An Intelligent Backtracking Algorithm
for Parallel Execution of Logic Programs

Yow-Jian Lin
Vipin Kumar
Clement Leung

Al TR86-22 March 1988

This work was supported by Army Research Office grant #DAAG29-84-K-0050 to the Artificial Intelligence Laboratory at the
University of Texas at Austin.

An Intelligent Backtracking Algorithm for Parallel
Execution of Logic Programs

Yow-Jian Lin
Vipin Kumar
Clement Leung

Artificial Intelligence Laboratory

Department of Computer Sciences

The University of Texas at Austin
Austin, Texas 78712

ABSTRACT

In this paper we present a simple but efficient backtracking scheme
which works when AND-parallelism is exploited in a logic program. The
scheme is well suited for implementation on a parallel hardware. We show
that the backtracking scheme presented by Conery & Kibler in the context
of AND/OR process model is incorrect, i.e., in some cases it fails to find a
solution when a solution exists. Even if no AND-parallelism is exploited
(i.e., all literals are solved sequentially), our scheme is more efficient than
the ”naive” depth-first backtracking strategy used by Prolog because our
scheme makes use of the dependencies between literals in a clause. Chang
& Despain have recently presented a backtracking scheme which also
makes use of the dependencies between literals. We show that our scheme
is more efficient than their scheme in the sense that it does less backtrack-
ing.

This work was supported by Army Research Office grant #DAAG29-84-K-0060 to the Artificial Intelligence La-
boratory at the University of Texas at Austin.

An Intelligent Backtracking Algorithm for Parallel
Execution of Logic Programs

Yow-Jian Lin
Vipin Kumar
Clement Leung

Artificial Intelligence Laboratory
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

1. Introduction

AND-parallelism in logic programs refers to executing more than one literal of a
clause at the same time. When the literals in a clause don’t share any uninstantiated
variable, the literals can be solved independently. But if more than one literal share
uninstantiated variables, then solving these literals independently could lead to excessive
computation. Various techniques have been developed to exploit AND-parallelism when
literals in a clause are dependent (i.e., they share uninstantiated variables) [2], [5], [7], [8].
One technique, introduced by Conery & Kibler in the context of AND/OR process model, .
is to execute only one of the dependent literals to find a ground value for the shared vari-
able, and then execute the remaining literals in parallel if they do not share any other -
variable [3], [5]. Due to the nondeterministic nature of logic programs, a literal may fail
because the variable bindings it has received from other literals are not satisfactory. In
this case, we have to re-solve some literals and generate new bindings. For example, in
solving a goal statement such as

— p(X), a(Y), 1(X,Y).
if 7(X,Y) does not satisfy the bindings received from both p(X) and q(Y), then either p(X)
or q(Y) will have to generate a new binding. Conery & Kibler have presented a back-
tracking scheme, called ”backward execution algorithm” in [5], for deciding which literals
to re-solve in case some literals fail. We found that their backward execution algorithm
1s incorrect, i.e., in some cases, it fails to find a solution when a solution exists. In this
paper we present a simple but efficient backtracking scheme, and prove that it is correct.
Even if no AND-parallelism is exploited (i.e., all literals are solved sequentially), our
scheme is more efficient than the "naive” depth-first backtracking strategy used by Pro-
log because our scheme makes use of the dependencies between literals in a clause.
Chang & Despain have recently presented a backtracking scheme which also makes use of
the dependencies between literals [2]. Compared to their scheme, our scheme is more
efficient in the sense that it does less backtracking.

2. Background and Definitions

The discussion in this paper is based upon an abstract model similar to the
AND/OR process of Conery & Kibler (3|, [5]. We assume that we are given a clause
body (with some variables instantiated because of unification on the head). If more than
one literal in the clause body share an uninstantiated variable v, then we designate one of
these literals as the generator of v, and the remaining literals as the consumers of v. A

-2.

literal can be the generator of some variables, and at the same time, it can be a consumer
of some other variables.

The generator-consumer relationship between the literals of a clause can be depicted
via a data dependency graph D. D is a directed graph in which a literal L is depicted as
an immediate successor of a literal M if for some variable v, M is the generator of v and
L is a consumer of v. We use the term ”X is a D-predecessor of Y” to mean that "X is a
predecessor of Y in D”. Similarly, the term "X is a D-successor of Y” means that X is a
successor of Y in D", Note that if the execution of M does st bind v to a ground term,
then the successors of M will have to be reordered such that one of them is the generator
of variables in the new binding, and the remaining ones are consumer. To simplify the
discussion in this paper we assume that the execution of M always binds v to a ground
term (so that all consumers of v can be executed in parallel).

We also construct a linear ordering for the literals in the clause body. The reason
for this wil] become clear in section 5. There is no restriction on the relative order of any
two literals except that a generator must come before all the literals that consume the
variable bindings it generates. One way to construct the ordering is to traverse the data
dependency graph D in a breadth-first manner. From now on P, is used to refer to the i-
th literal in the linear ordering.

To exploit AND-parallelism, each literal is executed by a different process. The pro-
cess executing a literal can be in one of the three modes: GATHER, EXECUTION and
FINISHED. While in the EXECUTION mode, a process can be in one of the two states:
SOLVED and UNSOLVED. For brevity, we will often use ”a literal L” to mean that
"the process corresponding to L”. Literals (i.e., the corresponding processes) can com-
municate with each other via exchanging messages.

Each literal I also maintains a list of literals called B-list (denoted as B-list(L))
which is used to find a possible backtrack point when the literal fails. The literals on
each B-list are sorted according to the linear ordering, with literals which are earlier in
the linear ordering occurring later on the B-list.

The following ”forward execution” algorithm determines the state, mode and mes-
sage pattern of the processes.

3. The Forward Execution Algorithm

For all literals L such that L has no predecessors in the data dependency graph D,
start L in the UNSOLVED state of the EXECUTION mode. Start the remaining literals
in the GATHER mode. Literals in the UNSOLVED state of the EXECUTION mode can
start executing. ‘

When a literal L, running in the UNSOLVED state of the EXECUTION mode, finds
a combination of values for the variables it is generating, it then goes from the
UNSOLVED state to the SOLVED state, and sends the values of the generated variables
to the immediate D-successors. If L has no successors in D, then it goes to the FIN-
ISHED mode. In either case, L suspends its executionl.

1 Note that L could have continued to execute to find its next solution. This is called OR-
parallelism by Conery (3], 4], [5]. To simplify discussion in this paper we assume that no OR-
parallelism is being exploited. Our backward execution scheme works even when OR-parallelism is
sxploited (see Lin’s thesis [9] for details).

-3-

If a literal L is in GATHER mode and receives values for all the variables it is con-
suming, then it goes to the UNSOLVED state of the EXECUTION mode and its B-list is
initialized to the list of its immediate D-predecessors. At this point we can start execut-
ing L. :

If a literal has successors in D and all of its immediate D-successors are in the FIN-
ISHED mode, then it goes to the FINISHED mode. If all the literals of the clause are in
the FINISHED mode, then the execution of the clause terminates. Figure 1 shows the
forward execution algorithm in a graphical form.

If a literal P, fails (i.e., when P, can find no more solutions while executing in the

UNSOLVED state of the EXECUTION mode), then the following ”backward execution”
algorithm is executed.

4. The Backward Execution Algorithm

If the B-list of P, is a null list, then the execution of the clause fails. If the B-list of
P, is a nonempty list [PJ- I'Y], then backtracking is done to P; by performing the following
steps.

1.~ Cancel all the successors of P; in the data dependency graph D.

Reset every generator P,, where k¥ >3, and P, has not been canceled in Step 1.
Merge [Y] to the B-list of P;. Remove duplicate literals from the new B-list of P,.
Perform redo operation on P;.

If a literal M is in the FINISHED mode and any of its D-successors is no longer in
the FINISHED mode (due to steps 1 and 2), then M is moved to the SOLVED state
of the EXECUTION mode.

AN S

The three operations, reset, cancel and redo are explained in the following.

Reset P
1. Set the B-list of P, to a list containing only its immediate D-predecessors.

2. Cancel all the descendants of P, in the data dependency graph D (if they have not
already been canceled).

3. Start the execution of P, from the beginning, i.e., as if it has just made the transi-
tion from the GATHER mode to the UNSOLVED state of the EXECUTION mode.

Cancel P, ‘
1. Switch P, to the GATHER mode.

Redo P,

1. Change the state of P, to "UNSOLVED”, so that P, can resume execution to find a
new set of values for the variables it generates.

See Appendix B for an illustration of the algorithm. Note that while presenting the
forward and backward execution algorithms, we have not specified the actual mechanism
for transferring information between various literals (i.e., processes representing the
literals). This has to be done carefully to ensure that messages do not get out of

-4-

synchronization. The actual mechanism for message transfer is described in detail in
Lin’s thesis [9}. To simplify the discussion in this paper, we assume that information
transfer between the literals can be done instantaneously. We also assume that any two
literals do not fail exactly at the same time.

The forward and backward execution algorithms presented so far would only find
one solution for a given clause. In practice, we may need more than one solution for a
clause. To find the next solution of a given clause, we simply send a fail message from a
dummy literal to the rightmost generator of the clause in the linear order (i.e., P, such
that m = max{k | P, is a generator}). This would restart the execution of the clause.
If there are no more solutions, then the execution will terminate with failure.” Otherwise,
a new solution will be found when all the literals of the clause are in the FINISHED
mode. Note that the dummy literal remains invisible at all times except when a new
solution to the clause is needed.

5. The Correctness Proof of our Backward Execution Algorithm

By correctness we mean that if there are solutions for a given clause body, the back-
ward execution algorithm should guarantee that every solution can be generated eventu-
ally. The order in which these solutions are generated is unimportant.

At the time a literal P, fails, let X; = {L{ L is a D-predecessor of P,} U {L} L is a
D-predecessor of M and the failure of M has directly or indirectly? caused a redo opera-
tion on F; since P; was most recently changed from the GATHER mode to the EXECU-
TION mode}. Clearly, the only way to correct the current failure of P, is to re-solve
some literals in X,. But it is not clear beforehand as to which literals in X; should be re-
solved to make P, succeed again. To ensure that all possible combinations of the values
generated by the literals in X can be tried, we make use of the linear ordering on the
literals defined in section 2. If P, fails, then we always backtrack to a literal P, such
that m = max{k| P, can possibly cure the failure of P,}. This is reminiscent of the
nested loop model discussed in [5]. The following lemma says that {P, | B, € X, and
m <i} is precisely the set of literals which can possibly cure the failure of P,.

Lemma 1. If F, fails, then P, can possibly cure the failure of P, if and only if P, € X,
and m <i.

Proof: See Appendix A.

Let ¢ = max{k| P, € X; and k <¢}. From Lemma 1 and the preceding discussion,
it is clear that the failure of F, should result in backtracking to P,;. The following lem-
mas help us prove that our algorithm does precisely that.

Let S; = {L{ L is an immediate D-predecessor of .} U {L| L is an immediate D-
predecessor of M and the failure of M has directly or indirectly caused a redo operation
on F; since P; was most recently changed from the GATHER mode to the EXECUTION

mode}. Lemma 2 says that bi is equal to max{k |P, € S; and k<7 }.

Lemma 2, b = max{k|P, € 5; and k<1 }.

2 Failure of M inditectly causes a redo operation on F; if failure of L directly causes a redo opera-

tion on P, and the failure of M directly or indirectly causes a redo operation on L.

Proof: See Appendix A.

Lemma 3. At the time P, fails, {P;| P; € B-list(F,)} = {F;| P; € S; and j<i}.

Proof: See Appendix A.

Note that the B-list of each literal is always ordered such that if B-list(P,) =
[P;1Y], then j = max{k| P, € B-list(P;)}. Hence, from Lemma 2 and Lemma 3 it fol-
lows that in our algorithm, the failure of P, causes backtracking to F,;.

6. Intelligent Backtracking without AND parallelism

Even in the absence of parallel hardware, our backtrack algorithm is useful because
it is potentially much more efficient than the "naive” backtracking strategy used by Pro-
log. If only one processor is available, then we can execute P, such that { = min{;] P;is
in the UNSOLVED state of the EXECUTION mode}. In this case, the work done by our
algorithm (ignoring the communication overhead) is a subset of the work done by the
backtracking strategy of Prolog. This happens because, if a literal P, fails, then our algo-
rithm causes backtracking to P;, whereas Prolog backtracks to all the literals P; such
that bi <j <7 before backtracking to P,;. The discussion in section 5 makes it clear that
backtracking to any literal P; such that b <j <i is guaranteed to be wasteful.

7. Related Work

7.1. Conery & Kibler’s Backward Execution Algorithm

The backward execution algorithm presented by Conery & Kibler [3], 5] is incorrect
because, in some cases, it does not find a solution when a solution exists. The problem
with their algorithm is that it uses only one failure context list to record the history of
failure. When a new process is created for a failed literal, that literal is removed from
the failure context, and the history of the failure is lost. We run Conery’s algorithm on
the example given in Appendix B to illustrate out point.

Assume that we are solving Py(A,B,C) with the following set of clauses.

P{(AB,C) — P(A), PAAB), PA,C), P,(C), PBC).
P(al). '

P{al, bl).

Pyal, b2).

P,(al, ci).

P,al, ¢2).

Pcl).

P,(bl, c2).

P(b2, cl).

The data dependency graph for solving Py(A,B,C) is in Figure 2. In this example we use
the same notation as Conery used in [5]. #N denotes the literal Py, and {N denotes the

OR process created to solve Py.

Suppose that #1, #2, and #3 have succeeded. After the success messages arrived,
the status of the AND process is: subgoals #1, #2, and #3 solved; subgoals #4 and #5
pending; failure context empty. The current bindings are al/A, bl1/B, ¢1/C.

After AND process received fail message from 5. The failure context is set to [#5],
which is the prefix of the redo list [#5, #3, #2, #1, head]. A redo message is sent to 13,
and the actions taken for each subgoals to the right of #3 in the linear ordering are:

F#4: cauceled.
#5: already terminated.
The current bindings are al/A, bl/B.

The success from 13 arrived again. New processes for #4 and #5 are created. Since
there is a new process for #5, it is removed from the failure context. The state of the
AND process: subgoals #1, #2, and #3 solved; subgoals #4 and #5 pending; failure con-
text empty. The current bindings are al/A, b1/B, ¢2/C.

This time AND process receives fail message from 4. The failure context is set to
[#4], which is the prefix of the redo list [#4, #3, #1, head]. A redo message is sent to
13 again, and the remaining subgoals in the linear ordering are handled as follows: '
#4: already terminated.

‘#5: canceled.
The current bindings are al/A, bl/B.

#3 fails this time. It sends back a fail message. After receiving fail message from
13, AND process sets the failure context to [#4, #3], which is the prefix of the redo list
[#4, #3, #1, head|. This time a redo message is sent to {1, and the actions taken for
each remaining subgoals are:
#32: canceled.
#3: already terminated.
#4: already terminated.
#5: already terminated.
The current binding is none.

Since there is only one solution for P;, AND process will receive fail message from
11. It then sets the failure context to [#4, #3, #1], which is the prefix of the redo list
[#4, #3, #1, head]. The suffix is [head|, and the AND process fails. However a solution
al/A, b2/B, and c1/C does exist for P,. The reason Conery’s algorithm cannot find this
is because part of the history of failure for #3 (i.e., the failure of #5) was removed from
the failure context and lost.

7.2. Semi-intelligent Backtracking of Chang & Despain

Chang and Despain have recently presented a semi-intelligent backtracking scheme
[2]. Their scheme is similar to our scheme except that backtrack point at each literal is
statically determined. In their scheme, each literal is involved in either type-I backtrack-
ing or type-H backtracking. Type—I backtracking occurs when a literal has a failure level
of O (failure level is defined in the proof of Lemma 3 in Appendix A). In this case, the
two schemes backtrack exactly to the same literal.

When a literal is involved in type-II backtracking, then it backtracks to P; such
that ; = max{m | P, is a D-predecessor of any literal P, which may cause the failure of
P, and m <i<k}. Since the analysis is done for the worst case, the set they use to
choose P; is a superset of X; defined in the section 5. Therefore bi < j<i. If bi <7, then

-7-

P; would keep failing for all the new values generated by P; for exactly the same reasons
for which it failed before. And hence backtracking to P; is guaranteed to be wasteful.

7.3. The Intelligent Backtracking Scheme of Bruynooghe, Pereira & Porto

Bruynooghe, Pereira, Porto, and Cox proposed an Intelligent Backtracking scheme
which involves more complicated run-time data structures (1], [10], (6] than used by our
scheme. In order to achieve intelligent backtracking in their scheme, it is necessary to
keep track of a set of candidate goals for backtracking upon failure of a goal G. In their
scheme, this set consists of the ancestor (parent is sufficient) of G, the modifying goals for
G, and the legacy set of G.

Since their method is based on ”deduction tree”, backtracking to parent simply
means re-solving the failed goal with different alternatives, which is taken care of
automatically in our algorithm when we try to solve a literal. The legacy set is also
passed around in our algorithm when backtrack operation is performed. The only
difference between our algorithm and theirs is the way of deciding the set of modifying
goals. In our algorithm, when a goal fails, each of its immediate D-predecessors in the
data dependency graph is a modifying goal. But in their scheme, deciding a modifying
goal involves a lot of run-time analysis on things such as where the unification conflicts
happened, which literal is strongly deterministic, etec. It also needs a lot of run-time
bookkeeping for information such as which literal binds which variable. Although the
run-time analysis and bookkeeping may help their scheme to reduce the number of modi-
fying goals, the overhead in terms of both time and space can be excessive.

8. Concluding Remarks

We have presented a backtracking scheme which works when AND-parallelism is
exploited in a' logic program. The scheme is well suited for implementation on a parallel
hardware. Since, the scheme makes use of the dependencies between the literals in a
clause, it is potentially useful (as a replacement for the naive backtracking strategy of
Prolog) even if no parallel hardware is available to exploit AND-parallelism. In the
sequential case, our scheme avoids unnecessary backtracking at the expense of the over-
head associated with the transfer of messages between literals. This overhead is much
smaller than the overhead associated with the intelligent backtracking scheme of Porto,
Pereira and Bruynooghe.

Appendix A

Lemma 1. If P, fails, then P, can possibly cure the failure of P, if and only if P, € X,
and m <i.

Proof: The if part is trivial. Let us focus on the other direction. Assume that literals are
divided into two sets. Set S, consists of every literal which has directly or indirectly
caused the failure of P,; and set S, consists of the rest of the literals. If P, is not a
member of X, then re-solving F,, will not affect the success or failure of any literal in S,.
Therefore P; would keep failing for exactly the same reasons for which literals in S, have

caused its failure before. Hence P,, must be a member of X,.

Assume that m >i. Then P, is not an ancestor of F;. Let F, be an ancestor of P,
where the failure of P; has directly or indirectly caused the failure of F;. In order to pos-
sibly cure the failure of P, P, should be able to prevent P; from causing the failure of P,.
However F,, should have failed to do so, otherwise P; would not have caused the failure
of P,.

Lemma 2. b = max{k|P, € S; and k <i}.

Proof: First we prove that P, € S;. By definition, the set S is the union of the immedi-
ate D-predecessors of F; and those literals which are immediate D-predecessors of some P;
such P; has directly or indirectly caused the failure of P;. Suppose P,; is not an immedi-
ate D-predecessor of any such P;, and F,; is not an immediate D-predecessor of P;. Then
since P; € X;, P, must be an ancestor of some P, which is either an immediate D-
predecessor of a certain P, or an immediate D-predecessor of P;. Therefore P, can possi-
bly cure the failure of P,. Hence by lemma 1, P, € X, and m <i. However, bi <m
because P, is an ancestor of F,. Thus, there is a P,, € X, such that b <m <, which is
contrary to the definition of bi.

Now we prove that b = max{k|P, € S, and k<i}. From the definition of X, and
S;, it follows that {P,IP, € §; and k<i} C {P,IP, € X, and k<i}. Hence bi =
max{k| P, € X; and k<i} > max{k| P, € S; and k<i}. But P; € S; and bi <, there-
fore b < max{k| P, € 5; and k <7}. It follows that b = max{k |P, € S; and k <% }.

Lemma 3. At the time P, fails, {P;| P; € B-list(F,)} = {P;| P; € 5; and j<i}.
Proof: By induction on the failure level of the failed literal. The failure level of a literal
L is defined as follows.

1. If no redo operations have been done on L since the most recent instant when L was
changed from the GATHER mode to the EXECUTION mode, then the failure level
of L==0.

2. Otherwise, the failure level of L = n+1, where n = max{f(Q)| failure of Q has
directly invoked a redo operation on L since L started executing most recently, and
{(Q) was the failure level of Q at the time Q failed}.

Base Case: Failure level of P, = 0.

-9-

Since no redo operation has been done on F;, {F;| P; € B-list(F;)} = S; = {P;| P,
is an immediate D-predecessor of F;}. Furthermore each 7 is smaller than ¢, as P, is a
predecessor of F;.

Induction Step: Suppose the theorem holds for every failed literal whose failure level is
less than or equal to r, and let P, is a failed literal whose failure level is r+1.

From the time P, was most recently transferred to the EXECUTION mode, assume

that the failure of F,,...,Py,...,P, have directly invoked redo operations on P;,. Note
~ that each P, (1 < k < n) is either an immediate D-successor of P, or a predecessor of a
successor of F; such that & > ¢. By definition S is the union of Sk, tk==11 to in, and
the set of immediate D-predecessors of P,. Therefore any literal P; in {P | P; € S and
j<i} should be either an immediate D-predecessor of P, or in S, for some 1 < k < n.
If P; is an immediate D-predecessor of F;, then P; is surer in B-list(P;). If P, is not an
immediate D- predecessor P;, then (because i<t <zk) P; should appear in B-hst() by
the induction hypothesis. Hence, it would have been merged into B-list(”,) by our back-
ward execution algorithm while handhng the failure of P,. Therefore B-list(P,) contains
every literal in {P;| P; € 5; and j<i}.

If P, is in B-list(F,), then either P, is an immediate D-predecessor of P, or P, is in
B-list(P, ,‘) for some ik (and was merged into B-list(P;) after the failure of P,). If P, is an
immediate D-predecessor of F;, then clearly P,, € S; and m <i. Otherwise, P, is in B-
list(P,), and is also in S, (and therefore in S‘-) by the induction hypothesis. Further-
more, it must be true that m <4, as otherwise in our backward execution algorithm the
failure of P, would have caused a redo operation on P, instead of P,. This proves that
{P;1 P; € §; and j<i} contains every literal in B-list(P,).

-10 -

Appendix B

The following is an example of how our backward execution algorithm works.
Assume that we are solving Py(A,B,C) with the following set of clauses.

PD(A,B,C) - PI(A): P2(A)B): Pa(A:C)a P&(C)J PE(B,C)
Py(al).

P,{al, bl).

P,(al, b2).

Py(al, cl).

Py(al, c2).

P,(c1).

P(bl, c2)..

P(b2, cl).

The data dependency graph for solving P{A,B,C) is in Figure 2.

Un finished-successors of P, represents the set of its immediate D-successors which
are not in the FINISHED mode. It becomes non-empty only when P, sends out generated
values. #N denotes subgoal Py and TN denotes the process created to solve Py,.

<1>#1, #2, #3, and #4 have succeeded. Process for #5 is still executing.
Current bindings are al /A, b1/B, ¢1/C.

Literal Mode Status Unfinished-successors B-list
#1 execution solved (#2, #3) 0
#2 execution solved (#5) (#1)
#3 execution solved (#5) (#1)
#4 finished - () (#3)
#5 execution umsolved {) (#3, #2)

<2>F#5 fails. 13 is sent a redo message. 14 and 15 are canceled.
Current bindings are al/A, b1/B.

Literal Mode Status Unfinished-successors B-list
#1 execution solved (#2, #3) 0
#2 execution solved (#5) (#1)
#3 execution unsolved () (#2, #1)
#4 gather - () 0
#5 gather - 0 0

<(3>>#3 succeeds again. Both P, and P start executing.

11 -

Current bindings are al/A, bl/B, ¢2/C.

Literal Mode Status Unfinished-successors B-list
#1 execution solved (#2, #3) 0
#2 execution solved (#5) (#1)
#3 execution solved (#4, #5) (#2, #1)
#4 execution unsolved 7 0 (#3)
#5 execution unsolved 0 (#3, #2)

< 4>+#4 fails. 13 is sent another redo. T 4 and 15 are canceled.
Current bindings are al/A, bl1/B.

Literal Mode Status Unfinished-successors B-list
#1 execution solved (#2, #3) 0
#2 execution solved {(#5) (#1)
#3 execution unsolved 0 (#2, #1)
#4 gather - (0 0
#5 gather - () 0

< 5>#3 can not generate any new binding and therefore it fails. 12 is sent a redo mes-
sage. 13 is reset. |4 and 15 are already canceled.

Conery’s backward execution algorithm will incorrectly decide to send 11 a redo
message in this case, as we have shown in section 7.1.

Current bindings are al/A.

Literal Mode Status Unfinished-successors B-list
#1 execution solved (#2, #3) ()
#2 execution unsolved () (#1)
#3 execution unsolved () (#1)
#4 gather - () 0
#5 gather - 0 0

< B>#2 succeeds and generates a new value for variable B. #3 also succeeds and gen-
erates a value for variable C which is the first value it generated before. Both 4
and 15 can start executing.

Current bindings are al/A, b2/B, ¢1/C.

-12-

Literal Mode Status Unfinished-successors B-list
#1 execution solved (#2, #3) 0
#2 execution solved (#5) (#1)
#3 execution solved (#£4, #5) (#1)
#4 execution unsolved () (#3)
#5 execution unsolved () (#3, #2)

< 7>This time both #4 and #5 succeed.
The final bindings are al/A, b2/B, ¢1/C.

Literal Mode Status Unfinished-successors B-list
#1 finished - {) 0
#2 finished - 0 (#1)
#3 finished - 0 (#1)
#4 finished - 0 (#3)
#5 finished - 0 (#3, #2)

-13 -

References

(1] M. Bruynooghe and L. M. Pereira, Deduction Revision by Intelli-
gent Backtracking, pp. 194-215 in Implementations of Prolog, ed. J.-A.
Campbell, Ellis Horwood Limited, 1984.

[2] J.-H. Chang and A.M. Despain, Semi-Intelligent Backtracking of
Prolog Based on a Static Data Dependency Analysis, Proceedings of
IEEE Symposium on Logic Programming, pp. 10-21, August, 1985,

[3] J. 8. Conery, The AND/OR Process Model for Parallel Interpreta-
tion of Logic Programs, Ph.D. Thesis, (Technical Report 204}, Irvine,
California, University of California, June, 1983.

(4] J. 8. Conery and D. F. Kibler, Paralle! Interpretation of Logic Pro-
grams, FProceedings of the Conference on Functional Programming

Languages and Computer Architecture, pp. 163-170, ACM, October,
1981.

[5] J.S. Conery and D.F. Kibler, AND Parallelism and Nondeterminism
in Logic Programs, New Generation Computing 3(1985) pp. 43-70,
OHMSHA,LTD. and Springer-Verlag, 1985.

{6 P. T. Cox, Finding Backtrack Points for Intelligent Backtracking,
pp. 216-233 in Implementations of Prolog, ed. J. A. Campbell, Ellis
Horwood Limited, 1984. '

7] L.V. Kale and D.S. Warren, A Class of Architectures for a Prolog
Machine, Proceeding of the Second International Logic Programming
Con ference, Uppsala, Sweden, pp. 171-182, July, 1984.

[8] S. Kasif and J. Minker, The Intelligent Channel: A Scheme for
Result Sharing in Logic Programs, Proceedings of the 9th IJCAI, Los
Angeles, pp. 29-31, August, 1985,

(9] Y.J. Lin, A Parallel Implementation of Logic Programs, Ph.D. disser-
tation, Austin, Texas, The University of Texas at Austin, in
preparation.

[10] L. M. Pereira and A. Porto, Selective Backtracking, pp. 107-114 in

Logic Programmaing, ed. S.-A. Tarnlund, Academic Press, 1982,

INITIALIZE

has D-predecessors / has no D-predecessor

EXECUTION

GATHER > {(UNSOLVED)

received vaiues for all the

variables it consumes succeeded and has D-successors
[send generated values to its
immediate D-successors]

succeeded and has no D-successor

4

FINISHED l== \EXECUT!ON

(SOLVED)

all the immediate D-successors
are in the FINISHED mode

Figure 1: Graphical form of the Forward Execution Algorithm

Figure 2: Data dependency graph of the example

