urras"}

The algorithm terminates at this point because no rules can be general-
ized with any examples in the training set to increase the overall accuracy.
If we are now presented with the following test case:

Author = Janet Asimov

Title = Norby and the Court Jester

the output value for the subject slot is a BOW, {”book”, ”jeff”, ”robot”,
”norby”, ”rescue”, ”princess”, ”trapped”, ”planet”} because the closest rule
to this test example is rule 1) in the final rule base and it predicts that BOW
in the synopsis slot. Sample rules induced from the book descriptions data
set (Section 3.3.3) are shown in Figure 4.9.

4.2.3 Interestingness Measures

The output of TextRISE is an unordered set of soft-matching rules. Rank-
ing rules based on an interestingness metric can help a human user focus
attention on the most promising relationships. Several metrics for evaluat-
ing the “interestingness” or “goodness” of mined rules, such as confidence
and support, have been proposed (Bayardo Jr. & Agrawal, 1999).

However, the traditional definitions for confidence and support assume
exact matches for conditions. For instance, the support of a rule “C ∈
languages → WindowsNT ∈ platform” is defined as the number of exam-
ples in the database in which C ∈ languages and WindowsNT ∈ platform

occur together. By this definition, an example with C ∈ languages and
WinNT ∈ platform is not counted when support and confidence are com-
puted even though WindowsNT and WinNT could be treated as a unique item
based on the high similarity of those terms. Consequently, we modify the
two common metrics, confidence and support, for judging the goodness of
the soft-matching rules.

A rule consists of two conditions called antecedent and consequent, and
is denoted as A → C where A is equal to A1 ∧A2 ∧ ...∧Ai. The similarity-
support of an antecedent A, denoted as simsup(A) is the number of examples
in the data set, that are soft-matched by A. In other words, simsup(A) is
the number of examples to which A is the closest rule in the rule base. The
similarity-support of rule A → C, denoted as simsup(A → C), is defined as
the sum of similarities between C and the consequents of the examples soft-
matched by A in the data set. In these definitions, we replace the traditional
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title nancy drew
synopses { nancy(1) }
subject { children(2), fiction(2), mystery(3), detective(3), juvenile(1),
espionage(1) }
→
author keene carolyn

synopses { role(1), protein(1), absorption(1), metabolism(4), vitamins(1),
minerals(1) }
reviews { health(1) }
subject { science(1), human(1), physiology(1) }
→
title { nutrition(1) }

author beatrice gormley
synopses { witness(1), ufo(1), landing(1) }
subject { science(1), fiction(2) }
→
reviews { aliens(1), ufo(1), book(2) }

title charlotte perk gilman(1)
synopses { work(1), utopias(1), herland(1), ourland(1) }
reviews { gilman(1), author(1) }
subject { literature(2), criticism(2), classics(1), women(1), literary(1) }
→
comments { utopia(1), feminist(1) }

Figure 4.9: Sample rules from book data set

49



hard-matching constraints for a rule with weaker constraints determined
relative to all the other rules in the rule base. Similarity-confidence of a rule
A → C, denoted by simconf(A → C), is computed as below.

simconf(A → C) = simsup(A→C)
simsup(A)

These measures are used to rank the rules generated by TextRISE

to show users more interesting rules first. Users can specify the minimum
value of similarity support (confidence) for rules to be displayed in order
to filter out rules with limited coverages (accuracies) by setting a cutoff
level, although a rule pruning mechanism based on minimum confidence or
support is not incorporated in the rule learning algorithm of TextRISE as
in association rule mining.

4.3 Evaluation

4.3.1 Experimental Methodology

The book data set (Section 3.3.3) is employed in our evaluation of Tex-

tRISE. The data set is composed of 6 subsets, science fiction, literary fic-
tion, mystery, romance, science, and children’s books. 1,500 titles were
randomly selected for each genre to make the total size of the book data set
to be 9,000. We used a 6 slots: titles, authors, subject terms, synopses,
published reviews, and customer comments. All slots are treated as BOWs.

Unlike a standard rule learner that predicts the presence or absence
of a specific slot value, TextRISE predicts a textual value for each slot.
Therefore, we evaluate the performance of TextRISE by measuring the
average similarity of the predicted slot values to the actual fillers for each
slot, e.g. consine similarity for BOW-type slots. We compare the system to
a standard nearest-neighbor method to show that TextRISE’s compressed
rule base is superior at predicting slot-values. In both methods, prediction
is made by selecting the closest rule/example using only the text in the
antecedent slots. We also tested nearest-neighbor without using information
extraction to show the benefit of IE-based text mining. To clearly show
IE’s role, the only change made to nearest-neighbor was to treat the set of
antecedent slots as a single, larger text.

In addition to the textual similarity, we developed analogs for precision
and recall. Precision and recall were defined as follows, where C is the
correct slot and P is the predicted one.

precision = similarity(generalization(C,P ), P ) (4.4)
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recall = similarity(generalization(C,P ), C) (4.5)

F-measure is defined as the harmonic mean for precision and recall as pre-
viously shown in Equation 3.3. For example, the precision and recall are
defined as follows when C and P are BOWs, precision and recall are defined
as follows.

precision = similarity(C ∩ P, P ) (4.6)

recall = similarity(C ∩ P,C) (4.7)

4.3.2 Results and Discussion

The experiments were performed using ten-fold cross validation. Learn-
ing curves for predicting the title slot are shown in Figure 4.10. The
graph shows 95% confidence intervals for each point. All the results on av-
erage similarities, precisions, and F-measures were statistically evaluated
by a one-tailed, paired t-test. For each training set size, two pairs of
systems(TextRISE versus nearest-neighbor and nearest-neighbor versus
nearest-neighbor without information extraction) were compared to deter-
mine if their differences were statistically significant (p < 0.05).

The results indicate that TextRISE does best, while nearest-neighbor
without IE does worst. This shows TextRISE successfully summarizes
the input data in the form of prediction rules. The rule-compression rate
of TextRISE is about 68% on average, which means the number of rules
TextRISE produces is 68% of the number of examples originally stored in
the initial rule base.

Learning curves for precision and F-measure are presented in Figure 4.11.
TextRISE provides higher precision, since the conclusions of many of its
rules are generalized slots, and overall F-measure is moderately increased.
The average similarity, precision, and F-measures are low (under 25%) be-
cause predicting textual slots given the information on other slots is a rela-
tive difficult task.

We also conducted the experiments on the movie data set (Section 3.3.4)
and obtained similar results as shown in Figure 4.12. The learning curves
are for predicting the title slot.

4.4 Summary

In this chapter, we showed that instance-based learning and rule-learning al-
gorithms can be integrated to discover soft-matching rules from textual data.
Such a hybrid is a good match for text mining since rule-induction provides

51



0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
ge

 S
im

ila
rit

y 
(%

)

Number of Training Examples

TextRISE
NN (Nearest Neighbor)

NN without IE

Figure 4.10: Average similarities for book data

simple, interpretable rules, while nearest-neighbor provides soft matching
based on a specified similarity metric. In TextRISE, the user gives a sim-
ilarity metric for each field. Our approach uses a TFIDF text-similarity
metric from information retrieval (Baeza-Yates & Ribeiro-Neto, 1999) for
long text and a standard edit-distance metric for short strings. General-
ization methods for each model, such as bag intersections and intermediate
strings, are presented.
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Figure 4.11: Precision and F-measures for book data
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Chapter 5

SoftApriori: Mining

Soft-Matching Rules from

Text

Association rules mining is one of the most popular methods in data min-
ing (Han & Kamber, 2000; Witten & Frank, 1999) (See Section 2.3.2). By
directly applying the standard association rule mining algorithm such as
Apriori (Agrawal & Srikant, 1994) to text, associations between the ex-
tracted items could be discovered. Documents can be treated as baskets
and extracted fillers as items. However, one of the problems of association
rule mining techniques is that each item is always considered to be dis-
tinct from the others, therefore any two items are either the same or totally
different.

As previously stated in Section 1.2, the content of the extracted item
may not always be an exact text match with known values. Instead, it may
be a close match. The problem of matching these extracted items to the
actual known values is called “soft matching”. In this chapter, we explore the
generalization of the standard algorithm for discovering association rules to
allow for soft matching based on a given similarity metric for each field. Soft
matching association rules whose antecedents and consequents are evaluated
based on sufficient similarity to database entries are able to directly mine
“dirty” data by overcoming the barrier of the traditional rule mining that
only takes fixed categorical values (or items).

For instance, consider the example in Table 5.1, that lists required skills
for a set of computer-science jobs. In this database, the co-occurrence of “DB
Management (or Data Management)” in areas, “Windows (or Windows98)”
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ID Areas Platforms Applications

1 Data Management Windows Microsoft Access

2 DB Management Windows98 MS Access

3 Web WindowsNT VBScript

4 World Wide Web WinNT ASP

Table 5.1: Sample noisy textual database

in platforms, and “Microsoft Access (or MS Access)” in applications is a
pattern that a human can easily recognize (from jobs 1 and 2). However,
traditional rule mining techniques such as the association rule mining algo-
rithm (Section 2.3.2) cannot discover such patterns because they treat “Data
Management” / “DB Management”, “Windows” / “Windows98”, and “Mi-
crosoft Access” / “MS Access” as different items. This example motivates
a rule-learning algorithm that allows partial matching.

5.1 Soft Association Rules

In this section, we introduce the problem of mining soft association rules
from databases and investigate how to utilize an existing association rule
mining algorithm to incorporate similarity in discovering associations. With
a softened definition for associations that does not require exact matches,
we present an algorithm called SoftApriori for discovering soft association
rules, as well as implementations using a string edit-distance and a cosine
similarity as the similarity metrics.

Before presenting our algorithm for discovering soft association rules, we
define soft relations as follows. We assume that a function, similarity(x, y),
is given for measuring the similarity between two items x and y. The range
of the similarity function is the set of real numbers between 0 to 1 inclusive,
and similarity(x, y) = 1 iff x = y.

Definition 1 (is-similar-to) An item x is similar to an item y (x ∼ y)
iff similarity(x, y) ≥ T , where T is a predefined threshold between 0 and
1. We also define a binary function similar(x, y) which is 1 if x ∼ y and
0 otherwise. This definition is a natural generalization of “x equals to y
(x = y)” with T set to 1. The similarity relation is reflexive (x ∼ x) and
symmetric (x ∼ y implies y ∼ x), but not transitive(x ∼ y and y ∼ z does
not necessarily imply x ∼ z).
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Record Items

R1 a, b, c, d

R2 a′, b′, c, d′

R3 a, c, c′, d′

R4 a′′, d, e

Table 5.2: An example of a database with soft-matching items

Definition 2 (is-a-soft-element-of) An item x is a soft-element of an
itemset I (x ∈soft I) iff there exists an x′ ∈ I such that x′ ∼ x.

Definition 3 (is-a-soft-subset-of, set-similar) An itemset I is a soft-
subset of an itemset J (I ⊆soft J) iff for every item in I there is a distinct
similar item in J , i.e. for every item xi ∈ I, I = {x1, ..., xm}, there is an
item yj ∈ J such that xi ∼ yi and yi 6= yj for all j 6= i, 1 ≤ j ≤ m. Two
sets I and J are similar, denoted by I ∼ J , iff I ⊆soft J and J ⊆soft I. I
is a proper soft-subset of J iff I ⊆soft J holds but I ∼ J is not true.

Definition 4 (soft-disjoint) Two itemsets I and J are soft-disjoint when
no item in I is a soft-element of J . The “soft-disjoint” relation is symmetric,
i.e. if I and J are soft-disjoint then so are J and I.

For instance, consider the example in Table 5.2. Let us assume that
those items with ′ are similar to items with the same literal without ′, but
not similar to those with other literals. With this assumption, a is similar
to a′ (a ∼ a′) and a′′ (a ∼ a′′), but not similar to b (a 6∼ b). R1 ({a, b, c, d})
is a soft-subset of R2 ({a′, b′, c, d′}) since every item in R1 is similar to some
item in R2. R2 is also a soft-subset of R1 and that makes R1 and R2 similar
to each other. However, R3 ({a, c, c′, d′}) is not a soft-subset of R2 since c
and c′ in R3 have only one shared similar item c in R2, but a one-to-one
mapping is required for soft-matching items.

The following is a formal statement of the problem of mining soft asso-
ciation rules: Let I = {i1, i2, ..., im} be a set of literals, called items. Let D
be a set of records, where each record R is a set of items such that R ⊆ I.
A soft association rule is an implication of the form X ⇒ Y , where X ⊂ I,
Y ⊂ I, and X and Y are soft-disjoint. The problem of mining soft as-
sociation rules is to find all soft association rules, X ⇒ Y , such that the
soft-support and the soft-confidence of X ⇒ Y are greater than the user-
defined minimum values (called minsup and minconf respectively). Formal
definitions for soft-support and soft-confidence, which are straightforward
generalizations of the traditional ones, are given below.
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Definition 5 (soft-support) The soft-support of an itemset X in a set
of records (database) D, denoted as softsup(X), is the number of records,
R ∈ D, such that X ⊆soft R. The soft-support of a rule X ⇒ Y in a
database D, denoted as softsup(X ⇒ Y ), is the number of records R ∈ D
such that X ∪ Y ⊆soft R.

Definition 6 (soft-confidence) The soft-confidence of a rule X ⇒ Y ,
denoted as softconf(X ⇒ Y ) is given by:

softconf(X ⇒ Y ) =
softsup(X ⇒ Y )

softsup(X)

For example, the soft-support of the itemset {a, c} for the database
shown in Table 5.2 is 3 since it is a soft-subset of 3 records, R1, R2, and R3.
The soft-confidence of the association rule, {a, c} ⇒ {b′} is computed by
dividing the soft-support of {a, c, b′} (= {a, c} ∪ {b′}) by the soft-support
of {a, c}. Since the soft-support of {a, c, b′} is 2 (R1 and R2), the soft-
confidence of this rule is 2/3, or 66.67%.

5.2 The SoftApriori Algorithm

The problem of discovering soft association rules can be decomposed into
three parts as in traditional association rule mining (Agrawal & Srikant,
1994; Srikant & Agrawal, 1995): discovering frequent itemsets, rule gener-
ation, and (optional) rule filtering. Here we discuss the first part, finding
all frequent itemsets with higher soft-support than the user-specified min-
imum. Given the frequent itemsets, the Apriori algorithm (Agrawal &
Srikant, 1994) can be used to generate rules by simply replacing the confi-
dence measure with soft-confidence.

5.2.1 The Algorithm

In the current algorithm, we add an extra constraint to the definition of
similar items that avoids a practical problem. In most applications of mining
association rules from textual databases, we do not expect similar items to
appear together in the same database record. In other words, even though
a single record contains string-valued items that are similar by Definition 1,
such items generally refer to different entities. For instance, “ASP” and
“JSP” are best considered distinct items despite their similar appearance
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Record Items

R1 a, b, c, d

R2 e, f , g

R3 a, c, h, i

R4 j, d, f , k

Table 5.3: Sample database

when they both occur in the job skills of a single resume. Based on this
intuition, the definition of similar items in the context of a given database
is restated as follows.

Definition 7 (is-similar-to (in-the-context-of)) An item x is similar
to an item y in the context of database D (x ∼D y) iff similarity(x, y) ≥
T (where the threshold T is a predefined constant between 0 and 1) and x
and y do not appear together in any record R in D ({x, y} 6⊆ R (R ∈ D)).

For brevity, in the rest of the paper, we use the shorter notation ∼ without
specifying the database D when the relevant database is clear from context.

To discover frequent itemsets for soft association rules, we generalize the
existing itemset mining algorithm presented by Agrawal and Srikant (1994)
in a straightforward way. Since the notion of equality in the traditional
definition of an association rule is replaced by similarity, we need to com-
pute the soft-support of each item and itemset by Definition 5. Similarity
between items is computed once and cached for future references. In this ap-
proach, frequent itemsets under the definition of soft-support (Definition 5)
are treated as normal items and the standard Apriori algorithm can be
used with minor modifications. Figure 5.1 gives pseudocode for the Soft-

Apriori algorithm. Notations such as Lk (set of frequent k-itemsets) and
Ck (set of candidate k-itemsets) are from Agrawal and Srikant (1994).

The first step of the algorithm determines the frequent 1-itemsets. We
assume the minimum soft-support value, minsup, is provided by the user.
The set of frequent 1-itemsets L1 in SoftApriori is defined as follows:

L1 = {{x} | x ∈ I ∧ softsupI({x}) ≥ minsup}

In other words, L1 is the set of all 1-itemsets whose soft-support is greater
than the user-given minimum support. By Definition 5, the soft-support of
each item is calculated by summing the number of occurrences of all similar
items. Formally, the soft-support of a 1-itemset {x} where x is an element
of the set of all items I (x ∈ I) is computed as follows:
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Input: D is the set of records.
Output: Lk is the frequent k-itemsets.

Function SoftApriori (D)

L1 := FindFrequentItemsets(D).
k := 2.
while (Lk−1 6= ∅) do
begin

Ck := GenerateCandidates(Lk−1).
forall records r ∈ D do

forall c ∈ Ck do
if c ⊆soft r

c.count := c.count + 1.
Lk := All candidates in Ck with minimum softsups.
k := k + 1.

end
Return

⋃

k Lk.

Figure 5.1: The SoftApriori algorithm

softsupI({x}) =
∑

y∈I similar(x, y) × support(y)

While counting the occurrences of all items, we measure the similarity of
every pair of items and construct an m × m matrix similar(i, j), where m
is the total number of items in the database. Usually the similarity matrix
is extremely sparse since most items are not similar. A hash table is used
to store the sparse similarity matrix. Table 5.4 shows a list of the pairs of
similar items given in the database in Table 5.3.

To determine frequent 1-itemsets, the soft-supports of all items are com-
puted. Intuitively, we construct a cluster of items containing the items
similar to each given “central” item, and sum the support of all items in
the cluster. The similarity hash table is used to efficiently retrieve similar
items. Table 5.5 shows the items from the sample database in Table 5.3
sorted by decreasing soft-support. Items whose support is less than the
minimum support are discarded since they are not frequent.

After constructing sets of frequent similar items, they are treated the
same as items in the original Apriori algorithm. Note that the closure
property on which the original Apriori algorithm is based still holds for
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Similar Items (x ∼ y)

a, e

a, j

b, f

c, f

d, i

g, i

h, j

Otherwise, x 6∼ y

Table 5.4: Similar items

Item (Similar Items) Support Frequent

a (e, j) 4
√

f (b, c) 4
√

i (d, g) 4
√

b (f) 3
√

c (f) 3
√

d (i) 3
√

e (a) 3
√

j (a, h) 3
√

g (i) 2

h (j) 2

k 1

Table 5.5: Sample frequent 1-itemset table (minsup = 3)

soft itemsets. In other words, if an itemset has a soft-support higher than
minsup, then every subset of that itemset also has soft-support higher than
minsup. Given Lk−1, the set of all frequent (k − 1)-itemsets, the candidate
itemsets Ck are generated by self-joining Lk−1 with Lk−1.

In a manner similar to the initial construction of frequent items, item-
sets are grown by computing the soft-support of candidates and discarding
those with low soft-support. The soft-subset function is used to check which
itemsets in Ck are softly in record r. For each itemset that is a soft-subset
of r, or for each set of items that have similar items in r, the soft-support of
k-itemset is again computed by the equation in Definition 5, counting the
number of soft-matching items, instead of simply counting the number of
occurrences of each item.

For example, consider the set for the required skills for job announce-
ments shown in Figure 5.1. The data set can be translated into a database,
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or baskets of items like following:

1) area_Data_Management, platform_Windows, application_Microsoft_Access

2) area_DB_Management, platform_Windows98, application_MS_Access

3) area_Web, platform_WindowsNT, application_VBScript

4) platform_WinNT, application_ASP

Let us assume that the minimum soft-support value is set to 2. In the
traditional association rule mining algorithm, no frequent 1-itemset can be
found from this data set because there is no pair of identical items. How-
ever, by considering similar items such as “area Data Management” and
“area DB Management” and “platform Windows98” and “platform WindowsNT”,
SoftApriori is able to capture frequent 1-itemsets as:

Frequent 1-itemset Soft-Support

{platform_Windows (platform_Windows98, platform_WindowsNT)} 3

{platform_WindowsNT (platform_Windows, platform_WinNT)} 3

{area_Data_Management (area_DB_Management)} 2

{application_Microsoft_Access (application_MS_Access)} 2

therefore allowing the algorithm to grow itemsets further. In the next step,
frequent 2-itemsets are identified:

Frequent 2-itemset Soft-Support

{platform_Windows (platform_Windows98, platform_WindowsNT), 2

application_Microsoft_Access (application_MS_Access)}

{platform_WindowsNT (platform_Windows, platform_WinNT), 2

area_Data_Management (area_DB_Management)}

{application_Microsoft_Access (application_MS_Access), 2

area_Data_Management (area_DB_Management)}

Frequent 3-itemsets are again found as follows, and the algorithm stops here
since no frequent 4-itemsets can be found.

Frequent 3-itemset Soft-Support

{platform_Windows (platform_Windows98, platform_WindowsNT),

application_Microsoft_Access (application_MS_Access), 2

area_Data_Management (area_DB_Management)}

From the above frequent itemsets, rules are generated in a straightfor-
ward way: For each frequent itemset L, all nonempty subsets are gen-
erated first. For every nonempty subset S, the rule, “S ⇒ (L − S)” is
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Job-postings

1. database (databases, database sys.) ∈ area ⇒ oracle (oracle7) ∈ ap-
plication [3.2%, 43.2%]

2. mfc ∈ area ⇒ windows (windows nt, windows 95, windows 3.1, win-
dows 3.x, windowsnt, windows95, windows’95) ∈ platform [2.7%,
39.0%]

3. bsee (bs/ee) ∈ required-degree ⇒ bscs (bs/cs) ∈ required-degree [2.5%,
75.0%]

Resumés

1. unix ∈ programming-language ⇒ visual basic (visual basic 5.0, visual
basic 6.0, visual basic 4.0, ms visual basic, visual basic 4, visual basic
5/6) ∈ programming-language [13.0%, 31.2%]

2. netscape (netscape 4.7, netscape 4.x, netscape 6, netscape ldap) ∈
application ⇒ tcp/ip (tcp ip, tcpip) ∈ application [3.3%, 34.5%]

3. c++ (vc++) ∈ programming-language and asp (asps) ∈ language and
unix ∈ platform ⇒ java (java 2, java2) ∈ programming-language [2.3%,
63.6%]

Figure 5.2: Sample discovered soft-association rules

returned if soft− support(L)/soft− support(S) is greater than or equal
to the mininum confidence. For instance, “platform Windows ⇒ applica-
tion Microsoft Access” is returned if:

soft−support({platform Windows, application Microsoft Access})

soft−support({platform Windows})
=

2

3
≥ minconf

Sample rules discovered from the job-postings data set (Section 3.3.1)
and the resumé data set (Section 3.3.2) are shown in Figure 5.2. Items
similar to a given item are shown in parentheses and values for soft-support
and soft-confidence are shown in brackets.

5.2.2 Time Complexity

In the original Apriori algorithm, the identification of the frequent itemsets
is known to be computationally expensive, having exponential worst-case be-
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havior in |I| (the number of literals) (Agrawal & Srikant, 1994). However,
the number of itemsets considered is greatly reduced in practice. Once all
sets of frequent itemsets are obtained, it is straightforward to find associ-
ation rules without scanning the data again. SoftApriori also has the
same property in generating candidates and finding rules but requires a
pre-processing step of computing similarities between items.

The extra complexity of constructing a similarity matrix in the initial
stage is O(m2) where m is the total number of items since we need to
compute the similarity of every pair of items. However, this complexity can
be reduced in practice because items in different fields do not need to be
compared. By treating every pair of items in different fields as non-similar,
we are able to lower the number of similarity computations to

∑N
k=1 mk

2

whereas N is the number of fields and mk is the number of items in field k.
Depending on the particular similarity metric, additional optimizations

are possible. For example, items in numeric fields can be sorted and then
similar items can be quickly determined by checking neighboring items in
order of proximity until the similarity threshold is exceeded. We present ad-
ditional optimizations for string edit-distance and cosine similarity in Chap-
ter 6 to reduce the O(m2) time complexity in finding all similar pairs.

5.3 Evaluation

5.3.1 Experimental Methodology

To determine the accuracy of a set of association rules, we measured preci-
sion and recall with respect to predicting the presence of items in a record
from other items in that record. We measured the ability of both hard and
soft association rules mined from the same training data with the same min-
imum confidence and support parameters to make accurate predictions on
the same disjoint set of test data.

Precision is the percentage of predicted items that are actually present
and recall is the percentage of actual items that are correctly predicted. We
also report F-measure which is the harmonic mean of recall and precision
(Equation 3.3). If both soft-precision and recall are 100%, then the results
are completely correct. Lower precision indicates that the system is pro-
ducing spurious rules. Lower recall indicates that the system is failing to
predict correct slots.

A prediction is judged to be correct iff there is an item in the record
that is at least similar to the predicted item (i.e. similarity(x, y) ≥ T ).
Antecedents of hard rules are matched using the appropriate hard match-
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Domain Rule Precision Recall F-measure

Job Soft 89.44 8.68 15.82
Hard 86.92 8.55 15.57

Resume Soft 89.45 3.13 6.06
Hard 69.75 1.92 3.73

Books Soft 88.47 10.55 19.06
Hard 66.67 0.32 0.63

Table 5.6: Test accuracies of soft vs. hard association rules (%)

ing criteria and soft rules are matched using the appropriate soft-matching
criteria; however, predictions are always judged “softly” in order not to give
soft rules an unfair advantage. The pseudocode for the evaluation method
is presented in Figure 5.3.

5.3.2 Results and Discussion

The experimental results obtained for the four textual databases are sum-
marized in Table 5.6. This table gives average prediction accuracies for hard
and soft association rules using a minimum support and confidence of 10%
and 70% respectively for USENET postings and 2% and 70% for book de-
scriptions, and using a similarity threshold of 0.7 for every field. Minimum
support for book data (Section 3.3.3) is lower since otherwise no rules at all
are found from this data. The results show that the accuracy of soft rules is
consistently, significantly higher than that of hard rules. Training accuracy,
measured by training and testing on the same entire dataset, shows similar
patterns.

We also performed the same experiments while varying these parameters
on the resumé data set (Section 3.3.2) as shown in Figure 5.7. Differences
for hard and soft rules were evaluated by a two-tailed, paired t-test to de-
termine if they were statistically significant (p < 0.05). Overall, the results
clearly show that soft rules are generally better than hard rules at discover-
ing reliable regularities in “dirty” data.

5.4 Summary

Tradtional association rule mining methods require terms in discovered rules
to exactly match database entries. Normal variation in data items can there-
fore prevent the discovery of important and interesting relationships. In this
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Input: Dtest (test database), Rules (association rule set)
Output: (precision, recall)

Function ComputeAccuracy (Dtest, Rules)

fired := 0.
matched := 0.
item := 0.
predicted := 0.
for each record R ∈ Dtest do

/* precision */
for each r (A ⇒ c) ∈ Rules do

if ((r is hard and A ⊆ R) or
(r is soft and A ⊆soft R))

then if r is hard then A′ := A.
else A′ := X s.t. X ⊆ R and X ∼ A.

fired := fired + 1.
if c ∈soft R − A′

then matched := matched + 1.
/* recall */
for each c′ ∈ R do

item := item + 1.
if there exists a r (A ⇒ c) ∈ Rules s.t.

c ∼ c′ and ((r is hard and A ⊆ R − {c′}) or
(r is soft and A ⊆soft R − {c′}))

then predicted := predicted + 1.
return (matched/fired, predicted/item).

Figure 5.3: Evaluation algorithm for soft-matching association rules
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Minconf Minsup (%)

(%) Rule 5 10 15

50 Soft 90.86/3.17 86.95/3.14 84.55/3.13
Hard 62.19/3.01 60.41/2.76 60.32/2.31

60 Soft 90.79/3.18 87.71/3.13 85.64/3.13
Hard 66.64/2.89 64.47/2.50 62.16/2.09

70 Soft 91.34/3.18 89.45/3.13 85.76/3.08
Hard 71.51/2.61 69.75/1.92 74.50/1.43

80 Soft 92.14/3.15 88.37/3.11 84.13/2.82
Hard 78.84/2.25 79.05/1.46 80.60/0.69

Table 5.7: Test accuracies of soft vs. hard rules

chapter, we presented the SoftApriori algorithm to discover “soft match-
ing” rules that are evaluated using a specified similarity metric. SoftApri-

ori introduces soft-matching to capture additional relationships. Allowing
the discovery of soft-matching rules can eliminate the need for certain types
of tedious data cleaning prior to knowledge discovery. Compared to Tex-

tRISE, an inductive method for learning soft-matching prediction rules pre-
sented in Chapter 4, SoftApriori finds all association rules with a given
soft-support and soft-confidence, and therefore typically discovers a larger
set of regularities.
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Chapter 6

Retrieving Similar Textual

Items Efficiently

We introduced a problem of mining similarity-based rules for text mining
in the previous chapters. So far we have been focusing on mining accurate
rules from texts. However, it is also an important problem to discover rules
efficiently to build a scalable text-mining system. One of the major bot-
tlenecks in our systems as well as many other text-mining systems is the
computational complexity for retrieving similar textual items. In this chap-
ter, we show that similarity-based rule mining systems that deal with large
amounts of text data can be scaled up by showing how to efficiently retrieve
similar items in textual databases.

6.1 Introduction

A practical text mining system needs to be scalable and efficient in terms of
time. Table 6.1 shows that there are four problems to be solved with regard
to the performance issue. For mining soft association rules in SoftApriori,
we cluster similar items within some boundaries. In other words, all items
that exceed a pre-determined similarity threshold value must be retrieved.
Similarities are measured by edit-distance between two items for shorter
strings, while the vector space model and cosine similary are adopted for
longer documents. On the other hand, for learning soft prediction rules
in TextRISE k-nearest neighbors are used in generalizing similar items,
where k is usually 1. We also separate this problem into two categories, one
with edit-distance and the other with cosine similarity.

Without optimization, the time complexity of the naive algorithms for
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SoftApriori (Chapter 5) TextRISE (Chapter 4)

Short String Edit-Distance Edit-Distance
Threshold k-Nearest Neighbor

Long Documents Cosine Similarity Cosine Similarity
Threshold k-Nearest Neighbor

Table 6.1: Problem definition

solving these problems is quadratic (O(n2)) in the number of textual items
n since all the items need to be compared with every other item. In the
realistic situation where n is very large, an O(n2) algorithm does not scale
well. In this chapter, we show that one can provide an optimized algorithm
to yield near linear time complexity on realistic, large data sets.

6.2 Fast Retrieval of Similar Strings

6.2.1 Retrieving Similar Strings Using a Threshold

In this subsection, we first present the implementation of a string retrieval
system using an edit-distance function and then describe two optimization
methods for fast retrieval of similar strings with a given similarity threshold
T (0 ≤ T ≤ 1). The problem is to fill out the n × n similarity matrix for
any n strings with either the similarity value of each pair of strings (when
the value exceeds the given threshold) or 0 (otherwise).

Optimization I: Using String-Length Information

To measure similarities of string-valued items, a form of edit-distance was
adopted as discussed in Section 2.5. In our implementation, we used affine
gap cost (Needleman & Wunsch, 1970; Monge & Elkan, 1996). The compu-
tation of edit-distance is performed by dynamic programming in time O(nm)
when n and m are the lengths of the two input strings. However, the edit-
distance computation in our implementation does not always require the full
O(nm) time because it stops as soon as the intermediate result exceeds the
minimum value computed from the given similarity threshold, T .

The normalized edit-distance of affine gap cost for two strings is defined
as shown in Equation 2.2. Without loss of generality, we assume that |x| ≤
|y| where |x| (|x| ≥ 1) and |y| (|y| ≥ 1) are the lengths x and y in the rest
of this chapter. The maximum distance between x and y can be calculated
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based on their lengths as follows:

maximum distance(x, y) =











|y| + gap cost if |x| = 1;
mismatch cost × |y| if 1 < |x| < gap cost and |x| = |y|;
|x| + |y| + gap cost otherwise.

(6.1)
where gap cost is gap start cost + gap extend cost.

Intuitively, the maximum distance is the distance of two strings which do
not share any characters. Let us assume that the mismatch cost, gap start
cost and gap extend cost, which are parameters of affine gap cost, are set
to 3, 3 and 1 respectively. Here are examples for each of the three cases. 1)
“a” and “bcde”: 3(mismatch) + 3(gap start) + 1(gap continued) + 1(gap
continued) = 8, 2) “ab” and “cd”: 3(mismatch) + 3(mismatch) = 6 , 3)
“abcd” and “efghij”: 3(gap start) + 1(gap continued) + 1(gap continued)
+ 1(gap continued) + 3(gap start) + 1(gap continued) = 14.

Given a particular edit-distance function, we can reduce the time com-
plexity of determining similar items under a given threshold T . Since edit-
distance counts the number of operations needed to change one string to
another, two strings cannot be similar if their lengths are too different. For
example, we do not have to compute the actual affine gap cost for “isaac-
asimov” and “clark” when T = 0.7 to confirm they are different because the
gap between any 12-character string and any 5-character string is too big to
result in a similarity greater than 0.7.

To generalize this observation, we present a proposition to show that
there exists an upper bound for the maximum similarity of two strings that
only depends on the lengths of the two strings. If that upper bound is less
than T then two strings cannot be similar.

Proposition 1 There exists an upper bound for the maximum similarity of
two strings x and y where |x| > 0, |y| > 0, and |x| ≤ |y|.

Proposition 1 can be proved by showing that we can derive a function of
|x| and |y| for a lower bound of minimum distance(x, y). Intuitively, two
strings x and y are most similar when they share as many characters as
possible, i.e. x is a substring of y in this case since x is always shorter than
or of equal size to y. Among all the cases of x being a substring of y, x
and y are most similar when x is the starting substring of y (or equivalently,
the ending substring of y), e.g. “abc” and “abcde”. By the definition of
the affine gap function, we add the gap start cost for the first gap then the
gap extend cost is accumulated as the gap is increased. For example, the

70



distance between “abc” and “abcd” is 3 while distance(“abc”, “abcde”) is
4 and distance(“abc”, “abcdef”) is 5, and so on when gap start cost and
gap extend cost are set to 3 and 1 respectively. Based on such observation,
we derive a function for computing the minimum distance of x and y as
follows when we assume that |x| 6= |y|:

minimum distance(x, y) = |y| − |x| + (gap start cost − gap extend cost)
(6.2)

It is clear that if the upper bound for the maximum similarity of x and
y is not greater than or equal to T , then x and y cannot be similar. In that
case, it is redundant to explicitly compute the similarity between x an y to
decide if they are similar or not.

By combining this equation for the minimum distance between x and y
with Proposition 1 and the definition of similarity in Equation 2.1, we can
obtain the following formula for determining if two strings cannot be similar
under affine gap cost.







1 − |y|+1
|y|+(gap start cost+gap extend cost) < T if |x| = 1 and |x| 6= |y|;

1 − |y|−|x|+(gap start cost−gap extend cost))
|x|+|y|+(gap start cost+gap extend cost) < T otherwise (|x| 6= |y|).

(6.3)
Using this test, we are able to eliminate edit-distance computations for

very different strings. The pseudocode shown in Figure 6.1 describes the
procedure of applying the filter.

Optimization II: Using a Trigram Index

We can reduce the number of total comparisons between items even further
by using an n-gram index (Navarro & Baeza-Yates, 1998). An n-gram is a
substring of length n of a given string. It is easy to show that a string x
cannot be similar to y, for any reasonably high threshold T , if they do not
share a common substring. In addition, a string x cannot be similar to y for a
given threshold if they do not share at least k (k ≥ 0) n-grams. For example,
two similar strings “science” and “sci-fi” (affine gap cost(“science”, “sci-
fi”) = 11) share 1 trigram, e.g. “sci”. For any given string x, one can retrieve
a list of strings worth comparing by determining the minimum number of
n-grams of x that must be shared with any similar string y.

In our implementation, we used a trigram index to efficiently retrieve a
list of candidate similar strings for each string. Trigram methods have been
shown to be useful for identifying phrases that have a high probability of
being synonyms in many tasks such as DNA sequence analysis (McCray &
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Input: s is the given string.
S is the set of strings, s1, s2, ..., sn.

Output: S′ is the set of strings similar to s. (S ′ ⊆ S)
Parameter: T is the similarity threshold.

Function RetrieveUsingStringLength (s, S)

S′ := ∅.
x := length(s).
For each string si ∈ S′ do

y := length(si).
If LengthF ilter(x, y, T ) = True

sim := similarity(x,y).
If sim ≥ T

S′ := S′ ∪ {si}.
Return S′.

SubFunction LengthFilter (x, y, T )
If x = y

Return False.
If x > y swap(x,y).
If x = 1.

maximum similarity
:= 1 - (|y| + 1) / (|y| + (gap start cost + gap extend cost)).

Else
maximum similarity
:= 1 -

(|y| − |x| + (gap start cost−gap extend cost))/(|x| + |y| + (gap start cost + gap extend cost)).
If maximum similarity ≥ T

Return True.
Else

Return False.

Figure 6.1: The optimization algorithm using string length
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|x| = 1 |x| = 2 |x| = 3 |x| = 4 |x| = 5 |x| = 6 |x| = 7 ...

|y| = 1 0 - - - - - - ...
|y| = 2 3 0 - - - - - ...
|y| = 3 4 3 3 - - - - ...
|y| = 4 5 4 3 3 - - - ...
|y| = 5 6 5 4 6 3 - - ...
|y| = 6 7 6 5 7 6 6 - ...
|y| = 7 8 7 6 8 7 7 6 ...

... ... ... ... ... ... - - ...

Table 6.2: Minimum distance between x and y with no shared trigrams

Aronson, 2002) or automatic spelling correction (Angell, Freund, & Willet,
1983). Each string is indexed under every three-character substring that
it contains. For example, “science” is indexed by 5 trigrams, “sci”, “cie’ ,
“ien”, “enc” and “nce”.

To compute the minimum number of trigrams to be shared by similar
items, we first present a proposition which states that there exists a mini-
mum number of trigrams required to be shared by any pair of similar strings.

Proposition 2 There exists an integer k ≥ 0 such that any similar pair of
strings x and y share at least k trigrams.

Proposition 2 can be restated: there exists an integer k ≥ 0 such that no
y which shares only k′ (k′ < k) trigrams with x can be similar to x. Note
that our task is to find a minimum number k for retrieving all y’s that have
a possibility of being simliar to the given x when y has at least k shared
trigrams with x.

Before showing how to prove the above proposition, let us compute the
minimum distance between x and y when they share no trigrams. In that
case, the distance of x and y is minimized when they share as many bigrams
as possible. For example, assume that x is “abcde” and y is “abfde” so that x
and y do not share any trigram. The distance between x and y is minimized
since there is only one mismatch (“c” and “f”) between the bigrams they
share (“ab” and “de”). By repeating this computation, we obtain a table
shown in Table 6.2 for each |x| and |y| when the mismatch cost, gap start
cost, and gap extend cost, which are parameters of affine gap cost, are set
to 3, 3 and 1 respectively. These are commonly used values for the penalties
(Nahm et al., 2002).

We can easily see from the Table 6.2 that 1) |x| and |y| should be the
same to make x and y most similar and that 2) the minimum distance
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between x and y (x and y share no trigrams) can be written as 3 × b|x|/3c.
To prove the Proposition 2, we need to show that the maximum similarity

of x and y is always less than T for some k ≥ 0 when k is the number of
trigrams shared by x and y. In other words, it has to be shown that the the
minimum distance between x and y is always greater than 1−T for some k.
So our goal is to find the lower bound of the minimum distance(x, y) when
it is known that x and y share k trigrams and check whether that lower
bound exceeds 1 − T or not.

The distance between x and y is minimized when the shared portion
of x and y is as great as possible. In other words, x and y should share
either 3k characters if 3k ≥ |x| or |x| characters otherwise. The distance is
minimized especially when the shared characters in two strings are aligned
consecutively, e.g. “abcdefg” and “abcdefhi” where two trigrams “abc” and
“def” are shared. We can assume that they follow our previous observation
shown in Table 6.2 since the rest of two strings do not share any trigrams.
One thing different from the normal cases is that the first characters of the
non-trigram-shared parts of two strings should be different as “g” and “h”
in the previous example since otherwise there will be the (k + 1)-th shared
trigram. So the minimum distance between x and y are written as follows
when x and y are greater than 3 for k > 0:

minimum distance(x, y) =

{

0 if 3k ≥ |x|;

3 + 3 × b |x|−3×k−1
3 c otherwise.

(6.4)

It is easy to see that if |x| is 1 or 2 then there is no way for x to share
any trigrams with other strings. For |x| = 3 and |y| = 3, the minimum
distance between x and y is 3 when they share no trigrams. By computing
the maximum similarity of x and y in that case, we obtain a formula such
as 1 − 1

3 = 2
3 > T . Only when the threshold T passses this test, we retrieve

all strings y which shares no trigrams with x (|x| = 3) to compare with x.
Otherwise, we only consider a string x when |x| is greater than 3.

However, the Equation 6.4 does not cover every possible case because of
the constraint on k that k should not be 0. We first need to find the range
of |x| to which the Equation 6.4 can be applied. In other words, for some
sufficiently small |x| and some low T , it is not necessarily true that x cannot
be similar to y even though they share no trigrams(k = 0), e.g. “abcde” and
“abfde”. Let’s assume that |x| is at least 3 since we can simply exclude the
cases for |x| = 1 or |x| = 2 as mentioned previously. The minimum distance
between x and y when they have no common trigrams is 3 × b|x|/3c as
described above. If the similarity of x and y in such case, which can be
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computed by the Equation 2.1 is always less than or equal to T , then the
Equation 6.4 cannot be applied to those x’s. For example, assume that T is
0.7. The filtering process defined by the computation that follows should be
applied to only to x which has |x| > 5. For instance, the similarity between
“abcdef” and “abgdeh” which share two bigrams is 0.625 which is less than
T = 0.7.

Back to the equation 6.4, the equation holds when two strings x and
y share 3k characters aligned consecutively at either the starting or the
ending position of the longer string(y). If |x| is sufficiently small, then the
minimum distance between x and y is 0 because x might be a substring
of y. Otherwise, we assume that x is a starting (or ending) substring of
y and the rest of x and y share as many as bigrams. We can define an
equation for checking if the maximum similarity of x and y are less than T
by Equation 2.1 and Equation 6.1.







1 < T if 3k ≥ |x|;
3+3×b

|x|−3×k−1

3
c

2×|x|+4 > 1 − T otherwise.
(6.5)

From the first condition which is always false since T is between 0 and
1, we obtain a minimum value for k which is b |x|

3 − 1c. The second part
of the above equation is rewritten as follows by separating three cases by
computing |x| mod 3.











k < (2 × T − 1) × |x| + (4 × T + 2) if |x| mod 3 = 0;
k < (2 × T − 1) × |x| + (4 × T + 4) if |x| mod 3 = 1;
k < (2 × T − 1) × |x| + (4 × T + 3) if |x| mod 3 = 2.

(6.6)

In conclusion, we pick all strings y such that y shares at least k trigrams
by the Equation 6.6 with any given x (|x| > 3) and compute the similarity
of them only in order to avoid unncessary comparisons. This method is
guaranteed not to miss any pair of similar items. The algorithm combined
with the approach presented in Section 6.2.1 is summarized in Figure 6.2.
The algorithm assumes that the index provides a function, contain(t) for
retrieving all strings in S containing a trigram t and maximum trigram,
the maximum number of trigrams found in S. We implemented this function
as a hash table by building a string index accessed through trigrams.

Experimental Results

In this subsection, we perform a benchmark test for the proposed opti-
mization schemes on two real data sets collected from the Internet. We
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Input: s is the given string.
S is the set of strings, s1, s2, ..., sn.

Output: S′ is the set of strings similar to s. (S ′ ⊆ S)
Parameter: T is the similarity threshold.

Function RetrieveUsingTrigramIndex (s, S)

S′ := ∅.
x := length(s).
Switch (x mod 3)

Case 0: minimum shared trigram := (2 × T − 1) × |x| + (4 × T + 2).
Case 1: minimum shared trigram := (2 × T − 1) × |x| + (4 × T + 4).
Case 2: minimum shared trigram := (2 × T − 1) × |x| + (4 × T + 3).

Candidate := ∅.
For each trigram t of s do

For each string c of contain(t) do
If c ∈ Candidate

c.counter := c.counter + 1.
Else

Candidate := Candidate ∪ {c}.
c.counter := 1.

For each string c ∈ Candidate do
If c.counter < minimum shared trigram

Candidate := Candidate - {c}.
For each string ci ∈ Candidate do

y := length(c).
If LengthFilter(x,y,T ) = True

sim := similarity(s,c).
If sim ≥ T

S′ := S′ ∪ {c}.
Return S′.

Figure 6.2: The optimization algorithm using trigram index
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present results showing the efficiency gained by using the optimization meth-
ods presented previously for quickly finding similar string-valued items.
3,000 science fiction (SF) book descriptions automatically extracted from
the Amazon.com online bookstore are used (See Section 3.3.3). Three fields
(title, author, subjects) are used in our experiments. The total number
of items for this dataset is 7,854 and the average length of the strings is
179. The task is to determine if two strings are similar to each other using
a similarity threshold value, T , for every pair of strings where T is set to
0.7. In the experiments presented in this chapter, white spaces contained in
strings are considered as a blank character and upper and lower cases are
not distinguished.

Figure 6.3 shows the CPU time for the similarity computation step. The
“No Optimization” method compares all pairs of items in each field, “String
Length” uses a heuristic to eliminate comparisons between strings with very
different lengths, and “String Length + Trigram Index” additionally employs
the trigram index to retrieve strings with shared trigrams. This experiment
was performed on a Linux/i686 PC. For 500 records the optimization reduces
running time by 56.36%. As the number of items increase the effectiveness of
the optimization decreases but it is still quite effective even for more records.
The results demonstrate that with good heuristics and an efficient indexing
method, our approach is scalable to larger datasets by reducing the total
number of explicit similarity comparisons between pairs of items.

6.2.2 Retrieving k-Nearest Strings

In this subsection, we present how to utilize a trigram index to efficiently
retrieve k-nearest-neighbors for short strings. The problem is to find the
most similar k strings out of n strings for a given short string. A simple
algorithm is presented for increasing the efficiency of information retrieval
searches under the edit-distance framework. This optimization algorithm
employs knowledge about the lengths of the strings and a branch-and-bound
search stategy in order to examine as few strings as possible.

Optimization

To optimize the search for the nearest-neighbor under string edit-distance,
we employed two simple optimization techniques. As in Section 6.2.1, we
first utilized the information on the string lengths and adopted the branch-
and-bound search by terminating the dynamic programming algorithm for
computing distances of pairs of strings as soon as the maximum expected
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Figure 6.3: Running time for similarity computations

similarity between those strings cannot exceed the current maximum value.
The pseudo-code for this search algorithm is given in Figure 6.4 where

maximum distance(x, y) returns the maximum distance between two strings
with lengths x and y respectively (See Equation 6.1). The subfunction called
“SimilarityBranchAndBound” computes the maximum expected distance
between two remaining strings after computing the maximum distance at
each step of the dynamic programming for affine gap cost function. It then
eliminates those strings with low expected similarity since they cannot ex-
ceed the current maximum similarity even if the rest of the string is as close
as possible to the given string. This algorithm can be easily generalized to
k-nearest-neighbor search by maintaining a list of k candidates.

Experimental Results

The same SF book dataset used in the previous experiment (Section 6.2.1)
with 3 fields (title, author, subject) are used to evaluate the performance of
the proposed optimization. Figure 6.5 shows the CPU time for the nearest-
neighbor search. The “No optimization” method stands for linear search
where every string is compared with the given string in turn by repeatedly
updating the current value of the maximum similarity and “String Length
+ Bounded Search” employs the proposed optimization scheme. We also
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Input: s is the given string.
S is the set of strings, s1, s2, ... sn.

Output: s′ is the nearest neighbor of s. (s′ ∈ S)
Parameter: T is the similarity threshold.

Function FindNearestNeighbor (s, S)

x := length(s).
currentNN := s1.
current max := 0.
For each string si ∈ S do

y := length(si).
diff := |x − y|.
If diff = 0

minimum expected distance := 0.
Else

minimum expected distance := |x − y| + (gap start cost − 1).

maximum expected similarity := 1 − minimum expected distance

maximum distance(x,y) .

If maximum expected similarity ≥ current max
sim := SimilarityBranchAndBound(s, si, current max).
If sim > current max

current max := sim.
currentNN := si.

s′ := currentNN .
Return s′.

SubFunction SimilarityBranchAndBound (s1, s2, current max)
s1 := a1a2...an where ai is the i-th character of s1.
s2 := b1b2...bm where bj is the j-th character of s2.
For each character ai in s1 do

For each character bj in s2 do
compute costMaxtrix[i][j] under affine gap function.

maximum column := max(costMatrix[i][j]) for all j := 1 .. m.
j′ := j such that costMatrix[i][j ′] = maximum column.

maximum expected similarity :=
maximum expected similarity(ai+1ai+2..an, bj′+1bj′+2..bm).
If (maximum column + maximum expected similarity) < current max

Return 0.
Return costMatrix[n][m].

Figure 6.4: The optimized search algorithm
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Figure 6.5: Running time for nearest-neighbor search

included the performance results from the version which uses string length
information only (“String Length”). For 3,000 records the optimization
reduces running time by 49.25%. The results show that our approach with
optimization scales up to large datasets.

6.3 Fast Retrieval of Similar Documents

6.3.1 Retrieving Similar Documents Using a Threshold

For longer documents represented as BOWs, a different optimization ap-
proach is required. One of the well-known methods developed in the IR
community is the inverted index, an index to a set of texts of the words in
the texts (Baeza-Yates & Ribeiro-Neto, 1999). Each index entry gives the
word and a list of texts in which the word appears. Figure 6.6 summarizes
our optimization algorithm.

The optimization technique is based on the observation that calculating
exact similarity is not necessary to know that two documents are “simi-
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Input: d is the given document.
D is the set of documents, d1, d2, ... dn.

Output: D′ is the set of documents similar to s. (D′ ⊆ D)

Function RetrieveUsingInvertedIndex (d, D)

Let W := set of all words in d, w1, w2, ... wm.
Sort W by decreasing idf (inverse document frequency).
A := ∅.
For each word wi ∈ W do

Let dvirtual := document containing all remaining words (wi+1, wi+2...wm) in d.

maximum expected score :=
m
∑

i+1

(score(d(j), dvirtual(j)).

Read Ii, inverted list for wi.
For each unmarked document d′ in Ii do

If Currentd′ /∈ Current and Currentd′ is not marked
Currentd′ := 0.
Current := Current ∪ {Currentd′}.

Currentd′ := Currentd′ + score(d(i), d′(i)).
If normalize(Currentd′ + maximum expected score) < T

mark Currentd′ and d′.
D′ := ∅.
For each unmarked current score Currentd′ ∈ Current do

sim := normalize(Currentd′).
If sim ≥ T

D′ := D′ ∪ {d′}.
Return D′.

Figure 6.6: The optimized search algorithm
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lar” using a threshold T (similarity(d, d′) ≥ T ). Since similarity(d, d′) is
computed by accumulating partial scores for each term, we can calculate
the maximum expected similarity at each point by assuming the rest of the
tokens in one document are exactly the same with those in another and com-
puting the similarity between two virtual documents when the tokens are
sorted descendingly by their inverse document frequencies (IDF). The partial
score of a term termj (score(documenti(termj), documenti′(termj′)) where
j = j′) is defined as idf(termj)

2×count(i, j)×count(i′, j′) where count(i, j)
is the number of occurrences of the term j in document i. If a document
cannot be similar to the other even if all the remaining tokens are shared
by the two documents, then the algorithm stops and does not compute the
exact similarity between them.

Using the inverted index, we are able to address the scaling problem
with BOW documents as shown in Figure 6.7. For the “Inverted Index”
method, documents that have no shared term with the given document are
simply not considered for similarity computation. The “Inverted Index +
Optimization” follows the algorithm shown in Figure 6.6. The same set of
data used in the previous experiment (Section 6.2.1) was used with the same
threshold, T = 0.7. BOW-translatable slots such as reviews, comments,
synopses and subject were used in this experiment. The total number of
items for this dataset is 5,426. The results show that the running time can
be greatly reduced even by using a simple indexing technique, employing
the inverted index to efficiently retrieve documents with shared terms.

6.3.2 Retrieving k-Nearest Documents

To retrieve k similar textual items when the items are BOWs, we con-
sider optimization techniques suggested earlier in the IR community (Lu-
carella, 1988). Traditional IR systems have extensively studied the prob-
lem of retrieving k-nearest-neighbor documents for a query q, when docu-
ments and queries are represented as vectors of terms. We adopted a tech-
nique called “partial ranking with document-at-a-time evaluation” (Turtle
& Flood, 1995) for effectively obtaining k-nearest neighbors of the given doc-
ument. In a nutshell, it operates by keeping track of the top k documents
as evaluation progresses and terminates evaluation of a document as soon
as the maximum score that the document could achive would not place it
in the current set of top ranked documents. With this evaluation technique,
cost per query is shown to be greatly reduced (Turtle & Flood, 1995).

With the same set of data used in the previous experiment (Section 6.2.2)
and k = 1, Figure 6.8 shows the CPU time for the similarity computation
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Figure 6.7: Running time for similarity computations

step. The “No Optimization” method compares all pairs of items to find the
nearest neighbors and “Optimization” employs the algorithem suggested by
Turtle and Flood (1995). The optimization reduces running time by 79.25%
on average.

6.4 Summary

The larger the size of available documents becomes, the more critical trade-
offs between speed and accuracy emerge, since accurate but slow methods
may not be practical in many applications. In this section on the scalability
of our approach, we presented methods to efficiently retrieve similar text-
valued items in text-mining systems. Straight-forward algorithms, such as
those based on nested loops, typically require O(N 2) similarity computa-
tions. This quadratic scaling hinders its use when we tackle increasingly
larger data sets.

For a given problem of finding all similar short-string items under a
similarity threshold, we derived an optimized algorithm utilizing a trigram
index. For another problem of finding the k most similar short-string items,
we presented a simple optimization using information about the length of the
given strings for short strings and a branch-and-bound search technique for
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longer documents. For longer documents, we employed the inverted index,
a widely used technique in the information retrieval field. The optimized
algorithms are based on the fact that most similarity calculations in the
naive algorithm are redundant. Experimental results on a real-life data
illustrate that our approach can greatly reduce the total time required for
finding similar items. The results demonstrate that with good heuristics
and efficient indexing methods, our approach is scalable to larger datasets
by reducing the number of explicit similarity comparisons between pairs of
items.
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Chapter 7

Experimental Comparison of

TextRISE and SoftApriori

In previous chapters, we presented two rule mining systems for learning
soft-matching rules: TextRISE (Chapter 4) and SoftApriori (Chap-
ter 5). Both of them have their own strengths and weaknesses. We hypoth-
esize that TextRISE which induces soft-matching rules by generalization
learns more accurate rules while SoftApriori focuses on efficient mining
of soft-matching rules. In this chapter, we present experimental results with
TextRISE and SoftApriori on one set of data: book descriptions. The
soft-precision and soft-recall are compared to demonstrate the advantage of
mining soft-matching rules.

7.1 Experimental Methodology

The experiments presented here are performed on the book data set (Sec-
tion 3.3.3). To evaluate the performance of the system with varying amounts
of training data, we ran tests with smaller subsets of the training examples
for each test set and produced learning curves.

We compare four systems in the experiments: TextRISE, SoftApri-

ori, nearest-neighbor, and Apriori. The first two systems discover soft-
matching rules while the last one mines hard rules. For these experiments,
we used the default values for all parameters of the SoftApriori algorithm
as presented in Section 5.3.

To determine the accuracy of a set of rules, we introduce soft-precision
and soft-recall with respect to predicting the presence of items in a record
from other items in that record. Soft-precision is defined as the percentage of
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predicted items that are (softly) actually present and soft-recall is defined as
the percentage of actual items that are (softly) correctly predicted. We also
report soft-F-measure which is the harmonic mean of soft-recall and soft-
precision. Soft-F-measure is defined as in Equation 3.3 using soft-precision
and soft-recall in place of precision and recall.

The algorithm for computing soft-precision and soft-recall is presented
in Figure 7.1. This method is a general extension of the test algorithm
shown in Figure 5.3. Instead of adding 1 for each match, this algorithm
accumulates the actual similarity between the consequent of rules and the
matched part of examples. The notation A′ in the algorithm represents the
matched part in an example for the antecedent A of a rule.

7.2 Results and Discussion

In order to measure the predictive accuracy of discovered rules, we have per-
formed a ten-fold cross-validation procedure. In each test, the soft-precision
and the soft-recall of the system are reported. The results are summarized
in Figure 7.2 and and Figure 7.3. Minium support and confidence, and
similarity threshold are set to 2%, 10%, 0.7 respectively.

As previously shown in Chapter 4 and Chapter 5, TextRISE performs
better than the simple nearest neighbor and soft-matching association rules
are more accurate than hard-matching association rules. In addition, the
accuracy of the TextRISE rules is consistently highter than others, includ-
ing soft-matching association rules. Nearest-neighbor provides higher recall,
but suffers from lower precision. Training accuracy also shows similar pat-
terns. Differences for each pair of systems were evaluated by a two-tailed,
paired t-test to determine if they were statistically significant (p < 0.05).
Overall, the results show that soft rules are generally better than hard rules
and especially TextRISE produces more accurate rules than soft-matching
association rules. As discussed in Section 4.3.2, the accuracies are relatively
low since predicting textual slots is a hard task.

7.3 Training Time

We measured the training time for TextRISE and SoftApriori to com-
pare the running time of two algorithms. Figure 7.4 shows the evolution of
running time with the number of examples for TextRISE and SoftApri-

ori on the book data set. This experiment was performed on a Linux/i686
PC. SoftApriori is much faster than TextRISE. In association rule min-
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Input: Dtest is the test database.
Rules is the rule set.

Output: soft−precision and soft−recall as measured on Dtest.

Function ComputeAccuracy (Dtest, Rules)

fired := 0.0.
total := 0.0.
matched := 0.0.
predicted := 0.0.
foreach record R ∈ Dtest do

/* precision */
foreach rule (A ⇒ c) ∈ Rules do

if ((rule is hard and A ⊆ R) or (rule is soft and A ⊆soft R))
if rule is hard then A′ := A.

else A′ := X s.t. X ⊆ R and X ∼ A.
fired := fired + 1.
matched := matched + similarity(c, c′)

where c′ := arg maxc′∈(R−A′) similarity(c, c′).

/* recall */
foreach r ∈ R do

total := total + 1.
if there exists a rule (A ⇒ c) ∈ Rules s.t.

c ∼ r and ((rule is hard and A ⊆ R − {r})
or (rule is soft and A ⊆soft R − {r}))
predicted := predicted + similarity(c, r).

soft−precision := matched/fired.
soft−recall := predicted/total.
Return (soft−precision, soft−recall).

Figure 7.1: Evaluation algorithm
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Figure 7.2: Test accuracies: Soft-precision

ing, any association between features is to be discovered, not just ones that
predict a particular feature or class. On the other hand, classification rules
are learned to predict a specific slot. SoftApriori predicts any attribute,
not just one to be predicted as in TextRISE. This graph shows that Soft-

Apriori runs consistently faster than TextRISE as the number of training
examples increases.

7.4 Summary

In this chapter, we evaluate the quality of the discovered rules on indepen-
dent data by measuring the similarity of predicted text and actual text.
By comparing results to the predictions made by traditional hard-matching
rules and nearest neighbor method, we demonstrate the advantage of min-
ing soft-matching rules. TextRISE induces more accurate prediction rules
while SoftApriori discovers soft-matching association rules efficiently. We
introduced new measures for evaluating soft-matching rule mining systems:
soft-precision and soft-recalls. Overall, soft-matching rules were superior to
hard-matching rules in terms of accuracy as hypothesized, thereby indicating
that our approach shows considerable promise.
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Chapter 8

Using Mined Rules in

Improving Information

Extraction

In the DiscoTEX framework for integrating IE and KKD, IE benefits KDD
by extracting structured data from textual documents, which can then be
mined using traditional methods. A less obvious interaction is the benefit
that KDD can in turn provide to IE. The predictive relationships between
different slot fillers discovered by KDD can provide additional clues about
what information should be extracted from a document. This chapter re-
ports experiments in the computer-related job-posting domain demonstrat-
ing that predictive rules acquired by applying KDD to an extracted database
can be used to improve the accuracy of information extraction.

8.1 Introduction

The general DiscoTEX framework described in Chapter 3 serially com-
bines an information extraction system and a KDD module. Information
extraction and data mining can be integrated for the mutual benefit of both
tasks. IE enables the application of KDD to unstructured text corpora and
KDD can discover predictive rules useful for improving IE performance (Fig-
ure 3.1). This chapter explores the mutual benefit that the integration of
IE and KDD can provide. DiscoTEX includes a capability for improving
the recall of the learned IE system by proposing additional slot fillers based
on learned prediction rules as shown in Figure 8.1.

The predictive relationships between different IE slot fillers discovered
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Figure 8.1: Overview of IE-based text mining framework with feedback loop

by KDD can provide additional clues about what information should be ex-
tracted from a document. For example, suppose we discover the following
rule from data on programming languages and topic areas extracted from a
corpus of computer-science job postings: “SQL” ∈ language → “Database”
∈ area. If the IE system extracted “SQL” for the language slot but failed
to extract “Database” for the area slot, we may want to assume there was
an extraction error and add “Database” to the area slot. Since typically the
recall (percentage of correct slot fillers extracted) of an IE system is signifi-
cantly lower than its precision (percentage of extracted slot fillers which are
correct) (DARPA, 1998), such predictive relationships can be productively
used to improve recall by suggesting additional information to extract.

8.2 Experiments with Hard-Matching Rules

In this section, we describe the initial system with the feedback loop and
report experiments with the initial DiscoTEX (Section 3.4).
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8.2.1 The Algorithm

As shown in Section 3.4, we induce rules for predicting the information in
each database field given the information in all other fields after constructing
an IE system. In order to discover prediction rules, we treat each slot-value
pair in the extracted database as a distinct binary feature and learn rules
for predicting each feature from all other features. Similar slot fillers are
first collapsed into a pre-determined standard term. The experiments in
this chapter employ C4.5rules to induce rules from the resulting binary
data by learning decision trees and translating them into pruned rules.

After mining knowledge from extracted data, DiscoTEX uses the dis-
covered rules to predict missing information during subsequent extraction.
Tests of IE systems usually consider two performance measures, precision
and recall defined as:

precision =
number of correct fillers extracted

number of fillers extracted
(8.1)

recall =
number of correct fillers extracted

number of fillers in correct templates
(8.2)

Also, F-measure was introduced to combine precision and recall and is com-
puted as Equation 3.3.

Since the set of potential slot fillers is very large and not fixed in advance,
and since only a small fraction of possible fillers is present in any given
document, these performance metrics are generally more informative than
the accuracy of predicting the presence/absence across all slot-value pairs.

Many extraction systems provide relatively high precision, but recall is
typically much lower. Previous experiments in the job postings domain
showed Rapier’s precision (e.g. low 90%’s) is higher than its recall (e.g.
mid 60%’s) (Califf, 1998). Currently, Rapier’s search focuses on finding
high-precision rules and does not include a method for trading-off precision
and recall. Although several methods have been developed for allowing a
rule learner to trade-off precision and recall (Cohen, 1996a), this typically
leaves the overall F-measure unchanged.

By using additional knowledge in the form of prediction rules mined
from a larger set of data automatically extracted from additional unanno-
tated text, it may be possible to improve recall without unduly sacrificing
precision. For example, suppose we discover the rule SQL∈language →
Database∈area. If the IE system extracted SQL∈language but failed to ex-
tract Database∈area, we may want to assume there was an extraction error
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and add Database to the area slot, potentially improving recall. Therefore,
after applying extraction rules to a document, DiscoTEX applies its mined
rules to the resulting initial data to predict additional potential extractions.
The final decision whether or not to extract a predicted filler is based on
whether the filler (or any of its synonyms) occurs in the document as a
substring. If the filler is found in the text, the extractor considers its predic-
tion confirmed and extracts the filler. Mined rules that predict the absence
of a filler are not used to remove extracted information since there is no
analogous confirmation step for improving precision.

The overall architecture of the final system is shown in Figure 8.2. Doc-
uments which the user has annotated with extracted information, are used
to create a database. The rule miner then processes this database to con-
struct a knowledge base of rules for predicting slot values. These prediction
rules are then used during testing to improve the recall of the existing IE
system by proposing additional slot fillers whose presence in the document
are confirmed before adding them to final extraction template. The last step
of validation is made by confirming if the predicted string appears in the
document.
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8.2.2 Experimental Results

Experimental Methodology

To test the overall system, 600 user-annotated computer-science job postings
(Section 3.3.1) were collected. 10-fold cross validation was used to generate
training and test sets. In addition, 4,000 unannotated documents were col-
lected as additional optional input to the text miner. Rules were induced
for predicting the fillers of the languages, platforms, applications, and
areas slots, since these are usually filled with multiple discrete-valued fillers
and have obvious potential relationships between their values. The title

slot is also used, but only as a possible antecedent condition of a produc-
tion rule, not as a consequent. The title slot has many possible values
and is difficult to predict; however, may be useful as a predictor since fillers
such as Database Administrator can help determine other values. In this
experiment, we use the simpler version of Rapier that employs only word
and part-of-speech constraints since WordNet classes provide no additional
advantage in this domain (Califf & Mooney, 1999).

Results and Discussion

In order to clearly illustrate the impact of the amount of training data
for both extraction and prediction rule learning, the same set of annotated
data was provided to both Rapier and the rule miner. Figure 8.3 shows
a comparison between the performance of Rapier alone (IE alone) and
DiscoTEX (IE + Rules) with mined rules. The results were statistically
evaluated by a two-tailed, paired t-test. For each training set size, each
pair of systems were compared to determine if their differences in recall and
F-measure were statistically significant (p < 0.05).

As hypothesized, DiscoTEX provides higher recall, and although it does
decrease precision somewhat, overall F-measure is moderately increased.
One interesting aspect is that DiscoTEX retains a fixed recall advantage
over Rapier as the size of the training set increases. This is probably
due to the fact that the increased amount of data provided to the text
miner also continues to improve the quality of the acquired prediction rules.
Overall, these results demonstrate the role of data mining in improving the
performance of IE.

Table 8.1 shows results on precision, recall and F-measure when addi-
tional unlabeled documents are used to construct a larger database prior to
mining for prediction rules. In this experiment, unsupervised data which has
been processed by the initial IE system (which Rapier has learned from the
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Figure 8.3: Recall and F-measures on job postings for hard-matching rules

supervised data) has been used. The 540 labeled examples used to train the
extractor were always provided to the rule miner, while the number of addi-
tional unsupervised examples were varied from 0 to 4,000. The results show
that the more unsupervised data supplied for building the prediction rule
base, the higher the recall and the overall F-measure. Although precision
does suffer, the decrease is not as large as the increase in recall.

Although adding information extracted from unlabeled documents to the
database may result in a larger database and therefore more good prediction
rules, it may also result in noise in the database due to extraction errors
and consequently cause some inaccurate prediction rules to be discovered as
well. The average F-measure without prediction rules is 86.4%, but it goes
up to 88.1% when DiscoTEX is provided with 540 labeled examples and
4,000 unlabeled examples. Unlabeled examples do not show as much power
as labeled examples in producing good prediction rules, because only 540
labeled examples boost recall rate and F-measure more than 4,000 unlabeled
examples. However, unlabeled examples are still helpful since recall and F-
measure do slowly increase as more unlabeled examples are provided.
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Number of Examples Precision Recall F-Measure
for Rule Mining

0 97.4 77.6 86.4
540 (Labeled) 95.8 80.2 87.3
540 + 1000 (Unlabeled) 94.8 81.5 87.6
540 + 2000 (Unlabeled) 94.5 81.8 87.7
540 + 3000 (Unlabeled) 94.2 82.4 87.9
540 + 4000 (Unlabeled) 93.5 83.3 88.1

Table 8.1: Performance results with unlabeled examples

8.3 Using Soft-Matching Rules to Improve IE

One step in the previous experiments that was performed manually is col-
lapsing similar slot-fillers in the extracted data into a canonical form, e.g.
mapping “NT,” “WinNT”, “Windows NT,” and “Microsoft Windows NT”
all to a unique term. Although our initial results with this manual step
were encouraging, hard-matching rules discovered by standard data mining
algorithms may not work for data sets with significant textual variation. We
propose mining soft-matching rules instead, which allow non-standardized
database entries to match antecedents and consequents based on relevant
similarity metrics.

8.3.1 The Algorithm

A benefit of association-rule mining instead of classification-rule induction is
that consequents of rules are not predetermined, resulting in efficient mining
of all potential associations as part of a single process. When inducing
classification rules, a separate learning step must be run for predicting each
possible item. For instance, classification rule induction is not as efficient
for our job-postings data set with as many as 750 items in 600 documents.

In order to find association rules for extracted data, we first map each
extracted filler to an item. A document is represented as a basket of items
where each item is a slot-filler pair extracted from the document. By ap-
plying SoftApriori to job postings, we mined relationships between items
such as “If a computer-related job posting requires knowledge of MFC then
it also lists Windows in the list of required skills.”

By forward-chaining on extracted data using soft-matching of antecedents,
we can derive additional probable extractions as with hard-matching rules.
Pseudocode shown in Figure 8.4 describes the use of mined rules in infor-
mation extraction.
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Parameter: minconf , minsup - minimum confidence/support.
Tsim - similarity threshold.
Tex - extraction threshold.

Input: Dtrain - set of labeled documents.

Dtest - set of n unlabeled documents.
Output: L - set of new labels for Dtest.

Function InformationExtraction (Dtrain, Dtest)

Build an information extraction rule base, RBIE

(by applying Rapier to Dtrain)
Let Ltrain := set of labeled slot fillers of Dtrain.
Build a soft association rule base, RB .

(by applying SoftApriori to Ltrain

with parameters minconf , minsup, and Tsim)
For each unlabeled document Dtest(i) do

Extract slot fillers from Dtest(i) using RBIE.
Let L(i) := set of extracted slot fillers of Dtest(i).
Until no change obtained on L(i) Do

For each rule R (X ⇒ Y ) ∈ RB do
If R fires on L(i)

For each matching substring Y ′ in Dtest(i)
(with similarity(Y, Y ′) ≥ Tsim) do
score(Y ′) := similarity(Y, Y ′) × conf(R).
If score(Y ′) ≥ Tex

add Y ′ to L(i).
Let L := (L(1),L(2),...,L(n)).
Return L.

Figure 8.4: Algorithm specification for using soft-matching mined rules in
IE
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The final decision step is modified so that it is based on whether the
filler (or any of its “synonyms”) occurs in the document. If a string equal
or similar to the predicted filler is found in the text, the extractor con-
siders its prediction confirmed and extracts the string. In the previous
example, even if the string “Database” is not found in the document, a
similar string such as “databases” is still considered for extraction since
similarity(“Database”,“databases”) ≥ Tsim where Tsim is the prespecified
threshold for determining a match. The confidence of the rule is also con-
sidered in confirming that the rule is strong enough to extract the filler,
combined with the similarity information indicating how close the actual
string is to the predicted one. In summary, mined soft-matching rules are
used during testing to improve the recall of the existing IE system by propos-
ing additional slot fillers whose similar strings are confirmed to be present
in the document.

8.3.2 Experimental Results

In this section, we demonstrate that using soft-matching rules to predict
potential extractions improves the accuracy of IE slightly more than us-
ing hard-matching rules. Specifically, we compare the hard-matching rules
mined with Apriori (Agrawal & Srikant, 1994) to soft-matching rules mined
with SoftApriori (Chapter 5) with respect to their ability to improve in-
formation extraction from the job postings corpus.

Experimental Methodology

To test the overall system, the same set of computer-science job postings
data set (Section 3.3.1) was used. Ten-fold cross validation was used to
generate training and test sets for extraction from the set of documents.
Rules were mined for predicting the fillers of the languages, platforms,
and applications slots, but the title slot is not employed.

The similarity threshold, minimum support, and minimum confidence
for Apriori and SoftApriori were set to 0.70, 5%, and 10%, respectively.
Association rules without antecedents (e.g. ⇒ C++) are also employed. The
minium confidence value is set to a low value because the final extraction of
a filler is confirmed by checking if the same (hard rules) or similar (soft rules)
strings are found in the document or not. Even if some rules make inaccurate
predictions, this confirmation step filters out such predictions. The match
cost, mismatch cost, gap-start cost, and gap-extend cost parameters for the
affine-gap edit distance were set to 0, 3, 3, and 1, respectively. All white
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spaces in strings are considered as blank characters and upper and lower
cases are distinguished only in the IE phase.

Results and Discussion

To evaluate our system, we compared the performance of Rapier (Sec-
tion 2.2) alone, Rapier aided with hard-matching rules mined by standard
Apriori, and Rapier with soft-matching association rules mined with Sof-

tApriori. Figure 8.5 shows the learning curves for recall and F-measure
for the job-postings data. The same set of human-annotated training data
was provided to both Rapier and the rule miner as shown in Figure 8.2.

As a benchmark, we also show the performance of a simple baseline
(Memorizing) for increasing recall that always extracts substrings that are
known fillers for a particular slot. This baseline remembers all slot-fillers
that appear at least once in the training data. Whenever a known filler
string, e.g. Java, is contained in a test document, it is extracted as a filler
for the corresponding slot, e.g. language. This method has good recall
but limited precision since a filler string contained in a document is not
necessarily the correct filler for the corresponding slot. For instance, “www”
can appear in a document, not in a list of required skills but in a URL of
the company’s homepage.

We also tested a “soft” version of this baseline (Soft-Memorizing) that
extracts all strings that are sufficiently similar to known items in the training
data. Although this increases recall, it decreases precision even further. For
example, “Peoplesoft” remembered as a filler for the application slot can
cause the system to extract the spurious filler “people”. The fact that the F-
measure of these baselines are worse than the proposed system demonstrates
the additional value of rule mining for improving extraction performance.

Rapier with soft-matching rules provides higher recall, and in spite of
decreasing precision somewhat, overall F-measure is not decreased. For each
training set size, systems were compared to determine if their differences in
recall were statistically significant using a two-tailed, paired t-test (p < 0.05).
For all sets of training examples, using soft-matching rules is significantly
better than both using hard-matching rules and unaided extraction while
using hard-matching rules is also significantly better than unaided extrac-
tion. The differences between F-measures were not significant. Although the
differences are somewhat small, these results demonstrate the advantage of
mining soft-matching rules for improving extraction accuracy without sac-
rificing F-measures.
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Figure 8.5: Recall and F-measures on job postings
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8.4 Summary

In this section, we introduced an approach to using predictive rules mined
from extracted data to improve the recall of information extraction. Tradi-
tional hard-matching rules could be used for this task in a straightforward
way. However, this approach is limited by the requirement that the an-
tecedents and consequents of mined rules exactly match textual items. The
normal variation that occurs in textual information frequently prevents such
an approach from effectively exploiting many of the potentially-useful pre-
dictive relationships in the data. In Chapter 5, we have developed techniques
for mining soft-matching rules that employ standard text-similarity metrics
to discover more subtle relationships in variable textual data. By combin-
ing these ideas, we have developed a method for using soft-matching mined
rules to further improve the recall of information extraction. Empirical
experiments on a real text corpus showed that our new method can more ef-
fectively use automatically-discovered knowledge to improve the recall (and
F-measure) of information-extraction.
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Chapter 9

Related Work

There has been relatively little research exploring the combination of Infor-
mation Extraction and traditional data mining. Soft-matching used in our
rule-learning algorithms have barely been applied to text-mining systems ei-
ther. In this chapter, we will explain our novelty in using IE for the task of
knowledge discovery from text by reviewing earlier work on 1) using existing
rule-mining techniques on unstructured or semi-structured text, 2) integrat-
ing information extraction and data mining, and 3) handling soft-matching
rules for text processing.

9.1 Rule Mining from Text

Besides traditional applications of text processing such as text categoriza-
tion (Yang, 1999) and text clustering (Manning & Schütze, 1999), discov-
ering rule-based knowledge from unstructured text is an exiting new area
for text mining. For example, Knowledge Discovery in Textual Databases
(KDT) (Feldman & Dagan, 1995) discovers interesting patterns from text,
by establishing a hierarchy of meaningful concepts and looking for mutual
connections between the concept nodes. KDT has evolved into the FACT

system (Feldman & Hirsh, 1996) with the aid of a well-known data mining
technique, association rule mining, and Document Explorer (Feldman,
Fresko, Hirsh, Aumann, Liphstat, Schler, & Rajman, 1998) accompanied
with an interactive exploration tool. These approaches were applied to
Reuters news articles to find interesting relationships between concept items,
e.g. natural resources of Latin American countries or business alliances be-
tween companies. For example, Document Explorer discovered rules
such as “Chevron Corp and Mobil Corp are likely to be joint venture part-
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ners”.
Loh, Wives, and de Oliveira (2000) suggested an extension of KDT

for web mining by discovering conceptual knowledge from web documents
using automated text categorization. In this research, concepts are identi-
fied through a text categorization algorithm for the purpose of listing key-
concepts and finding correlation between concepts. Ghani et al. (2000) ap-
plied several rule induction methods to a database of corporations automat-
ically extracted from the Web as a part of the WebKB project (Craven,
DiPasquo, Freitag, McCallum, Mitchell, Nigam, & Slattery, 2000). Data
mining techniques used by this system include finding association rules
(Apriori), inducing decision trees (C5.0), and learning rules with Foil.
Interesting regularities such as “Advertising agencies tend to be located
in New York” are discovered from a knowledge base about corporations
extracted from the Web. A similar approach has been tested on medical
abstracts (Blake & Pratt, 2001).

Lamirel and Toussaint (2000) proposed to extract association rules from
a collection of documents by using a variation of SOM (Self-organizing Map)
(Kohonen, 1997), but this work has not been extended beyond agglomeration
which is essentially document clustering. Recently Pierre (2002) applied
the association rule mining algorithm to metadata records generated via
automated text categorization in a business domain. Similarly, Ghani and
Fano (2002) discover inference rules from a collection of product descriptions
by using association-rule mining techniques. For instance, rules such as “If
the age group of a consumer is classified as mature, then the trendiness of
the products she purchases is low” are discovered from apparel product data.

Two primary aspects distinguish DiscoTEX from other systems that
discover rules from text. First, rules learned by these systems are hard-
matching rules unlike those produced by TextRISE and SoftApriori.
All induced rules must exactly match extracted text, thus the heterogeneity
of items in textual databases has not been addressed. The second distin-
guishing characteristic is DiscoTEX’s use of automated information extrac-
tion. Most previous systems that mine rules from text do not have an auto-
mated process for structuring the documents. For instance, KDT uses texts
manually tagged with a limited number of fixed category labels instead of
actually using automated text categorization or IE. Similarly, FACT (Feld-
man & Hirsh, 1996), which finds associations amongst keywords from text
documents, does not have an automated routine for labeling the documents
with keywords, which can be viewed as the basic level of information ex-
traction. Document Explorer extracts terms to label a document in a
more automatic manner, but it is still restricted to highlighting selective
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terms based on predetermined syntactic patterns such as “noun-noun” or
“adjective-noun” (Feldman et al., 1998). One of the limitations for these ap-
proaches is that they require a substantial amount of background knowledge
provided by a domain expert in advance.

9.2 Integrating IE and Data Mining

There has been relatively little research exploring the integration of IE and
KDD. One earlier work related to our approach in spirit can be found in
Conrad and Utt (1994). Instead of using information extraction as a pre-
processing step for handling natural language texts, they assume structured
textual databases as an input and try to find relationships between extracted
features.

Etzioni (1996) discusses applying data mining techniques to Web re-
sources available on the Internet. He identifies the significance of using
information extraction in building a web mining system with an emphasis
on the scalability problem. However, information extraction systems sur-
veyed in this article are very application-oriented and domain-specific, e.g.
extraction of answers for frequently asked questions (FAQ) in FAQ-Finder

(Hammond, Burke, Martin, & Lytinen, 1995) or extraction of product in-
formation from web vendors for a shopping agent, Shopbot (Doorenbos,
Etzioni, & Weld, 1997).

KDT (Feldman & Dagan, 1995) and Document Explorer (Feldman
et al., 1998) suggest the use of IE in text mining in an indirect way; however,
as stated previously, they do not actually use automated text categorization
or IE and the paper does not discuss using mined knowledge to improve
extraction. In addition, Document Explorer assumes semi-structured
documents such as Standard Generalized Markup Language (SGML) text
unlike DiscoTEX developed for general natural-language text.

Several natural language processing systems use information extraction.
One of those earlier efforts is found in Riloff (1996). It uses a dictionary
of extraction patterns, learned originally for IE, to classify text documents.
This can be viewed as an indirect use of IE, since it does not employ a full
IE system as a component for a larger system but utilizes by-products of an
IE learning process.

More recently, IE began to be used for applications such as machine
translation (MT) or question-answering (QA). White, Cardie, Han, Kim,
Lavoie, Palmer, Rambow, and Yoon (2000) help analysts perform information-
filtering tasks on foreign language documents, by making IE techniques
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based on English transferable to other languages. AutoSlog (Riloff, 1993)
is combined with a machine translation system to develop an English in-
formation access gateway to newspapers published electronically in foreign
countries. QA is another complicated task consisting of understanding ques-
tions, locating possible answers from a database, a document corpus, or the
Web, and presenting the most reasonable answer. Textract (Srihari & Li,
1999), presented in the QA track of the TREC (Text REtreival Conference)-
8 test, answers natural language questions such as “Who won the 2003 Nobel
Peace Prize?” by combining a named entity recognizer with other necessary
components for QA, e.g. question processors and answer search engines.

Although all of the above research acknowledged the use of informa-
tion extraction as an essential component for doing other natural-language
understanding tasks, none of these concerned an important application of
IE, constructing structured textual databases from raw text, for use in text
mining.

Cohen (2003a) has recently proposed using feedback from a link analysis
module to boost a text-classification system. This system is related to our
approach to improve IE with aid of a KDD in spirit since it also tries to
boost the underlying learner (web page classifier) by utilizing feedback from
a KDD module. Cohen et al. (2002) suggests using a feedback combina-
tion of an HTML parser and a higher-level wrapper. A parser for HTML
tables and lists used in this research can be viwed as a form of IE since
it also transforms (HTML) documents to highly-structured concept hierar-
chies. However, none of these projects use explicit information extraction in
a general way for further utilization of the extracted concepts.

The use of Web-based statistics (search-engine hit counts) to improve the
precision of information extraction has been also proposed recently (Soder-
land, Etzioni, Shaked, & Weld, 2004). Instead of increasing recalls by addi-
tionally extract fillers, this system based on the KnowItAll information
extraction module (Etzioni et al., 2004) attempts to increase precision by
filtering out extracted fillers using Web statistics.

McCallum and Jensen (2003) proposed a probabilistic framework for uni-
fying information extraction and data mining. A general approach for using
statistical relational models to integrate IE and KDD is presented, but an
actual implementation and experimental results for this approach are still
forthcoming. In this work, data mining run on a partially-filled database
finds patterns that provide “top-down” constraints to information extrac-
tion. On the other hand, information extraction provides a set of “bottom-
up” hypotheses to data mining that can handle uncertainty information.
However, unlike our approach which uses collective knowledge mined from
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an entire set of documents, this framework focuses on interaction between
IE and KDD within a document.

9.3 Mining Soft-Matching Rules

Traditionally, the “bag-of-words” model (Baeza-Yates & Ribeiro-Neto, 1999)
in Information Retrieval (IR) has been widely used to handle texts. However,
unlike simple tasks such as document matching, ranking, and clustering,
soft-matching has not been adequately addressed in rule-mining tasks.

Recently, Cui, Kan, and Chua (2004) proposed an unsupervised learning
system that induces soft-matching patterns for classifying sentences in online
news articles. To accommodate the diversity of sentence structure, flexible,
soft patterns are introduced and employed. Soft patterns include not only
lexical tokens but also part-of-speech (POS) tags and puctuation.

Whirl is a query processing system that combines traditional database
and IR methods by introducing a “soft join” operation (Cohen, 1998). In
Whirl, all information is assumed to be represented in a relational model in
which every element of every tuple contains free text. Although Whirl and
DiscoTEX share a focus on soft-matching rules for text processing, rules
in Whirl must be written by the user while DiscoTEX tries to discover
such rules automatically.

Compared to automated data cleaning or duplicate detecting methods
that impose a single normalization on the data items (Cohen et al., 2000;
Hernández & Stolfo, 1995; McCallum et al., 2000b; Monge & Elkan, 1996;
Winkler, 1999), mining soft-matching rules dynamically clusters data items
into different groups depending on the association under consideration, i.e.
each discovered rule may group items into different similarity-based equiv-
alence classes. For example, “Windows NT” must be placed either in the
“NT” or “Windows” group in the normalization approach, while our algo-
rithm allows it to belong to both clusters, depending on the inference that
is being made.
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Chapter 10

Future Work

We will address a number of issues in future research in this chapter. These
fall into two primary areas. First there are several enhancements which can
be made to the Discotex system: using background information, mining
more expressive rules, enhacing DiscoTEX, and improving information ex-
traction. Next, we intend to explore the applicability of our framework to
other text mining tasks. Each of these areas of future research is discussed
in some detail below.

10.1 Using Background Information

One shortcoming of DiscoTEX is that it does not consider the use of prior
information or metadata. Incorporating domain knowledge has been one
of the important topics in machine learning and data mining (Witten &
Frank, 1999). Metadata often involves relations among attributes such as
semantic relation, causal relation, or functional dependencies. As a result of
the explotion of the amount of electronically-available data, it is often the
case that other sources of knowledge are easily accessible and exploitable. A
potential extension of DiscoTEX is to use the WordNet (Fellbaum, 1998)
hierarchy of hypernyms to generate generalizations that takes semantics into
account. WordNet hypernyms have been shown to be helpful in improving
text categorization (Scott & Matwin, 1998). For example, the two rules:

• thermodynamics ∈ subject → heat, modern, theory, waves ∈ synopses

• optics ∈ subject → electromagnetics, laser, waves ∈ synopses

might be minimally generalized to the rule
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• physics ∈ subject → waves ∈ synopses

if a semantic lexicon provided by WordNet is utilized. “Thermodynamics”
and “optics” have the common parent, “physics”, in the hypernym tree. The
current implementation of DiscoTEX generates an empty filler slot for the
subject slot in this case because it is not able to recognize the semantic
relationships between the two slot fillers. This change requires a redefinition
of distance between words in terms of the WordNet hierarchy as in Basu,
Mooney, Pasupuleti, and Ghosh (2001). Once the distances are redefined, a
generalized association rule mining algorithm (Srikant & Agrawal, 1995) for
learning abstract rules can be applied.

Like in Zelikovits and Hirsh (2002) or Pereira, Tishby, and Lee (1993)
which use additional “background text” or semantic information given by
LSI (Latent Semantic Indexing) (Deerwester, Dumais, Furnas, Landauer, &
Harshman, 1990) in text classification or word clustering, utilizing statistical
measures of semantic similarity might be a another option. A similar ap-
proach has been proposed by Choudhary and Bhattacharyya (2002) for text
clustering. In this work, a document clustering algorithm based on UNL

(Universal Networking Language) (Uchida, Zhu, & Della, 2000), a semantic
representation for sentences, is developed. The OpenMind commonsense
database, the Cyc knowledge base (Lenat, 1997), or multilingual ontolo-
gies/dictionaries such as BRICO (Haase, 2000) are potential sources for
background knowledge.

We may also use domain-specific sources of semantic information such
as dictionaries of programming langauges, job titles, companies, places, etc.
Henze and Nejdl (2002) developed an ontology for the programming lan-
guage Java and Hotho, Staab, and Stumme (2003) utilize it in clustering
eLearning course Web pages about Java. For instance, it would be interest-
ing to attempt to have a semantic class consisting of programming languages
which can be expanded to incorporate new languages.

Incoporating structural information is a viable option for utilizing back-
ground knowledge. There is a growing need to handle semi-structured doc-
uments written in mark-up languages. The current version of DiscoTEX

does not have any special ability to cope with Web pages written in HTML
or XML (EXtensible Markup Language) (Bray, Paoli, Sperberg-McQueen,
& Maler, 2000). Automatically generated web pages in Amazon and IMDb

contain HTML tags, but they are only used by a wrapper. Structural hints
given by such tags could be utilized in rule mining as well.

One option for this task is to take the XML document structure tree gen-
erated by an XML parser as the representation for a document. Although
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the problem of handling hierarchical structure has received relatively little
attention in the machine learning literature, XML is increasingly being used
for exchanging information from data sources. In this case, the generaliza-
tion of two sets of bags or strings in the current system is replaced by the
generalization of two trees of bags or strings. The similarity measures should
also be redefined appropriately for this representation. Tree edit distance
(Zhang & Shasha, 1989) could be adopted in redefining the distances.

One of the barriers in utilizing the structural information hidden inside
the documents is that most current pages on the Web are still in HTML
although XML pages are more powerful than HTML ones for describing
the structured contents of a page. A method for automatically recogniz-
ing the structures in HTML pages is needed in that case (Cohen, 2003b).
In this case, tree mining alogorithms for finding frequent subtrees such as
Treeminer (Zaki, 2002) could be applied instead of the general association
rule mining algorithms for discovering frequent terms or bags in the current
implementation of DiscoTEX. Changes to the system should be relatively
straightforward. We believe that text-mining algorithms can be improved
by combining content-based information with structural cues if the structure
underlying textual data can be recovered.

10.2 Mining More Expressive Rules

Instead of taking individual words, n-grams could be used as additional
terms for the vector representation. When applying DiscoTEX to book
data, we found that it recognizes “Juvenile Fiction” and “Science Fiction”
in the subject slot as a BOW with “juvenile(1)”, “science(1)” and “fic-
tion(2)”, thus missing useful information which could have been maintained
if they had been treated as a single term. For example, we could construct a
bag-of-uni/bigrams with “juvenile(1)”, “science(1)”, “fiction(2)”, “juvenile-
fiction(1)”, and “science-fiction(1)” from the same slot-filler.

A related issue is to combine words for a named entity, such as an au-
thor’s name or a company name. “Stephen” or “King” by themselves in
“Stephen King” might not be very useful for mining interesting rules about
this author, but “stephen-king” as a whole makes more sense to users looking
at this domain. Named entity recognition task, introduced in the MUC-6
(DARPA, 1995), was found to be a relatively easy task because the best
system submitted to the competition scored 96.4% in F-measure (business
news domain). Automatic extraction of named entities with Rapier or
other machine learning techniques such as (Bikel, Schwartz, & Weischedel,

109



1999) or (Kelin, Smarr, Nguyen, & Manning, 2003) could be considered for
a preprocessing step of building a training set with bags-of-terms.

Another option is to replace the current generalization scheme in Tex-

tRISE. For example, we we take the intersection of two BOWs for general-
ization currently. First, we could generalize to a k-nearest-neighbor method
that uses the k closest rules or examples rather than just the single near-
est one. The predictions of these k rules could be combined by taking the
generalization of the slots (e.g. the average of the BOW vectors) in their
consequents. Likewise during learning, rules could be generalized to the k
nearest uncovered examples using a similar averaging technique, possibly
rounding values to maintain integer counts and simplifying the resulting
rules.

We also believe an algorithm for mining sequential association rules
(Srikant & Agrawal, 1996) could be applied to textual data without much
modification. Sequential rule mining algorithms can discover a rule, “Cus-
tomers usually purchase wireless cards and routers after they bought lap-
tops.” from a customer transaction database. While speech and biological
sequences have been considered as typical examples for sequential data, se-
quential data mining algorithms have not been widely used in text mining.
Although Ahonen-Myka, Heinonen, Klemettinen, and Verkamo (1999) sug-
gested a similar approach based on the episode rules, adopting sequential
association rules has the advantage that they are a straightforward general-
ization of generic association rules.

10.3 Enhancing DiscoTEX

One of the important issues is the interestingness of the mined rules. Even
though we currently rank rules before presenting them to users, this task
bears further investigation. The interestingness measures we used currently,
confidence and support, are common measures in the KDD community.
However, the quality or goodness of rules specific for textual databases could
be defined in different ways. For instance, trivial rules such as “If the title
of a book contains “chemistry”, both the synopses and the subject have
“chemistry”, too.” are very often found in the rule set generated by Disco-

TEX. This kind of rule can be left out via simple identity checking filters.
Another idea is to use a semantic network like WordNet (Fellbaum, 1998)

again to measure the semantic distance between the words in the antecedent
and the consequent of a rule, preferring more “surprising” rules where this
distance is larger. For example, this would allow ranking the rule “beer
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→ diapers” above “beer → pretzels” since beer and pretzels are both food
products and therefore closer in WordNet. Although WordNet provides rich
information for a given word such as synonyms, antonyms, hypernyms, and
meronyms, the interestingness measure might mostly concern synonyms and
hypernyms. We could define the semantic distance between two words as
the length of the path between those in the WordNet hierarchy (Basu et al.,
2001).

Domain-specific dictionaries constructed in the process of building word
vectors for document collections can be used to eliminate uninteresting terms
before learning. For instance, in the synopses slot of book data, many ex-
amples contain “table”, and “contents”, since a “table of contents” is usually
included in the synopses of a book. The rules learned by DiscoTEX there-
fore contain both “table” and “contents” in their synopses slots in many
cases, although they are neither informative nor interesting. “Copyright” in
the reviews slot or any words related to books such as “book” or “read”
are other typical examples for this problem. They do not provide any clue
to the specific book they describe. Although we already used the TFIDF
weighting scheme to prefer words that are dominant in a particular docu-
ment, eliminating such domain-specific frequent words spread throughout a
collection of documents could help with finding more interesting rules.

Using flexible and learnable metrics instead of fixed-cost similarity met-
rics (Bilenko & Mooney, 2003) for soft matching might be a good option.
In this work, a duplicate detection system uses trainable measures, instead
of relying on generic and manually-tuned distance metrics, for estimating
the similarity of textual items. Although this framework focuses more on
duplicate detection in textual databases, a learnable similiary metric for
either each database field or database record could be applied to our sys-
tem. Since DiscoTEX was designed to plug in any similarity metric for
each field, adaptively-tuned similarity metrics can be used in place of other
metrics. A related issue is comparing our approach of mining soft-matching
rules with that of Marlin (Bilenko & Mooney, 2003) in which similar items
are first collapsed before traditional hard-matching rules are mined.

Specifically for SoftApriori, an extension considering the actual sim-
ilarity between items could be explored. The limitation of the current def-
initions for soft-support and soft-confidence is that they do not reflect the
different original support values of individual items nor different degrees of
similarities between items. One possible solution to this problem is to re-
define the similarity matrix as similarity(i, j) instead of the binary value,
similar(i, j). In other words, the similarity matrix is not binary but should
be filled with the actual value for similar pairs of items. The optimization
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method described in Chapter 6 should be redesigned in this case. Using pre-
dictive assocation rules which were shown to be more accurate than plain
association rules is another option to improve SoftApriori (Bayardo Jr.,
1997; Liu, Hsu, & Ma, 1998; Yin & Han, 2003).

10.4 Improving Information Extraction

Currently, we only consider improving the recall of IE. Methods for using
mined knowledge to improve extraction precision are also needed. Simply
eliminating extracted fillers that are not predicted is too coarse and would
likely severely damage recall. One possible solution is to use a variation
of negative association rules (Savasere, Omiecinski, & Navathe, 1998; Wu,
Zhang, & Zhang, 2002). By confidently predicting the absence of certain
slot values given other extracted information, both precision and recall could
potentially be improved.

One great potential impact would be on the utility of the World Wide
Web since the Web is an immense, multilingual, freely available corpus.
Increasing precision using Web statistics such as PMI (pointwise mutual
information) scores (Soderland et al., 2004) could be also considered. The
PMI score of a descriminator pattern D and an extraction pattern E are
defined as:

PMI(D,E) =
Hits(D + E)

Hits(E)

while D + E is the descriminator pattern with the extraction substituted
for the instance. For example, Hits(‘City of <City>’, ‘Austin’) is the num-
ber of hits in a search engine with a query “City of Austin”. Soderland
et al. (2004) showed that the precision of an underlying information ex-
traction system can be improved by providing PMI scores to a KDD mod-
ule (näıve Bayesian classifier (Mitchell, 1997)) as input. Although we ap-
plied the same method on the job-postings and the resumé domain (e.g.
computing PMI(’programming language’, ’java’) or PMI(’platform’, ’nat-
ural’) with the AltaVista search engine1), we were not able to improve
the information-extraction system substantially. We believe that this is
because the Web has too many general terms to descriminate computer-
related terms. Using domain-specific ontologies as background knowledge
as discussed in Section 10.1 or narrowing the search domain by pre-selecting
Web pages dedicated to the topic could solve this problem.

1http://www.altavista.com/
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10.5 Extension to Other Text Mining Tasks

We also believe that additional text mining tasks can be found for which our
framework may prove useful. Since IE can be useful for many kinds of text
processing, using extracted information for other text mining tasks might
be an interesting issue. However, little research has been done in this field.
We present here possible extensions of our framework to one of the other
text mining tasks: topic detection.

Topic Detection and Tracking (TDT), or novelty detection, is a variant of
traditional document classification that allows new classes over a time-series
text corpora. Unlike query-based retrieval task or simple categorization task,
users do not know in advance what they want to retrieve or what categories
there are. Information retrieval and machine learning techniques have been
used to identify new events from streams of articles, concentrating on news
stories (Yang, Carbonell, Brown, Pierce, Archibald, & Liu, 1999).

As in TopCat (Clifton & Cooley, 1999), we consider a TDT task in a
data mining context: preprocessing a collection of articles for identifying key
concepts in individual documents, and applying data mining techniques such
as frequent item set generation and clustering. Frequent item sets, defined
as all item sets that often occur together, identify correlated topics while
clustering tracks natural boundaries for neighboring topic periods to detect
changes of topic items over time. TopCat uses a named entity recognizer
which is limited to extracting information related to “who?” and “where?”
questions (e.g. location, organization, and person).

Similar approaches for discovering trends in text databases have been
proposed and applied to a database of U.S. patents (Lent, Agrawal, &
Srikant, 1997) or Spanish newspapers (y Gómez, Gelbukh, & López-López,
2001), but were limited to the simple framework of mapping each word or
phrase to an item. By identifying and highlighting keywords or named en-
tities such as persons, organization, and locations, more interesting trends
and rules could be discovered.
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Chapter 11

Conclusion

With the dramatic increase in online information in recent years, text min-
ing at the intersection of data mining, natural-language processing, machine
learning, and information retrieval, is starting to gain increasing interest. In
this dissertaion, we present a new framework for text mining, called Disco-

TEX (Discovery from Text EXtraction), which uses a learned information
extraction system to transform text into more structured data which is then
mined for interesting relationships.

The ability to extract relationships and rules from natural-language texts
is an important task with a growing number of potential applications. Infor-
mation Extraction (IE) is a form of shallow text understanding that locates
specific pieces of data from a corpora of natural-language texts. Data Mining
or Knowledge Discovery from Databases (KDD) considers the application of
statistical and machine-learning methods to discover novel relationships in
large relational databases. However, there has been little if any research ex-
ploring the interaction between these two important techniques to perform
text-mining tasks.

The goal of text mining is to discover knowledge in unstructured text.
The related task of IE concerns transforming unstructured text into a struc-
tured database by locating desired pieces of information. Although hand-
made IE systems have existed for a while, automatic construction of informa-
tion extraction systems using machine learning is more recent. DiscoTEX

combines IE and standard data mining methods to perform text mining as
well as improve the performance of the underlying IE system. It discovers
prediction rules from natural-language corpora, and these rules are used to
predict additional information to extract from future documents, thereby
improving the recall of IE.
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Existing methods for mining rules from text use a hard, logical criteria
for matching rules. However, for most text processing problems, a form of
soft matching that utilizes word-frequency information typically gives su-
perior results. Therefore, the induction of soft-matching rules from text is
an important, under-studied problem. The standard rule mining algorithms
have problems when the same extracted entity or feature is represented by
similar but not identical strings in different documents. Consequently, we
developed an alternate rule induction system for DiscoTex called, Tex-

tRISE, that allows for partial matching of textual features. SoftApriori,
another rule mining system which is an extension of the general association
rule miner, has also been developed.

We presented experimental results applying the TextRISE rule learner
and the SoftApriori rule miner to corpora of Internet documents retrieved
from the World Wide Web (WWW). The empirical results obtained with
two systems on the Amazon.com book descriptions data set show that Tex-

tRISE focuses on inducing accurate rules by gradually generalizing tex-
tual instances while SoftApriori concerns efficient mining of soft-matching
rules.

In conclusion, we have presented a general framework for text mining by
combining existing IE and KDD technologies. Two rule-learning approaches
that use a flexible mechanism both in their rule-learning algorithm and in
their classification schemes are developed: TextRISE and SoftApriori.
The former was applied to the task of learning inductive rules, which pro-
duced better accuracy than the nearest-neighbor approach. The latter was
applied to mining association rules for capturing additional relationships,
which was shown to give better efficiency in mining soft patterns. Instead
of considering the documents as a simple bag of words or a string, we used
a flexible method of plugging in a similarity metric for each field. Both rule-
learning systems for automated discovery of knowledge from unstructured
text were demonstrated to perform better than previous methods in several
domains.
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