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Abstract

Visual programming guably provides greater benefit in explicit parallel programming,
particularly coarse grain MIMD programming, than in sequential programming. Explicitly
parallel programs are multi-dimensional objects; the natural representations of a parallel
program are annotated directed graphs: data flow graphs, control flow graphs, etc. where
the nodes of the graphs are sequential computations. The execution of parallel programs
is a directed graph of instances of sequential computations. A visually based (directed
graph) representation of parallel programs is thus more natural than a pure text string lan-
guage where multi-dimensional structures must be implicitly defined. The naturalness of
the annotated directed graph representation of parallel programs enables methods for pro-
gramming and debugging which are qualitativelyfed#nt and aguably superior to the
conventional practice based on pure text string languages. Annotation of the graphs is a
critical element of a practical visual programming system; text is still the best way to rep-
resent many aspects of programs.

This paper presents a model of parallel programming and a model of execution for parallel
programs which are the conceptual framework for a complete visual programming envi-
ronment including capture of parallel structure, compilation and behavior analysis (perfor-
mance and debugging)wd visually-oriented parallel programming systems, CODE 2.0
and HeNCE, each based on a variant of the model of programming, will be used to illus-
trate the concepts. The benefits of visually-oriented realizations of these models for pro-
gram structure capture, software component reuse, performance analysis and debugging
will be explored and hopefully demonstrated by examples in these representations. It is
only by actually implementing and using visual parallel programming languages that we
have been able to fully evaluate their merits.

1.0 Introduction

During the past 15 years microprocessor performance has improved dramatically in com-
parison to the performance ofdar systems [Pat90]. From a hardware point of vtais

trend has made parallel computers increasingly attractive since high-performance
machines can be built by combiningdarnumbers of microprocessors that have been
bought at commodity prices. The design details vary greatly from one machine to,another
but most recent machines adopt the MIMD (multiple instruction streams - multiple data
streams) model in which each processor can perforferelift computations on dérent

data. Some machines use a shared address space for memory; others require that proces
sors communicate via explicit message sending. It is even possible, since they are often
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available, to use a network of workstations as a parallel complitef these designs are
intended for coarse-grain computations in which processors execute a substantial number
of instructions between communications or other interactions with other processors. If the
computation grain becomes too small, performanciersufThis paper will focus exclu-

sively on visual programming methods for coarse-grain MIMD parallel architectures.

The primary reason that parallel computing is not more common than it is today is that,
while the machines are fairly easy to build, it is quitédift to write programs which are

both eficient and portable across machines since the design details of parallel machines
impact both the programming model and execution performance far more significantly
than do the details of the designs of sequential machines. Ticalgifof programming
parallel machines is the major bottleneck preventing their wider acceptance.

It is easy to see that parallel programming is morfecdif than sequential programming

since sequential programs are simply a degenerate case of parallel programs. Coarse-
grained MIMD parallel programs consist of interacting sequential elements. The program-
mer must specify both the sequential elements and their interactions.

A model of programming in which parallel programs are created by first defining a set of
sequential units of computation and then composing them into a parallel program
addresses this complexity issue by a divide and conquer (or separation of concerns)
approach since the two steps are done separBiedgted graphs are a very natural mech-
anism for the composition step. Nodes represent atomic sequential computations, and arcs
represent dependencies between them. The nature of the dependencies can vary from
model to model as we shall see.

Parallel programs written in the directed graph model are also intrinsically more portable
across architectures since the interactions among the sequential units of computation are
expressed in the structure of the graph independently of the mechanisms in which they
will ultimately be realized. The separation of concerns which assists in reduction of com-
plexity of programming also results in reduction of the complexity of compilation of these
abstract specifications for interactions intéicent executable forms. As we shall see
later, the two systems used as examples in this p&@NCE [Beg9l1a] and CODE 2.0
[New93, New92], demonstrate that in at least some circumstances, competificedptef

code can be generated from the abstract specifications of interactions.

This separation of concerns also leads naturally to the reuse of components since the
sequential computations from which the parallel computations are composed are defined

in a precisely specified data and control context and must have clean and precise interfaces
and well-understood semantics.

Parallel programming also €#is from sequential programming in that programmers must
understand the lge-scale structure of their programs in order to understand their execu-
tion performance. This is a vital issue since performance is the major reason for the exist-
ence of parallel computing. Programmers must know what elements of their parallel
program are scheduled for execution and which communicate with which, and they must
have a grasp of the granularity (or size) of the computation that takes place within a
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sequential element between communications. Furthermore, programmers often must
understand how their computations are mapped onto the processors of a parallel machine
(which can also be represented as a graph).

Graphical tools are widely used to display information about execution behavior, but
directed graph based visual parallel programming languages have a special advantage.
The execution data can be directly related to the user's original program since they share a
common graphical format. This integrates the steps of program creation and debugging,
both for performance and correctness.

1.1 Conventional Approachesin Parallel Programming L anguages

Many programming language and compiler approaches have been proposed to simplify
programming parallel machines, but none have been completely successful. It is useful to
review them before moving on to the virtues of visual parallel programming.

* Augment sequential languages with architecture-specific procedural primitives.

This approach permits the creation dicént parallel programs, but the primitives sup-

plied tend to be at such a low level of abstraction that they may be awkward to use for a
wide variety of algorithms. Program development with them tends to be slow and error
prone. In addition, parallel architectures are quite diverse, and their programming models
are equally diverse. For this reason parallel programs written using architecturally specific
extensions to sequential languages tend to be quite non-portable, although there has been
progress in defining standard libraries for some important and broad classes of machines.

» Have compilers automatically detect parallelism in sequential language programs.

The parallelism in a program is implicit and must be discovered and exploited by the com-
piler. This approach clearly provides application portabilitys the case, howevethat
current parallel compilers often miss significant parallelism due to theutties engen-
dered by name ambiguity in programs written in toslageéquential programming lan-
guages [EIG91]. This approach alsofstd from the fact that, in practice, programmers
must be aware of the parallel structures the compiler will produce from given source text
since they must program idiomatically so that the compiler will be able to prodiice ef
cient code. In this sense, the parallelism is not implicit at all. It is merely expressed indi-
rectly.

» Extend sequential languages to allow data partitions to be specified.
One emgging trend is to include declarative partitioning of data structures in the sequen-
tial program formulation and to ask the compiler to utilize this parallel structure [HIR91].

This promising method is as yet immature. It is unclear hdectefely complex data
structures such as unbalanced trees can be partitioned, either at compile time or at runtime.

1.2 Visual Parallel Programming L anguages

Graphical displays are useful and common aspects of parallel programming environments,
but they tend to be limited to displaying the performance, behavistructure of parallel
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programs that are expressed conventiona#iytext. This papergues that significant ben-

efits can be obtained by going a step further and directly expressing parallel programs
visually. The concept of visual directed graph programming systems is noT hevirst
significant system was probably that of Keller areh YKel81] in 1981. It is, however

only in recent years that a significant impact from visual directed graph parallel program-
ming languages has been obtained. The advantages of this approach will be discussed both
in the abstract and specifically in terms of two implemented visual parallel programming
languages, HeNCE 2.0 and CODE 2.0.

These two languages t#if in many ways but both rest upon the notion that parallel pro-
grams can usefully be represented as directed graphs in which nodes with certain icons
represent sequential computations and the graph as a whole represents the parallel struc-
ture of the program. Each graph shows, in some fashion, what sequential computations in
the parallel program can be run concurrently with what other sequential computations.
There are many advantages to this view

1. Graphs are a more natural representation for parallel programs than linear text because
parallel program behavior is inherently multi-dimensional.

2. A graph-based visual parallel programming language can separate the programming
process into two distinct concerns, creating sequential program elements and compos-
ing them into a complete parallel program thus facilitating a divide and conquer
approach to design.

3. Graphs directly display and exposegkasscale program structure that programmers
must understand in order to achieve good performance.

4. Visual representation promotes the exploitation of data locahtyther key to parallel
program performance.

5. A graph model can permit logical and performance debugging to be carried out in the
same framework as programming@ols to support these tasks integrate neatly into a
single visual framework.

These advantages will be elaborated in the sections that follow

2.0 Parallel ProgramsAre Graphs

Representations of parallel programs and parallel program behaviors are naturally multi-
dimensional. This structure, for both the program and its executionseasiafly cap-

tured by directed graphs. This suggests directed graphs as a means of representing parallel
programs since they will better permit programmers to relate programs to their hehavior

The source of this non-linearity is that MIMD Parallel programs, regardless of how they
are expressed, consist of multiple interacting threads of contvol ekamples will dem-
onstrate.
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2.1 Direct Representation of Implicit Parallelism

Consider the sequence of assignment statements shown in the program in Figure 1. They
have an obvious interpretation as a sequential program and imply the execution sequence:
1-2-3-4. This is clearly a linear representation and remains so even in the presence of mul-
tiple control flow paths since only one is taken.

[* step 1 */ X = 5;

[* step 2 */ y = 3;

[* step 3 */ Z =X + 2
/* step 4 */ wW=X+Yy + z;

Figure 1. Example Program.

This program can also be viewed as a parallel program since some of the steps are inde-
pendent since they access no common variables. For example steps 1 and 2 can be exe-
cuted in parallel or in either orddd#ence, the programexecution is now longer a simple
sequence. Computations such as the following can all be valid interpretations of the paral-
lel program, although not all exploit maximal parallelism. The notation (1,2) means that
steps 1 and 2 are performed in parallel.

1-2-3-4 2-1-3-4

1-3-2-4 (1,2)-3-4

Listing all of the possible computations is a cumbersome way of understanding this pro-
gram. For example, step 2 can also run in parallel with step 3 as long as the latter is done
after step 1.

However notice that a computation graph such as that shown in Figure 2 neatly summa-
rizes the programs’ behaviar The nodes represent steps. The arcs in this diagram show
data flow Two nodes may be run in parallel if there is no path from either to the other

Figure 2. Computation Graph of Example Program.

2.2 Message Passing Example

Of course, parallelism at the statement level is inappropriate for machines that support
only coarse-grain computation. For them, nodes must represgst ¢cemputations.
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The above example suggests that parallelism, implicit in conventional sequential program
representations, has a natural representation as a directed graph. This is true also of repre-
sentations that show parallelism directBonsider programs expressed in “C” with calls

to explicit message passing libraries in the general style of the PVM system [Gei93]. An
example is shown in Figure 3.

main () ProcB()
spawn( ProcA); whi | e(! done) {
spawn( ProcB); -
spawn( ProcC); recvfrom ProcA, data);
sendt o(ProcC, data);

}

ProcA() }

whi | e(! done) { ?rocC()
whi |l e(!done) ({

sendt o(ProcB, data);

recvfr om(ProcC, data); recvfrom(ProcB, data);

} } \ sendt o( ProcA, data);

Figure 3. Example Message-Passing Program.

Graphical display tools often represent the behavior of such programs by means of a dia-
gram that shows messages being sent from one process to .almotitleer words, every
interaction between processes is shown by an arc. Figure 4 shows such as diagram and
how it can be interpreted as a computation graph by identifying each segment of sequen-
tial processing between communications as a node.

PQcA PEcB PQCC

~

T Interpret as graph... ProcAl
|y Strips between ProcB1
communications
_ |1 are sequential. ProcC1
//
4 ProcA2

Figure 4. Message-Passing Program aisddtmputation Graph.
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3.0 Visual Parallel Programming

If directed graphs are a natural mechanism for displaying the behavior of parallel pro-
grams, then why not use them as a basis for a programming language in order to reduce
the distance between representation and behavior? There are many ways to go about this,
but we will assume that programs are represented by directed graphs in which nodes with
specific icons represent sequential computations (other icons may represent other con-
structs) and the graph in some fashion represents the overall parallel structure.

3.1 Two Stepsin Programming

One immediate advantage of this view is that the process of creating a parallel program
can be divided into two distinct steps: creation of components and the composition of
these components into a graph. The primitive components can be sequential computations
but other cases are allowed. For example, a component could be a call to another graph
that specifies a parallel sub-computation. In any case, components can either be created
from scratch for a particular program or they can be obtained from libraries. The key is
that each component simply maps some inputs to some outputs with a clean and clearly
defined interface. These components can then be composed into a graph which shows
which components can run in parallel with which other components.

Component creation and component composition are distinct operations. Programmers
need not think about the details of one while performing the other (except to ensure that
the sequential routines are, in fact, defined with clean interfaces and well-specified input/
output semantics). In particular the specification of parallel structure is done without con-

cern about the inner workings of the components involved. Furthermore, the best tools
available can be used for thefdient tasks.

3.2 Sequential Components

Both HeNCE and CODE emphasize the use of sequential subroutines expressed in C or
Fortran for use as primitive components— in fact HeNCE requires it. There are several
benefits from this decision.

1. Implementation is facilitated since we build on the existing tool base of tested and
accepted sequential languages and compilers.

2. This approach permits subroutines from existing sequential programs to be incorpo-
rated into new parallel programs. Leveraging existing code is often vital to the accep-
tance of new tools.

3. The learning curve for users is less steep since they are not asked to relearn sequential
programming when adopting a parallel programming environment.

3.3 Parallel Composition into Directed Graphs

It is common for programmers to draw informal diagrams that shae scale parallel
structure when designing parallel programs. The purpose of these diagrams is to abstract
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away the details of the components of the system being designed and concentrate on their
interactions. A graph-based visual parallel programming language can help to formalize
this process.

Understanding the lge scale structure of parallel programs tends to be of greater impor-
tance than it is in the sequential case due to the fact thatdaale structure can have a
dramatic impact on the execution performance of parallel programs. In order for program-
mers to achieve and understand program performance, they must understand the structure
of the computation graph of their program— regardless of how their program is repre-
sented. Consider the computation of SecBidh If the execution time of the sequential
segments between communications is too short, performance Mgl sufce it will be
dominated by the overhead of message passing.

A direct graphical representation of parallel programs renders such concerns explicit. The
programmer knows exactly what the sequential components are precisely because they are
separate components. Especially if they are subprograms that perform some cleanly
defined function, the programmer will also have a good feel for their execution time.
Hence, he or she will be aware of the computagignanularity

The graph can also directly display other information that is vital to understanding the per-
formance of any parallel program. Issues such as poor load balance or inadequate degrees
of parallelism are apparent from the shape of the graph and the execution times of the
nodes, interpreted relative to communication overheads. Figure 5 shows two examples.

A graphical representation is also useful because it can promote locality in designs to the
extent to which components are infeiEnt name spaces in the language. In CODE, state

is retained from one execution of a node to anptred communications must be explic-

itly defined as part of the interface to a sequential computation node. This encourages pro-
grammers to try to package a naddata with the node. Locality is easy to express, but
remote access requires mordodf Thus, beginning parallel programmers are guided
towards designs that exploit good data locality

Insufficient Parallelism Poor Load Balance
(Two Processors mostly idle.) (Two Processors mostly idle.)
The two nodes on the
9 left run much longer

than the others.

QO /

N (3
3 . 9@0
9 Most of the execution G

time is in this sequential

9  region.

Figure 5. Graphs Showing Poor Performance. (Runtimes shown in nodes.)

Visual Programming and Parallel Computing 8



4.0 Compilersand Atomic Component Graph Models

Graph based models that are based on the composition of atomic components have advan-
tages for compilation as well as for programmers. Directed graph representations
abstractly express parallel structure and so are not tied to a single machine type. Portabil-
ity is enhanced. Nodes are atomic mappings from inputs to outputs and can run on any
type of machine. In fact, there is no reason to assume that all nodes must execute on the
same type of processdfor example, HeNCE programs run on a potentially heteroge-
neous collection of UNIX workstations.

Compiling

Since the parallelism in the graph model is explicit, a compiler does not have to discover
it; it must only exploit it. Furthermore, in CODE and HeNCE the granularity of compo-
nents will likely be fairly high since they are based on calls to sequential subprograms.
This reduces the di€ulty of assigning tasks of appropriate granularity to processors.

The fact that components receive input, run to completion, and then send outputs also
helps to control granularity and promotes language implementations that batch messages
that are to be sent to the same destination. For an example, consider the following code
fragment.

sendt o( ProcA, datal);
sone_short_conputation();
sendt o( ProcA, data2?);

It is often better to combine the two sends into one. This is also true when sending to two
different processes that have been assigned to the same physical processor

Scheduling

The simpler incarnations of such graph models also lend themselves to the use of
advanced scheduling techniquesaf9l] since the components are often arranged into
directed acyclic graphs (or directed acyclic subgraphs can be found) and the execution
times of components is often fixed from invocation to invocation. Furthermore execution
characteristic of sequential elements are easier to define and measure since they are encap-
sulated. This encapsulation can also simplify dynamic (runtime) scheduling for load bal-
ancing since the state of sequential elements is fixed between executions.

The graph model also lends itself to implementation in heterogeneous parallel environ-
ments in which processing elements have varying speeds and capabilities. This is a more
complex case of the scheduling problem just mentioned since characteristics of processors
vary as well as characteristics of nodes. The HeNCE systengyeseditowards heteroge-
neous environments.

Fault-tolerance tends to be simpler to implement in models in which components do not
retain state from execution to execution. This factor will be most important when using a
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large network of independent workstations as the parallel machine to perfgarctan-
putations.

5.0 CODE and HeNCE

CODE and HeNCE are implemented visual parallel programming languages that rest
upon the ideas described above. They are very similar in purpose and general philosophy
but are significantly diérent in detail. This section will summarize the languages and then
provide an example of a program expressed in each.

Both languages are alike in that users create a parallel program by drawing and then anno-
tating a directed graph that shows the structure of the parallel program. Both languages
offer several dierent node types, each with its own icon and purpose. In both cases, the
fundamental node type is the sequential computation node which is represented by a circle
icon. The graph annotations include sequential subroutines that define the computation
that computation nodes will perform as well as specification of what data computations
will act upon.

5.1 An Introductory Example: CODE

Figure 6 shows an extremely simple CODE program that will serve as an introductory
example. It numerically integrates a function in parallel over a definite integMall py
computing the midpointn betweera andb and then having one sequential computation
node integrate the interva,[m] while the other doesy, b] at the same time. The results

are summed to form the final result.

The nodes in the graph that do the integration are both namegiHalf and a glance
shows that they can run in parallel since there is no path from one to thelbtharcs in

this CODE graph represent dataflow from one node to another on FIFO queues. The graph
is read from top to bottom, following the arrows on arcs. Thus, the graph shows that node
Split Interval is creating some data that are passed to thértieg Half nodes. This data
consists of a structure defining the integration the receiving node is to perform.

type Integlnfo is struct {

real a; // Start of interval
real b; /1 End of interval.
int n; /1 Nunber of points to evaluate
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Translate Su:rulll Layout W Undo

Progron : EXEISTREIRER] Graph: : How? JEENR] Create

Integrate a function in ]

parallel by splitting . Split Interval
the interwval and
integrating the pieces.

. Integ Half

Figure 6. CODE Integration Program

So, to create this parallel program, the programmer draws with the mouse a graph just as
shown in Figure 6 and then enters textual annotations ifeyefit pop-up windows asso-
ciated with various objects such as nodes, arcs, etc. This information includes such famil-
iar items as type definitions and sequential function prototypes (for type checking calls).
We will ignore these and focus on the annotations of computation nodes. When annotation
is complete, the user picks “translate” from a menu, and a parallel program is created,
complete with a Makefile, ready to be built and run on the selected parallel machine.

The annotation for a computation node consists mostly of a sequence of stanzas, some of
which are optional. The annotation for fimteg Half nodes follows. Both nodes are iden-
tical. We will see later how a single replicated node could have been used in place of the
two identical nodes.
i nput_ports { Integlnfo I; }
output_ports { real S; }
vars { Integlnfo i; real val; }
firing_rules {
I ->i =>1}
conmp {
val = sinp(i.a, i.b, i.n); }
routing_rules {
TRUE => S <- val; }

The first two stanzas provide names for “ports” which are queues of data that enter and
leave the node. Each node uses its own local names for these ports so that nodes can be
reused in new contexts. This node will read data of impegl nfo (the structure defined

above) from a port calledand write real data onto a port calted

Now briefly consider the annotation of arcs. All arc annotations are shown on Figure 6.
Their purpose is to bind an output port name to an input port name. It is apparent from the
graph that nod&plit Interval places data onto output polisandl 2. Portl 1 is bound to
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input portl of the leftinteg Half node. Thus dat8plit Interval places ontd1 is sent to
the leftInteg Half node and data placed int®is sent to the other

Returning to the computation node annotation, the “vars” stanza defines variables that are
local to the node and that its computation can read and modify

The “firing_rules” stanza is very important. It serves two purposes. First, it defines condi-
tions under which the node is permitted to execute. Second, it describes which local vari-
ables will have data placed in them that have been removed from designated ports.
CODE's notation for firing rules is quite flexible and also sometimes complicated relative
to other features of the language. The rule ‘I =>" is simplest case. It signifies that

1. The node can fire when there is data waiting onlport
2. When the node fires, one (structure in this case) is removed faochplaced in local
variablei.

Thus, thelnteg Half nodes simply wait for an incoming value. When one appears, they
fire and produce an output.

The “comp” stanza defines what sequential computation will be performed when the node
fires. The text is expressed in a language that is a subset of “C” that includes calls to exter-
nally defined sequential functions and procedures (susimgswhich does the integra-

tion in this example). It is expected, but not required, that all significant sequential
computations will be encapsulated in such external functions.

Finally, the “routing_rules” stanza determines what values will be placed onto output
ports. As with firing rules, the notation is flexible and potentially complex, but this exam-
ple is simple. The value of real variabl is placed onto queug

5.2 An Introductory Example: HeNCE

The equivalent HeNCE program looks exactly like the CODE graph in Figure 6, except
for three points.

1. HeNCE graphs are read from bottom to top (this will be changed in a future release).

2. HeNCE computation nodes are always named by the (exactly) one sequential proce-
dure they are required to call.

3. HeNCE arcs take no annotation.

The HeNCE graph is shown in Figure 7. All node annotations are shown. In the actual
HeNCE system, the annotations are in pop-up windows.
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Figure 7. HeNCE Integration Program.

Although the HeNCE graph looks like the CODE graph, the meaning of HeNCE graph is
very different. Except for some features that have not been discussed, arcs in CODE repre-
sent dataflowArcs in HeNCE represent two f#ifent concepts at the same time: control
flow and variable name scope.

A HeNCE node is permitted to execute whenever all of its predecessors have executed.
This is the only rule that defines when a node can run, and there is no implication that pre-
decessor nodes have sent any data. There are no explicit node firing rules as in CODE.
HeNCE has special control flow nodes that can alter the succession of node executions.

HeNCE node computations read and write variables. If a node reads a variable, the system
defines that the value it will get is that set by the nearest predecessor in the graph that
exports the variable. This will require an explanation and some background. Computation
node annotations consist of three parts, two of which are optional.

1. Declaration of input and input-output variables (optional).

The values of input and input-output values are read from the nearest predecessor node
that outputs that variable. The value of the variable can be changed. New values of
input-output variables can be seen by successor nodes. New values of input variables
cannot. Input declarations contains an “<“and input-output declarations contain a “<>"
token.

2. Call to a sequential procedure (required).

The procedure may be written in either “C” or Fortran. Thescalitual parameters
may be expressionsa¥iables that appear in the expressions are inputs, input-outputs,
or outputs from node.

3. Declaration of output variables (optional).

Output variables can be set by the noddu¥s are available to successor nodes. Output
declarations contain a “>" token.
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Consider the annotation of no8etlnputs in Figure 7. It calls a “C” routine callegkt-
I nputs which provides values for variablasb, mid, andn. The variables are made avail-
able to successor nodes because they appear in output declarations.

The twosimp nodes are very similabut one uses input declarations to reauid, andn
from its nearest predecess8et| nputs) and the other readsid, b, andn. The leftsmp
node makesl available to its successors in the graph, and the write nsalkesilable.
These variables hold the results of the integration. Subrasitimeactually performs the
integration. It is a “C” procedure.

NodePrintAns readssl ands2. It calls “C” proceduréP’rintAns which sums them and
prints their value which appears in the HeNCE console window when the program is run.

5.3 Block Triangular Solver Example

We will use a somewhat more sophisticated example to introduce a few of the more
advanced facilities of CODE and HeNCE. The problem is to solve the sgsterb for a

dense lower triangular matrik. The algorithm to be used is quite simple and involves
dividing the matrix and the vector into blocks as shown in Figure 8. Each “a” in the figure
represents a sub-matrix Afand each “b” represents a sub-vectob.dfet the number of
sub-blocks be\.

3.0 Bo
a0 |87 by
a b,
bo |1 |32
B0 |ag &2 |a b
, A1 , 3 3

Figure 8. Blocked Matrix andé¢tor
The algorithm replacds with the solution vectax. The case foN = 4 is shown below

— -1
by = a574by

o
[Eny
1

arly (by—a; 4by)
b, = 35,12 (by—a, gbg—a, 1b;)

by = az’y (by—a, gby—a, 1, —a, ,b,)
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Notice that oncejthas been computed, the operations b - g ;b; can be performed in
parallel for i = j+1 to N-1. Thus, the algorithm proceeds iteratjwetyking on columns of
the blocked system one at a time from left to right.3atte be a sequential function that
solves this problem (applied to a single block).

To process the jth colum do
Sol ve(aj j, bj);
for each i fromj+1to N-1 do
bi = bi - a, j * bj'

Each of the iterations of the for loop can be done in parallel. Assuming the sub-blocks are
of adequate size, each iteration represents a fairly coarse grain computation— a multiplica-
tion of a matrix sub-block by a vector sub-block with the resulting vector subtracted from
another vector sub-block. For the remainder of this discussion assume that a procedure
calledBlIkMult performs this operation.

The parallelism in this algorithm stems from the ability to performBikéM ult opera-
tions “beneath” th&olve operation for a column in parallel. This is readily seen in a data-
flow graph for the algorithm as shown in Figure 9. The “S” nodes are c&@t#$ve and

the “M” nodes are calls tBIkMult. In the next few sections we will show how to express
this algorithm in CODE and in HeNCE.

Bo—> S > XO

M10—>S]_ ‘Xl
‘@21—>S :X2

Figure 9. Dataflow for Block flangular Solver

5.4 The CODE Language

Before presenting the CODE block triangular sqlwvee introduce all of the icons that

may appear in CODE graphs. They are shown in Figure 10. Many of the icons are used to
define the interface to a graph. CODE graphs can call other CODE graphs by means of the
Call icon shown. Arcs incident upon Call nodes are actual parameters of the call. These
arcs are bound to interface nodes in the called graph via a name binding that is an attribute
of the actual parameter arcs. This is similar to arcs binding port names between two nodes
as seen above. Interface nodes are required to have names that are unique within the
graph.
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General Nodes Graph Interface Defintion
uential
CS:%qmputation_ 9 Incoming Parameter.
{7, Shared Variable .
: Eg " Declaration. (% Outgoing Parameter.
Call From One Graph | [ Creation (Read-Only)
to Another. Broadcast Parameter.

Figure 10. Node Icons in CODE.

The small circle interface nodes bind incoming and outgoing parameters in a very straight-
forward way Consider an input. As Figurd Shows, the arc entering the Call becomes
associated with the arc leaving the interface node féctethe two arcs become one.

Calling Graph Called Graph
l .FromPort => ..X TX

Figure 1. Formal-Actual Binding in CODE.

Creation parameters are also bound to an incoming arc. They extract exactly one value
from this arc at the time the called graph is instantiated at runtime. All nodes within the
called graph may use the creation parameter name as a constant. Its value comes from the
arc.

The shared variable icon is used to declare variables that will be shared among a set of
nodes. Each node must declare whether it requires read-only or read-write access to the
variable.

CODE Block Triangular Solver

Many of these node types may be seen at work in Figure 12, a graph that implements the
block triangular solver algorithm. Notice that the mata) the size of the system)( the

size of the block systenNj, and the size of a blocklk) are all passed to the graph as
creation parameters. Their values are only read within the graph.

The known vectorki) is passed into the graph by means of a dataflow arc. It arrival causes
nodeDI ST to fire. The result vectok]) is passed out of the graph on a dataflow arc.

NodeDIST sends the appropriate segmentd @b the nodes that perform tiseandM
operations of Figure 9. NodeATH collects the segments »ffrom theS andM nodes
and combines them into the single vector
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In this implementation, a single instance of n&dkve performs, one after anotheil of

the S operations shown in Figure 9, aNd- 1 instances of noddé ult perform theM'’s.

The mechanism by which multiple instances of a node are created is interesting and
involves an interaction between the routing_ruleSa¥e and the annotation of the arc
from Solve to M ult. Solve's annotation is shown beloW contains a line

TRUE => { B_TO M i +Whi chBl ock] <- copy(b); : (i N VWhichBlock) };

which places a copy of the vector b onto an output port with an index. The notation
(i N-Whi chBl ock)

causes index variablgo take on values from 0 t® Wi chBl ock -1. Thus, the index of
the output port takes on a range of values fréinto N-1, whergj is the number of the
column being processed. The annotation of the arc Sawe to Mult is

B TOMi] =>[i].B FROMS

whereB_FROM _Sis nodeMult’s input port. This routing rule is binding an output port
name to an input port name as before, but now indices are involved as well. Suppose
the arc annotation has value 7 (because the expras$idmnchBlock in the routing rule
happens to be 7). Then, the arc specification dolise’s output port with index 7 to the
input portB_FROM _S of nodeMult with an index 7. Dierent instances of nodes have
different indices. ThusSolve sends data to the appropriate instanc®l aft by using an
index value in its routing rule. The arc annotation completes the binding.

Any number of node instances can be created in this way at runtime. The set of instances
that can be created is dynamic in that it is determined by the runtime values of variables.
This mechanism is quite powerful. It is possible for a node with a self loop arc to
“expand” into an arbitrary graph, each node of which isfarifit instance.

Hn)-N N F.opc ll Translate Scru:ulll Layout @ Undo

Prngram:_ Graph: How? JRaeall Trzvel |
) B_IN 0 a -- the matrix O n -- size of matrix

-- size of block svys

C) DIST O w

‘—% -- size of a hlock
Solwve [ blk
e S
Mult ( GATH
() ¥_0UT

Figure 12. CODE Graph for Blocki@ngular Solver (DoBTS).
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Nodes can have from 0 to 7 indices. The zero case is a default of sorts since no indices
need exist in the program. The nodes in the integration example of Sgedtiosed no
indices. That program could be improved by dynamically replicating a (now poorly
named) nodénteg Half. The resulting program would exploit N-way parallelism where

N is chosen at runtime instead of a fixed two-way parallel structure.

The arc leavingMult implies an iteration. Firs$g is done and theNl; g is performed in
parallel fori = 1.N-1. NextSj is done followed by 1 in parallel fori = 2.N-1, and so
on. Since the block system size is an input to the program, the nunidedtohodes to
create is not determined until runtime. In additidrdetermines the number of times each
node fires so this is also not known until runtime.

Some of the nodes in graploBT S have fairly sophisticated firing and routing rules. Per-
haps it is useful to examine no8elve's specification. Its firing rules can be understood
by relating them to Figure Solve fires the first time in order to perform computatin

This computation depends on receiving a block of vézfosm nodeDI ST. Hence Solve

can fire when it receives a sub-vector (piece of a vector) on the arc frorDH8H¢o its

input portB_FROM_DIST. Solve fires next repeatedly to perform computati@;jsto

Sn.1- For this it must receive a sub-vector from one of éh@lt nodes on input port
B_FROM _M. The node has a firing rule for each case. The node is permitted to fire when
it receives data from either source.

After Solve fires to perfornts,, it must send sub-vectors fbdt;  for j taking on values
from k+1 toN-1. It's routing rules does just thisaiableWhichBlock is a counter that
holds the valué+1. The routing rule also sends the portion of the solution v&qtst
computed to nod&ATH. Solve's specification follows.

i nput_ports { Vector B FROM DI ST; Vector B FROM M }
output _ports { Vector B TO GATH, Vector B TO M }
vars { Vector b; int WichBlock; }
init_conp {

VWi chBl ock = 0;
}

firing_rules {
B FROMM-> b => ||
B FROMDI ST -> b =>
}

comp {
sol vebl ock(Whi chBl ock, a, b, blk);

VWi chBl ock = Wi chBl ock + 1;
}

routing_rules {
TRUE => { B_TO M i +Wi chBl ock] <- copy(b); : (i N Wi chBl ock) };
B TO GATH <- b;
}

This CODE program has been run on a 14 processor Sequent SynWiiistry matrix of
size 420 x 420 it shows a speedup measured relative to a straightforward sequential imple-
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mentation of 3.5 with 14 processors. A parallel program that was hand-written using low
level parallel primitives shows a speedup of 3.7, so CODE compares well with it. The the-
oretical maximum speedup of this algorithm is 4.9 with 14 processors.

5.5 The HENCE Language

Like CODE, the HeNCE language also support additional icons other than the circle that
represents a sequential computation. These new node types represent control structures.
HeNCE has no facility for hierarchical implementation, although there are plans to add
this ability to the language. For npi#eNCE graphs cannot call other graphs so there is no
need for interface nodes. Figure 13 show all of Hel$@t6ns.

All of HeNCE's control flow icons work in pairs. One icon begins a construct and another
ends it.The subgraph that appears between the icons is acted upon. For example, the sub-
graph between a loop-begin and a loop-end node is executed repeatschylike the
body of a “C” for loop. The loop-begin is annotated with a statement to assign its index
variable an initial value, a termination condition expression, and a statement to give its
index variable its next value.
(variable = initial_val ue;
term nation_condition;
vari abl e = next_val ue);

O Sequential Computation.

Loop Begin and End - Enclosed subgraph isiterated over an
index rangesuchasi =0 TON.

Conditional Begin and End - Enclosed subgraph is
executed only if an expression evalutesto TRUE.

Parallel Replication (Fan) Begin and End - Enclosed
subgraph is replicated such that all copies executein parallel.
Copiesareindexed asini =0 TO N.

Pipeline Begin and End - Enclosed subgraph is replicated to
form a pipeline with indexed stages.

1] <q> |~ 0T

Figure 13. Node Icons in HenCE.

Figure 14 shows a HeNCE loop and a static graph that its execution mimics. The loop-end
node (and all other construct-ending nodes) requires no annotation. Notice that there is no
explicit arc back to the start of the loop as flow chart would have. HeNCE graphs are acy-
clic. The subgraphs in a HeNCE control construct can contain other control constructs, but

they must be properly nested.

Conditional node pairs define an “if-then” structure. The conditional-begin node annota-
tion contains an expression. If the expression evaluates to TRUE (meaning non-zero, fol-
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lowing the C language convention), the subgraph between the pairs is executed.
Otherwise, it is not. HeNCE does not contain an “if-then-else” structure.

Loop Expansion O Fan Expansion

— @@i=1
=0
(i|<3' i:O

i=i+1);

Figure 14. HeNCE Loop and Fan Constructs.

Fan node pairs create parallel structures. They replicate the subgraph between them and
evaluate the replications in parallel. Figure 14 shows teetedf a fan. The fan-begin
node's annotation consists of an index statement.

| ndexVar = StartVal ue TO EndVal ue;

Index\ar takes on a di#rent value in each of the replicated subgraphs. In this een
replication has a unique index.

Pipe node pairs create a pipeline structure. The subgraph within the pipe is replicated,
somewhat like a Fan node, but the dependence structiees dif a manner that is inspired
by pipelines. Pipe constructs are rarely used.

HeNCE programs run on a collection of UNIX workstations on a common network. The
workstations need not all be of them same type or even made by the same manufacturer
The capabilities and speeds of such a heterogeneous collection of machines can very
widely. HeNCE graphs are converted into programs which run under the PVM message
passing library [Gei93]. PVM is designed to be used directly by programmers as well.

The names of all of the workstations must be listed in the window segment labeled “V
tual Machine” (see Figure 16). The programmer also lists estimates of the cost of running
each of the program’sequential procedures on each of the machines. HeNCE uses this
information to make intelligent choices about where to run nodes.

During execution, the utilization of the hosts in the virtual machine is displayed in the host
utilization strip chart at the bottom right of the windoie horizontal axis is time, and
there is a horizontal bar for each host which is divided into segments with colors that sig-
nify the state of the host. Figure 15 shows a case in which total utilization is poor since
only one processor is running most of the time.
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Figure 15. HeNCE Host Utilization Strip Chart.

HeNCE also changes the colors and shapes of the icons in the graph during execution to
animate the state of the computation as it runs. Furthermore, this information is captured
in a trace file and can be replayed after the prograxecution is complete.

HeNCE Block Triangular Solver

The block triangular solver can also be expressed in HeNCE, and in some respects it is
simpler in HenCE than it is in CODE. The program is shown in Figure 16. This figure is a
screen dump which shows the entire HeNCE window as well as the segment in which the

graph is drawn.

[ HeNUF fool vl | Information
mode: compose Mode 5: warning: first declaration of "b_up” lacks NEW keyword
directory: bts_hence Build: setting up a default cost matrix

raph: bts.gr starting pvm...)
J p. g build complete)
gost: running fleather/homes/newton/pym3hinSUN4 master AmpfhtoolS512.gr —tf hencetrace —cm —tmp/htoolS512.cm
trace file: hence.trace

{run done)

language: ¢ |
HelCE graph I PVM console B
m G h V| rtual M aCh| ne |a| GelSysll 3nlve|| hlkmullll P|
EI rap & O PrintAns s
= T
[A] "
T Z6] = 1.000000
E (AN 2%2?% = 1.000000
EI T «[26] = 1.000000
Z9] = 1.000000
EI 5 O blkmutt 4]
T (HeMCE executioner exited normally.)
N v %ﬁ‘ .
7] 1
3 O solve
2 /
1 O GetSys
Host Ut| I | Zatl on o ree O 00:10 00:15 00;
L

Figure 16. HeNCE Blockrlangular Solver Program.

Execution begins with nod&etSys running. This node declares the magiand vectob
as well as other variables needed. All are made available to all successoiGe8gs.

Visual Programming and Parallel Computing 21



gives them initial values. These variables are declared to be “NEW” input-output variables
in order to have HeNCE allocate storage for them. If output-only variables were used, the
sequential subroutine would have to allocate storage for them. The resultingxwedtor

be written intdb.

-- annotation of node GetSys.

NEW <> int N; -- Nunber of blocks in system

NEW <> doubl e a[ 500] [ 500] ; -- Matrix

NEW <> doubl e b[ 500]; -- Vector

NEW <> i nt bl k; -- Nunber of elenents in each bl ock
NEW <> int n; -- Nunber of elenents in matrix b.

CGet Sys(a, b, &n, &N, &bl Kk);

The annotation of the loop node is simply=@; j<N; j=j+1);” which iterates the sub-
graph between the loop-begin and loop-end node for every column of the blocked system.

The annotation of nodgolve makes use of a HeNCE default. All variables that are used

but not explicitly declared to be input, output, or input-output default to input-output sta-
tus. The call to sequential procedsotve makes use of array index range expressions to

pass just the required blocksabéndb to the routine.

-- annot ati on of node sol ve.
solve(a[j*bl k: (j+1)*bl k-1][j*bl k: (j +1) *bl k-1],
b[j*bl k: (j+1)*bl k-1], blk);

The fan-begin node has a simple annotation*1 TO N-1;” that causes an instance of
the enclosed subgraph consisting only of the mbkleult to be created for each value of
i in the stated range. iWin each instance,takes on the appropriate value.

The instances of nod#kmult make use of index variabié¢o select the blocks efandb
that they must process using array index range expressions as before. The plrtiat of
contains the solution of the last callsmve is stored irb_up.

-- annotation of node bl knult.

< doubl e b_up[bl k] =b[j*bl k: (j+1)*bl k-1];

bl kmul t (a[i*bl k: (i +1)*bl k-1][j *bl k: (j +1) *bl k- 1],
b[i*blk:(i+1)*blk-1], b_up, blk);

The annotation of noderintAns also makes use of the default that variables that are not
otherwise declared are input-output. Notice that the node automatically gathers the indi-
vidual blocks ot thatsolve wrote into one vector of length

-- annotation of node PrintAns.
Print Ans(b, n);

5.6 CODE and HeNCE Compared

One of the challenges in research in visual programming is evaluating new igécaevaV
found that it is necessary to actually implement systems and use them in programming
projects and in university programming classes in order to thoroughly understand new
ideas’ merits and limits. Results are often subjective and context-dependent. Many ideas
have both virtues and limitations. For example, CGIJiEng rules are powerful but com-
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plicated. For some problems they are desirable and even necessdhey increase the
training time for new CODE users, and one of our chief goals has always been ease of use.

Implementing the various versions of HeNCE and CODE has allowed us to create ever
more efective visual parallel programming environments. This section contrasts the two
languages and points out circumstances in which one model may be feoteesthan

the other However an overall conclusion regarding the two languages is probably not
possible as each has strengths which stand outf@redif circumstances. This conclusion
suggests that visual programming environments could benefit from supporting multiple
representations, including textual ones.

1. Node firing conditions are explicit and general in CODE.

Programmers must explicitly define the exact circumstances under which a computation
node is allowed to execute in CODE. The specification language is quite flexible and gen-
eral, and firing conditions can depend on the internal state of the node. For example, it is
easy to define a node that non-deterministicallyge®data from two streams in CODE.
Such a computation is impossible to state in HeNCE.

It is tempting to say that HeNC&firing rules are fixed. Nodes are permitted to fire when

all predecessor nodes have fired, but this is an oversimplification. Execution of a HeNCE
node is dictated also by the control flow constructs in which it is embedded just as is the
case with statements in conventional languages. Thus, HeNCE firing conditions are some-
what less explicit.

CODE’s firing rules are explicit and general, but can get complicated and .wordy
HeNCES firing rules are simple and concise, but are not always adequate to express algo-
rithms. They do appear to be adequate for many interesting numerical algorithms, how-
ever

2. CODE is capable of expressing more dynamic graph topologies.

Both due to its powerful firing rules and its method of instantiating nodes, CODE is capa-
ble of expressing communications patterns that HeNCE cannot. For example, CODE can
accept an adjacency graph as input data and create a graph with the specified. tOpology
course, such arbitrary expansions limit the extent to which CODE visually displays paral-
lel structure. The static display of programs whose structure is determined at runtime is a
significant research goal.

3. Explicit dataflow increases the complexity of graphs.

CODE shows all dataflow or common shared variable access via arcs. This is desirable in
that it shows more completely the communication patterns of programs, but dataflow
graphs are often complex, and worse still they are often unstructured. Programs with com-
plex dataflow can become a rmatiest of arcs. This can be hard to understand and is also
cumbersome since programmers must individually annotate all of the arcs.

HeNCE programs are related to flow charts of structured programs. They are concise and
orderly even when graphs becomegtarDataflow is implicit so less structural information
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is presented to the programmleut computational elements are still clear and well encap-
sulated and parallel structure is displayed. On the negative side, since dataflow is implicit
it is possible for programmers to make errors in which the “wrong” node is anothes node’
nearest predecessor for some variable.

4. HeNCE lacks hierarchy

Since HeNCE graphs cannot call other HeNCE graphs, hierarchical implementation is not
supported. Thus, the current implementation of HeNCE is ill-suitedge [@ojects since

graph sizes become excessive. This shortcoming is not a necessary aspect olsHeNCE’
model. A future version of HeNCE will allow graph calls.

5. CODE's basic unit of reuse is the sequential computation.

CODE is designed with the idea that the sequential computation node is the basic unit of
component reuse. The CODE model supports libraries of computation nodes. Thus,
CODE computation nodes must be completely encapsulated. They must have well defined
interfaces, and they must be completely defined in isolation from other elements of a
graph. This is the reason that CODE ports exist. They are asrfod®al parameters.

Nodes in HeNCE to not satisfy this property due to the manner of their use of variable
names. If a programmer copies a node from one HeNCE program to ahetbeshe will

likely have to edit the node when it is placed in its new context. For example, the new pro-
gram may name some arrAywhile the old program called&.

CODE allows name binding on arcs, thus bridging the name spaces of any two nodes. The
downside is that programmaersist specify name bindings on every arc. The CODE com-
putation node is somewhat analogous to a simple statement in a conventional program-
ming language like Fortran. It is cumbersome to be required to specify name binding
between “statements.”

Both CODE and HeNCE (with Call added to its model) support reuse on the graph level.
This is not cumbersome since graph calls are much less common- like subprogram calls in
Fortran.

6. CODE has dicient mechanisms for blocked arrays.

Both CODE and HeNCE were designed for computations involving arrays and many
modern array algorithms are based on blocking as in the block triangular solver example
above. It was not discussed, but CODE supports mechanisms for blocked arrays which are
both eficient and reasonably simple. Programmers can use a 4 dimensional array to repre-
sent a blocked two dimensional arraye array is a two dimensional array of two dimen-
sional arrays. HeNCE programmers can do this as well but for implementation reasons it
IS not as dfcient.

HeNCE’s mechanism for specifying blocks by index ranges (as in the HeNCE block trian-
gular solver) is also not fefient and aguably not simple. As the expressions used in the
index ranges become complex, it becomes increasindigulliffor compilers to find a
ranges “meaning” and implement a partitioning operation directly rather than by element
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by element copying at runtime. The compiler cannot statically analyze data access pat-
terns. Also the expressions can become complex for programmers. Note that the HeNCE
block triangular solver assumes that the degree of parallelism (size of the block array)
evenly divides the size of the arrdf/this were not the case, the necessary expressions
would be much more complex.

One can summarize the féifences between CODE and HeNCE by saying that CODE is
more capable and at least aBcadnt (implementable) but HeNCE is more concise and
simpler for beginning programmers.

5.7 A Proposed Language

Visual programming language designers must search for a point of compromise between
the extremes of ease of use and flexibilltyis point is dependent on the problem domain

of interest. V@ taget computational science and hence have a bias towards numerical and
matrix-oriented algorithms. In this domain, the balance point probably lies between
CODE and HeNCE, especially since executioiiciehcy is also a major goal. Model
expressiveness andedtive implementation also tend to be competing goals.

Figure 17 shows the block triangular solver expressed in a language that is to be even sim-
pler to use than HeNCE without being much less capable. The model supports graph call-

ing and so has interface nodes as in CODE. Graphs show control flow and so are closer to
the HeNCE model. Shared variables accessible within a graph are defined as separate
icons as in CODE, but arcs are not required to show that a computation node access a vari-
able. The unit of reuse is the graph since concise representations are required. As in

HeNCE, arcs require no annotation.

There are two classes of computation nodes: replicated and non-replicated. Double circle
icons represent replicated nodes. Both are annotated by the set of variables for which read
access is needed, the set for which write access is needed, and a sequential computation.

Array variable icons allow the direct definition of partitions to support blocked algorithms.
Angle brackets (as in <expression>) are used to access blocks, and square brackets (as in
[expression]) access array elements. Blocks may overlap, but only one block “owns” an
element. Wites to overlap regions in block that do not own them are local only

Finally “:” is a size operatoiFor exampleA:i returns the number of elements in ttte
dimension ofA, counting from zero.
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double a[][]; .
partition: block(N), block(N): Oint N

doubl e b[];
U partition: block(N);

start

——

/

j =0to N1

read: A<j><j> as A
wite: b<j> as b;
conpute: Solve(A, A0, b);

replicate: i =j+1 to N1;

read: A<i><j> as A, b<j> as b_up;
wite: b<i> as b;

compute: BIkMult(A, A0, Al b, b_up);

§-0-0-O-Q

Figure 17. Block Tfiangular Solver in Proposed Language.

We believe that a simple model such as the one outlined above would be a valuable paral-
lel programming tool. Concerns that it is not adequately flexible can be addressed by
designing environments in which many fdient representations (both parallel and
sequential) can co-exist. Beginning parallel programmers can begin with the most simple
representations and learn the more complex on an as needed basis. All representations
must provide a unit of reuse with a common semantics in order to interopeeaaelopt

the simple semantics of an atomic computation which accepts inputs and computes out-
puts with no intewnit interactions in between.

6.0 Debugging in the Visual programming Environment

Both logical and performance debugging are important aspects of the parallel program-
ming processes. Performance debugging relates to understanding and improving the speed
of a program, and logical debugging relates to it correcting errors in the logic of a pro-
gram. This section focuses primarily on logical debugging.

Debugging establishes the relationship between the program (typically some small seg-
ment of a lage program) and its execution. The entities involved in debugging include: (i)
the program, Hii) a specification of a program{or a program segmesit’expected exe-
cution behavior (which we call M for model of behavior), and (iii) some representation of
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the prograns actual execution behavjdt. Debuggers for programs written in pure text
forms typically use a dérent representation for each of these entities, and this imposes
much additional work on the programmehis is especially true since execution environ-
ments and representations are typically verfetght across parallel architectures. Ideally
each of the entities M, and E would be expressed in the same representation so that the
programmer would not have to understand and manipulate sevéredmliinotations. One

of the major benefits of visual directed graph programming is that it supports the formula-
tion of parallel program debuggers in which all of the entities can be expressed in a single
notation. This simplifies the task of debugging not only because it allows the programmer
to think in terms of the program which is what he understands but also because it admits of
ready automation of the often tedious tasks of comparing expected and actual behaviors. It
also facilities identification of the logic faults in the programfol$ are ongoing to
implement such a debugger in the context of the CODE system [Hyd93].

The example which follows illustrates how the visual directed graph representation of a
program supports both the problem formulation and the analysis steps of parallel debug-
ging. As before, the program is a directed graph whose nodes are sites for the execution of
atomic actions.

Definition 1: An action is an operation for which there exists a known input/output rela-
tion for a given initial state. It is the atomic function of a node.

The execution of a program is the traversal of the graph starting with an assignment of an
initial state, until the execution of a final stateaviersal of the graph causes execution of
actions at the nodes and generates a partially ordered set of action executions or events.

Definition 2: An Event is an execution of the action at a node of the program graph.

The partially ordered set of events of an execution defines a directed acyclic graph of
events that corresponds to instantiations of the actions defined at the nodes of the program
graph structure.

Definition 3: Debugging is the process of identifying those actions of the program that are
responsible for the failure of the program to meet its final state specification.

Let us start with a program, that has been observed to produce invalid final states for
execution from one or more initial statese Vise a version of the Blockidngular Solver

for CODE (Figure 12) to which we have deliberately introduced a sequencing error to
illustrate the various steps of the debugging processhaVe incorrectly coded the array
index ofB_TO_Min the routing rule fo6olveas

B TOMi]

instead of
B_TO M i +Wi chBl ock] .

The execution of this bugged version starts with an initial state where N=5, and terminates
with a segmentation fault. \how follow the diferent steps of the debugging process:
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1. Identify and select the portions of the program whose behavior is to be monitored.

This is a set of “suspect” hodes or subgraphs. Note that it is typically impossible to moni-
tor the entire execution behavior ofgarcomplex programs (which are actually the ones
that need debugging). The visual/graphical representation of P makes the selection of sus-
pect portions of the program easty our example, we click on tt#lve andMult nodes

of the graph of Figure 12 to inform the debugger that they need to be monitored. The
debugger makes additional preparations to filter out event executions of other nodes like
Dist andGath. This greatly helps in later steps as much of the irrelevant information is fil-
tered out.

2. Specify the expected execution behavior of the set of nodes that are to be monitored.

The natural mode of representation of execution behavior for graphical programs is the
partially ordered set of events expected to be generated by the execution of the actions at
the nodes of the suspect subgraphs. Let us call this representation, M, for model of
expected execution behavidf is given as a partially ordered set of events.dah either
construct this set of events directy construct a graph of actions whose execution will
generate the desired partially ordered sets of events. In this case, we specify M by drawing
a graph that is shown in Figure 18(a). In the data-flow description of Figure 9, we expect
that thei-th execution ofSolve will be followed by the executions dflult instances

whose node indices would range frpmi to N-1.

o 1

Solve (9) . 4\ . O
| S

- m?, ° M7
Mult (m) l '
° %3

. Segmentation
fault (0)

@) (b)

Figure 18. (a) Graph of M. (b) Partial Order graph of E. (c) Elaborated Graph of M.

3. Capture the execution behavior of the selected portions of the program.

The execution behavior is a partially ordered sequence of events that actually occurred in
the execution. Let us call this partially ordered set of events E. The user obtains E by

selecting a set of program nodes with the mouse and then running the program. The sys-
tem then automatically records all of the necessary events and orderings. The selection of
Mult andSolve nodes in step 1 produced such an annotation. As a result, the actual execu-

tion behavior observed by the debugger as shown in Figure 18(b) contains event execu-
tions of only the selected nodes. In the figure, egemdicates thd-th execution of

Solve, and eventmy; indicates the-th execution of that instance & ult whose node

index isj.
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4. Map E to M to determine the locations where the actual and expected events first
diverge.

The mapping of E to M can be done automatically since they are specified in the same rep-
resentation. The result is identification of event sequences in E that do not correspond to
the allowed set defined in M. In Figure 18(b), we note that the em@qtsn?; andm>,

follow events;. We, howeverexpected that eventd; that follow events, would have

node indices that range frgn¥ i to N-1. As N = 5 and there is no evant;, this detects

the occurrence of an unexpected behawboreover the mapping of E to M gives an
elaborated graph of M as shown in Figure 18(c). This is a run-time structure that shows
dynamically created instances of nodes. The elaborated graph is obtained from the partial
order graph of E in Figure 18(b) by folding back the later executions of a node, to their
first execution. Figure 18(c) shows three dynamically created instances dflniétclen,

m? andmq. Note that we expected four instances.

5. Map the elaborated graph of M back to P to define corrective action.

Since the elaborated graph of M contains instances of the node®ihfapping is auto-
matic, and guides us towards thé&afling action in PThe mapping from Figure 18(c) to
Figure 12, helps in ascertaining the cause of the unexpected number of instances of Mult.
As explained in Sectiob.4, the creation of multiple instances\iilt is tied to the indi-

ces of the output port specified in the routing rulSafe. Output porB_TO Mof Solve
connects taMult and the data placed on its indices is responsible for creating various
instances oM ult. The mapping, therefore, guides us to the incorrect coding in the routing
rule of Solve.

There are various points that should be noted in the above process. A programmer would
often cycle through these steps a number of times before identifying the bug. In each
cycle, the programmer will progressively come closer to tfending piece of code.

The use of actions, instead of events, in the representation of M greatly helps the debugger
in filtering out of the irrelevant information. This restricts the execution history displays of

E to only the events that are of interest to the.uBas filtering greatly simplifies the
checking of M that can either be done visually by the user with the help of the execution
displays provided by the debugger can be done automatically by the model checking
facility of the debugger

An Animation facility provided by the debugger is simply a visualization of the mapping
of E to M. The elaborated graph acts as an underlying structure for animation and greatly
helps in animation.

Thus, a visual programming environment provides a consistent graphical representation
for all the diferent entities used in the debugging process and simplifies the design of a
concurrent debugger that coherently relates the various steps of the debugging process. It
also provides a unified framework for supportindettént concurrent debugging facilities

like execution history displays, animation, and model checking facilities.
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7.0 Related Work

There has been much work on visual programming languages and environments for
sequential systems. Prograph [TGS92] and PICT [Gli84] are substantial exameles. W
will focus on visual parallel programming languages.

7.1 Older Systemsand Proposals

CODE and HeNCE are certainly not the first systems to be designed for visual program-
ming of parallel systems via graphs that show parallel structure. This sections surveys
some of the earlier attempts.

Karp and Miller [Kar66] proposed a graph-based model of parallel computation that
includes non-fixed firing conditions. The model also permits proof of determinacy and
useful theorems on computation terminations and bounding the size of queues on arcs.
The model is capable of expressing some interesting numerical algorithms, but is not flex-
ible enough for general use.

There have been several proposals for visual dataflow oriented programming languages.
Adamss model [Ada68] is an early example. Computations are deterministic. There are
sophisticated techniques for mapping inputs to outputs, as firing and routing rules do in
CODE. Ackerman [Ack82] provides a general discussion of early ideas in dataflow lan-
guages. Keller anden [Kel81] discuss directed graph programming and Davis and Keller
[Dav82] present a dataflow language with special purpose nodes for non-standard firing
rules and discuss graph composition.

« CODE 1.x

J.C. Browne has been investigating computation graph systems for many years. The gen-
eral advantages of such systems and the outline of a model of parallel computation are
presented in [Bro85], and Browne and his students also developed several earlier versions
of CODE [Bro89, Jai91]. These form the intellectual basis for the current version but are
much less capable. CODE 1.2 served as the basis for experiments in reuse within the con-
text of a graph model [Lee89, Bro90].

* Schedule

Schedule [Don86] is a visual computation graph oriented system that facilitates calling
separate sequential routines. Ideas from it influenced later systems including Phred,
HeNCE, and some versions of CODE.

* Phred

Phred [Beg91b] is a graphical system that greatly expands on the semantics of schedule. It
uses graph grammars in its language definition and special nodes for firing rules, computa-
tions, and some runtime determined computation structures. Programs consist of a combi-
nation of control flow and dataflow graphs. Phred heavily influenced HeNCE.

+ Neptune
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Neptune [Ta90] is a computation graph based graphical programming environment that is
similar in most respects to older versions of CODE.

* Poker

Poker [Sny85] is noteworthy as an early graphical parallel programming environment. It
is, howevera fairly distant relative of CODE and HeNCE. It graphical displays lattices of
virtual processing elements and allows these nodes to be annotated with a sequential algo-
rithm.

» Paragraph

Paragraph [Bai91] is a very interesting model of parallel programming in which computa-
tion graphs are expressed by productions in a graph grarnimarallowing dynamically
structured graphs.

7.2 Recent Systems

There are some more recent systems that are similar to CODE, many of which are still
under active development. Some are primarily general purpose parallel programming
environments. Other mostly serve as platforms for research in scheduling.

* Paralex

Paralex [Bab92] is a graphical programming environment with a model similar in expres-
sive power to earlier versions of CODE. Howevemcorporates sophisticated facilities

for fault tolerance and dynamic load balancing ogegbarchitectures such as networks of
workstations.

. PPSE

The Parallel Programming Support Environment (PPSE) [Lew90] is an ambitious inte-
grated environment for the development of parallel programs. It consists of many tools
beginning with a dataflow computation graph based graphical programming environment
called Parallax [Lew93]. The Parallax language includes hieradelgflow (with named)
ports, and variable storage nodes.

At this time, firing guards are not yet implemented. This greatly reduces the expressive-
ness of its model of computation. For ndPSES primary role appears to be as a basis
for research in scheduling.

Other tools in PPSE include a graphicaggarmachine description system, task analysis,
mapping, and scheduling tools, a code generator thggtsathe STRAND language, a
simulator and various performance and schedule visualization tools.

* VERDI
VERDI is a visual language used to develop distributed programs in Raddle [Gra90]. Pro-

grams consist of a set of graphs. Control flow in a graph is represented by the flow of a
token through it. Data may be attached to the token. Communication and synchronization
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are carried out by means of an N-party interaction facility in which tokens must arrive at a

box (with a common label) in each of the interacting graphs. The language supports non-
determinism since tokens can flow to varying sets of boxes, each of which would enable a
different N-party interaction. The system non-deterministically chooses. The language

supports indexed replication, somewhat like HeNCE’

. D?R

DR (Dynamic Dataflow Representation) [Ros93] is a recent model that bears much
resemblance to HeNCE. Howeydrappears to have an orientation towards scheduling
research. It has been implemented on a multi-transputer system called DAMP [Bau91].

As with older versions of HeNCE, the language has both a textual and a graphical repre-
sentation. There are special constructs for loops, parallel fork-join constructs, and alterna-
tives (n-way if). The model is dynamic since the width of a fork-join, and the loop count
of a loop are runtime parameters. There is no hierarchy and no concept of general firing
rule guards.

Simple dataflow nodes wait for data on all input before firing and produce data on all out-
puts when firing is complete. Functions that nodes run are stored in separate files.

« ALEX

ALEX [Koz90] is an interesting functional visual parallel programming language in
which the focus is on drawing pictures of data, typically arrays. For example, a matrix
multiply program is created by drawing two rectangles that represent input matrices and
then drawing a representative row within one and a column within anbitleamjunction

with library routines for multiplication and addition, the diagram is then extended to show
how to form the resulting matrix from the rows and columns of the input matrices.

.« PFG

PFG is a graphical parallel programming language whose formal operational semantics
are described by HG [St090]. Like HeNCE, it uses special icons to create constructs that
control node execution. It has facilities for parallel branching (generalized conditional
branching) and non-deterministic branching. PFG is billed as an “assembly language” for
higher level visual parallel programming languages.

8.0 Obtaining HeNCE and C

HeNCE and the PVM package it gets are available in source and binary form via
xnetlib or by anonymous ftp to Internet host netlib2.cs.utk.edu. Both HeNCE and PVM
run under X windows on a wide variety of UNIX workstations. Questions on HeNCE may
be emailed to hence@cs.utk.edu.

CODE is available by anonymous ftp to pompadmues.utexas.edu. Only binaries for
Sun 4 workstations are available. Questions may be emailed to newton@cs.utk.edu or
browne@cs.utexas.edu.
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9.0 Conclusion

Difficulty of programming is a major impediment to the wider acceptance of coarse-grain
MIMD parallel computer systems.istial parallel programming languages based on
directed graphs have many attractive properties that can help to lessen this problem, espe-
cially in some application domains. Directed graphs naturally capture the multi-dimen-
sional structure of parallel program behaviors. If a semantics is adopted in which basic
nodes represent atomic sequential computations, this view supports a programming meth-
odology that emphasizes the creation of parallel programs by the composition of sequen-
tial elements. This separates the concerns of creating sequential sub-computations and
creating parallel structures.

A visual programming environment based on directed graphs helps programmers to
understand the lge-scale structure of their programs and this is vital for performance in a
way that is not the case for sequential programs. Programmers must understand the granu-
larity of their computations as well as having a general idea of the frequency with which
different segments of there program run and interact with other segments. Furthermore,
programmers must understand data partitioning and placement since data locality is neces-
sary for speed on modern parallel architectures. Debugging of parallel programs is also
difficult due to the complexity of the interactions between program elements that can
arise. A visual directed graph framework allows all of these program aspects to be under-
stood in a common high-level representation that presents programmers with abstractions
that are well suited to the various phases of the programming process.

CODE 2.0 and HeNCE 2.0 are implemented visual programming languages that demon-
strate many of these advantages. It is only through constructing CODE and HeNCE and
using them that we have been able to evaluate these benefits and to continue the evolution
towards better visual parallel programming abstractiditeough based on the same idea,

the two languages diér significantly in detail, and their relative strengths and weaknesses
are illuminating. HeNCE method of defining data interrelationships among nodes and
node firing conditions is simple and concise but less expressive than SQIEDE on

the other hand, tends to be more wordy and harder to learn. Also complete simultaneous
display of all dataflow relationships tends to yield complex unstructured graphs.

We believe that an environment which allows multiple graphical and textual relationships
to co-exist is most desirable. Since programmers will then be able to choose representa-
tions that are most appropriate to a given situation. Also beginning programmers will be
able to use simpler tools. The key to such an environment is the selection of Call seman-
tics that apply to all representations. The semantics of sequential subroutines serve well.
Components can be viewed as atomic in that they map inputs to outputs with fQi0 inter
component interactions in between.
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