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Abstract

This report explores the influences of hardware on verifiable secure system design and envisions a mutually
beneficial collaboration between the hardware verification and security communities.  Hardware
verification techniques offer the possibility of significantly enhanced assurance for secure systems at the
lowest levels of system design and implementation.  Security can provide an important and challenging
applications arena in which hardware-oriented formal approaches can be tried and refined. We discuss
some of the important concepts and issues that arise in trying to apply formal techniques to secure systems
at the hardware level: the meaning of ‘‘security’’ in the context of hardware; the way to identify
appropriate security properties at each level of system description, including the hardware level; and, a
number of specific concerns related to hardware and its use in secure system development.
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1. Introduction

The application of formal methods has been firmly entrenched as an approach to enhancing system security
at least since the formulation of the A1 and beyond-A1 level requirements of the Trusted Computer
Systems Evaluation Criteria (TCSEC) [99]. However, the formal analysis applied in secure system
development to date has typically been carried out at rather high level of abstraction, leading some to
question its usefulness and cost effectiveness in finding and eliminating security flaws in implemented
systems. Some current work in verification [9] suggests that techniques and tools are becoming available
for formal analysis at a level much closer to the actual implementation of a secure system. Formal analysis
is addressing system issues that were previously intractable; distributed systems [28], real time
systems [68], and particularly hardware [29, 79, 127] are coming within the scope of formal techniques.
Future secure system development efforts could profitably apply these emerging technologies to further
enhance system security.

Hardware is an obvious area in which to apply the latest formal analysis techniques.  The selection of an
adequate hardware base is obviously crucial in secure system development.  It must be possible to build the
protections mandated by the security model on top of the mechanisms provided by the machine.  It is
unlikely that the protection structures of the machine will match so closely the needs of the model as to be
totally sufficient.  But it is crucial that they not be incompatible with the requirements of the model.
Consequently, attaining the highest possible assurance of security necessarily involves scrutinizing the
hardware base upon which the secure system is built.

The correct functioning of the hardware is also crucial to the behavior of secure systems built on top of that
hardware. Failures of hardware can seriously impact security.  For example, one study [93] of the IBM
360/50 found ‘‘a total of 99 single-failure hazards [...] in the storage protection hardware and three [...] in
the Program/Supervisor state logic.  Any of these hazards could compromise the system security without
causing a system crash’’ [130].

We envision a collaboration between the hardware verification and security communities that can be
mutually beneficial.  Hardware verification techniques offer the possibility of significantly enhanced
assurance for secure systems at the lowest levels of system design and implementation.  Security can
provide an important and challenging applications arena in which hardware-oriented formal approaches can
be tried and refined.  Attaining assurance of correctness at the hardware level is an important but largely
neglected area of concern in secure systems research. A number of studies have concentrated on the
hardware security features of particular machines [26, 27, 48, 50, 62, 104, 118, 122, 129, 135]; several
others [47, 49, 50, 64, 77, 78, 93] have focused on the general relationship between hardware and security.
But almost no work has been done on the use of formal verification techniques to enhance the security of
the hardware support for secure systems.

This report discusses some of the important concepts and issues that arise in trying to apply formal
techniques to secure systems at the hardware level. In the following section we discuss the meaning of
‘‘security’’ in the context of hardware and the way in which we can identify appropriate security properties
at each level of system description, including the hardware level.  Section 3 describes a number of specific
concerns related to hardware and its use in secure system development. The final section contains some
conclusions about the use of formal approaches to enhancing system security at the hardware level of
system design.

Many of the issues that we discuss in this paper deal with the use of general-purpose hardware used in the
construction of secure systems. Various other issues arise when dealing with custom, application-specific
hardware. For these, our discussions of security models, memory management, process support will not
generally apply.  The specific issues which do arise for these types are hardware are beyond the scope of
this discussion.
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2. Defining Security for Hardware

This study is principally concerned with the following two questions.

• How can hardware help or hinder system security?

• Can formal methods be usefully employed at the hardware level to enhance system security?
To address these, we must first consider two more basic questions.

• What does it mean for hardware to be secure?

• Is it even meaningful to refer to secure hardware?
These are the questions we address in this section.

Security is a property of an information system as a whole, rather than of particular components of such a
system. Portions of the system may have specific properties whose maintenance is critical to system
security; these portions may then be described as security-relevant or security-critical. However, it is the
system as a whole that is either secure or un-secure.  Consequently, it is somewhat misleading to discuss
security properties of hardware, unless, of course, the hardware in question constitutes a complete
information system.  Still, it is commonplace to refer to the security properties of a system component and
we will use that terminology unless there is any danger of confusion. Keep in mind that we are referring to
those properties of the system components that are required to support system security, whether or not they
would be naturally identified as ‘‘security properties’’ in any obvious sense.  We discuss this issue further
in the following subsection.  In Section 2.2 we consider the question of how to identify properties of
hardware supportive of security and how to construct a specification that captures these properties. Section
2.3 discusses the role of formal techniques in assuring the security of systems.  Finally, in Section 2.4 we
talk about hardware verification specifically and how it can be an effective adjunct to other techniques used
in enhancing the security of systems.  Specific features of hardware and how they relate to security are
discussed in Section 3 in the second half of the paper.

2.1 Security Models

Security for an information system is typically defined in terms of a security model, which is both an
abstraction of a class of information systems and a characterization of what ‘‘security’’ means for that class
of systems.  The model may be very abstract (eg., the machine model used in the definition of
noninterference [52]) or be fairly concrete and include specific security control mechanisms (eg., the Bell
and LaPadula model [7]). At base, a security model is simply a specification of an information system (or
class of systems) and its security properties.

What we are calling models here are no different than what are called specifications in the conventional
software engineering process—and this is an important point: security models are nothing more than (usually
formal) requirements statements and specifications for the security properties of a system design.  As such,
they are subject to the usual desiderata for specifications. [115]

Note that this is not a universally accepted view of models.  There is considerable murkiness in the security
literature about just what constitutes a security model, and endless confusion arising from the use of the
overloaded word ‘‘model.’’  Some argue that ‘‘model’’ should be thought of in the sense of a scientific
theory (as Newton’s laws are a model of the motion of bodies).  Others construe models in the sense of a
mathematical theory—a collection of a formal structures and axioms about their manipulation.  Some of
the attempts to clarify this issue merely exacerbate the confusion. Bell [6], for example, argues vehemently
that the Bell and LaPadula model is an ‘‘abstraction’’ (but without once saying of what it is an abstraction).
Some of the best books on the subject of secure systems [35, 47] give numerous properties and examples of
models without ever defining the term ‘‘security model.’’  This confusion and ambiguity leads some [58] to
question the usefulness of the entire notion.  We believe that our view of a security model as merely a
specific type of system specification that characterizes security for the system in question is the most useful
approach from a verification standpoint.
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2.1-A Types of Security Models

Most security models assume a class of active entities (subjects) and a class of passive entities (objects).
Frequently, subjects and objects have associated security levels drawn from some ordered set.  The intent of
the model is to constrain the flow of information among the subjects in the system in some way determined
by the ordering.  For example, in models based on military security the levels form a lattice [34] or
potentially a collection of lattices [44]. Intuitively, information may only flow ‘‘upward’’ in the lattice.
The model defines security in such a way as to formally capture this intuition.

Access control models attempt to limit the flow of information by specifying the types of access (e.g.  read,
write, execute) each subject may exercise with respect to each object.  In its most general form, the security
model of the system is conceptually a matrix indexed by subjects and objects and specifying what types of
access each subject may exercise to each object. [60, 76] For example, subjects may have read access to
files that are at or below their level in the lattice.  The intent is to limit information flow by imposing
certain operational constraints on subjects.

The Bell and LaPadula model [7] is an access control model that incorporates a number of rules designed to
restrict the flow of information.  Among these rules are the simple security property and *-property—often
summarized, respectively, as follows: a subject may only read an object at a level at or below his own level
(in the security lattice), and a subject may only write to an object at or above his own level. Variants of the
Bell and LaPadula model have been widely used in secure system development [3, 46, 55, 85, 102, 120]
despite the fact that the model does not preclude some types of intuitively un-secure behavior (covert
channels).

Information flow models tend to be more abstract than access control models.  Rather than define security
in terms of the permissible accesses of subjects, they define security in terms of the absence of certain
prohibited information flows, without regard for the particular mechanism through which these flows may
occur. Thus, un-secure information flow is proscribed, even if no action of any subject violates the access
control rules of the system.  Several of the most widely studied security models are noninterference and
non-deducibility.

Noninterference [52, 53] is an information flow model.  Subject a is noninterfering with subject b if no
action of a can have any effect on subsequent actions of b. Any specific noninterference policy specifies
pairs of subjects that must be noninterfering. A noninterference policy tends to be stronger than an access
control policy since it precludes information flowing through mechanisms that are not easily captured in the
framework of subject-object access.  Noninterference is limited to deterministic systems. It has been used
as the security model for at least one large system development effort [16, 119].

Non-deducibility [128] is a strengthening of noninterference suited to non-deterministic systems. The key
idea is the following.  Assume that subject a is prohibited by the policy from passing information to subject
b. The system is non-deducibility secure if any possible set of observations of the system by b is consistent
with any possible set of actions of a. Daryl McCullough [87] has proposed a variant called restrictiveness
that has the so-called ‘‘hook-up’’ property—two restrictive systems can be combined to yield a restrictive
system. This model of security is used in the Ulysses (later called Romulus) system [86, 111] of Odyssey
Research Associates.

A large number of other security models [21, 30, 34, 65, 88, 108, 131, 132, 134] have been proposed.
Some have been general purpose and others designed for fairly specialized applications.  Most have been
concerned with preventing information disclosure; but others have been concerned with integrity of
information in the system [13] or with preventing the denial of service to legitimate users [51]. In real
secure system development efforts, most of these have given way to variants of the Bell and LaPadula
model or to noninterference and restrictiveness.  Some systems have used a combination of models; for
example, the LOCK system [119] uses noninterference for the most abstract characterization of security for
the system and uses an access control policy at lower levels of abstraction.1

1The reader will undoubtedly notice that there are many references in this paper to the LOCK system, developed by Honeywell and
the Secure Computing Technology Corporation.  We use LOCK heavily in our discussion both because it is a well-designed and
innovative system and because it is the secure system development effort with which we have been most heavily involved and of
which we have the most direct experience.
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This discussion has concentrated on models for information systems as traditionally defined in
‘‘mainstream’’ computer security, i.e., mainly focused on the security of operating systems. There are
many applications that are considered to be within the purview of security research2 but that are not
operating systems. These include secure distributed systems and networks, secure database systems, and
various specialized devices such as crypto boxes and ‘‘guards.’’  A considerable amount of attention is
being directed to extending existing models to cover networks [100] and to using the facilities provided by
secure operating systems to construct secure database systems [39]. Specialized devices require specialized
models that may be quite different than those discussed above as suitable for operating system security.
Some very successful modeling and verification efforts [73, 121, 124] have been directed at such
applications.

The choice of hardware support for a secure system will likely depend on the model of security to which
the system must conform because the model delimits the legitimate actions of any subject/process.

The choice of protection model is important because actions of programs operating on behalf of different
users have different effects whenever different protection models are used to authorize those actions. For
example, programs representing two different users may read and write a segment in a model that allows
controlled sharing, such as the Access Matrix (AM) model.  However, if those programs operate at different
security levels, as defined by some Multilevel Security (MLS) model, then either one or the other of the
programs is prevented from writing the segment. Thus, the action of writing a shared segment is a legitimate
action within one model and a protection violation within another model. [48]

Certain types of hardware support are better suited to enforcing certain types of restrictions than others.
Thus, in choosing a hardware base for a secure system, it matters what types of restrictions are intended.
These in turn are determined by the model.  In Section 3 we discuss specific hardware mechanisms and
their relationship to particular types of security concerns.

2.1-B Properties of Security Models

As noted above, any specification of the system or class of systems defining the desired security properties
of the system.  As with any system specification it can be very formal or quite informal, abstract or
concrete, complete or partial.  The value and usefulness of the model depends upon each of these choices.

Ideally, a model should be formal. An informal model may be ambiguous, inconsistent or both. A formal
model allows the application of rigorous reasoning techniques and tools to establish the consistency of the
model and the conformance of the system model with its security requirements. [59]

Also, a model should be abstract.  The careful use of abstraction can yield important clarity and intuitive
structure to the system description and can provide significant help in formal analysis [67]. However,
providing an appropriate level of abstraction can be a challenge.  A model that is too concrete will often
characterize security implicitly in terms of the mechanisms that are designed to provide it and thereby
restrict the options of the implementor. A security model that is too abstract, on the other hand, may be too
far removed from the realities of system design to provide much practical benefit.

The style of abstraction is important as well.  We believe that it is dangerous to provide abstraction by
neglecting system functionality in the model, i.e., by leaving the model incomplete.  Completeness means
that the model contains, in abstract form, all of the important essentials of the implementation.  This issue is
discussed further in the following subsection.

2Information security (INFOSEC) is sometimes defined to be the combination of computer security (COMPUSEC) and
communication security (COMSEC).
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2.2 Security Properties of System Components

Recall that the security model for a system refers to the secure operation of the system as a whole. How do
we move from a system level model to appropriate specifications for the components that are comprised by
the system, and ultimately to properties of the underlying hardware?

Assuming that we have defined an appropriate security model (specification) for the system as a whole, we
can refine this into properties for the system’s components in a very disciplined way.  Since system
behavior is determined by the behavior of the components and by the interactions among them, system
properties, including security properties, must be implied by properties of the components and information
about their interconnections.  This suggests that the appropriate methodology for building secure systems is
to begin with a high-level specification of the system and its desired security properties and to work
downward toward an implementation.  At the highest level of decomposition, the security properties of the
system should be implied by (be provable from) the architecture of the system and the top-level properties
of the component modules.  These modules can, in turn, be refined into lower level modules whose
properties should be those required to support the higher level abstraction.  Thus, the properties of all
modules in a secure system are derived from the requirement to support the properties of the level above.
In other words, the security-relevant properties of any module in the system are exactly those properties
that are required to support the properties of the architectural layer ‘‘above.’’

Of course, it is not usually practical in any real system development effort to follow a completely top-down
approach. There is always a concern in any development effort that the lowest level hardware be adequate
to support the requirements of the top-level specification.  It is impractical to believe that the structure of
the hardware can be completely ignored until all of the top level design issues have been thoroughly
explored. However, we advocate as a general rule that our specification effort proceed top-down, with an
informed understanding of what’s below, and a willingness to iterate the process if the derived
requirements are unimplementable on the available hardware base.

Deriving the specifications of system modules from the requirements of the calling environment is an
obvious and intuitive approach to system development and one that has been institutionalized in, for
example, the Gypsy Development Methodology [123].3 Nevertheless, we are not aware of any actual
sizable secure system development that has followed this approach.  Used consistently in secure system
development, it has the following important but possibly surprising consequences for defining the security
properties of the various components of a secure system.

• This approach to secure system development will automatically delimit the ‘‘security
perimeter’’ of the system.

• The highest level system specification should be ‘‘complete,’’ in the sense of covering all
system functionality.

• It is usually a mistake to attempt to define the security properties of low level modules a
priori.

Let’s elaborate on these points further.

2.2-A Determining the Security Perimeter

A common approach to building a secure system is to partition the components of the system according to a
perceived ‘‘security perimeter’’ and apply rigorous analysis only to those system components lying within
this perimeter. This security perimeter is often referred to as the ‘‘trusted computing base’’ or TCB and
‘‘serves to encapsulate all the security-relevant features of a system: nothing outside the TCB can impact
the security of the system, and only the TCB has to be verified’’ [81]. Failure of modules outside the TCB
may adversely impact system performance but will not result in any breach of security. The process of
determining which aspects of the system are security-relevant is typically an informal and ad hoc process;
the perimeter may have to be continually readjusted as the security implications of various system
components’ behaviors becomes more clear [113]. An overly lax appraisal of which system components

3Some similar work formally deriving requirements from higher level specifications is reported in [94, 95].
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are security-relevant may leave genuine security flaws in the system. An overly conservative drawing of
the security perimeter will lead to costly and unnecessary analysis.

Our approach of using top down system specification and development leads to a formal derivation of the
security perimeter.  System modules within the perimeter are exactly those whose constraints contribute to
the proof of the system-level security properties.  Modules that can be left unconstrained when proving the
top-level security property do not contribute to system security, and, conversely, cannot interfere with
system security.  Therefore, they can be safely excluded from formal analysis; they are truly outside the
security perimeter.  Modules that must be constrained in order for the higher level properties to be assured
are those that contribute to the security of the system and that could possibly compromise it.  They must be
inside the security perimeter.  By following a careful top-down style of security analysis, we automatically
gain the very significant benefit that one of the most important and error-prone tasks of secure system
development—determining the security perimeter—comes for free.

2.2-B Coverage of the Top-Level Model

Our approach to deciding what properties are required of the various components of the system assumes
that the top level specification encompasses the complete secure system.  If we specify only a portion of the
system under some preconceived notion that some components are not security-relevant, it may turn out
that our analysis will fail to uncover potential insecurities in the excluded portions. Thus, it is dangerous to
leave out system components and functionality in the highest level description.  Of course, we may still
have intuitively un-secure behavior in the implementation due to a security model that is too weak to
exclude it.  But we will not have behavior counter to our security model because of security-relevant
interactions with system components that were incorrectly believed to be security neutral.

Our highest level model must be ‘‘complete’’ for another reason. If we leave out aspects of the system in
our highest level model, requirements on the system will likely force the addition of functionality in lower
levels that is not reflected at all in the high levels.  Thus, even if the high level design is provably secure,
there may be additional capability in the implementation that can be exploited and that is accessible to a
determined attacker.4

That said, we realize that it may initially seem unreasonable to reflect the entire system functionality in the
highest level model.  In doing so, don’t we risk losing all of the benefits of abstraction?  There are various
ways of introducing abstraction into a formal specification—structural, behavioral, data, and temporal
abstraction. [90] In each of these, we can use the abstraction mechanism either for safely hiding details in
the model or for unsafely eliminating details from the model.  Various abstraction mechanisms tend to
support one or the other of these approaches. For example, procedural abstraction in Ada (possibly
implemented by interface assertions) allows suppressing the body of a routine while leaving the interface
information for the routine complete and correct.  This hides detail but without losing information that may
be crucial to analyzing the correctness and security of a system.5 For secure systems, we believe that any
method of abstraction that loses information by selectively neglecting portions of the systems that may in
fact be security-relevant is a dangerous luxury.  This is because security is different than many other system
properties that may be of interest.

Consider, for example, the correctness of a compiler.  The purpose of a compiler is to implement the
abstractions provided by a high-level language on the support provided by a lower level language or
machine. The compiler is correct if each syntactically permissible program of the source language is
translated into a syntactically correct and semantically equivalent program of the target language.
However, there is nothing in the compiler that prohibits the machine user from accessing the lower level

4An example of how the use of a high-level specification (of a password protection scheme) can hide exploitable insecurities at a
lower-level is described in [138].

5Of course, this is not quite true because of the possibility of non-local referencing and the probability that the system is accessible
other than through the Ada compiler.  Some languages, such as Gypsy [123] are designed in such a way that all of the potential effects
of a routine are completely delimited by its interface specification.  This supports the Gypsy Independence Principle: the specification
of any Gypsy routine must be provable solely from its body and from the externally visible specifications of the routines it calls.
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directly and performing actions that are not specifiable in the higher level (abstract) language.  In fact,
facilities are often added to high level languages to permit linking with assembly language routines.  That
is, the user’s access to the machine is not limited to the abstractions provided by the high-level language
through its compiler.6

Consider also the construction of safety-critical systems.  Building secure systems is often compared to
building safety-critical systems.  Many of the same concerns for high assurance apply and many of
hardware features that are potentially troublesome from the point of view of safety are of concern in
security. For example, the British Ministry of Defence 00-55 draft standards [91] prohibit the use of certain
types of hardware features, such as interrupts, in safety critical applications. However, this does not mean
interrupts are not permitted on the hardware base on which a safety-critical system is constructed, but
merely that they may not be used by the safety-critical system.  Again, the machine user is not prohibited
from accessing ‘‘dangerous’’ features; he simply may not access them via the abstractions provided by the
safety critical system.

In contrast to these applications, security is not merely a collection of high level abstractions that are to be
implemented by the lower level machine.  Security is a property of the lowest level implementation, and it
is crucial that the implementation perform the secure operations of the model and nothing else. If a
hardware feature is dangerous from a security standpoint, not only may it not be used by the secure system,
it should not be accessible on the hardware platform at all.  A secure system must be designed with the
presumption that if there is an available avenue of attack, malicious users will find and exploit it.  It is this
‘‘and nothing else’’ constraint that makes it crucial that all of the possible actions of the implementation be
reflected into the highest level models of the system to whatever degree possible.  Otherwise, there may be
accessible functionality at the low levels that can be exploited to violate security, but functionality which is
not represented in the high level models.  The fact that it is not represented in the high level models means
that our high level analysis cannot find and exclude it.  Our high level security specification may be
correctly implemented and still intuitively un-secure.

This suggests, by the way, that ‘‘implements’’ as that term is often used is too weak a relationship between
a security model and its realization.  If implements is defined in terms of a commuting diagram such as that
shown in Figure 1, this is inadequate to establish the security of the system.7 The proof of such a
commuting diagram shows that the abstractions defined by the high-level system are ‘‘implemented’’ by
the lower level, but not that dangerous features of the lower level support are not accessible outside the
abstractions defined by the high level. An adequate proof of security requires that the two level of
abstraction be formally isomorphic in the sense that any insecurities in one are reflected in the other.
Implements may be necessary for security but not sufficient.

Only methods of abstraction that manage complexity without discarding it are adequate for secure system
development. We believe strongly that by careful use of procedural and data abstraction and by structuring
a system design appropriately, it is possible to achieve both completeness and abstractness. Good [57]
illustrates an approach for a simple secure system which meets these aims.

We should note that a quite successful approach to introducing abstraction into the specification of a secure
system while preserving completeness was taken on the LOCK project [19, 137]. There, the highest level
(abstract) models were used principally to establish and refine the security properties of the system.  The
crucial proof of the system security properties with respect to a formal description of the complete system
interface was actually carried out at the Formal Top-Level Specification (FTLS) level against a formal
characterization of security appropriate to that level of abstraction. This is the highest level of abstraction at
which the full interface to the trusted computing base is visible.  An informal mapping was given to higher
level models, but the proof of security of the system did not depend upon the correctness of this mapping
because the model was fully redefined at each level in the hierarchy.  Therefore, the proof of security was
carried out with respect to a relatively complete representation of the system (as we have insisted must be
done) and a definition of security appropriate for that model.  The LOCK approach preserves many of the

6There have been attempts to enforce security by permitting users to access a machine only through a high level language. [135]
Such approaches are vulnerable to any means of directly accessing the machine at the assembly language level.

7This is the style of proofs done on the CLI stack [9].
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Figure 1: Implementation of Abstractions

benefits of abstraction as a tool for developing and honing intuitions about the secure system and its
correctness properties, while gaining the benefits of ‘‘completeness’’ in the model.

2.2-C Modeling from the Top Down

Our final point noted above is that it is usually futile to attempt to specify a secure system from the
‘‘bottom-up.’’ This is because we cannot know what properties are required of a module at the bottom of
the call tree until we know its role in the system.  The security properties of a module may depend upon the
security properties of its component modules, upon their functionality, or on both.  Thus, the specification
of a module is driven by the requirements of its calling environment.

Consider, for example, how to determine what requirements should be placed on the utility that retrieves a
file in a multi-level file system. This is arguably a security sensitive function and so must have some
security properties.  However, we can imagine that the level and access control information relating to a file
could be maintained in either of two places: physically with the file or in a separate table.  Fetching a file
(securely) from disk could be implemented in at least two different ways, depending on where this
information is stored.

1. Assume that each file is stored along with its associated security information (possibly in the file
header). We can fetch the requested file, check its associated security information against that of the
requesting subject and deliver the file if the access permissions match in the appropriate way.  Notice
that no security violation occurs even if we fetch the wrong file.

2. Alternatively, assume that the security control information is stored in a separate table.  We check the
recorded level of the file against that of the requesting subject; if the subject has appropriate access
rights, we fetch the file and deliver it to the subject.  Here, it is vitally important that the file
delivered is the same file as that whose level we checked in the table.

In these two cases, the primitive get_file utility will have different required properties in support of
system security.  In the first case, there is no need to guarantee that the file returned is the one requested
(though we would certainly like that to be the case).  In the second case, we do require that property.  In
both cases, the required properties are dictated by the security requirements of the calling environment.8

Beginning at the ‘‘bottom’’ and specifying the routine without clearly understanding its role in the system
and the way in which it contributes to the overall goal of secure system operation is likely to result in a
specification that is not adequate to the goal of verifiable security.

Experience in building secure systems bears out this observation.  On the Honeywell LOCK project, for
example, it was found that the required properties of the security co-processor (SIDEARM) were
‘‘security’’ properties and those of the kernel interface software (KIS) were largely ‘‘functionality’’
properties.

8A similar point is made by Neely and Freeman [101] who call modules that contribute to the security of a system ‘‘trust domains’’
and note that the constraints on each trust domain are determined by its environment.
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The verification of the KIS should be somewhat simpler than that of the SIDEARM.  The verification is
functionally-oriented as opposed to property-oriented, as in the case of the SIDEARM.  One only needs to
verify that the KIS adheres to some low-level properties. For example, the KIS must be shown to totally
clear the CPU registers during a context switch. [119]

Of course, it is largely a matter of opinion whether any specific property should best be regarded as a
security property or a functionality property.  Clearing of CPU registers could be regarded as a security
property since it enhances the security of the system.  Our point is that the specification of the module is
more likely to be ‘‘the registers have been cleared’’ rather than ‘‘the KIS is secure’’—in the words of the
quote above, ‘‘functionally-oriented’’ rather than ‘‘property-oriented.’’

We believe it likely that the smaller the module and the closer it is to ‘‘raw’’ hardware, the less likely it is
to have identifiable security properties and more likely to have required correctness or functionality
properties. At the very lowest level of abstraction, it is difficult even to imagine what a security property
looks like; the notion of a secure AND gate is hard to envision.  For this reason, any attempt to specify
security-specific properties of low level hardware modules is likely to fail.  This suggests an answer to Don
Good’s question of what a secure wire looks like [58]; it probably looks exactly like a correct wire.

This is not to say that we cannot identify security-relevant properties or hardware, only that the most
security relevant property of hardware is often that it behaves in a functionally correct fashion.  In support
of this position we quote the findings of a recent report by the National Resource Council on hardware
influences on computer security: ‘‘the only essential, then, is to have simple hardware that is
trustworthy’’ [97].

Of course, some hardware features have been correctly identified as generally useful in the construction of
secure computing systems.  We will address a number of such features in Section 3.  We merely caution
that defining what it means to be a secure system, a secure module, and particularly secure hardware
requires more care than is often given.  A ‘‘secure adder’’ or a ‘‘secure UART’’ is largely meaningless
except in the context of a larger system.

2.3 Formal Verification and Security

Much of the experience in applying formal techniques in secure system development to date has been
driven by the requirements of the National Security Agency’s Trusted Computer Systems Evaluation
Criteria [99] (Orange Book). It is unclear how much of this experience is applicable to verifying secure
hardware.

The approach mandated by the Orange Book requirements takes the following pattern:

• Formulate an abstract model of security for the system and analyze it using currently
available formal techniques.

• Devise a Formal Top Level Specification (FTLS) for the system and show by ‘‘a combination
of formal and informal techniques...that the FTLS is consistent with the model.’’

• Show correspondence of the FTLS to the TCB source code by ‘‘manual or other mapping.’’

• Conduct a covert channel analysis involving the use of formal methods.
This pattern of specification, illustrated in Figure 2, has become institutionalized by the promulgation of the
A1 level requirements and is sometimes taken as illustrative of state-of-the-art formal methods in the
security arena [8].  We continue to expect and accept this style and level of analysis for two major reasons.

• The common wisdom holds that this is the best we can do; code level verification of large
systems is deemed beyond the current state of the verifier’s art.  The feeble mechanical
support provided by the tools currently appearing on the NCSC’s Endorsed Tools List [98]
fosters this impression.

• The driving force behind contractor adoption of formal techniques has been the list of
certification requirements in the Orange Book. By institutionalizing the status quo we have
eliminated much of the motivation for innovative approaches to enhanced assurance.
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Abstract Model

Formal Top-Level Spec

The System

Figure 2: Current Secure System Verification

There are good reasons for questioning the usefulness of this style of high level analysis.  Rather than
reasoning about implemented systems, it largely involves reasoning about the specifications of systems.
We hope that these specifications will be reflected in the implementation in such a way that insights
gleaned from the formal analysis will affect the ultimate quality of the system.  Yet the link from the
formalism to the nuts and bolts system is often a rather tenuous correspondence argument, the believability
of which relies on an understanding of the semantics of two abstractions—the specification language and
implementation—either of which may not be fully formalized.  Even in those situations where the formal
analysis has a significant influence on the actual design, the problem of establishing a convincing
correspondence between a high-level Gypsy specification and a low-level C implementation, say, is
daunting [138].

It has even been suggested that design-level analysis may actually be dangerous by fostering unwarranted
assurance in ‘‘verified’’ systems.  This perception is exacerbated by the fact that the formal methods
community has been too glib in the past about stating what has been and can be accomplished with formal
methods. Enthusiastic pronouncements by advocates of formal methods have been taken out of
context [45] to provide a misleading picture of the goals and expectations of formal analysis.  Marketing
claims made regarding some ‘‘verified’’ products may not have been justified by the actual formal
analysis. [24, 31] This again has the potential for fostering unrealistic and ultimately deflated expectations.
Whereas we believe that design level verification has a role in improving the quality of systems, we feel
that the technology is now available to combine these high level approaches with much lower levels of
analysis. Particularly for safety-critical and secure systems, hardware verification can play a role in
delivering very high assurance systems.

2.4 The Role of Hardware Verification

Hardware verification is a rapidly expanding research area.  Researchers have considered verification of
hardware at various levels of abstraction from circuit designs written in high-level hardware description
languages such as VHDL [84, 117] down to low-level models of MOS circuits [25, 133]. Techniques have
been developed that are adequate for handling small circuits [5] to handling entire
microprocessors [66, 69].  There is a rapidly growing literature in this area [29, 79, 127, 136].

In many ways, verifying hardware is a more tractable problem than verifying software because hardware
tends to be more regular.  However many of the concerns are different and others are potentially much
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worse in hardware.  For example, pointers are traditionally quite difficult to reason formally about and
many ‘‘verifiable’’ languages such as Gypsy exclude pointer manipulations.  However, addresses are
merely pointers and are pervasive in hardware operations.  Consequently, imposing a discipline on address
manipulation is essential to formal treatment of hardware.  Such a discipline is exactly what is provided by
memory protection hardware.  A simple base and bounds scheme can guarantee that a program’s access to
memory will not extend beyond its permitted boundaries. Thus, the hardware mechanisms provide an
essential structuring that can be relied upon by the verification of the higher-level protection mechanisms
that are built on top of it.

This suggests the use of hardware verification techniques as a natural evolution of the application of formal
methods in secure system development described in Section 2.3.  The Orange Book A1 requirements call
for ‘‘verification evidence consistent with that provided within the state-of-the-art.’’  The discussion of
‘‘Beyond (Class) A1’’ systems acknowledges that ‘‘consideration will be given to the correctness of the
tools used in TCB development (e.g., compilers, assemblers, loaders) and to the correct functioning of the
hardware/firmware on which the TCB will run’’ [99]. Hardware has not been entirely neglected in secure
systems specification and verification. Both the SCOMP [46] and LOCK [16, 119] specifications included
protection mechanisms that were implemented in hardware as well as in software.  However, these efforts
considered features largely modeled at a level of abstraction where the distinction between hardware and
software does not matter.

The paradigm of secure system development illustrated in Figure 2 may be extended ‘‘downward’’ toward
the hardware level as shown in Figure 3.  There are significant research issues involved in relating levels of
abstraction involving both verified hardware and verified software.  The CLI ‘‘stack’’ effort [9] may offer
some directions.  However, as we indicated in Section 2.2, the correctness properties of a compiler or
assembler are different than the security of a system; implements is simply the wrong relationship between
the layers of the hierarchy in a secure system development.  We are aware of only a few efforts [12, 14],
other than the CLI stack, in which properties defined formally at a fairly high level of abstraction have been
‘‘pushed down’’ to the hardware level; none of these were explicitly security properties.

Abstract Model

Formal Top-Level Spec

Implementation Level Spec

Hardware Spec

Figure 3: Proposed Secure System Verification
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As an example of a significant and challenging research area where hardware modeling and verification
could contribute consider hardware features such as memory protection mechanisms and support for
process isolation. Such features often form a base upon which secure systems are constructed.  For
example, many of the security models discussed in Section 2.1 above take as primitive the notion of
identifiable and separate ‘‘subjects’’ that are the active agents in the system.  In implementations, these are
often identified with processes supplied by the underlying operating system or hardware mechanisms.
Process isolation, then, is crucially relied upon by the security mechanisms and taken more or less for
granted in the model.  Yet, such underlying mechanisms have often been found to be the source of security
flaws in implemented systems [1, 2, 62, 83, 135].9 Few serious attempts have been made to formally model
and verify these crucial underlying facilities;10 these facilities are obvious candidates for formal scrutiny at
the hardware level.

But how can we go about assuring the correctness of such basic mechanisms?  There is no fundamental
difference between, for example, proving the correctness of a process isolation scheme and the correctness
of some application built relying upon process isolation. Both require a clear and unambiguous (formal)
specification and a proof that an implementation meets this specification.  Some proofs have been done on
specific instances of this problem; Bevier [11], for example, gives a specification for process isolation on a
particular target machine.  However, what is really needed is a generic axiomatization of memory and
memory management, of process isolation, and of the other basic mechanisms of hardware support for
secure systems in particular and operating systems in general, rather than treatments that focus upon
specific security models or processor architectures.11 Such notions as memory management are the
underlying abstractions upon which security mechanisms rely and should be formally viewed as such. [67]

We are not aware of a rigorous generic axiomatization of features such as memory protection, though
Popek and Goldberg [109] sketched the outlines of such a project in 1974.  Such a presentation, submitted
to the social process, would provide a convincing specification as a basis for formal analysis and a viable
target for implementations. Landwehr and Carroll [77] provide a start toward a security-specific version of
such a specification by enumerating logical requirements on an abstract machine.  Their presentation falls
short of a formal treatment of this issue but is a step in the right direction.  It is rather surprising that more
effort has not been expended in this area, given the importance of these issues for system correctness and
system security.  Such a formal treatment is outside the range of the current report, but is a potentially
productive area for future research. This is a challenging research area and one calling for increased
collaboration between the hardware verification and security communities.

3. Aspects of Hardware Support for Secure Systems

Various fairly standard features of microprocessors have traditionally been regarded as supportive of
system security; these include memory protection schemes, support for interprocess communication, and
support for multiple execution domains.

It is fortunate that most of the hardware mechanisms needed to implement a secure system are also required
by conventional operating systems; otherwise, there would be little hope of seeing these features on today’s
machines. This is not a coincidence: good protection features are essential to an efficient and reliable
operating system. [47]

This section describes a number of such features, the way in which they support system security, and the
implications for verified secure systems.  We make no claim that our list is complete in any sense.  Almost
any hardware feature accessible to an end user could have potential use in some covert activity.  This
motivated our insistence in Section 2.2 that our formal system model be as inclusive as possible.  We focus

9Rushby [114] is the source of this list.

10Bevier [10] is the only attempt of which we are aware to model and prove the correctness of a process isolation scheme down to
the machine code level.

11See [70] for some work on the generic specification of hardware.



13

on aspects of hardware that seem particularly relevant from a security perspective.  There is no special
order to the list of subtopics in this section.  In the Appendix we give a prioritized list of hardware features
which should be examined in a secure system development effort.

Notice that most of the features described in this section could be implemented in hardware, in firmware, or
in software.  Our choice to describe them as ‘‘hardware support for secure systems’’ is driven by the fact
that they are usually implemented in hardware, chiefly to enhance system performance and to yield a
cleaner and better structured architecture.  There is no reason to believe that modeling techniques would be
significantly different for a hardware implementation than for a software implementation.

3.1 Influence of System Architecture

One key factor influencing the verifiability of any piece of complex hardware is the structure of the
architecture. It is well known from software verification experience that a well-structured program is more
likely to be comprehensible and easy to verify than a poorly-structured program. The lessons of modularity
and structured design arose in the same environments as formal program analysis techniques.  These same
lessons apply to hardware.  Modular design and good engineering practice lead to hardware designs that are
accessible to formal techniques.

An architecture that matches in structure the systems that are built upon it can greatly enhance their
verifiability. Dijkstra [38] illustrated the benefits of a layered architecture for operating system design.
Similar benefits accrue for a hardware architecture.  For example, the hardware of the PDP 11/45 was
layered to support three levels: kernel, supervisor, and user.  A protection system that matches the hardware
layering closely gains in comprehensibility and verifiability because the mechanisms in the protection
system match closely those of the machine.  Many researchers have recognized the benefits of localizing
the protection functionality of the machine into a small kernel, the lowest level of the system layering.
Popek and Kline [110] assert that the kernel should ‘‘contain the security relevant portions of the operating
system primitive, and nothing else.’’  Spier [126] wants the kernel to contain only the interrupt and I/O
handling routines, CPU multiplexor and scheduler, and memory management routines.  ‘‘Kernelizing’’ the
protection mechanisms isolates them from the influences of other hardware and software.  In Section 3.3-E
we discuss the notion of a reference monitor, one instantiation of kernelized protection.

One very significant benefit that can be gained by careful structuring of a system architecture is that the
amount of verification required to gain a particular level of assurance can be reduced.  High levels of
assurance come at a price; formal verification techniques tend to be expensive and difficult to apply.
Consequently, there is a strong economic incentive to reduce the percentage of system functionality that
must be verified.  This is much of the reason for the process discussed in Section 2.2 of delimiting the
security perimeter, i.e., the goal is to exclude as much as possible of the system from formal analysis. The
architecture of a secure system strongly influences how much of the system needs to be verified.  For
example, as we will discuss in Section 3.5 smart I/O device controllers can be a security risk and must be
either trusted or verified on conventional secure system designs.  This need was avoided on LOCK [119]
by segregating nonprimary memory and communications ports from the CPU and main memory by a bulk
encryption device.  The result is that:

• contents of secondary memory are encrypted and need not be physically secured; and,

• device controllers need not be trusted, allowing the use of commodity controllers.
The result is a significant reduction in verification effort with no loss in system assurance.

Other architectures which use physical arrangement of system components to gain security and reduce the
need for verification are discussed below in Section 3.3-E(2).



14

3.2 Memory Protection

One of the most crucial aspects of hardware support for secure system development is the ability to define
distinct memory spaces for separate users/processes.  Access to memory is usually restricted on modern
processors by some scheme of implementing virtual memory [56, 109]. There are myriad variants of
virtual memory management; but all have one or more of the following goals:

1. they isolate process address spaces;

2. they permit a process to have a larger address space than available main store;

3. they free the user from having to deal with storage management; and,

4. they utilize main store efficiently by maintaining unused portions of program and data on secondary
storage until needed.

Virtual memory management schemes are aimed at high efficiency of resource utilization and satisfactory
performance. The economies of computing have changed over the years as hardware (and particularly
memory) costs have fallen, but these requirements remain.

Typical memory management schemes involve mapping user-supplied (virtual) addresses to physical
addresses via some virtual memory mapping. This process is typically supported by hardware using index
registers and address registers. This translation is transparent to the programmer.  See any book on
machine architecture (such as [63]) for further discussion of the details of memory management schemes.

Some early machines implementing virtual memory required that a process’ address space lie in contiguous
physical memory; physical addresses are computed from virtual addresses by adding an offset.  This is
simple to implement with base and bounds registers storing the limits of the accessible region.  This
scheme requires that all accesses check these limits and that the registers not be accessible to the user
program.

Requiring contiguous memory leads to storage fragmentation. To avoid this, we can divide memory into
fixed-size pages and allocate to each process either a fixed or variable number of pages.  In demand paging
schemes, pages are stored on secondary storage until required.  This permits a process to have a virtual
address space larger than the main store. To be efficient demand paging requires hardware support in the
form of hardware mapping registers and page descriptors and efficient support for swapping pages in from
secondary store.

Some systems add an alternative or an additional layer of memory division in the form of segments. The
segments are typically variable sized memory partitions that may hold distinct objects or may be merely an
extra layer of memory partitioning.  A translation mechanism for virtual memory that accommodates
variable-size segments on top of demand paging requires an additional level of memory descriptors.  There
will usually be hardware support for this mapping.

Virtual memory management is an obvious mechanism for controlling the access of users to memory
objects. A crude scheme is to divide memory into user and system segments that are separately protected.
The user may not write into the system segment.  Functionality of the operating system is accessible only
via special entry points.  If this partitioning is static, this scheme is easy to enforce with hardware.

As we suggested in Section 2.4 above, virtual memory mechanisms and the hardware support for them are
obvious candidates for formal scrutiny. They provide foundation for much secure system development
effort but have been largely neglected in formal efforts to assure the correct functioning of such systems.

3.3 Execution Domains

Since security implies the isolation of information or other resources from unauthorized access, several
authors such as Landwehr and Carroll [77] take as the key abstraction within a secure system the notion of
a protection domain—‘‘a set of information and authorizations for the manipulation of that information
within a computer system.’’  A domain is essentially the name/value space accessible to a particular user.
With respect to security models, a domain may be identified with a subject and its associated access rights
to objects in the systems.  Important factors to consider in implementation of protection domains are:
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• how the protection structures of the model map onto those provided by the machine
architecture;

• how domains are initialized;

• how users are linked to domains;

• how communication occurs between domains; and,

• how domains are isolated from one another.
The principal concern of secure system developers is providing required domain isolation while still
providing appropriate communication between domains and efficient provision of the other services of the
machine such as creation and initialization.

3.3-A Processes

Within a given implementation, a protection domain may be identified with a process, with an abstract data
type, or with an object (in an object oriented system).  At the hardware level, it is often a process that is
associated with a protected domain.  This is natural because many conventional architectures provide fairly
extensive hardware support for processes.  Consequently, the hardware process support is often relied upon
by the operating system as a foundation for the security mechanisms.

Almost all security models take the notion of ‘‘per-process’’ virtual environments as primitive—so
primitive, indeed, that this notion is generally unstated and unregarded.  The key assumption is that the active
entities of a security model (‘‘subjects’’ in security jargon) are assumed to be fundamentally distinct and
distinguishable from each other.  Now, in a concrete system design or implementation, the subjects of the
model are generally associated with ‘‘processes’’ provided by the operating system nucleus and in order for
the security model to be an accurate description of the concrete system, it is therefore necessary to ensure that
the processes of the concrete system are indeed distinct and distinguishable—that is to say, each process
must have its own ‘‘virtual’’ environment. [114]

Thus, the machine facilities that support the per-process virtual environments and keep them separate are
often crucial to the maintenance of system security.

The main required support for processes is the ability to switch from one process to another.  This requires
a mechanism for storing enough process state so that a suspended process can be re-dispatched.  For a
multi-level secure system, if processes are associated with subjects, there are likely to be numerous
processes and the need for frequent process switching.  This calls for an efficient interprocess switching
mechanism. This mechanism must store the process internal state including at least the program counter
and user-visible registers.  In addition, there must be a mechanism for preserving the user-addressable
memory. The mechanism for this depends upon the particular memory management strategy of the
machine.

3.3-B Initialization

Landwehr and Carroll point out the need for reliable system initialization in secure system operation.

The ability to define and separate domains in a machine will be of little use unless there is a reliable way of
getting started. This implies that the logical structure of the system must allow the programmer to distinguish
the occurrence of a system initialization event and to establish a consistent state for the system—a state from
which additional domains can be initiated and separated. [77]

From a modeling standpoint, initialization is crucial.  Security properties are often stated as invariants on
the system state; the system remains secure if each transition in the system is security preserving.12

However, the implicit induction here requires that the system be initially secure.  Also, because of the need

12See [89] for discussion on some of the subtleties of this approach to security.
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at start-up to establish all of the security mechanism including the tables that contain access control
information, the initialization mechanism must have privileged functionality that likely is not under the
mediation of the security control mechanisms.13 Thus, special care is needed in the initialization of the
system to preserve security.

Hardware can contribute to secure system initialization in a variety of ways.  Secure initialization routines
can be isolated from other portions of the memory by using virtual memory techniques as discussed in the
previous section, by storing security tables in ROM, or having by a processor dedicated to initialization.
Via these techniques it is possible to ensure that a secure initial state is established.  LOCK [119], for
example, avoids the problem of having to bypass the security controls during initialization by having the
entire security kernel segregated on a separate processor with its own memory.

Initialization can be a particularly difficult challenge when reasoning formally about hardware.  For
example, a recent proof about a hardware reset mechanism [72] found considerable difficulty in proving
that a microprocessor reaches a ‘‘safe’’ and predictable state following a reset. Such issues are often
neglected in formal approaches to hardware correctness.

3.3-C Linking Users with Domains

It is always necessary to associate the actions of an active entity (subject/process/domain) in a secure
computing system with an individual user.  Thus, it is necessary to have a reliable way to link users with
domains, both when the domains are created and as they execute. Such accountability provides a strong
deterrent as well as provides a way to diagnose security breaches post hoc through audit procedures.

Most systems implement a password mechanism to prevent unauthorized persons from gaining access.  A
password mechanism can also prevent users who are already logged in from performing unauthorized
activities, such as accessing restricted directories and gaining access to more privileged ‘‘modes’’ such as
super-user mode on Unix.14 The user must authenticate the machine as well, to avoid so-called ‘‘spoofing’’
attacks in which a program masquerades as the login procedure on the target machine until a user divulges
his password.  Two way authentication can occur via a series of questions and answers.  Hardware
mechanisms that can assist in this process include devices in which the user uses some physical device such
as a magnetic-striped key card rather than a typed identification.  Such a login scheme for mutual
identification of user and system is described in [43].

After access to the machine is obtained, the integrity of the connection must be maintained.  This can be
accomplished by periodically reauthenticating the user to ensure that the user has not changed and logging
out users who have been inactive for some period of time.  A hardware watchdog timer can be useful in
implementing such schemes.

Related to the issue of linking users with domains is the question of what audit facilities are provided by
the machine. Audit facilities are intended to record occurrences of selected system activities so that actual
or attempted security violations can be attributed to particular users.  An audit facility has the goals of
allowing reconstruction of events leading up to and including system violations and allowing monitoring of
user actions so that attempts to violate system security may be perceived and acted upon before a violation
occurs. [92, 105]

There are two main issues related to audit data: data must be adequate to meet the audit goals of the system,
and both the audit mechanism and storage of audit data must be tamperproof. Selection of auditable system
activities is an art.  Too much audit data can swamp the system and make extracting relevant information

13This is an instance of a more general problem—most security models are too strong. To operate well, most systems require
functionality that is formally in violation of the security policy.  For example, it may occasionally be necessary to downgrade
documents, in violation of the proscription of downward flow of information (*-property).  A general utility such as a printer demon
may need to read and write documents at all levels, in violation of most security models.  The solution is typically to have a collection
of ‘‘trusted processes’’ which are privileged to violate the security policy in specific ways.

14See [96] for an interesting history of the password security mechanisms on Unix.
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very difficult; too little audit data may allow a clever perpetrator to escape detection.  Selection of auditable
events is a system design rather than a hardware issue. However, hardware can be used to make recording
audit data less obtrusive.  In a system with hardware support for kernel calls, the hardware can also write
the relevant audit data.  This is generally much more efficient than software monitoring of system behavior.
Moreover, it may add additional assurance that the mechanism is tamper resistant.  Previously recorded
audit data can be protected by the standard protection mechanisms of the system.  However, for purposes of
reconstructing past security violations, there is no reason to assume that audit data has not be compromised
along with other system resources, if all were protected by the same mechanisms.  Some system such as
LOCK [119] store audit data on a write-once medium.  This provides additional assurance of tamper
resistance.

3.3-D Communication Between Domains

Communication between processes/domains is critical to security, since the entire purpose of a secure
system is to control communication between subjects.  Again, the support for and protection of
communication between domains may not match the required level of protection called for in the security
model. For example, if a hardware supported domain cuts across logical subject boundaries or if there is
more than one level subject within the domain, communication must occur in a manner consistent with the
policy.

Information can pass from domain to domain in a number of ways:

• one domain may request service from another and transfer control to it;

• two domains may share memory;

• domains may pass messages.

There are various ways in which hardware can support the restriction of interdomain requests. Spier [125]
outlines a protection scheme that depends on ‘‘the availability of dedicated supporting protective
hardware...where an inter-domain call is just as efficient as a common intra-domain call.’’  Required is a
hardware return stack inaccessible to the user program and paging tables.  On LOCK all permissible
domain transitions for any subject are encoded in the Domain Transition Table (DTT).  Hardware
mechanisms support the checking of this table whenever an attempt is made to move from one domain to
another. In some ring architectures, a domain change can only occur by transferring control through a
call instruction to prescribed locations in special gate segments that are designated as entry points to
inner rings [47].  Such mechanisms allow a protected domain to control its invocation.

Entering a less privileged domain requires that the arguments passed be checked to prohibit the calling
process from illegally obtaining access to restricted data. Most such checks are performed by software.
Hardware can help in address validation to ensure that passed pointers refer to legitimate locations within
the user space.  See [47] for an extended description of the various types of pointer validation and hardware
supported schemes for carrying them out.

Other systems implement interprocess communication via shared memory or message passing.  These
approaches to communication are typically controlled by the assignment of access rights restricting what
privileges any particular domain has to shared memory or to which other domains a message may be sent.
These topics are covered in the following subsection.

3.3-E Isolation of Domains

Undoubtedly the most crucial function of a secure system is to enforce (partial) isolation of domains.  Of
course, a domain cannot be entirely isolated or it could never interact with its environment or communicate
its results to the external world.  However, the communication between domain must be constrained in such
a way that only information flow allowed by the security policy is allowed in the system.  This means that
all other information flows must be prohibited.

Rushby and Randell [116] note that there are conceptually four ways to provide domain/process separation:
temporally, physically, cryptographically, or logically.  These methods of domain separation can be
realized physically in a number of ways.
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3.3-E(1) Temporal Isolation of Domains.

In the absence of any more sophisticated separation mechanisms, early machines utilized the temporal
isolation of domains.  That is, any user would have access to the complete memory space of the machine,
but separate users were isolated in time, since only one user has access to the machine at a given time.
Such machines either had no memory management software (eg. the IBM 1130 and Elliott 905) or a simple
resident executive to control sequencing (eg. the IBM 7090, and scientific configurations of the Elliott 4130
and ICL 1900).  On these machines, there is no sharing of resources among users.  The special hardware
required to implement this is only a fixed protected area of memory for the resident.  User programs did not
have access to this protected region to prevent corruption of the executive.  This protection scheme is
particularly easy to implement and to prove correct.

Another style of temporal isolation is enforced in some multi-user settings where the machine is utilized in
‘‘single-level mode’’ by groups at different security levels.  After use by a high-level group, the store is
‘‘scrubbed’’ before the machine is turned over to a group at a different level.  Security concerns arise when
information on the system survives between uses.  User-accessible store that has not been adequately
cleansed may contain residual information that is accessible to the next user.  Even if user-accessible store
is cleansed, boot-strap routines, initialization software, and other system software provides a potential
mechanism for preserving sensitive information from one use of the machine to the next, if the machine
does not provide adequate protection of system space.  Also, it is known that information can be gleaned
from some physical media even after they have been logically sanitized.  For example, information stored
on a magnetic media can often be recovered even if it has been overwritten.  Thus, tapes used for secure
applications and subsequently retired must be ‘‘de-gaussed’’ to prevent retrieval of the stored information.

3.3-E(2) Physical Isolation.

An obvious approach to maintaining isolation between processes is to schedule them on physically isolated
processors with minimal and carefully controlled opportunities for communication. This approach of using
distributed computing as a means of attaining security has been suggested by several
authors [32, 40, 112, 116]. The underlying motivation is that ‘‘manifest physical separation is one of the
simplest and most easily verifiable forms of separation’’ [40]. The advantage of such schemes is that all
interprocess communication mechanisms are simple and explicit and there is little need to fear covert
channels through the system state.  However, the efficiency advantages of shared state are sacrificed.

Physical isolation is used rather heavily in cryptological equipment.  Red/black separation is realized in
many COMSEC applications by isolating red and black system components on separate processors with a
tightly controlled bypass.  The verification of such a system is described in [124].

Another use of physical isolation is to scatter resources to make an attacker’s penetration of a single system
component less profitable.  Such a scheme is used by the SATURNE project [37]. File fragments are
distributed to various storage devices to impede security penetrators.

A rather radical architectural approach using physical isolation to gain security is suggested by Davida,
DeMillo, and Lipton [32]. They propose three different system architectures for which it is claimed that
‘‘the security of the total system derives from a few very simple hardware devices by socially acceptable
arguments’’ (i.e., requiring no verification, other than the ‘‘social process’’ touted by the authors in another
paper [33]). The basic scheme in its simplest incarnation is to segregate users at different levels on separate
processors and to allow communication among processors via hardware-enforced one-way links.  This
structure physically enforces the information flow constraints of the model. The practicality of the scheme
has apparently never been tested in practice.

With the advent of cheap yet powerful personal computers and workstations, there is an increasing
tendency to return to the paradigm of single-user machines to enforce domain separation. This is a form of
physical isolation.  Like early machines, this obviates ‘‘internal’’ security mechanisms to isolate users from
one another.  However, networking such machines introduces many of the security concerns of multi-user
computing on a single machine.
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3.3-E(3) Cryptographic Isolation.

An adjunct to other approaches to security is to encrypt sensitive data.  Encryption of secure data has the
effect of reducing its effective information content.  However, the effectiveness of encryption as a
protection scheme is directly related to the ‘‘strength’’ of the encryption scheme and to the security of the
key. Details of various encryption schemes are well described elsewhere [35].

Encryption is not a complete solution since the key data must be protected and potentially distributed.
However, encryption can be useful in protecting data in remote storage or in transit.  Remote access
systems are particularly vulnerable to penetration. Not only is the computer susceptible to attack;
transmissions between the computer and the remote user can be intercepted or subverted.  End-to-end
encryption, as is used in modern secure telephone technology, can give protection in remote access
systems.

LOCK is an example of a secure system which uses cryptographic techniques in a variety of ways.  As we
saw in Section 3.1, LOCK uses bulk encryption to store secure data during periods of time when no
program needs to access it.  This reduces the need for physical security on the storage medium.  ‘‘In
addition, cryptography is used to close covert channels15, protect security-critical data bases, and defend
against attacks by subverted device controller hardware and firmware.’’ [17]

The use of cryptographic isolation may eliminate some of the verification requirements on I/O controllers
and other portions of the system.  However, it puts a correctness premium on the portions of the system that
perform encryption and decryption.  These units are often critical to system security. Yet the crypto devices
are often of classified design and may be difficult to incorporate into secure systems.

Free-standing cryptographic units have been difficult to integrate, both physically and functionally, into
modern computerized hosts.  The classified nature of the products has often imposed physical security
constraints which are incompatible with operational needs.  The ‘communications-only’ bias of the products
has inhibited cryptographic solutions to computer security problems, such as authentication of critical but
forgeable user/computer dialogues and the security of classified information on removable media. [74]

The use of non-classified modules designed for integration into secure systems may alleviate some of these
problems. It also opens an additional applications area for hardware verification techniques.  Some formal
methods work has been done in the analysis of cryptographic techniques [23], but we are aware of no
(open-literature) efforts on the verification of hardware implementations of these algorithms.

3.3-E(4) Logical Isolation.

Probably the most widespread approach to implementing domain isolation in modern secure systems is
some form of logical isolation.  The basic approach here is to assign security attributes to various
processes/domains and to implement mechanisms to ensure that they can communicate only in very
restricted ways. The logical separations and the allowable communication patterns must match those of the
security models as described in Section 2.1.

3.3-E(4)-a Isolation via Access Permissions.

Many of the mechanisms discussed above, such as those that implement virtual memory (Section 3.2), are
not specifically protection mechanisms, though they may be used to advantage by secure systems.  The
mechanisms in this section, segregating domains by limiting the types of access to objects that domains
may exercise in the system, are specifically protection-oriented.  They are specifically designed for
protection, either from malicious or careless access.

15This covert channel illustrates the subtlety of formal secure system design. On LOCK, unique identifiers are generated from a
counter as objects are created. If these uid’s were left unencrypted, a low-level observer might infer how many objects had been
created in the whole system within some interval by observing the difference between the uid’s of objects he created at the beginning
and end of the interval.  This could permit a high level observer to signal down by modulating the creation of objects at a high-level.
Detection of this channel is described in [61].
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It is important to distinguish between the access restrictions required by the security model and those
supported by the hardware.  In many security models, for example, a subject will have read access to
objects at lower levels and write access to objects at higher levels. However, the conceptual objects of a
security model may not correspond to the objects with which access rights are associated by the hardware.
Also, the collection of permissible rights may not be the same. Here we are referring to the hardware
support mechanisms.  Implementing a secure system on top of these will almost always require a mapping
from the required protection onto the supplied protection schemes.

Often, hardware enforced access rights are associated with pages or with segments.  For instance, a scheme
associating access rights with physical pages was the basis of protection in the IBM 360.  However, it is
generally desirable to map ‘‘objects’’ (in the sense of security models) and their associated access
protection to virtual memory locations rather than to physical locations.  The memory management system
can map these in turn to physical locations in a way that is transparent to the programmer.  The simplest
way to accomplish this is to associate a single segment with each object.  This permits the use of the
hardware segment protection mechanisms directly by the security system.  However, it requires that the
hardware segmentation accommodate potentially a large number of segments of widely varying sizes.  If,
as is common, hardware-supported segments have a size limitation, there is a need to maintain multi-
segment objects.  This problem led to some difficulties in SCOMP [46] which supported only small
segments.

3.3-E(4)-b Multiple Execution Modes.

Another common scheme is for each domain/process to operate at any time in some execution mode. Many
operating systems, such as Unix, support two such modes: system and user. These are hierarchical; the
system domain has all privileges of user domain and some additional privileges as well.  This protection
may be implemented very simply by having a mode bit in the process descriptor. In such systems, it is
crucial to protect this bit from modification by the user process. The user in system mode has considerable
privilege and essentially unlimited access to system resources.16 Having only two modes is generally too
coarse a level of protection for most security applications.

Implementing two execution domains is a special case of a ring architecture such as Multics [103]. Rings
are a general hierarchical protection structure.  A program executing in the innermost (lowest-numbered)
ring has all system privileges.  The higher the ring number, the fewer privileges it enjoys. Each ring is
protected from those outside it.  Thus, under the principle of ‘‘least privilege’’ a program should operate in
the highest possible ring.  Various machines have provided hardware support for rings (eg. the ICL 2900
and the later Honeywell Multics machines).

One issue with ring-based systems is: how many rings are enough?  In a two-ring system, the granularity of
protection may be too coarse to offer adequate isolation between processes and between parts.  Systems
have been proposed with up to 64 rings, though in practice fewer are used.  The ICL 2900 machine
supported sixteen rings, for example, most of which were used by the VME/B operating system. [47]

A ring architecture supports some types of security, but by itself does not necessarily support well the
isolation of mutually suspicious domains, particularly if access rights are associated exclusively with the
rings and not with the processes.  Two processes either operate in the same ring or in different rings. If in
the same ring, they have all the same permissions and may not be effectively isolated.  If in different rings,
the more privileged domain may be protected from the less privileged, but not vice versa. Ring-based
systems also do not easily support the notion of a protected subsystem and other needs for non-hierarchical
domains.

A more general mechanism is the association of access permissions with individual subject/object
pairs. [76] This can be implemented by storing rights with the subject (capabilities) or with the object
(access control lists), or in a general table indexed by subject/object pairs.  Support for this basic concept

16The scheme for protecting system mode is an obvious candidate for formal verification.  The formal verification of the KIT
operating system [11] included a proof that no user-mode program could enter system mode.  Popek and Farber [108] describe an
implementation flaw in the PDP-10 Tenex that allowed a user to seize system mode by forcing a counter to overflow.
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varies widely from the authorization lists associated with files in Unix to complete architectures based upon
capabilities.

3.3-E(4)-c Capabilities.

Capability-based machines have often been cited as particularly well-suited to constructing secure
systems [42, 82]. A capability is an unforgeable ‘‘ticket’’ that grants its holder a specific kind of access to
an object.  Capabilities, introduced by Dennis and VanHorn [36], are sometimes implemented as virtual
addresses with additional bits that encode access rights.  They are an efficient protection mechanism since
they may be implemented via a natural extension to existing paged and segmented hardware architectures.
On such machines, the current page and segmentation registers can be extended to hold access privileges.
The concept has even been extended from virtual memory protection to file protection. [106]

A major problem is maintaining the integrity of the capabilities.  They must be genuinely unforgeable.
Schemes for enforcing this involve having a tagged architecture or separate designated segments for storing
capabilities. Another problem is that capabilities allow control of access, but may not be well-matched for
some types of security policies. [15] They do not support traceability of access since they do not answer the
question ‘‘who has access to this object?’’17 Also, passing of capabilities among domains may violate the
containment goals of lattice-style security policies.  Karger and Herbert [71] propose an augmented
capability architecture designed to alleviate these difficulties. Capability based machines include the
Plessy System 250, the Cambridge CAP Computer, IBM System/38, and Intel 432. Secure systems based
on capabilities include the UCLA Secure Unix [107, 131], kernelized VM/370 [55], and PSOS [102].

3.3-E(4)-d Reference Monitor.

The most prevalent approach to implementing access control is the notion of a reference monitor [4]. A
reference monitor is an access checking module that ideally:

• mediates all accesses by subjects to objects;

• can be verified to operate correctly; and,

• is tamperproof.
Some believe that ‘‘the reference monitor is inherent to the design of secure computers’’ [119]. Others
question this dogma, arguing that there has been no convincing demonstration that a reference monitor is
the only viable guarantor of security [22, 32, 40, 58]. Nevertheless, the reference monitor has been a fixture
of all recent secure system implementations, and is likely to remain so since it is mandated by the
evaluation criteria [99]. Reference monitors have been implemented both in software and in hardware.
However, because of its pervasive role in the system, a hardware reference monitor is likely to be much
more efficient.

An interesting implementation of domain separation mechanisms via a reference monitor is LOCK [119].
We discuss LOCK at some length here since it is one of the most recent and one of the best thought out
approaches to implementing access control with the reference monitor concept. Moreover, LOCK is largely
a hardware implementation of the reference monitor concept, which makes it particularly relevant to the
current study.

The LOCK reference monitor is implemented as a co-processor called the SIDEARM—a separate
embedded computer with isolated memory and processing power.  The SIDEARM controls the resources of
the host machine by mediating all access to those resources by users operating on the host CPU.  The
SIDEARM:

1. manages the identification and security labeling of all objects and subjects;

2. implements the mandatory security policy based on those identifications and security attributes; and,

17An early version of LOCK [20] used augmented capabilities that had both the object and subject recorded. This prevented
passing of access rights between subjects.
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3. is guaranteed not to be bypassed since it is physically impossible for the CPU to address its memory
without going through the SIDEARM to obtain an object’s address.

Moreover, all security information is stored on the SIDEARM, preventing tampering by user processes.

A novel aspect of the mandatory policy enforced by the SIDEARM is the LOCK type-enforcement policy.
At any time, each subject is operating within a single ‘‘domain.’’  Associated with each object is a ‘‘type.’’
Domains are limited in access to certain types of objects; these limitations are statically defined by a system
Domain Definition Table.  Moreover, the ability of a subject to move from one domain to another is
restricted according to a system Domain Transition Table, as described above in Section 3.3-D. The
type-enforcement policy permits the construction of ‘‘assured pipelines’’—a mechanism of assuring that a
data item passes through some series of transformations in a controlled manner without the possibility that
the process may be subverted [18].18 Type-enforcement is orthogonal to the lattice-based mandatory
access policy and to the discretionary access policy both also enforced by the SIDEARM.  An access is
permitted only if it passes the ‘‘filter’’ of all three policies.  Type enforcement is readily seen to be yet
another use of access control to enforce domain separation.

3.4 Fault Detection and Handling

Unlike software, hardware can experience faults and failures relating to age, physical damage and external
conditions of operation .  Unless the possibility of faults is acknowledged in the design of the protection
mechanisms, it may be possible for hardware faults to compromise the security of the system.  Such a
compromise may be exploited opportunistically by a malicious program, though such faults are unlikely to
be predictable enough to form the basis of an attack.

A secure machine design should include facilities for fault detection and fault handling mechanisms.  Such
mechanisms include error detection and correction coding on memory, self-test modes for hardware, and
protected restart mechanisms.

It is crucial that the design of error handling mechanism and particularly the use of existing hardware error
features be considered carefully in secure system design.  Since errors are considered exceptional
conditions, formal models of the system may not include them; this is yet another instance of the need
noted in Section 2.2 for complete models.  Some standard responses to system errors—causing a complete
memory dump—are inherently un-secure.  Other mechanisms for error handling, particularly interrupts,
are notoriously hard to model formally.

The design of security critical hardware can profit from the techniques of careful fault analysis as is used in
the design of safety-critical systems [80]. These techniques aim at identifying potential faults that can lead
to breaches of safety/security and providing backup mechanisms that will preserve system security even if
they occur. This type of analysis can significantly reduce the likelihood that a single point failure can
compromise system security. The National Security Agency’s Security Fault Analysis (SFA), for example,
requires that no single point of failure can cause a security violation.

Another approach to maintaining desired system behavior in the presence of potentially faulty hardware is
to use fault-tolerant hardware design. Fault-tolerant design permits the correct operation of the system
even in the presence of faulty hardware units.  Fault-tolerance is often gained by the addition of redundant
hardware units that vote on their results.  Some schemes ensure the correct behavior of the system even in
the presence of maliciously faulty units (Byzantine faults) [75]. Implementations of at least one such
scheme have been modeled and formally verified to the hardware level. [12, 14] Despite an extensive
literature on fault-tolerance, we are not aware of the use of fault tolerant hardware in secure system design,
though the idea is an obvious one.

An alternative to redundancy is provided by an approach called ‘‘dynamic verification’’.  This uses

18For example, such a ‘‘pipeline’’ can be used to transform raw-text to formatted-text to labeled-text to output-text.  Type
enforcement can ensure that a malicious user process cannot access labeled-text to change the security labels before it is output.  Only
the printer demon subject operates in a domain with access to labeled-text and then only read access. See [139] for an example of a
verified labeler utility that uses type-enforcement to create and enforce such a pipeline.
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independent hardware consistency checks each time specific critical actions are performed.  The Berkeley
PRIME system, for example, verifies pages access, allocation and clearing and disk cylinder access,
allocation and clearing. [130] This approach is claimed to significantly reduce the amount of redundant
hardware while achieving assurance that ‘‘one user’s information cannot become available to another user
gratuitously even in the presence of a single hardware or software fault.’’ [41]

3.5 I/O Access Control

I/O control is another area of potential concern for secure system developers.  There are various reasons for
this.

• Output devices are the last outpost of security.  Once information has been
printed/displayed/broadcast incorrectly it is effectively compromised.

• I/O devices are often shared across multiple security levels and given ‘‘trusted’’ status, i.e.,
permitted access not afforded to a typical user.

• Because i/o is traditionally a system performance bottleneck, designers have tended to make
peripherals somewhat autonomous.

These factors make I/O routines and devices a likely candidate for attack. An example is noted by Rushby
as follows.

In its simplest form, the I/O security problem is that DMA devices generally have completely free access to
the whole of memory.  The elaborate steps taken to prevent one user program from accessing another’s
memory count for nothing if programs can call upon I/O devices to evade the protection mechanisms that
restrict their own behavior.  To avoid this type of security flaw, it is necessary either to exclude DMA devices
altogether (which drastically reduces functionality and performance) or to require that all I/O requests are
handled by trusted software (which greatly increases the quantity and complexity of trusted code in the
system). [113]

DMA controllers are simply one instance of increasingly intelligent I/O devices.  Many contain
microprocessors and are capable of quite sophisticated behavior.  How, for instance, do we guarantee that
an autonomous smart printer demon does not change or delete the output security labels on a document?19

Many attacks on system security using these ‘‘smart’’ devices can be thwarted by ensuring that memory
accesses from I/O devices are subject to all of the same controls as other user ‘‘subjects’’, i.e., by ensuring
that the I/O facilities are included as part of the complete system security model as advocated in Section 2.2
above. Another approach was suggested in Section 3.1 above; there we described how bulk encryption is
used on LOCK to eliminate the need for much verification of I/O control by rendering the data non-
sensitive. Research is needed into ways to ensure I/O security while preserving many of the benefits of
DMA and other advances in I/O performance enhancement.

3.6 Processing Requirements

The performance of an information system is not a security concern, per se. However, if the protection
mechanisms are so slow or cumbersome as to render the system unpleasant or inconvenient to use, this can
have several bad effects.

• Users may attempt to circumvent the protection mechanisms and the quite significant
contribution of users to system security will be reduced.

• System administrators may bow to the wishes of users and disable some or all security
controls.

• The system may be viewed as commercially non-competitive with others that provide inferior
security but enhanced performance.

Ideally, security mechanisms should be implemented in such a way that they have negligible performance

19The use of the LOCK type-enforcement mechanism has been suggested as one approach. [139]
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impact and cause users minimal inconvenience.  However, this is not always possible since some of the
functions that users find convenient have potential security implications.  Unix, for example, is often
considered a hacker-friendly system because of the relative freedom of programmer access to system
resources; a Unix super-user has essentially unlimited access.  However, such freedom is antithetical to
secure operation.

The use of hardware to implement protection mechanisms cannot alleviate the need to place some
restrictions on access, but it can make the restrictions less onerous by significantly decreasing their impact
on overall system performance. This must be considered in secure system development. LOCK’s hardware
based kernel approach is aimed at no more than 10% performance reduction over the unaltered
hardware [119], compared to a 90% reduction for a software approach reported for KVM/370 [54].

Hardware that assists in speeding the processing of domains, checking security on accesses, or moving
information securely within the system can enhance system performance and the usability of the system.
Landwehr and Carroll [77] give a number of examples.

Some of the ways in which hardware designers have attempted to enhance system performance are
troublesome from the point of view of verification and security. For example, instruction pipelines and
cacheing schemes are aimed at enhancing performance by reducing the amount of time required for
instruction execution. Most such schemes are logically transparent to the user program.  However, some
versions of the Motorola MC68000 have cacheing that actually alters the logical results of program
execution with the result that it is very difficult to reason about programs on these machines.20

3.7 Physical Security

There are a variety of books such as [130] covering physical security of computing resources.  Techniques
that fall generally under physical security include:

• maintaining locks and alarm systems on computer rooms;

• maintaining (securely stored) backup copies of all media;

• having write inhibit mechanisms on disks and tapes and write-only media (such as laser
disks) for audit data;

• assuring secure communications by protection of data paths and encryption;

• protecting against electronic eavesdropping by TEMPEST techniques.
These features are not generally candidates for formal analysis.  However, there is no reason that a careful
risk analysis could not be used to identify threats from the physical environment and lead to enhanced
security.

4. Conclusions

Hardware has a tremendous impact upon the security of a system.  Yet emerging techniques for enhancing
the reliability of hardware have had little impact on secure system development.  We feel that the security
and hardware verification communities have a great deal to offer one another.  We have suggested ways for
determining appropriate security properties for hardware; these properties can serve as specification for
hardware verification and provide an interesting and vital applications area for hardware verification work.
The techniques of hardware verification can be a useful tool in enhancing system security and can be used
in concert with the higher-level analysis techniques used to date.

We have also considered a number of hardware features that often directly impact secure system operation
and are candidates for formal scrutiny.  A continuing challenge will be finding ways to specify adequately

20Yuan Yu at the University of Texas is attempting to formalize the semantics of the MC68000 instruction set.  He was forced to
leave out some instructions because of the unpredictable effect of the cacheing mechanisms.
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these types of hardware features and provide a firm formal foundation for reasoning about these
specifications. Research in this area can and should ultimately contribute to the security of computing
systems.
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Appendix: Evaluating Hardware Support for System Security

Part of our initial goal for this report was to ‘‘list the vulnerabilities that hardware designs may exhibit and
classify their relative importance.’’ However, we found this goal essentially impossible to accomplish.
Hardware is an extremely flexible medium for the realization of secure system designs.  With very few
exceptions, the vulnerabilities of a hardware implemented secure system are the same as those of a software
implemented secure system.  The few exceptions have to do with the physical, rather than the logical
properties of a secure system.  Issues such as the need to protect against external interception of magnetic
remanence simply do not arise at the logical level of concern.

We decided to present our list of vulnerabilities in the form of a collection of questions which might be
asked of hardware implementations of secure systems.  These questions define what we believe to be
important concerns related to hardware in secure system development. The relative importance of these
concerns is roughly as follows.  The more widespread the reliance of system security on a hardware feature,
the more important it is that that feature be implemented correctly.  For example, it is important that the
audit mechanisms of the system be implemented in a tamper-proof fashion.  But it is more important that
the memory management system maintain process isolation correctly, particularly if the isolation of
‘‘subjects’’ in the model depends directly upon the isolation of processes in the implementation.

General Concerns
• Are the security constraints justifiable and reasonable for the intended application of the

system?

• Are the protection mechanisms well-structured and adequately designed to allow formal
modeling and analysis?

System Architecture
• Is the structure of the hardware architecture conducive to proof?

• Does the structure of the architecture match the structure of the model? E.g., is it layered in
such a way that the protection structures support the layering of security constraints mandated
by the model?

• Is the security functionality encapsulated into a clearly delimited kernel?

• Is the system structured around a reference monitor? Is a reference monitor appropriate for
the application?

• Does the structure of the architecture make clear the security perimeter?  Are there features
ostensibly outside the security perimeter which are potentially security-relevant?

Memory Management and Protection
• What memory protection is provided by the hardware?

• Do the security mechanisms rely upon the memory protection?  Is it adequate to these
purposes?

• Is the memory management entirely transparent from a user perspective?  E.g., are the effects
of page faults visible to the user?  Could user activity force page faults in a predictable way?

• Are the hardware features which support memory management accessible to the user?  E.g.,
are base and bounds registers adequately protected?

• Is the memory management scheme susceptible to formal modeling and proof?  Is a clear
axiomatization possible?

• If memory management is used to protect system software, is the protection strong enough for
this purpose?

• Are the memory divisions supported by the machine of adequate granularity and/or size to
support ‘‘objects’’ in the model?
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Execution Domains
• What are the execution domains provided by the machine?  How do they map onto the

domains mandated by the security model?  Are they adequate to support the model?

• Does the hardware support multiple execution domains in an efficient manner?

Processes

• What is the appropriate mapping between hardware-supported processes and the execution
domains of the model?

• Does the hardware support efficient process swapping?  How much information is stored
upon a process swap?  Is the information for all suspended processes adequately protected
from manipulation by the currently running process?

Initialization

• What are the mechanisms for establishing a consistent initial state of the machine?  Is the
initial state secure?  Is the initial state adequate for establishing other domains securely?

• Does the initial state require ‘‘trusted’’ capabilities?

• Does the hardware support protection of the initialization facilities?  Are the bootstrap
routines and security tables adequately protected when the system is not running?

• Would separate initialization hardware be appropriate for the application?

• Is the initialization problem considered in any formal model of the system?

Linking Users with Domains

• Are the actions of each execution domain traceable to a specific responsible user?

• Is there hardware support for linking users with domains?  E.g., is there some hardware
mechanism supporting authentication of users at login time?

• Is each user periodically reauthenticated?

• Is adequate audit data maintained to assure that security violations can be scrutinized and
flaws corrected?

• Does the hardware support the collection of audit data to minimize its operational impact?

• Is the audit data adequately protected from tampering?  Is the audit data protected differently
from other data in the system?

Communication Between Domains

• How do domains communicate?  What is the hardware support for this?

• Is there hardware support for restricting domain changes?

• Is there support for calling a more restricted domain (kernel call)?  If so, does it support
address validation and parameter checking?

• If a message passing system, how is message passing implemented and restricted?

• Is the communication mechanism amenable to modeling formally?

Isolation of Domains

• Which mechanism is employed for isolation of domains: temporal, physical, cryptographic,
or logical?

• If temporal isolation is employed, is there adequate protection against residual information
remaining between uses?  E.g., is the memory scrubbed between uses?  Is there hardware
support for this?
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• Are boot-strap routines, initialization software, and other system software adequately
protected to prevent sensitive information being preserved from one use to the next?

• Are removable storage media sanitized between uses?

• If physical isolation is employed, are the remaining channels completely enumerated in the
model? E.g., are all bypasses accounted for and monitored?

• Does physical isolation really make system penetration more difficult or less profitable?

• Schemes employing physical isolation sometimes require special hardware such as physical
one-way links?  Are these devices adequate to the purposes?

• If cryptographic isolation, is the coding stream strong enough to provide adequate protection?

• Is the cryptographic hardware correctly implemented and correctly integrated into the larger
system? E.g., can any cleartext bypass be exploited to compromise system security?  Is
sensitive data always encrypted as required?

• How is key data protected in the system?  How is it distributed?

• Is end-to-end encryption used to protect data transmission?

• If cryptographic techniques are used to close covert channels, are they logically strong
enough to do so?  E.g., if the channel only depends upon the dissimilarity of two values,
encrypting them may not mask this.

• If logical isolation is used, how is it implemented?

• Is there hardware support for storing and checking access permissions?  Do the hardware
supported permissions match the access permissions mandated by the model?

• Does the hardware and operating system support multiple execution modes?  Are these
helpful in supporting the protection structures of the model?  Are there enough of them? Are
they appropriately hierarchical?

• Are there adequate protections to keep a user from gaining inappropriate permissions?  Is this
provable?

• How are access permissions stored?  Are they associated with the subject or with the object?

• If the underlying hardware support is a capability system, how does the protection mechanism
overcome inherent limitations of capabilities?  How is the integrity of the capabilities
maintained?

• If a reference monitor is used, does it satisfy the conditions of mediating all access, being
verifiable, and tamper-proof?

• If the monitor is not implemented in hardware, does it provide adequate performance?

• Is there any mechanism for constructing ‘‘assured pipelines’’ in the system?

Fault Detection and Handling
• Can a single hardware fault cause a security compromise?

• Does the hardware provide support for fault detection and recovery?

• Have the error detection and recovery mechanisms been considered in the system design?
Can they be modeled and included in the formal model of the system?

• Are interrupts used for error handling? If so, have their effects on security-relevant
computing been investigated?

• Has the system design been subjected to a careful fault analysis?

• Has fault-tolerant hardware been used in the system implementation?  If so, has any formal
analysis been used to show that the system is appropriately ‘‘tolerant’’ of faults?



29

I/O Access Control
• Do the I/O devices require exceptional ‘‘trust’’ in the system design?

• Is each I/O device’s access to memory mediated by the security mechanisms of the system?
Is DMA permitted in a fashion outside the standard security mechanisms?

• Is the behavior of smart I/O controllers adequately controlled?

• Is classified output appropriately protected from modification by smart I/O controllers?

Processing Requirements
• Do the security mechanisms so degrade system performance that users will try to circumvent

them? Do they render the system commercially non-competitive?

• Is hardware used effectively to ameliorate the performance impact of security restrictions?

• Do attempts to gain enhanced performance alter the logical behavior of the machine in any
way which makes it very difficult to model?

Physical Security
• Is physical security adequate?

• Are there adequate locks and alarm systems on the secure facilities?

• Are there securely stored backup copies of all media?

• Are there appropriate write inhibit mechanisms on disks and tapes and write-only media (such
as laser disks) for audit data?

• Is encryption and physical security on data paths used to assure secure communications?

• Are there safeguards (e.g., TEMPEST techniques) against electronic eavesdropping?
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