
0272-1732/97/$10.00 © 1997 IEEE November/December 1997 55

The phenomenal improvements in
microprocessor performance place
significant demands on memory sys-

tems, requiring a low latency, high-band-
width stream of operands. Researchers point
out that DRAM access latencies (measured
in processor cycles) are growing and any
request that misses in the caches may even-
tually take hundreds of cycles to satisfy.
These researchers have proposed many
techniques to mitigate the penalties of long
memory latencies, such as lockup-free
caches, cache-conscious load scheduling,
hardware and software prefetching, stream
buffers, speculative loads and execution,
multithreading, data value prediction, and
instruction reuse.

Most of these techniques, while reducing
the impact of contentionless access laten-
cies, do so at the cost of increasing a pro-
gram’s bandwidth requirements. These
latency tolerance (or reduction) techniques
may increase a processor’s memory band-
width needs by causing the processor to
request the same stream of operands in less
time, or by causing the processor to request
more data from memory. In turn, these tech-
niques may cause the processor to stall due
to queueing in the memory system. (We dif-
ferentiate between “intrinsic latency” of a
contentionless access and latency added by
queueing in the memory system, which
results from limited bandwidth.)

Neither the long latencies nor the
increased bandwidth requirements consti-
tute a “memory wall” that will eventually
inhibit improved microprocessor perfor-
mance. Instead, designers will employ a
range of design decisions and new tech-
nologies to produce balanced, cost-effective
systems. The extent to which long latency
and bandwidth requirements affect perfor-
mance will determine which techniques or
technologies are affordable, and/or worth

the effort of implementing. Since some of
the solutions trade improved latency for
increased traffic, or higher bandwidth for
increased latency, the relative effects that
these two components of memory accesses
have on performance is important.

Here, we quantify and compare the per-
formance impacts of memory latencies and
finite bandwidth. We show that the imple-
mentation of aggressive latency tolerance
techniques aggravates stalls due to finite
memory bandwidth, which actually become
more significant than stalls resulting from
uncongested memory latency alone. We
expect that memory bandwidth limitations
across the processor pins will drive signifi-
cant architectural change, for the following
reasons:

• Continuing progress in processor
design will increase the issue rate of
instructions. These advances include
both architectural innovation (wider
issue, speculative execution, and so
forth) and circuit advances (faster,
denser logic).

• To the extent that latency tolerance
techniques are successful, they will
speed up the retirement rate of instruc-
tions, thus requiring more memory
operands per unit of time.

• Many of the latency tolerance tech-
niques increase the absolute amount of
memory traffic by fetching more data
than are needed.

• Packaging costs, along with power and
cooling considerations, will increasing-
ly affect costs—resulting in slower, or
more costly, increases in off-chip band-
width than in on-chip processing and
memory.

These factors will force architectural and
system-level change. The range of tech-

An execution-driven

simulation measures

the time that several

SPEC95 benchmarks

spend stalled for

memory latency,

limited-memory

bandwidth, and

computing.

LIMITED BANDWIDTH TO
AFFECT PROCESSOR DESIGN

Doug Burger

James R. Goodman

Alain Kägi

University of Wisconsin-
Madison

.

niques to improve effective memory bandwidth includes

• wider and/or faster connections to memory,
• larger on-chip caches,
• traffic-efficient requests,
• more efficient on-chip caches,
• logic/DRAM integration, and
• memory-centric architectures.

In an earlier version of this article,1 we predicted that mem-
ory bandwidth, particularly across the processor pins, would
drive significant changes in processors and memory systems.
This special issue on advanced memory architectures affirms
the claims we made. In the ensuing two years, we have seen
the popularization of high-bandwidth DRAM interfaces and
the beginnings of products integrating memory and logic. Four
of the articles in this special issue illustrate this change; two
describe high-bandwidth DRAM interfaces (Rambus and
SLDRAM), and two others describe logic/DRAM integration
(the MSM7680 and the M32R/D).

Decomposing execution time
Without corresponding improvements in the memory sys-

tem, as the performance gap between processors and main
memory increases, the percentage of time a processor spends
stalled for memory will also increase. Due to the complexity
of modern processors and memory hierarchies, no simple
metric (miss rate, for example) sufficiently quantifies the per-
formance impact of an imperfect memory system.

To understand where the time is spent in a complex proces-
sor, we divide execution into three time categories: process-
ing, latency stalls, and bandwidth stalls. Processor time is the
time in which the processor is either fully utilized, or is only
partially utilized or stalled due to lack of instruction-level par-
allelism (ILP). Latency time is the number of CPU cycles lost
due to untolerated, contentionless memory latencies. By laten-
cy time we mean the overhead of memory latencies in a con-
tentionless system (for example, latencies that could not be
reduced by adding more bandwidth in between memory hier-
archy levels). Bandwidth time is the number of CPU cycles
lost to both contention in the memory system and insufficient
bandwidth between hierarchy levels. This partitioning scheme
is superior to using a metric such as average memory access
time, which neither separates raw access latency from band-
width restrictions, nor translates directly into processor per-
formance. For example, four simultaneous cache misses in a
lockup-free cache would appear as one cache miss latency to
the processor, but would be counted as four distinct misses
when calculating average memory access time.

Let P, L, and B be the fractions of time that a program
spends in each of these three categories (processing, laten-
cy stalls, and bandwidth stalls). Let T be the number of cycles
in which a given program executes on a realistic system. We
can calculate P by measuring the number of cycles it takes
a program to execute, assuming a perfect memory hierarchy
in which any memory request is returned in one cycle. If TP

is the number of program cycles (assuming a perfect mem-
ory), then P = TP/T. We can calculate the stalling time for raw
memory latencies by measuring a system with effectively

infinite bandwidth, one in which any amount of data may
be moved from one level of the memory hierarchy to anoth-
er in a single cycle. (Requests still incur access latencies to
cache and memory banks.) If the time spent to run the pro-
gram on such a system is TI, then the number of cycles spent
stalling for memory latency is TI − TP, and L = (TI − TP)/T.
When we add contention (finite bandwidth) back into our
measurement of program execution time, the number of
cycle increase over the infinite bandwidth case is the num-
ber of cycles lost due to finite bandwidth (T − TI). The frac-
tion of time spent stalling due to insufficient bandwidth is
therefore B = (T − TI)/T.

Table 1 lists latency tolerance optimizations and processor
improvements, and shows how we predict P, L, and B will
change with each of these improvements. In every row but
one, the normalized fraction of bandwidth stalls increases
for that optimization.

Latency-reduction techniques. Improved techniques
for reducing and tolerating memory latency (reducing L) can
increase B—the percentage of execution time spent stalled
due to insufficient memory bandwidth. Many of the tech-
niques that reduce latency-related stalls increase the total
traffic between main memory and the processor.
Furthermore, reducing L increases the processor band-
width—the rate at which the processor consumes and pro-
duces operands—by reducing total execution time.

The combination of lockup-free caches and careful sched-
uling of memory operations that are likely to miss effectively
hides memory latencies. Although this technique does not
increase the amount of traffic to the main memory, lockup-free
caches worsen bandwidth stalls by allowing multiple memo-
ry requests to issue—making queueing delays possible in the
memory system. Furthermore, the presence of lockup-free
caches will likely encourage more speculative execution.

56 IEEE Micro

Memory bandwidth

.

Table 1. Estimated effects on execution divisions.

Effects
Technique P L B

Latency reduction
Lockup-free caches ? ↓ ↑
Intelligent load scheduling ↑ ↓ ↑
Hardware prefetching ? ↓ ↑
Software prefetching ↑ ↓ ↑
Speculative loads ↑ ↓ ↑
Multithreading ? ↓ ↑
Larger cache blocks ? ↓ ↑

Processor enhancements
Faster clock ↓ ↑ ↑
Wider issue ↓ ? ↑
Data value speculation ↑ ↓ ↑
Instruction reuse ↑ ↓ ?
Speculative threads ↓ ? ↑
CMPs ↓ ↑ ↑

P= processing; L= latency stalls; B= bandwidth stalls;
? = effect is not clear

Both software and hardware prefetching techniques can
increase traffic to main memory. They may prefetch unneed-
ed data, prefetch data that are evicted before use, or may
evict other needed data from the cache before use, causing
an extra cache miss. Stream buffers prefetch unnecessary data
at the end of a stream. They also falsely identify streams, fetch-
ing unnecessary data. Speculative fetching techniques—such
as lifting loads above conditional branches—increase unnec-
essary memory traffic when the speculation is incorrect.

Multithreading increases processor throughput by switch-
ing to a different thread when a long-latency operation
occurs. Frequent switching of threads will increase interfer-
ence in the caches and the translation look-aside buffer
(TLB), however, causing an increase in cache misses and
total traffic. Poorer cache performance—resulting from the
increased size of the threads’ combined working set—may
offset some, or all, of the performance gains from improved
latency tolerance. Simultaneous multithreading allows mul-
tiple instructions from independent threads to be issued
simultaneously, increasing contention seen by the individ-
ual jobs.

Finally, larger block sizes may decrease cache miss rates.
Miss rate reduction occurs until the coarser granularity of
address space coverage (the reduced number of blocks in
the cache) overcomes the reduction in misses obtained by
fetching larger blocks. Even when larger blocks reduce the
miss rate, however, the increased traffic may cause band-
width stalls that outweigh the miss rate improvements.

Advanced processors. Improvements to microproces-
sors other than latency reduction techniques will increase
the needed bandwidth across the processor module bound-
ary. As processors get faster, they consume operands at a
higher rate. Faster processor clocks will run programs in a
shorter time, increasing off-chip bandwidth requirements
(and therefore decreasing P). Wider-issue processors that
exploit more ILP similarly reduce execution time and
increase needed bandwidth.

Speculation can also increase bandwidth requirements.
Data value speculation, when successful, allows the compu-
tation to proceed more quickly (increasing the needed rate
of operands, but not the total number of operands, as the
data must still be computed or loaded from memory to veri-
fy the speculation). Instruction reuse, conversely, replaces
computation and memory accesses with on-chip table
lookups and is thus the only entry listed in Table 1 that
reduces B. Future microprocessors that rely on coarse-grained
speculative threads to improve ILP—such as multiscalar
processors2—increase memory traffic whenever they must
squash a task after an incorrect speculation. Multiple distinct
execution units in such processors can execute different parts
of the instruction stream simultaneously. This execution may
reduce locality in shared, lower-level caches, thus increasing
the miss rate, and therefore the total traffic.

The emergence of single-chip multiprocessors would
increase the number of data loaded per cycle in a manner
similar to multiscalar processors. The increased bandwidth
requirements result primarily from multiple, concurrently
running contexts or threads, but they will also increase
because of shared-cache interference. The primary barrier

to the implementation of single-chip multiprocessors will not
be transistor availability but off-chip memory bandwidth. If
one processor loses performance due to limited pin band-
width, multiple on-chip processors will lose far more per-
formance for the same reason. (If the multiple threads share
most or all of their working sets, however, the off-chip band-
width will be less of an issue.)

Since the majority of microprocessor enhancements dis-
cussed here aggravate bandwidth limitations (if they exist),
designers must use other solutions to mitigate the perfor-
mance impact of limited bandwidth.

Execution time decomposition
We hypothesized that bandwidth stalls increase as proces-

sors and memory hierarchies become more aggressive with
latency tolerance. To test our hypothesis, we simulated the
execution time of several systems using seven benchmarks
from the SPEC95 suite. We used four integer benchmarks
(compress, vortex, ijpeg, and perl), and three floating-point
benchmarks (swim, su2cor, and tomcatv). We ran each bench-
mark using the test input set from SPEC, simulating them until
completion. (We used the “train” input set for ijpeg and com-
press and reduced the number of iterations for vortex.) We
used the SimpleScalar tool set to measure the execution time
of each system with execution-driven simulation. SimpleScalar
contains a detailed, out-of-order, speculative processor sim-
ulator, which executes binaries compiled to the SimpleScalar
instruction set (similar to that of MIPS). We modified the mem-
ory system to simulate lockup-free caches, accurate bus con-
tention, and address translation.

Three simulations for each benchmark measured the P, L,
and B components of execution time described earlier. To
measure P, we simulated a processor for which every load
and store completes in one cycle. We measured L by simu-
lating a memory hierarchy in which all buses are sufficient-
ly wide that all transmissions complete in one bus cycle.
Finally, we measured B by simulating the full memory sys-
tem, accounting for contention.

We simulated six different processor configurations for
each benchmark to evaluate the effect of various latency tol-
erance techniques. The latency tolerance techniques we eval-
uated are increased cache line sizes, the use of lockup-free
caches, out-of-order execution with speculative loads, and
prefetching. We implemented only one prefetching scheme:
tagged prefetch.3 We assumed that our blocking caches can
still service hits while they are processing a miss. Table 2
(next page) lists the specific experiments (labeled A-F) that
we ran for each benchmark. Experiments A, B, and C use an
in-order issue, four-way superscalar processor with a two-
level adaptive gshare branch predictor and two load/store
units. B assumes cache blocks that are twice as big at each
level as those in experiment A (keeping total cache size
fixed). Experiment C is the same as A except that it uses a
lockup-free cache, as do D-F.

Experiments D-F assume a four-way, out-of-order issue
processor based on the register update unit (RUU) structure,4

which allows loads to issue speculatively. Experiments D, E,
and F are identical except that E and F use tagged prefetch-
ing, and F uses a more aggressive processor core than do A-

November/December 1997 57

.

E. Table 2 also lists the processor parameters for each exper-
iment (clock speed, size of branch prediction table,
load/store queue, RUU entries, and so forth.)

Table 3 lists the parameters for the memory hierarchy. In
addition to those parameters, we assumed that multiplexed
data/address lines are used only on the main memory bus,
that all channels are bidirectional, and that all memories
return the critical word first.

Figure 1 displays the execution times for each experiment.
The execution times for each benchmark are normalized to
the perfect memory system experiment of experiment A.

Our results show that for simple processors with unag-
gressive memory systems (experiment A) the benchmarks
we measured spend an (arithmetic) mean of 28% of their
cycles stalled for memory. More aggressive modern proces-
sors (experiment F), which incorporate many of the latency-
tolerance features previously discussed in this article, spend
fully 50% of their cycles stalled for memory in the simulated
benchmarks. The aggressive processors spend more of their
time stalled for limited bandwidth; a mean 29% of total cycles
in experiment F, as opposed to a mean of 15% in experiment
A. Limited bandwidth accounts for the preponderance of the
memory stalls for four of the benchmarks in experiment F,
but latency stalls still represent a large fraction of memory

stalls for perl, tomcatv, and vortex.
This effect is due to poor instruction
cache performance for these bench-
marks. The latency stalls increase
(for perl, tomcatv, and vortex) when
going from experiment E to F
because the faster clock in experi-
ment F makes instruction cache
misses more expensive; although the
interconnect speed is scaled propor-
tionally to the faster clock, the
absolute memory bank access times
are not changed. Ijpeg differs from
the rest of the benchmarks in that it
spends little time stalled for memo-

ry. Its reference stream has excellent locality, so both the
data and instruction cache miss rates are low (1% for the
level-one data cache, and close to 0% for the level-one
instruction cache and level-two unified cache). For the other
benchmarks, however, our results show that memory band-
width stalling becomes a major, and sometimes dominant,
component of total execution time.

Future solutions
Both limited off-chip bandwidth and growing relative

memory access latencies have the potential to degrade pro-
gram performance seriously. Our results show that in many
cases, aggressive latency tolerance techniques must be imple-
mented with discretion, as they have the potential to wors-
en performance if memory bandwidth—not untolerated
access latencies—is the primary bottleneck for a given pro-
gram. The potential to overcompensate for latency tolerance
will be particularly acute with future processors, which will
rely heavily on speculation to achieve high performance.

Table 4’s analysis (see p. 60) is similar to that of Table 1 for
a range of solutions that increase actual or effective memory
bandwidth. High-bandwidth DRAMs increase bandwidth but
may increase per-request latency as well. Larger caches
improve average access latency and reduce traffic. Traffic-

58 IEEE Micro

Memory bandwidth

.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A B C
compress

D E F A B C
ijpeg

D E F A B C
perl

D E F A B C
su2cor

D E F A B C
swim

D E F A B C
tomcatv

D E F A B C
vortex

D E F

Experiment/SPEC95 benchmark

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

.18

.16

.13

.37

.40

.40

.03

.03

.03

 .06 .05 .05

.14

.11

.14

.26

.26

.23

.22

.15

.20

.43

.51

.50

.16

.12

.14

.40

.39

.43

.15

.11

.14

.23

.24

.22

.16

.13

.15

.25

.27

.23

B (limited b/w stalls)

L (raw latency stalls)

P (compute time)

Figure 1. Performance breakdown of execution time. The number atop each bar represents B.

Table 2. Processor simulation parameters.

Experiment
Parameter A B C D E F

Processor In-order issue Out-of-order issue
Clock speed 500 MHz 1 GHz
RUU slots 128 256
L/S Q entries 64 128
Branch predictor 16K 32K
Cache Blocking Lockup-free
L1/L2 block sizes 32/64 64/128 32/64
HW prefetch No Yes

efficient requests are the analog to latency-tolerance tech-
niques; they will reduce traffic but may exacerbate L when
not used effectively (thus they may increase or decrease P).
More efficient on-chip caches will reduce B but may increase
L if the overhead of maintaining more efficient cache use
(increased hit latency) outweighs the benefit (reduction in
misses). Logic/DRAM integration will increase P, as do larger
caches. Finally, memory-centric architectures will certainly
lend themselves to improving memory system performance,
but they are hampered by the need for an implementation
acceptance path.

High-bandwidth DRAM interfaces. The first, most obvi-
ous solution to limited memory bandwidth is to provide a
higher-bandwidth memory system (effectively buying more
bandwidth). Two of the articles in this special issue deal with
high-bandwidth DRAM interfaces: Rambus (RDRAM) and syn-
chronous link (SLDRAM), which are expected to provide
enough memory bandwidth for the next generation of high-
performance microprocessors. The key question is not
whether providing enough memory bandwidth with each
generation is possible, but whether providing enough for
each generation is cost-effective. In particular, providing
enough pins at a low-enough cost will be a significant chal-
lenge in the near future.

The rate of increase of processor pins has traditionally
been much slower than that of transistor count. Although
large increases in pin counts have recently occurred—and
breakthroughs in packaging technology undoubtedly lie on
the horizon—the issues of reliability, power, and especially
cost will prevent pins from sustaining growth in numbers
commensurate with the growth rate of processor perfor-
mance. (This statement is especially true since the costs of a
package grow superlinearly with the number of pins.) Figure
2 shows trends in pin, performance, and off-chip bandwidth
from 1978 to 1997. We compiled this data by hand, from both
the processors’ original manuals and back issues of
Microprocessor Report. All three y axes use log scales. The x
axes use a linear scale.

Figure 2a plots the number of pins per processor. We see
from the dashed line that pin counts are increasing by about
16% per year. More striking is the result in Figure 2b, which
plots processor performance per pin versus time. The raw
performance per pin is also increasing explosively, despite
the rapid increase in pin count shown in Figure 2a. Packages
and buses are designed to provide sufficient off-chip band-

November/December 1997 59

.

Table 3. Memory system simulation parameters.

Structure Parameters

L1 cache 64 Kbytes I, 64 Kbytes D, on-chip,
1-cycle access

L1/L2 bus 128 bits wide, bus/processor clock: 1/5
L2 cache 2Mbytes, 4-way set associativity, off-chip,

14-ns access
L2/memory bus 64 bits wide, bus/processor clock: 1/5
Memory 80-ns access, no bank conflicts

32

64

125

250

500

1,000

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

N
um

be
r

of
 p

in
s

8086

80286

68000

80386

68020
68030

80486 R3000

68040

UltraSparc

Pentium

Harp1

SSparc2

P6

68060

R10000

PA8000

21164

(a)

0.002

0.005

0.01

0.03

0.08

0.2

0.5

1.3

3.2

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

M
IP

S
/p

in

8086
80286

68000 80386

68020

68030 80486

R3000

SSparc2

68040

68060

UltraSparc
R10000

21164

P6

Pentium
Harp1

PA8000

(b)

0.006

0.010

0.016

0.025

0.040

0.064

0.100

0.16

0.25

0.40

0.64

1.0

1.6

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

M
IP

S
/P

in
 (

M
by

te
s/

s)

8086

80286

68000

80386

68020 68030

80486

R3000

SSparc2

68040

Harp1

Pentium

68060

P6

PA8000

UltraSparc

R10000

21164

(c)

Figure 2. Physical microprocessor trends: pin count increas-
es (a), performance increases per pin (b), and performance
over pin bandwidth (c).

width to each generation of processors. Figure 2c—which
plots the raw performance-to-package bandwidth ratio over
time—shows that performance increases are quickly out-
stripping the growth in raw peak package bandwidth.

In the earlier version of this article,1 we measured traffic
ratios for a range of cache configurations using the SPEC92
benchmarks. The traffic ratio is the number of bytes of bus traf-
fic generated by cache misses divided by the number of bytes
of traffic with no cache. While the traffic ratio depends on
cache size, the mean traffic ratio of all our experiments was
0.51. Using this value as a rough estimate of future traffic ratios,
we can extrapolate pin growth and processor performance to
see what sort of packages we will likely need by 2007.

If we assume an annual growth rate of 60% in sustained
microprocessor performance—which has been less than the
growth rate for the past decade—we can estimate future
increases in bandwidth requirements. Assuming both of
these trends persist, and that on-chip traffic ratios remain
about the same, we see that in a decade the processor of
2006 will have a package with two or three thousand pins.
Even with this large package, the bandwidth requirements
per pin will be a factor of 25 greater than those of today.

If processors are not to be limited by off-chip bandwidth,
at least three possibilities exist for the processor of 2006.

• Industry must build cost-effective, several-thousand-pin
packages clocked at several GHz.

• Industry must build a cost-effective package with 10,000
pins and clock it between 0.5 and 1 GHz.

• Other techniques may improve the effective pin band-
width more than they do today—reducing the need for
such huge packages.

We now turn to a discussion of how the effective pin band-
width may be increased without simply paying for more raw
bandwidth, thus mitigating the high costs of future packages.

Larger on-chip caches. Larger caches improve effective
bandwidth by sending fewer requests (misses) across the
interconnect. Growing on-chip caches will soon reach the
multi-megabyte range. Caches currently account for 50% to
80% of the transistor budget of microprocessors, and this
fraction is increasing. When 100 million- and eventually bil-
lion-transistor processors become available, they will likely
contain tens or hundreds of megabytes of on-chip cache
memory. Although caches this large will be able to hold the
working sets for many applications, there will always be pro-

grams whose access patterns aren’t amenable to caching.
There will also be programs for which their working sets are
too big to fit in even those gargantuan caches.

Even today, some designers are consciously using large on-
chip caches to increase their effective pin bandwidth, cutting
down on the actual bandwidth needed across the processor
package. Current Hewlett-Packard’s PA series of micro-
processors do not contain on-chip caches or only extremely
small caches—the primary cache is off-chip. This organiza-
tion required a large, high-performance package (1,085 pins
in the PA-8200). However, the recently announced PA-8500
reverses this philosophy dramatically; the cache organization
includes 1.5 Mbytes of on-chip cache, thereby reducing the
package size (which contains a “mere” 544 pins). Not only are
the power and cost reduced over that of a larger package, but
the PA-8500 saves die area by having fewer pins, thus reduc-
ing the total pad and driver circuitry.

Traffic-efficient requests. Effective bandwidth may be
increased not only by sending fewer requests but also by
increasing the information content or utility of those bytes that
are sent. By requesting smaller blocks, a processor gets less
implicit prefetching (thereby increasing L) but sends fewer
unneeded bytes across the interconnect, thus reducing B. Our
previous paper1 measured the traffic generated by a “minimal
traffic cache,” which was organized to minimize bus traffic
(small blocks, optimal replacement, full associativity, and a
write-validate, write-back policy). Our results showed that, of
these factors, small blocks were by far the largest contributing
factor to reducing miss traffic (small blocks accounted for 42%
of the large differential, averaged over all the benchmarks).
Sending smaller blocks, however, increases transmitted tag
and arbitration overheads (buses are generally much better at
burst transfers); these factors must be weighed against the
benefit of sending smaller blocks.

One implementation that could conceivably handle small-
er requests without exploding the miss rate is a sector cache
with small subblocks, in which either a subblock or the entire
address block could be loaded on a miss, depending on the
expected block access pattern.

Another method for improving the effective bandwidth of
an interconnect is compression. Researchers have proposed
and/or implemented schemes to use compression for data,5

addresses,6 and code.7 All of these schemes increase effec-
tive bandwidth to memory at the expense of some extra hard-
ware on the CPU (and for memory, in the case of the data and
address compression). Current technology trends (computa-
tion growing cheaper relative to expensive communication)
will make compression more attractive in the future.

More efficient on-chip caches. Although caches are quite
effective at capturing temporal and spatial locality in the
dynamic reference stream, they do so in a crude fashion, and
are far from optimal in their use of buffering active data. Both
our group and Wood et al.8 found that the fraction of data in
caches that is live (that is, will be referenced again before it is
evicted from the cache) is quite small—typically between one
twentieth and one third. The implication of this result is that
caches have the potential to be much better managed. Our
results confirm this hypothesis; a cache that is optimally man-
aged (in terms of minimizing traffic) produced between two

60 IEEE Micro

Memory bandwidth

.

Table 4. Effects of memory bandwidth solutions.

Effect
Solution P L B

High-bandwidth DRAMs ↑ ? ↓
Larger on-chip caches ↑ ↓ ↓
Bandwidth-efficient requests ? ↑ ↓
More efficient caches ↑ ? ↓
Logic/DRAM integration ↑ ↓ ↓
Memory-centric architectures ↑ ↓ ↓

and 100 times less traffic. Huang and Shen confirmed this
result in their study of minimal required bandwidths for cur-
rent-generation processors.9 They found that if an on-chip
memory has no naming or mapping restrictions, the available
on-chip buffering and off-chip bandwidth are more than suf-
ficient. The question, of course, is how to extract some of this
capability while still permitting a feasible implementation.

One way to improve efficiency in the cache is to cache
objects at a finer granularity than a cache line when they are
unlikely to exhibit spatial locality. Small blocks increase tag
overhead, and will perform poorly when larger objects have
spatial locality. Seznec’s decoupled sector cache allows a
finer grain of access, while preventing space in the unused
lines of a given sector from being wasted (by storing lines
from other sectors therein).10

Conflicts in the cache may remove lines before they are
used, thus effectively “killing” the line. Seznec showed how
to reduce both the number and variability of conflicts with
skewed-associative caches. Tyson et al. proposed a bypass-
ing scheme11 to address capacity misses in the cache, by sta-
tically and/or dynamically determining which data have little
temporal locality, and then not loading those data into the
cache upon a miss.

Logic/DRAM integration. Putting the processor on the
same die (or in the same package) as main memory could
eliminate the need for expensive, high-bandwidth interchip
interconnects. Industry is already taking some steps in that
direction for embedded processors and graphics controllers,
as we can see from the two articles in this special issue on
the MSM7680 and the M32R/D. Academic research has also
been working in this area; our group and Berkeley’s IRAM
group have been looking at issues related to processor/mem-
ory integration.

Logic and DRAM manufacturing processes, however, are
fundamentally different. DRAM processes typically support
multiple layers of polysilicon, few metal layers, and three-
dimensional structures for maximizing capacitor area. Logic
processes tend to have many more metal levels and are opti-
mized for transistor-switching speed. DRAM cells in a logic
process would not be particularly dense (estimates vary from
four to 20 times less dense than in an optimized DRAM
process). Gates in a DRAM process are much slower than
their logic process counterparts. Furthermore, the two types
of processes are diverging.

The benefits of having denser on-processor memory cells,
or faster on-DRAM gates, however, may drive the develop-
ment of hybrid processes that—even though they don’t
match their optimized counterparts for density or speed—
nevertheless improve system performance. In addition, the
average number of memory chips in lower-end systems (PCs
and workstations) is dropping, and may decrease to one in
the next decade. On-processor storage capacities are also
converging with average main memory sizes (for personal
computers), albeit slowly. Given those trends, it is conceiv-
able that all system memory may someday reside on a sin-
gle processor chip or module (for personal computers, at
least). The question of expansibility then comes into play—
how to expand the system memory (add more of the inte-
grated chips, or just reintroduce “dumb RAM”?) If more

integrated chips are added, how should programs be run?
Memory-centric architectures. If processing becomes

cheap enough, and/or communication becomes too expensive
(either across pins or with increased intrachip wire delays), it
is likely that designers will put functional units wherever there
is storage—we call them memory-centric architectures. The
challenges in such architectures are distributing the data effec-
tively and orchestrating the flow of control.

For certain regular, fine-grained, single-instruction, multi-
ple-data (SIMD) types of codes, the processing-in-memory
approach, in which small processors are embedded in mem-
ory arrays, can show large performance improvements. This
is the case with Computational RAM (CRam) and processor-
in-memory (PIM) research. The application base of this
approach is limited, however.

We have proposed and evaluated a memory-centric archi-
tecture called DataScalar, which targets scalar, hard-to-par-
allelize codes.12 Processors are coupled with regions of the
main memory, and each processor runs the program redun-
dantly, broadcasting operands from its local memory to the
other processors. If a processor needs an operand from a
remote memory bank, it does not need to request that
operand. It simply waits for the operand to arrive, since it
will be sent by the processor at the remote memory.

We are currently extending this model to allow processors
to select dynamically a computational task for which all the
operands are local, execute that code alone, and send the
updated state (bundled register values) to the other nodes.
We are also implementing support for fine-grained data
migration, aggressive speculation, and communication of
control decisions, to achieve performance gains above the
DataScalar base model. This architecture is a good match for
a world in which limited memory bandwidth, wire delays,
and off-chip communication delays dominate performance.

FOR A COMPUTER SYSTEM to exhibit good cost/per-
formance, designers must ensure the processor and sup-
porting memory system are in balance. The growing cost of
communication—manifested as the growing number of
cycles required for main memory accesses—has caused
designers to implement latency-tolerance techniques such
as prefetching, nonblocking caches, and out-of-order exe-
cution. None of these techniques mitigate memory or pin
bandwidth limitations, and in many cases they aggravate the
performance losses by increasing the off-chip contention.

Paying the high cost of a fast or wide path to DRAM is like-
ly to be part of the solution, but many other techniques can
reduce bandwidth requirements. Designers can implement a

November/December 1997 61

.

Designers must ensure the

processor and supporting

memory systems are in balance.

less-expensive main memory system and interface that nev-
ertheless provides the processor with a sufficient rate of
operands. Large on-chip caches can reduce the number of
off-chip accesses that must be made. Smarter cache man-
agement may reduce off-chip traffic even further. Moving the
main memory closer to the processor (or moving part of it
on the processor) will even further reduce the frequency with
which requests must go off chip. Finally, farther in the future,
new memory-centric architectures may be developed specif-
ically to improve the memory system’s cost and performance.
It is likely that most of these solutions will eventually be used
synergistically to provide a sufficiently high-bandwidth mem-
ory system at an acceptable cost.

Acknowledgments
We thank Ken Sakamura for including this revised work in

his special issue, and Steve Diamond and Marie English at IEEE
Micro for giving us the opportunity to submit our work. We
also thank our funding sources—the National Science Foun-
dation, the Intel Research Council, and Sun Microsystems—for
the generous support that made this work possible.

References
1. D. Burger, J.R. Goodman, and A. Kägi, “Memory Bandwidth

Limitations of Future Microprocessors,” Proc. 23rd Ann. Int’l Symp.
Computer Architecture, Assoc. of Computing Machinery, New
York,1996, pp. 79-90.

2. G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, “Multiscalar
Processors,” Proc. 22nd Ann. Int’l Symp. Computer Architecture,
ACM, 1995, pp. 414-425.

3. J.D. Gindele, “Buffer Block Prefetching Method,” IBM Tech.
Disclosure Bull., Vol. 20, No. 2, 1977, pp. 696-697.

4. G.S. Sohi, “Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Computers,”
IEEE Trans. Computers, Vol. 39, No. 3, 1990, pp. 349-359.

5. D. Citron and L. Rudolph, “Creating a Wider Bus Using Caching
Techniques,” Proc. First Int’l Symp. High-Performance Computer
Architecture, IEEE Computer Society Press, Los Alamitos, Calif.,
1995, pp. 90-99.

6. M. Farrens and A. Park, “Dynamic Base Register Caching: A
Technique for Reducing Address Bus Width,” Proc. 18th Ann.
Int’l Symp. Computer Architecture, ACM, 1991, pp. 128-137.

7. R.P. Colwell et al., “A VLIW Architecture for a Trace Scheduling
Compiler,” Proc. Second Symp. Architectural Support for
Programming Languages and Operating Systems, ACM, 1987,
pp. 180-192.

8. D.A. Wood, M. D. Hill, and R. E. Kessler, “A Model for Estimating
Trace-Sample Miss Ratios,” Tech. Report TR-1000, Computer
Sciences Dept., Univ. of Wisconsin, Madison, Wisc., 1991.

9. A.S. Huang and J.P. Shen, “A Limit Study of Memory
Requirements Using Value Reuse Profiles,” Proc. 28th Int’l Symp.
Microarchitecture, IEEE CS Press, 1995, pp. 71-81.

10. A. Seznec, “Decoupled Sectored Caches: Conciliating Low Tag
Implementation Cost and Low Miss Ratio,” Proc. 21st Ann. Int’l
Symp. Computer Architecture, ACM, 1994, pp. 384-393.

11. G. Tyson et al., “A Modified Approach to Data Cache
Management,” Proc. 28th Int’l Symp. Microarchitecture, IEEE
CS Press, 1995, pp. 93-103.

12. D. Burger, S. Kaxiras, and J.R. Goodman, “DataScalar
Architectures,” Proc. 24th Ann. Int’l Symp. Computer Architecture,
ACM, 1997, pp. 338-349.

Doug Burger is a PhD candidate at the
University of Wisconsin-Madison. His
dissertation topic is memory hierarchies
for advanced microprocessors.

Burger received an MS from the
University of Wisconsin-Madison and a
BS from Yale University, both in com-

puter science. He is an Intel Foundation Graduate Fellow
and a student member of the IEEE, the Computer Society,
and the ACM.

James R. Goodman is professor and
chair of computer sciences at the
University of Wisconsin-Madison. His
current research focuses on high-per-
formance memory systems and comput-
er systems of the future.

Goodman received a PhD from the
University of California at Berkeley. An early contributor to
multiprocessor snooping cache literature, he has actively par-
ticipated in the development of IEEE Std 896 (Futurebus)
and 1596 (Scalable Coherent Interface). He has published
papers in the areas of cache-coherence algorithms, shared-
memory multiprocessor architectures, database systems,
interconnection networks, virtual memory, memory-register
organization, and memory systems design.

Alain Kägi is a PhD candidate at the
University of Wisconsin-Madison. His
dissertation research concerns efficient
synchronization primitives for shared-
memory multiprocessors.

Kägi received an MS from the University
of Wisconsin-Madison and a computer sci-

ence diploma from the Swiss Federal Institute of Technology
(ETH) in Zürich.

Send correspondence about this article to Doug Burger,
University of Wisconsin-Madison, Computer Sciences Dept.,
1210 West Dayton St., Madison, WI 53706; dburger@cs.wisc.edu.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 168 Medium 169 High 170

62 IEEE Micro

Memory bandwidth

.

