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ABSTRACT

This paper presents a general procedure for finding an optimal solution tree of an
acyclic AND/OR graph with monotone cost functions. Due to the relationship between
AND/OR graphs and game trees, it can also be used as a game tree search procedure.

Seemingly disparate procedures like AQ®, SSS*, alpha-beta, B* are instantiations of this
general procedure. This sheds new light on their interrelationships and nature, and
simplifies their correctness proofs. Furthermore, the procedure is applicable to a very
large class of problems, and thus provides a way of synthesizing algorithms for new
applications. The procedure searches an AND/OR graph in a top-down manner (by
selectively developing various potential solutions) and can be viewed as a general
branch-and-bound (B&B) procedure. :
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1. Introduction

This paper presents a general procedure for .ﬁnding an optimal solution tree of an acyclic
AND/OR graph with monotone cost functions. Due to the relationship between AND/OR graphs
and game trees, it can also be used as a game tree search procedure. This general formulation has

the following advantages:

()  Seemingly disparate procedures like AO* [21], SSS* [26], alpha-beta {8], B* [5] are instantia-
tions of this general procedure. This sheds new light on their interrelationships and nature,
and simplifies their correctness proofs.

(i) More importantly, the procedure is applicable to a very large class of problems, and thus
provides a way of synthesizing algorithms for new applications.

The procedure searches an AND/OR graph in a top-down manner (by selectively developing
various potential solutions) and can be viewed as a general branch-and-bound (B&B) procedure.

This is noteworthy, as the relationship between B&B and AND/OR graph search procedures such

as AO" has been quite controversial (see [10], {12]).

We earlier developed an abstract model of B&B which is more general than previous B&B
formulations, and powerful enough to incorporate essentials of a number of Al search algorithms.
We have previously shown that a number of AND/OR graph and game tree search procedures
(e-g., AOQ®, S8S%) are essentially B&B [12], (18]. Viewing these procedures from a common per-
spective has given us insights into their basic nature, and has helped us synthesize the general

procedure described in the current paper. This procedure is applicable to a large number of prob-

lems.

This paper is a revised version of Chapter 6 of the first author’s 1982 Ph.D. dissertation [10].
In a 1984 book by Pearl [22] a generalized version of AO*® is given which is similar to a special
case of our general procedure. In examining his work, we have discovered that our formulation,

as presented in this paper, corrects an error made by Pearl (see Section 5.7). Our formulation

also subsumes the work by Bagchi & Mahanti [2] as a special case (see section 5.6).

In Section 2 we briefly introduce AND/OR trees, and discuss their correspondence with
game trees. In Section 3 we present an abstract B&B formulation. In Section 4 we introduce a

general B&B formulation for searching acyclic AND/OR graphs. In Section 5 we develop this
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B&B formulation further and show that AO® and some of its variations presented in [2] are spe--
cial cases of this formulation. In Section 6 we present variations of the formulation of Section 5
and show that B*, SSS°, and alpha-beta are special cases of these variations. Section 7 contains -

concluding remarks. A list of the definitions of the terms used in the paper appear in the appen-

dix.
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2. AND/OR Graphs and their Relationship to Game Trees -

A problem reduction representation (PRR) is a representation of how a problem might be
solved recursively by transforming it into several siﬁpler equivalents, such that the original prob-
lem may be solved by solving any one of them, or by transforming the problem into several sub-
problems such that the original problem may be solved by solving all of the subproblems. PRRs _
are modeled by AND/OR graphs, as described in detail in {20, [4]. Here, we briefly review

AND/OR graphs and their correspondence with game trees.

2.1. AND/OR Graphs

Each node of an AND/OR graph represents a problem, and a special node root(G) called
root of G represents the original problem to be solved. Nodes having children are called nonter-
minal. By convention, the children of each nonterminal node are either all of type AND or all of
type OR. The hypergraphs of [15], [21] (in which nodes have both kinds of children) can be con-
veft.ed into AND/OR graphs by introducing éxtra dummy nodes. Let

p:n — 0.0,

- be a problem transformation. If p is such that all of the problems n .,n, need to be solved to

e
solve the problem n, then p is called a reduction and ﬁl,...,nk are depicted as AND children of n in
the AND/OR graph. If p is such that the problem n may be solved by solving any one of the

problems L T then'n],...,nk are depicted as OR children of n in the AND/OR graph. Nodes
with no children. are called terminal, and each terminal node represents a primitive problem. An
AND/OR graph G is acyclic if no node of G is a successor of itself. An AND/OR graph G is
called an AND/OR tree if G is acyclic and every node except root(G) has exactly one parent.
_ Every acyclic AND/OR graph G can be “unfolded” (by creating duplicates of all nodes of G hav-

ing multiple parents) to build an equivalent AND/OR tree called unfold(G).

Given an AND/OR graph representation of a problem, one can identify its different solu-
tions, each one represented by a “solution tree”. A solution tree T of an AND/OR graph G is an

AND/OR tree with the following properties:
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(i) root(T) = root(unfold(G)).

(ii) if 2 nonterminal node n of unfold(G) is in T, then all of its children are in T (as AND chil-
dren of n) if they are of type AND, and exactly one of its children is in T {as an OR child of

n) if they are of type OR.

To distinguish solution trees from other entities to be defined later, we will sometimes call them

tofal solution trees.

A solution tree T of G represents a plausible “problem reduction scheme” for solving the
problem modeled by the root node of G. Clearly, an acyclic AND/OR graph can have only a

finite number of solution trees. The subgraph G’ of G rooted at a node n is in fact a problem
reduction formulation of the problem represented by n, and a solution tree of G’ represents a

solution to that problem. By a solution tree rooted at n we mean a solution tree of G .

Often, a cost function f is defined on the solution trees of G, and a least-cost solution tree of

G is desired. There are various ways in which this cost function can be defined, but the one

defined below is applicable to a large number of problems.!

For a terminal node n of G, let ¢{n) denote the cost of n, i.e., the cost of solving the prob-

lem represented by n. With each reduction p: n — n,,...,n_ we associate a k-ary cost function

1! k

t.p(rl,...,rk) which denotes the cost of solving n if n is solved by solving n,,..,0 at costs I ,...r,,

respectively.

For a solution tree T, we define its cost f(T) recursively as follows:

2.1a if T consists only of a single node n = root(T), then f(T) = ¢(n).
2.1b If n = root(T) has AND-children n,,...,n, such that p: n — n,...,n, is a reduction, then
f(T) = t ((T,),... /(T,)), where T ,...,T, are the subtrees of T rooted at LI

2.1¢ If n = root(T) has n, as the OR child in T, then f(T) = £(T,), where'Ti is the subtree of
T rooted at n,.

Thus the cost of a solution tree is defined recursively as a composition of the cost of its subtrees.

! The definition of cost function given here is similar to the definition of recursive weight function given in 122].
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Fig. 1 shows an acyclic AND/OR. graph, associated cost functions, and the computation of the
cost of one of its solution trees. We define ¢*(n) for nodes n of an AND/OR graph G to be the
minimum of the costs of the solution trees rooted at n. Then c'(root(G)) is the cost of an

optimum solution tree of G. The following theorem provides a way of computing c*(n) for nodes

n of an acyclic AND/OR graph.?

Theorem 2.1: If the functions tp(.,...,.) are monotonically nondecreasing in each variable, then

the following recursive equations hold.

{i) If nis a terminal node, then
¢*(n} = c{n).

(i) Fpmn— n,,...,n, is a reduction (i.e., n
c’(n) = ¢ (¢*(m,),....c"(n,)).

(iii) I n has n,,...,0, as OR children, then

¢’(n) = min{c*(n,),....c'(n,)}.
Proof: By induction on the height of n.

-0, are AND children of n}, then

2.2 Maximigation problems and Game Trees

In many problem domains, f(T) denotes the merit of the solution tree T, and a solution tree
of largest merit is desired. In such cases, ¢(n) denotes the merit of a terminal node n of G. The
functions tp(.,...,.), and f are defined exactly as before, but ¢*(n) denotes the maximum of the mer-
its of the solution trees rooted at n. In this case, Theorem 2.1 can be restated with its third condi-

tion replaced by

(iii") If n has n,,...,n, as OR children then

¢*(n) = max{c’(n ),...,.c(n,)}
One such case is that of tﬁro-person games.
AND/OR trees can also be used as models of two-person, perfect information, zero sum
board games [20], [24]. (Fof ekample, the AND/OR tree of Fig. 2 can be viewed as a game iree.)

Board positions resulting from one player’s moves are represented by OR nodes {circular nodes in

Fig. 2), and board positions resulting from the other player’s moves are represented by AND

2 The theorem is valid for cyclic AND/OR graphs as well, but the proof, which appears in {10, is more complicated.
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nodes (square nodes in Fig. 2). The two players are called MAX and MIN, respectively. Moves of
the game proceed in strict alternation between MAX and MIN, until the game ends. After the
last move, MAX receives a payoff c(n) which is a function of the final board position n, and MIN
has to forfeit the same amount. Thus, MAX always seeks to maximize the payoff while MIN
seeks to minimize it. Assuming that the root node of the tree corresponds to the current position
of the game from which MAX is to move, the objective is to find a move for MAX which guaran-
tees the best payoff. The best payoff that MAX can be guaranteed from any board position is

given by the minimax value g(n) defined recursively as follows [8]:

(i) If o has children of type OR, then
g(n) = max{g(n )} for all children n, of n.

(ii) If n has children of type AND, then
g(n) = min{g(n,)} for all children n, of n.

(iii} If n is a terminal node of G, then
g(n) = c(n).

If for every reduction p: n — n,,....0,, we define t.p(rl,..-.,rk) = min{r,,...,r, }, then it follows _

{from Theorem 2.1 using (iii")) that for every node n of G, c*(n) = g(n). More specifically,

¢*(root{G)), the maximum of the merits of the solution trees of G, is equal to g{root(G)), the

minimax value of G (also see [26], [12]). Thus, game tree search procedures such as alpha-beta - -

can be viewed as procedures for finding a largest merit solution tree of an AND/OR tree with cer-

tain cost functions.

2.3 Versatility of Monotone Functions

The monotone functions are a wide class of functions. A number of useful cost (or merit)

functions are monotone. Examples are given below.

(1} I we define t(XpeX,) = X, +..+ x,, and ¢(n) = 1 for each terminal node n, then f(T) is

the total number of terminal nodes in T.

(2) If we define b (XX ) = 1 + max{x,,....x,}, and ¢(n).= 0 for each terminal node n, then

f(T) is the total amount of time needed to solve root(T) under the assumption that every
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(3)

reduction operation requires one unit of time and reductions may be performed in paralle].

Let tp(xl,...,xk) =c¢, + X + ... + X, where < is the cost of applying the reduction operator
p. Then f({T) is the sum of the costs of solving terminal problems of T and of applying the
problem reduction operators. This cost function is same as the one used by the procedure
AO* in [21], [15). |

Let t.p(xl,...,xl;) = min{x,,...x,} in a maximization problem (as discussed in Section 2.2).
Then t;he la,rgést of the merits of solution trees of G is the minimax '»;a,lue of root(G} if G is
viewed as a game tree (for a pfoof see Section 2.2; also see [26], {12}). This cost function is

the one used by S8S*, alpha-beta, and B*.
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3. A General Branch-and-Bound Formulation

The class of problems solved by branch-and-bound (B&B) procedures can be abstractly

stated as follows:

For a given arbitrary discrete set X and a real-valued cost function f: X—R, find an optimum ele-
ment of X, i.e., an x* € X such that for all x € X, f(x*} < f{x)3

B&B procedures decompése the original set into sets of decreasing size. The decomposition
of each generated set S is continued until tests reveal either that S is a singleton (in which case,
we measure its cost directly)* or that there is an optimum element x* not in S (in which case, the
set is “pruned” or eliminated from further consideration). If the decomposition process is contin-
ued {and satisfies certain propertieé.), an optimum element will ev.ent.ua]ly be found. Often, only a
small fraction of the total set X need be generated.x

The basic elements of our branch-and-bound formulation are described below. This descrip-
tion has been_grea.tly influenced by the earlier formulation due to Mitten [17]. The formulation
presented here is very similar to the one given in (12]. As is discussed in [10], [12], the dominance

relation in our formulation is used for pruning in a manner somewhat different than in [9], [6], [7].

3.1. Basie Definitions

Let Y be the set of all subsets of X, i.e., Y = 2X, X, denotes a subset of X, and A denotes

a collection of subsets of X (i.e., A CY). For brevity, A will sometimes be referred to simply as

a ‘collection’. For notational convenience, the union of all subsets in any collection A is denoted
by U(A); ie., UA)=U{X | X € A}. We define (X)) to be the minimum of the costs of the ele-

ments in X;. Any element x* € X; such that fx*)=f"(X)) is called an optimum element of X..

A branching function BRANCH is any function which divides the members of the collection A

3 The discussion in this section is also applicable (with appropriate modifications) to the case where f denotes the
merit of the elements of X, and 2n element of highest merit is desired.

*The situation is actually somewhsat more complicated: in practice one uses a compact representation of S rather S
itself. We have discussed how to handle this issue in [18]. The same concepts apply straightforwardly to the material
presented in the current paper, but we do not dizcuss them here. In Section 4.2, the reader will see an example of the use
of representations of sets.
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into subsets which collectively include precisely the same elements of X as the original collection’
A. Mathematically, it is any function mapping collections into ;ollect.ions such that:

(i) X; € BRANCH(4) =X C X, for some X, € A.

(ii) UBRANCH(A)) = U(A).

From Property (ii} of the function BRANCH we immediately get the following result:

Lemma 3.1. (U(BRANCH(A))) = *(uU({A4)).

Often the function BRANCH is defined as a composition of selection and splitting functions.

A selection funciion is any function SELECT mapping collections into collections such that

SELECT(A) € A. A splitting function SPLIT is any function satisfying the proberties of a
branching function. BRANCH is then defined as .
BRANCH(4) = (A-{SELECT(A)}) U SPLIT(SELECT{4)).

Although this definition of BRANCH is mathematically equivalent to the one given above, it

emphasizes the characteristic that only the elements from a certain selected sgbset of the collec-

tion A are divided, and the rest are returned unchanged. In fa,c.t,. in many implementations of

BRANCH, only one selected élement from the collection A is divided, and the rest are returned

unchanged.

The dominance relation D is the binary relation between subsets X, Xi of X such that X D Xj if

and only if £(X) < f* (X,). From the definitions of {* and D, we obtain the following lemma.

Lemma 3.2. Let A be a collection of subsets of X. If X, DX, and X, Xj € A, then f'(U(4)) =

FUA-{X).

This lemma says that if X, and Xj are present in a collection A and X, dominates Xj, then X,]

can be eliminated from the collection A without changing its optimum value.

The pruning function PRUNE: 2Y— 2Y¥ prunes the dominated subsets of A. It is defined as

PRUNE(A) = A-AP, where AP is a subset of A such that for all X. € AP there exists some X e
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A-AP such that Xj D Xi.

From Lemma 3.2, it follows that all the members of AL can be eliminated from the collec-

tion A without changing f*(A). This important result is summarized in the following lemma;:
Lemma 3.3. f*{ U(PRUNE(4))) = £*( U(A)).

3.2. An Abstract B&B Procedure

The procedure P, given below represents the essence of many B&B procedures. Here, A

denotes the collection of subsets of X upon which the branching and pruning operations are per-

formed in each iteration of P, and |S| denotes the cardinality of a set S.

procedure Py (* BZB procedure to search for an optimum element of a set X *)

begin
A= {X};  (* initialize the collection A %)

while |U(A)| 55 1 do (* loop until A contains only one element of X *)
A:=BRANCH(A); (* branch on the collection A *)

A:=PRUNE(A) (* eliminate the dominated subsets from A *)
end

end

From lemmas 3.1 and 3.3, it is easy to show that if the procedure P, terminates, A contains

only an optimal element of X. Proofs of this are given for slightly different (but quite similar)

descriptions of B&B in [12] and [18]. Note that the termination of P is not guaranteed. In order

to guarantee the termination of P,, BRANCH and PRUNE must satisfy certain additional proper-

ties.

3.3. The Best-first Selection Strategy

In many problem domains it is possible to associate a lower bound le(.l) with the subsets X,
of X such that
(i) For all x € X, Ib(X) < f{x).

(ii) For all x € X, Ib{{x}) == f{x).
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Thus 1b(X\} is a lower bound on the costs of the elements of X, and the lower bounds for single-

ton sets are not unnecessarily loose. This lower bound information can be fruitfully used in

selecting an element for branching. If in every cycle of P,’s loop an element of A is chosen for

branching which has the least lower bound of all the elements of A, then the selection rule is
called best-first, and the branch-and-bound procedure using this strategy is called best-first

branch-and-bound. An interesting feature of best-first B&B is that whenever a singleton set {x}
is selected for branching, the procedure can terminate. This is because f*({x}) = f(x) = b({x})

< B(X)} < (X)) for all X, € 4, and thus {x} dominates all the other elements in A.5

If the bounds Ib(X) are good approximations of f* (X)), then best-first B&B can be very

efficient. In the extreme case, if Ib(X)) = * (X)) for all X, C X, then the B&B procedure finds an

optimal element of X by splitting only those sets which contain optimal elements.

3.4. Discussion

In this ahstract formulation, a number of details have been left out. For example, we have
only defined the basic properties of a branching function. In a practical implementation of a B&B
procedure, a branching function is chosen which is natural for the problem domain in question

and satisfies the properties given here.

For pruning, in each cycle of Pu’ a dominated subset AP of the collectign A needs to be con-
structed. Note that for any two subsets X, X, of X, at least one of them dominates the other
(either F(X)) > (X)), or £(X,) > f* (X,)). Hence, in theory AP could be constructed to have all
but one set of the collection A. This would make the procedure P, terminate in a very few cycles,
since in every cycle of Po' all but one of the generated sets will be eliminated. In practice, we

may not know whick sets in A dominate which other sets in A without exhaustively enumerating
the elements in the sets which are members of A. However, partial knowledge from the problem

domain is often available to reveal that certain sets in A dominate certain other sets in A. This

S If we select more than one element of A for branching, then the selection ruie is still called best-first, as long as at
least one of the selected elements (let’s call it X) has the least lower bound of all the elements of A. In such cases, B&B
can successfully terminate if X is singleton.

section 3



13

partial knowledge of the dominance relation can be used to construct a dominated subset AP, of
A. In the next section, where we present a practical BXB procedure to find an optimum solution
tree of an AND/OR graph, we show how general knowledge about AND/OR graphs is used to

ascertain dominance between two sets of solution trees.
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4. Branch-and-Bound Search on Acyclic AND/OR Graphs

Consider the problem of finding a least-cost solution tree of ‘an acyclic AND/OR graph G.
In this case, the discrete set X is the set of all solution trees of G. The cost function f for solution

trees is defined in Section 2.1. In practical implementations of B&B procedures, the set X and its

subsets are not represented explicitly. Instead, some problem-specific data structure is used which

~ implicitly represents the set X and its subsets. In this section we introduce partial solution trees
to represent sets of solution trees, and present a general B&B procedure for searching acyclic

AND/OR graphs for optimum solution trees.

4.1, Partial Solution Trees

A partial solution tree (or partial tree) T’ of an AND/OR graph G is a subgraph .of

unfold(G) with the following properties:

(i)  root(T’) = root(unfold(Q)).

(i)  If any node of unfold(G) other than root{unfold(G)) is in T’, then it has an ancestor in T".
(ii) If an OR node n of unfold(@) is in T", then none of its siblings are in T".

(iv) “If an AND node of unfold(G) is in T, then all of its siblings are in T".

A pért.ia.l solution tree can be extended (possibly in several ways) to form a total solution
tree. It représents. the set of all solution trees which ca;n be formed by extending it. We denote
this set by S_TREES(T’). Fig. 3 shows a partial tree T of the AND/OR g.raph'.(} of Fig. 1 and
the set of solution trees represented by T°. ' B

A node of a partial tree T” is called a #p node if it has no éhildren in T. A tip nede of T’
1s either a terminal node (if it has no children in G), or a nonterminal node (if it has children in

G). It follows that a partial tree all of whose tip nodes are terminal nodes in G represents just

one solution tree, namely itself.

We define f*(T") to be the minimum of ﬁhe costs of all solution trees represented by T i.e.,
f(T") = min{ {(T) | T € S_TREES(T’) }. The dominance relation D between any two partial

trees T;” and T, is defined as follows: T, D T if and only if f(T,) < f* (T))-

section 4



15

4.2. A B&B Procedure for a Least-Cost Solution Tree Search.

We now present a version of P, to do a B&B search on an acyclic AND/OR graph. Here, A
denotes a collection of partial solution trees (each of which represents a set of solution trees). For

any set A of partial trees, U(A) denotes the union of the sets of solution trees represented by the

partial trees in A; ie., U(A) = U{S_TREES(T,) | T, € A}.

The function BRANCH takes a set of partial trees as input. and returns another set of par-
tial trees as output. It is implemented as a composition of two functions, SELECT and SPLIT:

BRANCH(A) = (A-SELECT(A)) U SPLIT(SELECT(A)).

SELECT returns some of the partial trees in A; i.e., SELECT(A) € A. SPLIT returns p-ar-
tial trees after extending them; i.e., if T’ € SPLIT(A) then there is a T," € A such that T’ is an

extension of Tl’.

The function PRUNE takes a collection A of partial trees as its input, identifies a set of par-
tial trees AP such that e_ach partial tree of AP is dominated by some partial tree in A - AP, and
returns A-AP; i.e., PRUNE(A) = A - AP. Thus PRUNE eliminates only dominated partial trees.

Let T’ be the partial tree containing only root(unfold(G)) (note that S_TREES(T,’) is the
set of all solution trees of the AND/OR tree G). The following B&B procedure searches for an

optimum solution tree of G. Here A denotes the collection of partial trees upon which branching

and pruning operations are performed.

procedure P, (¥ B&B procedure to search for an optimum
solution tree of an AND/OR graph G x)
begin
A= {T} (* initialize A with the complete set of solution trees of G #)
while |U(A)| %5 1 do (* repeat until A has just one solution tree %)
A = BRANCH(A); (* select & split some set of solution trees from A *)
A :=PRUNE(A); (* remove some dominated solution trees from A %)
end;
end

Since P1 is an instantiation of Po’ it follows that if P1 terminates, then the collection A will

contain only an optimum solution tree of G.
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4.8. Discussion

In the abdve rather informal deseription of P,, various details have been left out. We did
not specify how the collection of partial trees is maintained, how a partial tree (or 2 group of par-
tial trees) is selected for branching, or how AP is identiﬁed. Depending on the problem being
modeled by the AND/OR graph and the kind of problem-specific information available, there are
various ways in which these details can be specified, each leading to a different search procedure.

In the next two sections, we discuss these details and show how AO*, B*, SSS* and alpha-beta

can be considered as special cases of these procedures.
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3. A Best-First B&B Search for a Least-Cost Solution Tree

In this section we present an instantiation of P, which uses a specific data structure for

representing a collection of partial trees, and a best-first selection function for branching.

5.1. Partial Graphs: A Representation for a Collection of Partial Trees

A partial graph G’ is a subgraph of G with the following properties:
(f) root(G’} = root(Q).
(ii) Any node n of G’ other than root(G) has an ancestor in G’.

The nodes having no children in G’ are called tip nodes. A partial tree T? of G’ is defined
exactly as it was defined for an AND/OR graph in Section 4. A partial graph G’ represents all
partial trees T" of G’ such that all tip nodes of T are also tip nodes of unfold(G’). The set of
partial trees represented by G’ is denoted by P_TREES(G’). For example, Fig. 4 shows a sub-
graph G’ of the AND/OR graph G of Fig. 1, and the set of partial trees represented by G’.

At the beginning of P|, G’ contains only root(G), and thus represents the partial tree T,
The branching operation on G’ consists of the i'ollow_ing actions:

(i) Select a partial tree T’ from P_TREES(G’).
(ii) Select a tip node n of T".
(i) Let n,,..,n, be the children of n in G. Expand n by augmenting G’ to include n,,...,n, as chil-
dren of n.
This is equivalent to selecting all the partial trees in P_TREES(G’) which contain the node n, and
performing splitting operations upon them as follows. If n has n,...,n, as AND-children in G,
then each partial tree T’ in P_TREES(G’) containing n {as a tip node) is in effect replaced by the
partial tree T’<n—n1..nk>. This is an extension of T’ which includes r,...n, as AND children of
n. If n has ,,...,n, as OR children in G, then each partial tree T’ in P_TREES(G’) containing n
is in effect replaced by a set of partial trees {T°<n-n,> | 1<i<k}. A partial tree T'<n-n> is
an extension of T’ which includes n, as the OR child of n in T. Clearly,

S_TREES(T’) = U{S_TREES(T"<n-n.>>) | 1<i<k},

and
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S_TREES(T’) = S_TREES(T’<n—n1...nk>).
It follows that the branching operation on G’ has both the properties required for it in Section 3.°

Pruning on G’ is problem dependent, and is performed by deleting certain portions of G’ in
such a way that no nontip node of G’ becomes a tip node as a result of deletion. It follows that .
P_TREES(PRUNE(G’)) € P_TREES(G’). The pruning operation should be performed in such a

way that only dominated partial trees are eliminated.

5.2. Lower Bounds on Partial Trees

Suppose there is a real-valued function'b defined over the nodes of G, wl_lich has the follow-- '
ing properties:
(i) If n is a terminal node of G, then b(n) = ¢(n).

(ii) If n is a nonterminal node of G, then b{n) < ¢*(n).

Then b(n) is a lower bound on the value of c*(n); i.e., the cost of a solution tiee rooted at n is

always at least b(n). For a partial tree T’, we define f (T’) recursively as follows:

5.1a H T’ consists only of a single node m = root(T’), then f,(T’) = b(m).

5.1b H m = root{T") has AND-children m,,...,m, sach that p: m — m,,...,m, is a reduction,
then f (T°) = tp(fb(T’l),...,fb(T’k)), where T’ ,..., T’ are the subtrees of T’ rooted at
m,,...,.m,. : :

5.1¢ If m = root({T") has m; as OR child in T’, then f,(T’) = f,(T"), where T", is the subtree
of T’ rooted at m,.

Due to the monotonicity of b, it can be proved by induction on the height of root{T’) that

£(T") < I{T). It follows that f, satisfies the properties of a lower bound as mentioned in Section

3.

8 Note that a successor n; of n may be in G’ even before n,,...,n, are included as successors of n in G'. If such B, has
some successors present in G’ (because n, was expanded in a previous branching operation) then eflectively some more
branching operations have been performed on the partial tree(s) containing ny which resulted from the current branching
operations. ) ‘ '

section 5



19

5.3. Selecting a Partial Tree Having a Least Lower Bound

We define b*,(n) (G’ is omitted if unambiguously determined) to be the smallest value

f,(T*) such that T’ is a partial tree of G’ rooted at n whose tip nodes are also tip nodes of G’.

The following theorem provides 2 way of computing b*(n) for the nodes n of a partial graph G*.

Theorem b5.1. If the functions tp(.,...,.) are monotonically nondecreasing in each variable, then

the following recursive equations hold.

(i) ¥ nis a tip node, then
b*(n) = b(n)

(ii) ¥ pm— n,;,...,n, is a reduction and n,,...;n, are AND children of n in G’, then
b*(n) = t (b*(n,),....b°(n,})

(iii) Ifn hasn,..n_as OR children in G’, then
b*(n) = min{b*(n,),...,b*(n, )}

Proof: Similar to the proof of Theorem 3.1.

[

- From the monotonicity of t, it follows that b*(n) is also a lower bound on c*(n). Note that
the functions f, and b* are defined for a partial graph G’ in nearly the same way as the functions

f and ¢* have been defined for G in Section 2.

The following procedure selects a partial tree having a least lower bound from

P_TREES(G").

Procedure Sy
(1) Calculate b*(n) for all nodes n of G’. Since G (and therefore G’) are acyclic, this can be
done using the equations of Theorem 5.1 in a bottom-up manner. '

(2) Direct arrows’ from each nontip node n of G’ as follows: if n has n;...,n, as AND children,
then direct arrows from n to all the children; if n has n,...,.n, as OR children, then direct

arrows from n to the child n, which has the least value b*(n,) of ail the children.

{3) Choose the partial tree T’ of G’ by following arrows from the root node to the tip nodes of
G

"The procedure for directing arrows here is similar to the one used in [19] for selecting a partial tree of least lower
bound ir an AND/OR tree.
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It follows from Theorem 5.1 and the monotoniéity of & that the chosen partial tree T’ has

the least lower bound.

5.4. A Best-First B&B Procedure

The following prbcedure finds a least-cost solution tree of an acyclic AND/OR graph G. A

partial graph G’ represents a collection of partial trees.

Procedure P, 7
(1) (initialize): G’ :== root(G).

(2) (branch): In G, select a partial tree T" of least lower bound by traversing the arrows (if
there are any) from root(G”). If the selected partial tree is a total solution tree, then go to

step 4, else for some tip node® n of T’, expand n (i.e., include all children of n in G as the
children of n in G). '

(3) (rearrange arrows): Calculate b* ,(n) for the nodes n of G’ and set arrows between the nodes
of G’ using the procedure S;. (More specifically, set b*(n,) = b(n) for each newly generated
successor n, of n, and update b‘G,(m) and arrows for each ancestor m of n). Go to step 2. '

(4) (prune): Remove all the nodes from G’ except those belonging to T’ since T° dominates
every other partial tree in P_TREES(G’). Stop (T’ is a least-cost solution tree)

Since P, is an instantiation of P, it follows that at the termination of P,, G’ will have only
a least-cost solution tree. The termination of P, is guaranteed because in each iteration of P, one

node of G is expanded and G has only a finite number of nodes.

5.5. AO" as a BZB Procedure

Let us define monotone functions t.p(.,...,.) associated with reductions p:n— n,,....n, (where
n,..,n, are AND child.ren of n} as tp(xl,...,xk) = ¢, + X, ..+ x,, where <, is the cost associated
with the reduction p: n— n,...0,. In this case, P, becomes equivalent to the AQ* procedure as

described by Nilsson [21]. The heuristic estimates h for nodes of G used in [21] are equivalent to

the lower bounds b -associated with the nodes of G. The values h*{n) and g(n) defined for a node

n in [21] are equivalent, respectively, to ¢*(n) and b*(n) in our treatment.
X : :

8 The node n may be selected in whatever way one believes is most likely to inerease the f-value of the selected par-
tial tree T°. ’
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Note that the monotonicity restriction (also called the consistency property in [15]) on h as
presented in p. 103 of [21] has no connection with the monotonicity of the cost functions t, associ-
ated with reductions of G. If h satisfies monotonicity restriction then it merely makes the pro-

cedure somewhat simpler (see [21]). The same simplification can be made in P, (i.e., in Step 3, we

only need to update b'-value of those ancestors of n from which n can be reached by following

arrows) if b satisfies the following consistency condition:

b(n) < t,(b{n,),....b(n,)}.
5.8. Variations of F‘2

In Section 5.2, we defined a lower-bound function f, on partial trees, which was used by P,
to select a most promising partial tree of G’. It follows from the discussion in Section 3.3 that if

P, uses a lower-bound function which is a better approximation of f* (as compared to. fb), then we
can expect P, to be more efficient. In this section, we define two lower-bound functions f', and 2,

which are at least as good (and some times better) approximations of {* than f,.

For a partial tree T, both b(root(T’)) and the computed lower bound of T’ based upon the
lower bounds on the subtrees of T’ (as in equations 5.1a and 5.1b) provide lower bounds on f*(T’).

f!,(T") is the best bound on f*{T") based upon the available information, and is defined as follows:

5.2a if T” consists only of a single node m = root(T"), then ', (T’) = b(m).

5.2b If m = root(T’) has AND-children m,,..,m, such that p: m — m ,...,m, is a reduction,
then f',(T’) = max{b(m), tp(i‘lb(T’I),...,flb(T’k))}, where T’ ,..., T, are the subtrees of T"
rooted at m,...,m,. .

5.2¢ If m = root(T’) has m, as OR child in T°, then {*,(T’) = max{b(m), f1,(T.)}, where T’
is the subtree of T’ rooted at m,. '

Due to the monotonicity of t,, it can be proved by induction on the height of root{T’) that
f',(T") < £(T"). It follows that ', satisfies the properties of a lower bound as mentioned in Sec-
tion 3. From equations 5.1 and 5.2 it follows that for any partial tree T°, f,(T") > {,(T"). Ifbis

consistent than it can be proved by induction that f, and flb are identical.
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We redefine b*;,(n) (G’ is omitted if unambiguously determined) to be the smallest value

flb(T’) such that T’ is a partial tree of G’ rooted at n whose tip nodes are also tip nodes of G’.

Theorem 5.1 is redefined as follows:

Theorem b6.1a. If the Tunctions tp(.,...,.) are monotonically nondecreasing in each variable, then

the following recursive equations hold.

(i) I nis a tip node, then
b*(n) = b(n).

() ¥pmn— n,...,n, is a reduction and n,,...,n, are AND children of n in G’, then
b*(n) = max{b{n), tp(b’(nl),‘..,b'(nk))}.

(iii) ¥ n hasn,..,n,_as OR children in G, then
b*(n) = max{b(n), min{b*(n,),...,b"(n,)}}.

Proof: Similar to the proof of Theorem 3.1.
(0

From the monotonicity of t , it follows that b*(n} is also a lower bound on ¢*(n). If P, uses
flb to select a least-lower-bound partial tree, then in step 3, it only needs to update b* and arrows
for those ancestors of n (the expanded node) from which it is possible to get to n by trave:sing
arrows. (Note that because of Theorem 5.1a, b*-value of an ancestor of n can only increase via
the updating process.) For sumcos_t; functions (i.e., tp(xl,...,xk) = ¢, + X, +...+ x,), P, using flb is
identical to the algorithm B in [2]. For inconsistent b (since f', can be a tighfer bound than fbj P,

using flb is expected to be more efficient than P, using fb.9

We define 2 (T") for a partial tree T’ of G’ as follows':

5.3a If T’ consists only of a single node m = root(T’), then f (T") = b(m).
5.3b If m = root(T’) has AND-children m,,...,m, such that p: m — m,,...,m
then fgb(T’).'= tp(f2b(T’l),...,f2b(T’k)), where T° ..., T’

¢ 15 a reduction,

. are the subtrees of T’ rooted at

% Similar improvements to the state space search algorithm A* have been proposed in [13], [16], [1], [3], when the
heuristic function is inconsistent.

1 Note that 2 WAT) is defined only for the partial trees T’ represenied by partial graphs G’ which are constructed
during the execution of P,
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m,,...,m

pree il

5.3¢ If m = root{T") has m, as OR child in T, then
if it is possible to go from m to the most recently expanded node n of G’ by following
arrows then {2 (T°) = £, (T"), where T, is the subtree of T’ rooted at m,._

Otherwise, f? (T") = f2(T”), where T” is the previous version of T’ (i.e., T’ as it looked
before n was expanded).

Due to the monotonicity of t,, it can be proved by induction on the height of root(T’) that
£(T’) < (T"). It follows that f?, satisfies the properties of a lower bound as mentioned in Sec-
tion 3. From equations 5.1, 5.2 and 5.3 it follows that for any partial tree T? f1(T) > f2b(T’) >

f,(T’). I b is consistent than it can be proved by induction that £ flb and i'2b are identical.

We redefine b*,(n) (G’ is omitted if unambiguously determined) to be the smallest value

fgb(T’) such that T’ is a partial tree of G’ rooted at n whose tip nodes are also tip nodes of G’.

Theorem 5.1 is redefined as follows:

Theorem 5.1b. If the functions t.p(.,...,.) are monotonically nondecreasing in each variable, then

the following recursive equations hold.
(i) If nis a tip node, then
b*(n) == b(n).
(i) If pn — n,,...,0y is a reduction and n,,...,n, are AND children of n in G, then
b*(n) = ¢ (b*(m,),...,b*(n,)).
(iii) If n has R,..,0, as OR children in G’, then
if the most recently expanded node of G’ can be reached from n by following arrows, then
b*(n) = min{b*(n,),...,b*(n,)}.
Otherwise, b*(n) is unchanged.

Proof: Similar to the proof of Theorem 3.1.

[

From the monotonicity of t , it follows that b*(n) is also a lower bound on c*(n). If P, uses

f2b to select a least-lower-bound partial tree, then in step 3, it only needs to update b* and arrows
for those ancestors (of the expanded node n) from which it is possible to get to n by traversing
arrows. For sumecost functions (i.e., t (x,,...%) = ¢, + X, +..+ x,), P, using f?, is identical to

the algorithm A in {2]. For inconsistent b (since {, can be a tighter bound than f,) P, using f? is
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expected to be more efficient than P, using f,, but less efficient than P, using flh.

Note that 1'2'J is presented here 6n1y to explain the working of the algorithm A from [2] in

terms of B&B. Viewing A as a B&B procedure simplifies its correctness and makes it easy to see

that it works for monotone cost functions.

5.7. Discussion

When AQ® is viewed as a B&B procedure, its correctness proof becomes very simple {as

compared, for instance, to the one given in [14]). The correctness of AO* and its variations (algo-

rithms A and B given in [2}) directly follows from the correctness of the general B&B formulation

for AND/OR graph search. Note that the only requirement for the correctness of our “AQ*-type”

B&B formulation is that the_functions'tp(.,...,.) be monotone. Thus the heuristics developed for

acyclic AND/OR graphs with additive cost functions are also applicable to acyclic AND/OR
graphs with arbitrary monotone cost functions. Such functions, as discussed in Section 3, can

.model a much larger class of problems.

Pearl [22] has independently given a generalized version of AQ® which is very similar to P,,.
He has assumed that the procedure works for all cost functions (including ones which are not
monotone) as long as a lower-bound function b can be found. From the discussion in this section,

it is clear that Pearl’s assumption is incorrect; i.e., the monotonicity of b, is crucial to the correct-
ness of P,. For example, theorems 2.1 and 5.1 do not hold in ge;leral if the cost.. functions ére not
monotone). Fig. 5 shows an AND/OR graph with {nonmonotone) cost functions and the lower
bounds, for which Pearl’s version of AO® (and P,) would not find an optimal solution treé; The

solution found by these algorithms has cost 10, whereas the optimal solution tree has cost 5.

section §



25

8. B&B Search for a Solution Tree of Largest Merit

In the discussion of AND/OR graph search in Sections 4 and 5, we considered ¢ and f as the
cost functions for terminal nodes and solution trees of G, and we constructed a B&B procedure
for finding a least-cost solution tree. The procedure can easily be modified to find a solution tree

of largest merit (see Section 2.2) if the functions ¢ and f denote the merits of terminal nodes and
solution trees of G respectively. In the modified version, {(T’) = max{f(T) | T € S_TREES(T")},
and T D T;" if and only if {(1)) > (TJ’) To perform a best-first BB search, we define an
upper bound function u (similar to the lower bound function b) on the nodes of G such that u(n)

is an upper bound on the value of ¢*(n). The functions f, and u® are defined similarly to the func-

tions f, and b*, respectively. It is easily seen that the procedure P, can be appropriately modified

to perform 2 best-first search for a largest-merit solution tree of an acyclic AND/OR graph.

6.1. B* as a B&B Procedure

If the functions t, are defined as tp(xl,...,xk) = min{xl,...,xk}, and ¢ and f are taken as the
merits of the terminal nodes and solution trees of G, then the B&B procedure for AND/OR tree
search with best-first branching strategy (i.e., P,) is nearly identical to the B® [5] algorithm for

minimax search of game trees. The only difference is that with AND/OR trees (or graphs), the
aim is to find a solution tree of largest merit (or least cost, depending on the problem}, whereas
with game trees the objective is merely to find the immediate successor of the root in a largest-

merit solution tree. This difference in requirements has been the motivation for introducing the
“prove-best’” and the “disprove-rest” strategies in the B® algorithm.
Let us assume that both the upper bound function u and lower bound function b are avail-

able for the nodes of a game tree G (viewed as an AND/OR tree). Let the B&B procedure for

searching G with some strategy (not necessarily best-first) for partial tree selection also keep track
of both b*(n) and u*(n) for each node n of the partial graph G’. Let n,,...,n, be the OR successors
of root(G). If it happens during the search that for some 1<j<k,

(6.1) b(n) > max{ u'(i) | 1<i<k and iz},
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then the largest-merit solution tree rooted at n, is no worse than the largest-merit solution tree -
rooted at n;, (1<i<k and i4j). A B&B procedure searching a game tree can terminate at this

point since the identity of the OR-successors of root(G) in a largest-merit solution tree is known.

For nodes n of a partial graph G’, b*(n) and u*(n) are lower and upper bounds on <'(n),
respectively. As G’ grows by the expansion of nodes in the subgraph rooted at n, b*(n) and u*(n)

will possibly more closely approximate ¢*(n). Since, in the B&B search of game trees, the aim is

to satisfy Equation 6.1 as soon as possible, one of the following two policies can be adopted:
(i) Select a node n, (from the successors n,...,n, of root(G}) such that
u'(n) = max{ u’(n) | 1<i<k}.
Explore the subgraph of G’ rooted at n; with the expectation that b'(nj) will ultimately be -
raised beyond max{ u*(n} | 1<i<k and izj}. This is called a prove-best strategy by Ber-
liner in his description of B" [5]. -

(i) Select a node n, such that n, 54 n; and u'(n;) > b*(n;). (It must be possible to find such a
node if Equation 8.1 is not satisfied yet.) Explore the subgraph of G’ rooted at n, with the

expectation that u*(n;) will ultimately come below b*(n,). This is called a disprove-rest stra-
tegy by Berliner.

Once a node n (a child of root(G)}) is selected by either of the policies, a partial tree of larg-
est upper bound containing the node n is selected for branching using a procedure similar to 8y
In fact, if B® uses only the prove-best strategy, then it is virtually the same as the procédure P,

modified to search a game tree for a largest solution tree.

The‘poin:t to be made is that B search can be viewed essentially as a B&B seé.rch of an
AND/OR tree using a somewhat “nonstandard” rule for termination. Furthermore, the special
strategies (prove-best & disprove-rest) of B* are applicable as long as the merit functions are
monotone (i.e., not necessarily minimax), lower and upper bounds for the nodes of G are avail-

able, and the aim is to find just the successor of the root of the best solution tree. For example, a

B’ type procedure could be used for game tree search even if the evaluation function is the one

used in [23] instead of minimax.
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6.2. SSS" as B&B

Even if the upper bounds u(n) on ¢*(n) for the nodes n of G are not available, we can associ-
ate ‘“‘uninformed’ upper bounds with the nodes n of G as follows:
u(n) = e{n) if n is a terminal node;

u(n) = +oco0  if n is a nonterminal node.
(the absolute upper bound)

A best-first B&B search procedure (similar to P,) can find a largest-merit solution tree of G
by using these bounds for selection. In any iteration of this procedure there may exist more than
one partial tree with the same upper bound. In such cases, various tie-breaking rules can be

adopted, each leading to a different variation of the best~first B&B procedure.

A careful obsérvation of the SSS* algorithm reveals that it is a best-first B&B procedure
(with uninformed bounds and particular tie breaking rule for selecting from partial trees of the
same largest upper bound) searching for a largest-merit solutioh tree of an AND/OR tree. A
detailed treatment of SSS* as a B&B procedure can be found in Kumar and Kanal (12]. We dis-
cuss the basic ideas here. Note that in SSS*, as presented in [26], the search graph G’ is not
maintained explicitly (as it is done in AO® and B*); but it exists conceptually as a subgraph of G,
consisting of nodes which have been visited but have not been pruned. Instead of G’, in (28] a list
of states of traversal called OPEN is maintained. Each element of the OPEN lst represents a
partial tree T’ and the current upper bound f{T") associated with it. State selection and expan-~
sion in SSS* directly correspond to selecting a partial tree of largest upper bound from G’ and
expanding one of its tip nodes. Purging of states from OPEN corresponds to pruning certain
parts of G’ to eliminate dominated partial trees. Due to a specia-.l property of minimax functions,

the process of selecting a partial tree of largest upper bound in SSS* is considerably more simple

than the procedure 8, of Section 5.

8.3. Alpha-Beta as a B&B Procedure

In the procedures discussed so far, upper or lower bounds on the f*-values of the partial trees

in the collection A were used for selecting a partial tree (or a group of partial trees) for branching.
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It is also possible to select partial trees regardless of their associated bounds. A possible scheme is
to expand the nodes of G in the preorder sequence regardless of which partial tree they belong to.
Since the selection of a node for expansion (hence of a set of partial trees for branching) is done in
a predefined manner, 2ll the overhead associated with selecting partial trees for branching in
best-first B&B is eliminated. | |

Due to the monotonicity of b partial trees can be pruned (even in the absence of any other
problem-specific information) in the following situation. Suppose T, and T, are two solution trees
in G’ rooted at a node n such that {{T,) < {(T,). It follows from the monotonicity of the merit
functions t, that any partial free T, of G’ having T, as a subtree is dominated by another partial
tree T,.’ {of G’) which is identical to T,’ except that T, is replaced by T ,- Hence we can prune all
those partial trees from G’ which coﬁtain T, as a sﬁbtree by pruning all the nodes from G’

belonging only to T,

A good example of such types of procedures is the classical alpha-beta algorithm. The
alpha-beta procedure as usually presented in the literature {e.g., in [8], [21]) looks at first glance
to be very different than conventional B&B procedures. Hence, to make the discussion easier, we
first present Nilsson’s version [21] .of alpha-beta in a somewhat different terminoiogy, and then We.

show that it can actually be considered as a B&B procedure. An informal description of alpha-

beta as B&B can be found in [12].
Nilsson's Version of Alpha-beta

Nilsson’s version of alpha~beta can be described as follows:
(1) (initialize) G’ := root(G).

{2) Choose the first tip node n of G’ in the postorder sequence such that n has not been

evaluated yet. If there is no such node, then terminate.

(3) Evaluate n by computing alpha(n} and beta(n) as specified below, and for each ancestor m
of n recompute alpha(m) and beta{m). Also generate successors of n in G’ if n is a nonter-

minal.
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(4) ¥ there is ever an ancestor m of the node n such that m 7 parent(n) and (beta{m) <

alpha(n) or beta{n) < alpha{m)) then prune all the unevaluated successors of parent(n) from
G’.

alpha{m) and beta{m) are defined as follows!!:

alpha{m) = ¢(m) if m is terminal and m has been evaluated
= -00 if m is a nonterminal node whose children have not been
generated, or if m is an unevaluated terminal node
= max {alpha(n)| n is a child of m} if m is 2 max node whose
children have been generated
= min {alpha(n)| n is a child of m} if m is a min node whose
children have been generated
beta(m) = ¢(m) if m is terminal and m has been evaluated
= oo if m is a nonterminal node whose children have not been
generated, or if m is an unevaluated terminal node
= max {alpha(n)| n is a child of m} if m is a max node whose
children have been generated
= min {alpha(n)| n is a child of m} if m is a min node whose
' children have been generated

Some Definitions and properties

Let trees(n) be the set of all solution trees containing n. If V is a solution tree and nis a

node of V, then let V/n be the subtree of V rooted at n. The following properties hold:

(6.1) If T is a solution tree, then f(T) = min {c(u)| n is a terminal node of T}. This is because
the cost function associated with each AND branch takes the minimum of the values of the

child nodes (since it corresponds to a move by Min).

(6.2) Let T’ be any subtree of T. Then from (1), f{T) < f{T"). As a special case, if n is a node of
T, then /(T°) < f(T’/n) < c*(a).

(6.3) As defined above, alpha(n) and beta(n) have ready interpretations as instances of b*(n) and
u'(n). Hence, alpha(n) < c*(n) < beta(n).

(6.4) Suppose alpha(n) > -co. Then from the definition of alpha, there must be at least one solu-

tion tree rooted at n which has already been explored, for else we would have alpha(n) =

Note that Nilsson’s definition of alpha and beta is rather different from Knuth’s definition [S].
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--00. From the definition of alpha, it follows that alpha(n) = max{f(V) | V is a solution tree
rooted at n and has been completely explored}. ‘

(8.5) Let T and T’ be solution trees such that T-(T/m) = T°«(T"/m) and T") < {(T/m). Then
from (1), f(T") < {(T).

Pruning by Beta Cutoff

Suppose m is an ancestor of n, and suppose beta(n) < alpha(m). Then alpha(m) > -oo, so
from (6.4) we know that there is at least one tree rooted at m which has already been completely

explored. Let V be the best such tree. Let T’ be any member of trees(n), and let T” = (T*-T/ m)

U V. Then
f{T") < f(T’/n) (from (6.2))
< ¢*(n) (from (6.2))
< beta(n) (from (6.3))
< alpha{m) (from the assumption)
=1(V) (from (6.4))
= {(T”/m} (by definition of T”).

Thus from (6.5), f(T") < f(T”). Since this reasoning holds for every T’ in trees(n), trees(n) is a

dominated set and thus may be pruned.

Pruning by Alpha Cutoff

Suppose m is an ancestor of n, and suppose beta(m) < alpha(n). Then alpha{n) > -oo, so
from (6.4) we know that there is at least one tree rooted at n which has already been completely
~explored. Let V be the best such tree. Let T’ be any solution tree containing an unexplored child

of n, and let T” = (T’ - T’/n} U V. Then T’ contains m, so

f{(T’) < ¢’(m) {from (6.2))
< beta(m) . {from (6.3})
< alpha(n) {from the assumption)
= f{V} (from (6.4))
—f(T"/n)  (by definition of T*).

Thas from (6.5), f{T") < f(T"). Since this reasoning holds for every T’ containing an unexplored

child of n, every such child represents a dominated set which may be pruned.
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It is clear that the process of generating successors of a tip mode of G’ in alpha-beta
corresponds to a valid branching function. As discussed above, the pruning that is done by
alpha-beta can be explained as the pruning of dominated sets of solution trees. If we supplement
the pruning by alpha and beta cutoffs with the pruning criterion suggested at the beginning of
Section 6.3, then at the termination of alpha-beta G’ will contain only a largest-merit solution

tree of G.
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7. Concluding Remarks

This paper has presented a general B&B procedure for searching’ AND/OR graphs, and
described how several procedures for searching AND/OR graphs and game trees may be viewed as
instances of the general B&B formulation. This study reveals that a number of seemingly
disparate search procedures are in fact quite similar. The essential relationships among the pro-

cedures are summarized helow.

As shown in the preceding pages, AO" and B* are very similar procedures. Both do best-

first searches of AND/OR graphs. The only significant!? differences are:

(1) AO” searches graphs having additive cost functions and B* searches graphs having minimiz-
ing cost functions. But these are both straightforward special cases of the monotone cost

functions used for B&B.

(2) Since the goal of B* is merely to find the immediate successor of the root in a largest-merit

solution tree (rather than the entire solution tree), B* has a “nonstandard” termination cri-

terion and the “‘prove-best’’ and the “‘disprove-rest’” strategies for selecting nodes for expan-

sion.

Furthermore, as pointed out in Sections 5 and 6, both of these procedures {as well as variations of

AQ* given in {2]) will work as long as the cost functions are monotone. For example, B® could be

used for game tree search even if the cost function is the one used in [23].

AO* and SSS* are both best-first procedures. The only significant difference between them
is that AO®* assumes more problem-specific knowledge in terms of informed bounds. This
knowledge is encoded into the heuristic function h (in our formulation, this is same as thf: lower
bound function b) which the user supplies to' AO*. If h(n} is set identically equal to 0 for all n,
then the operations of AO* and SSS* are almost exactly the same, except for the different tie-

breaking rules used when there are more than one best-bound partial trees available.

12 Another difference between AQO* and game tree search procedures is that AO* searches for o solution of lowest
cost whereas the other procedures search for solutions of highest merit.
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SSS* and alpha-beta both use the same amount of problem-specific knowledge, but they use
different node selection strategies for branching. SSS* uses a best-first selection strategy, but
alpha-beta uses a preorder expansion of the game tree nodes (wﬁich amounts to a kind of depth-
first strategy). Thus the B&B formulation of alpha-beta differs from the B&B formulation of SSS*
primarily in the SELECT function. This shows that these two seemingly very different algorithms
are in fact very close cousins. Considering that alpha-beta has been known for over two decades,

it is noteworthy that SSS* was discovered only recently in the context not of game playing but of

a waveform parsing system (25], [27].

If AO® and its variations given in [2] are viewed as B&B, their correctness proofs become
simpler, and the criteria governing their correctness become clearer (see Section 5). For exampie,
in [22] it was incorrectly thought that AO* would work for general cost functions (i.e., including
non-monotone cost functions). Our developmgnt of the general B&B formulation for AND/OR
graph searéh makes it clear that the monotonicity of the cost function is crucial to the correctness
of the general procedure. Variations of AO* given in (2] can be viewed as B&E procedures using

lower bound functions which are slightly different than the one used by AO*. This makes it easier

to see that they are correct and that they work for monotone cost functions.

The development of the general top-down procedure presented in this paper was inspired by
a unified approach to search procedure developed in [10], where it was shown that a large number
of procedures for searching AND/OR graphs and state space graphs can be viewed either as top-
down or bottom-up. In addition to the general top-down procedure presented here, we have
developed a general bottom-up procedure for searching AND/OR graphs [11] which subsumes
most of the bottom-up procedures for searching AND/OR graphs and the dynamic programming.

procedures for solving discrete deterministic optimization problems.
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APPENDIX: DEFINITIONS

¢(n) = cost of (solving the problem denoted by) node n. .

f(T) = cost of solution tree T.

¢*(n) = min{f(T) | T is rooted at n).

b(n)

= lower bound on ¢*(n).

f,{T") = lower bound on the costs of solution trees represented by the partial tree T".

b*(n) = min{f(T’) | T" is rooted at n and represented by the partial graph G’}. G’ is omitted if

unambiguously determined from the contexs.

S_TREES(T") = the set of solution trees represented by the partial tree T°.

P_TREES(G’) = the set of partial trees represented by the i)artial graph G’.

trees(n) = the set of solution trees containing the node n.
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' Cost functions associated with
. the reductions of Q:

by (xy:%,) = Xp3

boo(X, %, ) = max{‘(l, X, }
boa(Xy) r,) = min{x,, x,,} + 2;
tpl(‘{l"(“) = \ =+ \‘3

Terminal cost function c:
¢(9) = 1; ¢(10) = 3;
¢ 113 = 25; ¢(12) = 2;

¢(13) = 3.

(a)

Fig 1 {a) An AND/OR graph G and the associated cost Ffunctions. Texrminal
' nodes of G are denoted by double circles.
(b) Computation of £(T) of a solution tree T of G.



Cost functions associated with
the hyperares of G:

borlXpXy) = X + xy;
ta{x,) = 2x;
Lps(x‘,xg) = min{x X, };
tp_‘(xl,x:_,) =¥ - X,

Terminal cost funetion c:
cla) = 10; ¢{b) = 2.

Iig. Ha). An And/Or graph G, and the associated cost functions.

(::;::> £(T) = Cp(S) = 448 = 12

Cp{A)=min(4,10)
=4

CT(S)=2*2=&

ijch(b)=2

Fig. 1{b). Computation of f(T) of a solution tree T of G.

Goal node

Source node

(a)

Fig. 2{a). A state space graph S.

Fig. 2{b}. A regular And/Or graph G equivalent to the state space graph S.
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Fig. 2" An AND/OR tree G. AND nodes are represented by square nodes,
and OR ncodes are represented by circle nodes. Hatch marks show

a solution tree T of G.




Tl

(b)

Fig. 3 (a) A partial tree T' of the AND/CR graph G of Fig. 1.

(b) The solution trees represented by T'.



Gl

(a)

{b)
Fig. 4 (a) A partial graph G' of the AND/OR graph G of Fig. 1.

(b) The partial trees represented by G'.



Cost functions associated with
@ the reductions of G:

tpl(xl,xg) == X, - X}

Terminal cost function c:
¢(6) = 20; ¢(7) = 15;
¢(10) = 10.

Lower bound function b:

b(1) = 0; b(2) = 3;

b(3) = 10; b(4) = 15;
b(5) = 0; b(8) = 20;
b(7) = 15.

Fig. 5 &An AND/OR Graph with associated cost functions and: lower bounds.
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