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Abstract

DataScalar achitectues impove memory system performance
by running computationedundantly aarss multiple prcessos,
which are ead tightly coupled with an associated memdFje
program data set (and/or x¢) is distrituted acoss these memo-
ries. In this &ecution model, e&cprocessor bvadcasts opemds
it loads flom its local memory to all other units. In this papee
describe the benefits, costs, analpems associated with the
DataScalar model. @/also pesent simulationesults of one possi-
ble implementation of a DataScalar system. In our simulated
implementation, six unmodified SPEC95 binariaa fom 7%
slower to 50% faster on two nodes, arahir9% to 100% faster on
four nodes, than on a system with a corapé more traditional
memory system. Our intuition andsults show that DataScalar
architectues work best with codes for whitraditional paallel-
ization tediniques fail. W conclude with a discussion of how
DataScalar systems may accommodasalitional pasmallel pro-
cessing thus impoving performance wer a mub wider ange of
applications than is cuantly possible with either model.

1 Introduction

Although microprocessor performance continues tovgaban
exponential rate, not all microprocessor components iugsomi-
larly. Imbalances created byvdigent rates of imprement are
eliminated through microarchitectural inmtions and altered
assignations of resources. Specifigathe relatie costs of com-
munication are increasing rehai to those of computation. This
trend is resulting in successly lager caches with each processor
generation, as well as more compblnd &pensve lateny toler-
ance mechanisms.

As microprocessor clock imprements continue to outpace
reductions in commodity DRAM access times and imenoents
in bus clocks, accesses to main memorywgroore &pensve.
Techniques to reduce or tolerate this layeméten do so by
increasing the bandwidth requirements of the procegguch in
turn increases the latgnof memory accesses [4]. Processors that
perform more parallel operations simultaneously may also
increase queueing delays in the memory system.

This paper describes an architecture tikptats comparatiely
inexpensve computation to reduce communicatiseiheads. In a

the same instructions on the same data. When a processor issues a
load to an operand that is located in its memory (i.e., the operand is
ownedby that processor), it broadcasts the result of the load to the
other processors. When a processor issues a load to an operand not
contained in its memoryhe load request isiffered until the oper-

and arrves, broadcast by some other procesStores are com-
pleted only by thewning processorand dropped by the othe's.

By performing redundant computation, a processor that has a
datum locally can compute the address of that datum, access that
datum, and send that datum to the other nodes quiSkige all
physical memory is local to at least one procesaaequest for a
remote operand mer need be made. Thigezution model elimi-
nates dfchip request and write trféf, reduces memory access
latencies, and creates opportunities fox o@timizations.

Current technological parameters do not enBlataScalar sys-
tems a cost-éctive alternatie to todays implementations.d¥ a
DataScalar system to be more co$¢ative than the alternags,
the following three conditions must hold: (1) Processingvgio
must be cheap; the dominant cost of each node should be memory
(2) Remote memory accesses should be muakesithan local
memory accesses. (3) Broadcasts should not be proéipiti
expensve.

We beliee that technological trends arewilng commodity
systems in a direction such that the aforementioned conditions will
all eventually hold. V& list three possible candidates for Data-
Scalar systems, ordered in increasingle of intgration, belov.

«  Networks of workstations: DataScalar xecution could per-
form as an alternate to paging to remote phical memories [15]

on a netwrk of workstations, preided broadcasts were §uf

ciently inexpensve. Some netark topologies, such asiff trees,

support dicient broadcasts. Alternagly, some implementations
of optical netvarks render broadcasts virtually free, enablirfg ef
cient DataScalanecution [2].

* |RAM-based systems: the concept of a single-chip computer

in which processor logic and main memory are gedron the
same die hasxested for decades. Processor/memorygragon

has receied much attention recently [3, 20, 21, 17]; ackisolg-

ing this current enthusiasm, we refer to implementation of such
systems as IRAM [20]. Remote memory accesses (to other IRAM
chips) will certainly be more xpensve than on-chip memory
accesses. IRAM chips connected byus lor point-to-point ring
would ehibit the needed parameters for a cofeative Data-

DataScalar architecture, multiple autonomous processing units areScalar implementation.

each tightly coupled with a fraction of a prograrptysical mem-
ory. Each unit runs the same program, asynchronouslguéing
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Chip multiprocessors (CMPs): Single commodity chips are
projected to hold a billion logic transistors by 2010. Such copious
silicon real estate will enabl@lfrication of single-chip multipro-
cessors containing substantial quantities of memory per proces-
sor—such a chip is in gelopment een today [18]. Wing delays

1. Except when the data are cached, in which case the cache line is updated,
and no write-through or write-back is required.



on these chips will be substantial [6]; accessing an operand from ahe result—not the operands—to the other processa<alWthis

bank to which the requester is tightly coupled islijko be much techniqueresult communication, and discuss it in more detail in
faster than requesting an operand from a memory bank across th8ection5.1. W note that this>@cution model—which we call
chip (in essence, the former accessild be “local” and the latter  Single-Program, Single Data stream (SPSD)—is a serial analogue
“remote; even though both requests are serviced on the sameto the Single-Program, Multiple Data stream (SPMBEg¢ostion

chip). model proposed by Darema-Rogers et al. in 1985 [5] (which
In this paperwe @aluate a DataScalar implementation in the €tended Flynre classification [11]).
IRAM context, since we beliee that it is a promising technologi- Requiring gery load to be broadcastowid generate much

cal match for these ideas. In Sectlyrwe describe the ideas and More total treffic than current systems with cache memories.nter
background in more detail. In Secti®nwe describe the benefits Chip trafic can be reduced dramatically by replicating the fre-
of the base model and present some supgosimulation results. guently accessed portions of the address space both statically and
In Sectiond, we describe one implementation of a DataScalar sys-dynamically at arious granularities (ard, cache line, and/or

tem and present timing simulation results comparing direg a page). _ o

traditional alternatie. In Sectiorb, we discuss the potential for the We replicate data statically by duplicating the mostvitiea

interaction of DataScalar and parallel processing. Finaiydis- accessed pagkin each processariocal memoryAccesses to a

cuss related ork and conclude in Sectigh replicated page will complete locally ategy processoirequiring
no of--chip trafiic. The address space is thusidiéd into tvwo cate-

2 DataScalar werview gories: replicated and communicated. Replicated pages are

mapped in each processotocal memoryand the communicated
part of the address space is disttéad among the processors.

Figure2 shavs hav loads and stores & for replicated and
communicated memory; both processors issue a load and store to
replicated memory (L1 and S1), which complete loc&lyth pro-
cessors also issue loads to L2 and S2, which are located in the
communicated memory of procesgdronly. ProcessoA broad-
casts L2, which processBrreceves and consumes. S2 completes
at processoA, hut is dropped at processBr

DataScalar architectures are intended to miiéighe dual con-
straints of (1) processors coupled with limited memories that may
not easily be xpanded—such as a finite on-chip or on-module
capacity in a highly ingrated system—and (2¥isting uniproces-
sor programs that are not easily parallelized. This architecture
exploits the &ailability of multiple processors to minimize mem-
ory lateng by using thedct that ap memory location is local to
some processorThus each read operand can be quickly fetched by . ; o
some processoEach memory update can be avbitby means of  Stalic, coarse-grained replication of pages cannot capture local-
only one write by the processor to which the store address is local/y that is fine-grained or identifiable only at run-timee \Wust

DataScalar is based on the Massilemory Machine (MMM) therefore allo caching at each node festively replicating data
work from the early 1980s. The MMMas a synchronous, SISp ~ dynamically for the period that there cached. Dynamic replica-
architecture that connected a number of minicomputers with a glo-ion of data, hwever, introduces some meconsisteng issues that
bal broadcast us [13]. Each computer contained ary lage we will discuss in Sectioa.1. _ o
memory which was a fraction of the total program memory (each _ 1he DataScalan@cution model is a memory system optimiza-
operand as thusowned by only one processore., it resides in tion, nqt a s.ubstltute.for pqrallel processing. When coarse-grain
the plysical memory of only one processor). All computers ran the parallelism &ists and is obtainable, the system should be run as a
same program in lock-step, and thener of each operand broad- Parallel processor (since a majority of the needed raneis
cast it on the globalus when accessed. This broadcast moadel w  alréady present). @/discuss the issues concernirygrid execu-
calledESP in the MMM work. We depict anxample of synchro- tion models for multiprocessors further in Sectio?.
nous ESP in Figuré. One processor (thkead processor) is .
slightly ahead of the others while it is broadcasting (initially pro- 3 DataScalar benefits
cessor 3 in Figurg). When the programxecution accesses an
operand that the lead processor does mat, ca lead change
occurs. All processors stall until thewéead processor catches up : . X
and broadcasts its operand (e.g., processor 2 broadcasfirg ESP reduces about a third of-ohip trafic (on aerage), and we
cycle 7 in Figurel). shav how datathreading &rs the potential for reductions in

Some adantages to ESP are: (1) that no requests need be senf?€mory lateng. We also present simulation results that address

thus reducing access latgrend lus trafic, since all communica- ~ €ach of these benefits.
tion is one-vay. (2) Writes (or write-backs) mer appear on the . .
global lus, fu?/th(er) reducing(gtts trafic (sinc)e all p?c?cessors are 3.1 ESP and traffic eduction
running the same program, thall generate the same stoedues,
which need complete only on theviming processor). (3) Since the
MMM was synchronous, and all processors generated the addre
for each succes@ operand, no tags needed to be sent with the
data on the globalus.

DataScalar architectures combine ESP with out-of-onckie

In this section, we describe the benefits associated with the base
DataScalar model (ESP and datathreading) in detailsiiv how

DataScalar systems egjoearly the same benefits from ESP as
&id the MMM proposal. ESP reduces fia#thereby increasing
effective bandwidth—by eliminating both request fiaand write
traffic from the global interconnect. ES&synchronous or other-
wise, does not further reduce the number of read operands that

tion, the combination of which is an asynchronoession of ESP must be communicatedfeathip over that of a corentional archi-

Each processor may accessned operands simultaneouskhis tecture. . i
asynchrog permits each processor to run ahead on computation ESP-based systems eliminate requesfitraécause ESP uses a

involving operands that itvans, generating the total stream of response-only (or data-pushing) model. Since all processors run

broadcasts more quicklyMe call this capabilitydatathreading. the same program, if one processor issues a load to an address, all
Unlike synchronous ESRawever, each broadcast must contain an the other processors willventually issue that same load. The
address or tag, since broadcasts occur in an wiktatal order owner is therefore assured that when it broadcasts the load, all

Because each processaeeutes the instructions in afeifent
order it is possible for a processor to temporarilyidee from the 1. We assume a static partitioning at the pagelj@nd thus this distinction
ESP model andxecute a priate computation, broadcasting only would is in the page table. Other schemes are possible.
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Figure 2. Replicated vs. communicated memory

other processors will consume it. @ersely when a processor
issues a load to a datum that it does nen,oit can hiffer the
request on-chip, and the matching data wilergually arrve.
Thus, requests needvee be sent dfchip. Similarly when a store

is generated at all nodes, only thener of that address need com-
plete the store on-chip. Sinceeey chip is generating theale
locally, created storealues neer need be sentfechip. All pro-
cessors will complete the store if the address is a replicated loca

1I2 1I3 1I4 " receives a word

ve Memory Machine (from [13])

sizes at the time that SPEC9%swreleased). @measured the
aggreyate miss trdfc from the cache, and calculated the fraction of
traffic that remained once write-backs and requests were elimi-
nated. In @blel, we shev this measured fraction for fourteen of
the SPEC95 benchmarks.eVéhav both total trdfic eliminated,

and the reduction in the total number of distinct messages (we
count a request/response pair as timnsactions). The table st®

that, for this cache size, ESP eliminates roughly 15% to 50% of the
off-chip trafic in bytes, and from 52% to 75% of the widual
transactions (because no requests are sent, the transaction reduc-
tion will always be at least 50%).

These results indicate that—for systems in which memory
bandwidth is at a premium—implementing ESP iseliik to
improve performance, or reduce the required system cost to
achieve the same performance. These results focus solelyn b
traffic reduction—thg do not address the performance penalties
associated with necessitating broadcasts on interconnects other
than luses. & address that issue in Sectiba.

3.2 Datathreading and latency reduction

ESP-based systems reduce memory lgtérycmaking all of
chip communications oneay only These sangs might be lage
if the remote communication time dominates the memory request
lateng, or small if the memory access latgramd/or memory sys-
tem queueing delays dominate the request Igtenc

ESP-based systemd@fthe potential for further reductions in
memory access latencies,wever. Consider a stream of accesses
to memory locations, each address of which is dependent on the
value of the préous address (e.g., pointer chasing). When tw
more dependent addresses reside in one procefstal memory
that processor may fetch thosalues without incurring anoff-

tion. If the address is cached at all nodes, the store will complete ir€hip latencies. Thosealues may then be sent to the other proces-

the cache, and theentual write-back (or write-through) operation
will be dropped at nodes that do netrothat address. Note that
there are none of the traditional cache consigtésgues, since
every processor is running the same program.

In a synchronous implementation of ESRgs need not be
broadcast with data—very processor is generating the same
instruction stream in the same ordeo tags can be inferred from
the order in which the broadcasts are nemati DataScalar systems
do not enjg this benefit; the out-of-order issue processors will all
issue multiple broadcasts in an unpredictable oraernddition,
more than one processor generally will be attempting to broadcas

sors by pipelining the broadcasts, incurring only ofieloip delay
on the critical path. All processors thus complete the processing of
those addresseadter than wuld a traditional system.

To illustrate this concept, we depict a simpbearaple in
Figure3. Figure3a shavs a fourchip DataScalar system in which
each IRAM chip contains a quarter of the progsarmlysical
memory Figure3b shavs a more traditional ganization, in
which one IRAM chip holds a quarter of the progreamiemory
and traditional DRAM chips hold the other three-quarters. In both
systems, operandsg,x,, X3 all reside on one chip, and operand x
tesides on a diérent chip. The address of eagh , is dependent

at ary given time. This lack of predictability means that data must on x; . One processor in the DataScalar system can access the first
be broadcast along with their addresses and/or some other identifythree without a single BEthip access, and then pipeline the broad-
ing tags (multiple instances of the same address may require supeasts of those three operands to the other nodes (the broadcasts will

plementary tag information, such as a sequence number).

We measured thexeent to which ESP reduced-a@hip commu-
nication using cache simulation.é\sed the SimpleScalar tool set
[1], which is an gecution-drven set of processor simulators that
simulate a MIPS-lik instruction set architecture.e/¢imulated a
64-Kbyte, two-way set-associate, write-allocate, write-back, on-

be separated by the memory access time, of course). There will be
a serialized dfchip access between and % (analogous to a lead
change in the MMM), and then, xvill be broadcast. The system
thus incurs tw serialized dfchip delays. The traditional system,
corversely incurs tvwo serialized dfchip accesses (one request,
one response) for each operand, for a total of eight inxtam@e

chip level-one data cache (this size is consistent with typical cacheThe traditional system ould incur zero dfchip delays if all the



g:?;t:éd_ tontatv| swi m|hydro2d|nmgri d|appl u|nmB8ksm|turb3d| gcc [conpress| i perl [f pppp[wave5|vortex
Traffic .16 .39 .33 31 .38 14 .40 .19 .54 .39 .32 17 46 21
Transactions .52 .66 .62 .61 .65 .52 .66 .55 74 .66 .62 .53 .70 .56

Table 1: Off-c hip data traffic reduced b y ESP
Shows reductions in off-chip data traffic due to ESP (removal of write and request traffic) for the SPEC95 benchmarks. Traffic is measured in
two ways: fraction of bytes eliminated (top row) and fraction of transactions eliminated (second row).
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Figure 3. Comparing off-c hip access serializations

assumed a cache configuration identical to that presented in
Section3.1. For each benchmark, we replicated 32 4-Kbyte pages
on each node. @/selected the pages to replicate by running the
benchmark, sang the number of accesses to each page, sorting
the pages by number of accesses, and choosing the 32 malst hea
accessed pages.eWlistrinted the communicated pages among
the nodes round-robin, in blocks with sizes ranging from 4 to 32
pages. The sizes of the distried blocks of data are sho for
each benchmark in the first column dable2. For each bench-
mark, we tried to maximize the distution block size (to impne
datathread length) while stileleping it smaller than 1/4 of both the
text and the lagest data (globals, heap, staclgreent. This action
prevented either ggment from being completely contained at one
processqra situation which wuld male the datathread length
equal to the number of references.)

The net four columns in @ble2 shav the distrilution of repli-
cated pages among the fougsents. Columns sen through nine
shav the mean (arithmetic) datathread lengths using thrésretit

operands happened to reside in the on-chip quarter of the memor>;1efinitions of datathreads. All three methods count conseati-

as opposed to a minimum of one for a DataScalar system.

We call a series of accesses to conseeutcal dependent
operands alatathread. If the operands are not dependent, then a
traditional system could simply pipeline multiple non-blocking
accesses, obtaining them inatwserialized dfchip crossings.
When a dependence spang modes, we vig that point as initiat-
ing a datathread migration from one node to the pthaginning
the access stream of that thread at thve mede. The werhead of
migrating this conceptual thread is one serializdetlop access.
The cost of maintaining ikpensve datathread migrations is pre-
cisely that of maintaining SPSDxexution— broadcasting loads
and performing computation redundantly at all nodes.

Another conceptual we of asynchronous ESPxecution is
that from each processserperspecte, it is the main processor

erences on a node,dBning the count upon the first reference to a
communicated datum local to some node, ending (and restarting)
the count upon the rereference to communicated data local to a
different node. Column gen approximates datathread lengths
using all references to memory (e.g., all cache misses). The second
and third columns compute datathread length using only instruc-
tion and data references to memagspecitiely.

The right-most column sk the &erage number of contigu-
ous accesses to replicated pages in main medayly numbers of
references to replicated pages wilitend aerage datathread
lengths. If references to replicated data are frequent, the threads
will tend to be long.

The arerage datathread lengths iable2 are generally high for
instructions—wer 20 in @ery case. These @& numbers are par-

and the others are simply intelligent prefetch engines residing intially due to the replication of a high percentage of thegages,

the main memory modules. From this perspectithe broadcasts

which is significant for most programisi(, t ontat v, nB8ksi m

the processor sends are merely the state the prefetch engines nekd b3d, andf pppp have arerage code datathreads in the hun-
to continue performing the accurate prefetching. Since this is adreds or thousands, and each has from 1/3 to 1/2 of the code repli-

homogenous system, each processor wilehhis viev of the oth-
ers, of course.

The Massie Memory Machine as able to xploit only one
datathread at grtime; when a lead change occurred, & datath-
read began at the ne leader (in Figurd, operands yww,, Ws-Wo,

cated across all processorsartPof the &planation for the long
datathreads, heever, is the high spatial locality generally found in
code reference streams.

Data reference thread lengths that we see tend to be shorter than
the instruction thread lengths. §hare lav (less than 3) for some

and ws-wg would constitute three datathreads, assuming eachof the floating point codesw m appl u, t ur b3d, ngri d, and

operand is dependent on the yioes one). DataScalar systems,
because theimplement asynchronous ESP with out-of-order issue
at each node, may Y multiple datathreads running concurrently

DataScalar systems do not require special support for datathread[ i ]

since thg transparently ploit the locality already inherent in ref-
erence streams. Maver, programs wuld benefit from special

hydr 02d). Although floating-point codes tend tovieahigh spa-
tial locality, our approximation of datathreads is cut by intedda
accesses to arrays residing afedént processor®., c[i ]
+ b[i]). Also, some of the spatial locality is filtered out
by the cache. The three other floating-point code& heagher
average datathread lengthswewer, ranging from about 6 to 33.

support to increase datathread length or raise the number of datathFhe integer codes tend to e higher datathread lengths than do

reads gecuting concurrently
In Table2 we shav experimental results that measure the mean
number of loadsdiling consecutiely on a single node. This is an

approximation of datathread length, since we do not account for

dependences. All results presented here assumed-prém@ssor

the floating-point codes. The datathread lengthlforis high
because most of its data set is replicated. The othensakeoage
datathread lengths from about threeveral 30.

These results shothat mag programs will be able toxploit
datathreading. Ideallyeach processor in a DataScalar system will

system. These simulations also used the SimpleScalar tools andun ahead of the others, finding multiple needed operands and



Dist. Replicated pages (128Kb) Datathread length approximation
Benchmark .
size (Kb) || text | global | heap | stack || total text data repl.

tontatv 32 22 6 2 2 42.3 31486.7 6.7 21.7
SW m 32 7 24 0 1 2.1 60.2 2.1 1.0
hydr o2d 32 25 5 0 2 1.7 176.9 1.6 1.1
mgrid 32 4 27 0 1 15 314 1.5 1.0
appl u 32 23 8 0 1 2.6 43.3 2.6 1.0
mB8ksi m 64 16 10 5 1 157.3 859.2 69.1 16.2
turb3d 64 19 12 0 1 1.7 1541.6 1.6 1.1
gcc 256 25 1 0 6 7.4 23.9 4.5 1.2
conpr ess 16 6 25 0 1 103.5 41.7 134.7 1.3
li 16 17 2 12 1 841.2 777.2 2027.1 208.4
perl 128 26 2 3 1 7.6 34.5 4.1 2.1
f pppp 64 27 4 0 1 || 165.6 755.9 33.7 3.7
waveb 64 17 14 0 1 6.4 171.6 5.9 1.7
vortex 128 27 2 1 2 5.5 21.0 2.9 1.9

Table 2: Approximate datathread measurements for a four-processor system
Each row shows the experimental parameters for each benchmark, followed by the results. The first column contains the granularity at which
communicated data are distributed round-robin around the processors. The second through fifth columns show the number of pages from each
segment that were replicated for each benchmark. The right-most four columns show the arithmetic mean of our datathread length approxima-
tions for all reads, all reads to code and data separately, and reads to replicated memory, respectively.

instructions locally and sending them to the other processors replicating a datum at the same point in the access stream. Further-

early—sometimesven before the other processorséaesoled more, these nodes should ideally male decisions about what to

those addresses. keep replicated and what to thra@ut based oithocal information
only—requiring continuous remote communication solely to

4 Performance of a DataScalar imp|ementation reduce the number of broadcasiswd male DataScalar systems
non-competitre.

In this section we present simulation results comparing one  While mary solutions are conoceble, in this paper we
implementation of a DataScalar architecture with a more tradi- describe only the one that weveamplemented. Our solution is to
tional architecture. W&/first discuss the specific solution we imple- fold the decisions about what to replicate dynamically into the
mented to enable caching under asynchronous. B&Pthen first-level caches—a block is considered to be dynamically repli-
describe our simulated architecture, simulatiomirenment and cated so long as it is in those cachéta level one cache miss

parameters, and present our results. occurs for communicated data, thengr must broadcast that line
to the other nodes. This solution implies that no node raay e
4.1 Cache correspondence miss on a communicated line if another node hits on that line for

the same load. W call this thecache correspondence problem;

In Section2 we described static replication of data, in which data must bedpt correspondent in the primary caches to ment
heavily used pages are copied at each processor running as a Dataleadlocks.
Scalar machine. Static replication is limited in that it cannot use  Keeping the caches correspondent is a neiatrproblem.
run-time information to reduce fe¢hip accesses—caches are uni- Dynamically scheduled processors will send loads to the cache in
versally used precisely because this run-time information is so cru-different orders, and will also sendfdient sets of instructions
cial. Dynamic replication, therefore, is crucial to the (when branch conditions takonger to resolrat some processors
competitveness of DataScalar systems. than others, allwing more mis-speculated instructions to issue). If

Dynamic replication in a DataScalar system is analogous totwo loads to dierent lines in the same cache set are issued in a dif-
caching in a uniprocessor; processoretakbroadcast operand or ferent order at tw processors, that set will replacefefiént lines,
block of data, and decide to cache the data locally for a period ofand the caches will cease to be correspondent.
time (the diference is that multiple processors are all caching the  Our solution is to update the primary cache state only when a
same data instead of just one).wdwer, replicating data dynami- ~ memory operation isommitted, not when it is issued.olmaintain
cally is more complicated than simple caching. The goal of repli- correct program semantics, instructions must be committed in the
cation is to impree average memory access latgry reducing same order at all processorsee though the may be issued in
the number of broadcasts (which are analogous to cache misses iifferent orders. This solution also peats mis-speculated
a uniprocessor). If theamer of a datum decides not to broadcast it instructions from décting the cache contents.
upon a load, assuming it to be replicategdry other node must We implement this solution with a structure calle€anmit
till have that operand, or deadlock will result. Caersely if the Update Buffer (CUB). e ervision separate CUBs for instructions
owner broadcasts the operand and other nodes alreadythnt and data (ICUBs and DCUBstin this paper we onlywaluate a
operand locallysuperfluous messages may fill up the queues onDCUB. When a cache miss returns, rather than loading the data
the remote nodes (depending on the broadcasting/iegémple-
mentation). Certainly unnecessary broadcasts walste/ band- ;1 it s possible to useuer levels of a multi-leel cache hierarghto per-
width. form dynamic replication. & chose to use only thevéd-one caches

All nodes in a DataScalar system must therefaepksactly because our particular solution requires a tight coupling of the cache tags
the same set of dynamically replicated data, all choosing to stopand the load/store queue in the processor




into the cache, the line is placed into an entry of the DCUB, and a
pointer to that entry is placed in the load/store queue at the entry of
the load that generated the miss. Memory operations to the same
line are serviced by the data in the DCUB (loads may still be ser-
viced by storesdrther ahead in the load/store queue). When a

memory operation is committed, the cache tags are updated, and, if Program order:

necessarythe line is loaded from the DCUB into the cache. A
DCUB entry is deallocated when the last entry in the load/store
queue that uses that line is committed. In addition to a pointer to

X and Y are accesses to two lines that conflict in the cache

<4— Committed | Uncommitted —— »
Y1 X1 X2 Y2
Issue order: 1 4 2 3

Load/store queue J

the DCUB entry each entry in the load/store queueterded

with state that represents whether the instruction missed in the pri-

mary cache at issue time.

This extra state is necessary because updating the cache at com-

mit time only is sufcient to guarantee cache correspondengg, b
not to guarantee identical hit/miss beioa at all processors. Since

1. Y, is committed, is loaded into cache
2. X, is issued, and misses in the cache
3. Y5 hits in the cache

4. X1 misses, but hits in the MSHR

instructions may issue at fifent times across processors, the False miss: X; missed at issue but would have hit if in-order issue

same instruction will issue at tifent commit points in the

False hit: Y, hit at issue but would have missed if in-order issue

instruction stream across the processors, causing some to hit and

others to miss in their caches. Byisg whether a hit or miss
occurred at issue time, we can compare thabtewith the correct
commit-time @ent, and ta& correctve action if there is a disparity

We shav a simple gample in Figuret. Two addresses{ and

Y, conflict in the cache. Instructions commit from left to right. The

second load tX (X,) misses when issuedytowould have hit at

commit time if the instructions were issued in program order
(becauseX; would have already generated the miss). This is an

example of &alse miss. AnalogouslyY , hits at issue time because
Y, had just been committedutbshould hee missed at commit
time (e.g., at another processég might issue aftexX, is commit-
ted, causing a miss at issue time instead of a hi).cs this a
false hit, and deal with it by generating a repamatiniss when this
situation is detected at commit time (a repaeatniss consists of a
reparatve broadcast by theamer, or a squash to the local BSHR
by a non-avner of that datum). ¥ deal with &lse misses by rec-

ognizing that ay sequence of accesses to the same line will gener-

ate only one missX; andX, in this ekample). IfX, issues after
X,, we can “assign” the miss generateddgyto X, thus ensuring
that all processors will generate only one miss for that line.

This “cache correspondence protocol” does not currently han-
dle speculatie accesses; if we were to permit incorrect specula-

tions in our simulations, we auld hare to hffer speculatie
broadcasts at the netvk interface. V& would then allev them to

proceed only when tlyewvere determined to be correct, and squash

them locally otherwise. Ware in the process oftending this cor-
respondence protocol to support specutaliroadcasts.

4.2 Simulated implementation

We evaluated a DataScalar system consisting of multiple inte-
grated processor/memory (IRAM) modules connected via a global

bus. In Figures we shav a diagram of the highdel datapaths
present in our simulated DataScalar implementatioa.adsume
split primary instruction and data cache® Wplicate the program
text at each node, eating the need for dynamically replicated
instructions (and therefore a specwatcorrespondence protocol).

Figure 4. Cache correspondence example

I:l Statically replicated data
- Dynamically replicated data

|:| Communicated data

BSHR = Broadcast status holding register
DCUB = Data commit update buffer

BSHRs
network in — D-cache
CPU logic
network out [I]]]]]]]: [
Broadcas:s—|
I-cache
Interface DCUB
logic

Memory bus | | |

Main
memory
(DRAM)

Figure 5. Simulated DataScalar chip datapath

a match occurs, the earliest entry matching that address in the
gueue is freed and the data are fanmded to the processdf no

match occurs, the BSHR allocates tha&trentry in the queue and
buffers the data. In this case, when the processor issues the request
for the data, it finds themaiting in the BSHR, and fefctively sees

We do support dynamic replication of data, so a DCUB, not the an on-chip hit.

accesses themsel, updates the data cache tags and storage. W

assume aafst on-chip main memaryhich is insuficiently lage
to hold an entire program data sett lvhich is st enough to
eliminate the need for avel-two cache.

We use a simple queue tofter broadcasts being placed on the
global tus. The process of reg@ig broadcasts is moreviolved.
We call the broadcast-reg@ig structures that we simulaBeoad-
cast Status Holding Registers, or BSHRs. W implement the
BSHRs as a circular queue. When a broadcasearfiom the net-
work, the BSHR performs an associatsearch on that address. If

Level-one cache misses become broadcasts if the missing cache
line is in communicated memorgnd the processor is thesmer of
that cache line. The miss allocates a BSHR entry if, atemgiro-
cessor the miss is to a line that is both communicated and
unonvned by that processdn Figure5 we shav a datapath from
the processor to the BSHR queue; this path is used to squash
BSHR entries allocated due t@de misses.

Our simulation platform was a substantially modifiecersion
of the SimpleScalar tools [1]oTsimulate DataScalar systems, we
extended the SimpleScalar out-of-order processor simulator with



multiple taget cont&ts. The simulator switches corts after &e- capacity on-chip memory banks that can be accessed in 8 ng. The
cuting each ycle (i.e., it simulatesycle n for all contets before are connected with a 256 biadthat is clockd at the processor
simulating gcle n+ 1 for ary context). frequeng. We assume that ourfedhip bus is 128 bits wide and is
We also implemented address translation, whicis ot clocked at 200 MHz. Commodity parts thatpect to do most of
present in the original ersion. V¢ assume a singleviel page their computing and memory accesses on-chip are naly lio
table, locled in the lav region of ptysical memoryWe maintain have support for @remely aggresege of-chip connections.
the replicated vs. communicated state of each page with a bitin the We assume BSHRs with 3-ns access latencies and 128 entries.
page table entryfEach page table entry also has one bit that deter-We assume a broadcast queue for the DataScalar simulations,
mines evnership of a communicated page (only one processor will which incurs a tw-cycle access penalty before broadcasting data
have the evnership bit set for a communicated page; the bit for that onto the global interconnect (the traditional architecture, simjlarly
page is cleared in the page table entries of all other processors). buffers of-chip requests at a netrk interface that functions as a
connection between the local and globaséds, also incurring a
Processor parameters two-cycle penalty).

Evaluating future systems, particularly thoseefiwr ten years
away, is alvays dificult. Simulating the processors of tomawron

the machines of today (using the benchmarks of yesterdaygsmak  ag yith the preious eperiments, the benchmarks that we used

choosing parameters thatvgi meaningful results qitult. We were dravn from the SPEC95 suite [26].eNised thé est input
opted for an aggres& processor model, coupled with a memory ¢4t in gl cases, although we reduced the number of iterations in

hierarcly that has ycle times matching the generation of our g,me programs (after performingperiments to ensure that the
hypothetical future processdwt which is sized according to the e qyced number of iterations did not perturb our results).

year that the benchmarks were released. . We simulated six of the SPEC95 benchmaugs; ngri d,
For all our eperiments, we taleted a processor that might be appl u, conpr ess, t ur b3d, andwaves. We ran each bench-
built ?bogt fiie years hence. #Vassumed an 83’5’ issue, 1 Cd':‘HZ' mark for 200 million instructions or to completion, whiche
out-of-order issue prkc;cessﬁ)uli pr;)(_:essor use da@ﬂgr Up_ ate came first. W did not statically replicate prlata pages; all pages
Unit (RUU) [24] to keep track of instruction dependenciese W \yere distrituted round-robin across all nodese Vén simulations
simulated an instruction windosize of 256 instructions (fU for both two-processor and fowprocessor DataScalar systems.
entries). Our simulated processor also contains a load/store queu ach processor has fiafent capacity to hold one-half and one-

to prevent loads from bypassing stores to the same address. Loadg, ,.th of the data set respaedy, for each benchmark. Our ¢t
are sent from this queue to the cache at issue time, while stores ax ; X )

L ! . S AlfataScalar system dynamically replicates remote data in the data
sent to the cache at commit time. Loads can be serviced in a single; \he as described in Sectiad
cycle by stores to the same address that are ahead in the qureue. ' :

all simulations, we simulated a load/store queue that had half asa n Vi\éeer?t?(r:r;ﬁ)arfrs: cégi Ol?a\}&fhca;ar grefggtm;g;gm g;%rf\g) (giom:(se:_c
mary entries as did the simulated)R. P P NG

; . access to gnoperand), and a more traditional system which has
Modern branch predlctprs are aIready quite acquratﬁe\m the same amount of on-chip memory as does one chip in each
and we hae no vay of knaving what prediction techniques willbe 5515505 oy xperiment. V@ thus compare a twprocessor Data-
prevalent in future processors, or thaent to which these proces-  goq1ar gecution aginst a system which has the same processor
sors will engge in aggresee spec_ulatlon. Wthe_refore ass‘%”‘ed. half the memory on-chip, and halff@hip (to male a fir compar-
Pe.r_fECt branch pr_edlctlon in-our smulapons. This assumption sim- ison, the hises are the same, and both systems cache updates at
plified our handling of the BSHRs (since our cache COIrespon-jnqn,ction commit, not issue). &\shav an &ample of this com-
dence _protocol does not curren_tly_ support speqeldlroadcasts). parison, assuming four processors, in Fidgurd traditional sys-
Assuming perfect branch prediction will also_ increase the mea- . (Figureba) being compared amst a fouprocessor
sured IPC, due to the absencg of branch mlspredlctlon penalt'e?)ataScalar machine (Figué®) would thus hae one-fourth of its
(the IPC of future processors isdlg to be gen hlgher as the main memory on-chip and three-fourth&ffip.
engage in speculation that is much more aggvesttian branch While the traditional Svst Id certainly benefit if all of th
prediction [25]). nile the traditional systemauld certainly benefit if all of the
on-chip memory &s de&oted to a lage second- or third-Vel
cache, measuring such a systeraiagt our simulated DataScalar
Memory system parameters implementation wuld be an urdir comparison. \& consider the
On-chip memories are By to be significantly dster than ~ IRAM chip used in both types of system to be a commodity part,
DRAMs are todayUsing sub-banking, with hierarchicalova- intended for stand-alone use, with thegtaon-chip memory func-
and bit-lines, will enable DRAM banks to\lmaccess latencies tioning as main memory and not a cache.
that are comparable with those of cache memories. Current high- In Figure7 we plot the instructions peyae for each xperi-
density (1 Gb) DRAM prototypes, the processes of which are opti-ment. . ran each benchmark assuming @wnd four DataScalar
mized for density and not speedyvéaccess latencies in thevlo processors. The actual IP@lue resides atop each bake see that
30’s of nanoseconds [7, 8]. On-chip DRAM banks implemented in the performance benefits that the DataScalar system hateto of
hybrid memory/logic processes aredlik to be significantlydster are substantial. The results are particularly striking dom
For our simulations, we assume a memory hiesamtr-chip pr ess, almost a doubling of IPCver the traditional architecture.
that is just tw levels. The first leel is split instruction and data  That performance an is so much higher becausenpr ess
caches, 64KB each with singlgete access. The caches are direct- issues almost as mastores as loads, whichves have to go of
mapped (for speed) and the data cache implements a write-backghip in a DataScalar systemorRall other benchmarks, the Data-

4.3 Performanceresults

write-noallocate poliz. We beliere that this write polig is supe- ~ Scalar system manages to capture much of tadlable ILP
rior to write-allocate in an ESP-based system (with a write-allocate approaching the IPC of the perfect data cache in some cases.
protocol, a write miss requires sending an hpiercessor message, The DataScalar system deals with a figexin distritution of

only to overwrite the receied data). Both caches are fully non- memory better than does the traditional system; the drops in Data-
blocking and can support an arbitrarily high number of outstanding Scalar performance when going fromotywrocessor to foupro-
requests. The second/éd of the hierarch is composed of high-  cessor systems are less than 0.05 IPC (the comparable drops in



m four-processor DataScalar machines, and traditional systems
assuming one-half and one-fourth of the main memory on-chip).
DRAM We see that the DataScalar runs consistently outperform the tra-
(174 M) ditional runs eer a wide range of parameters. Agected, the
performance of the twtypes of systems cearges when memory
Global bus =F—=— bank access times come to dominate the Igtefca memory
request (because DataScalar systems reducedneead of trans-
DRAM DRAM DRAM mitting the data, not accessing them). @orely when the speed
(/4 M) 1/4 M) (2/4 M) differential between the global and on-chigsés grws, so does
the disparity between DataScalar and traditional performance.
(a) More traditional architecture In Table3 we list a fev of the BSHR and broadcast statistics
from the two-processor runs. 8Mist the percentage of broadcasts
Global bus that were issued late, at commit time, duealsed hits. These per-
e centages will drop for lger caches, since the probability that a
cPUIENN cPUIIEIN CPUIETR CPU I block will be replaced in between issue time and commit time is
inversely proportional to cache size. The middle column lists the
DRAM DRAM DRAM DRAM percentage of BSHR entries that were squashed dwdsw Hits.
(174 M) (174 m) (1/4 M) (174 M) The right-most column lists the percentage of remote accesses that
were wvaiting in the BSHR for the local processoréquest. Those
(b) DataScalar architecture (4 nodes) values range from 2% to 9%, sting evidence that some fetctive
datathreading is occurring, since a processor needs to be running
Figure 6. Comparing two IRAM organizations fairly far ahead of another for that situation to occur

performance on the traditional system range from 0.1 to 0.6 IPC).4.4 QOther implementation issues
The IPC forwave actually imprees when running on four pro-
cessors instead of ow(the benefits of more processors running
datathreads concurrently outweigh the additionfatbip commu-
nication). In only tv casesr(gr i d andt ur b3d with two nodes)
does the DataScalar system perfororse than the traditional sys-
tem. This abnormality results from poor correspondence protocol
performance (a high rate adl§ée hits at one node causes the other
node to stall frequentlywaiting for the avner to commit the

offending load and issue a reparatbroadcast). Corventional systems today typically consist of a single pro-
We present the results of a sendiyi analysis in Figur&. The cessor and a collection of memory chips. Each of these compo-
two benchmarks presented ge andconpr ess, each of which nents comprise a significant fraction of the total cost of the system.
was run to completion. dF each benchmark, we plot results A DataScalar system auld consist of a collection of identical
assuming the same parameters that we used forplegiments in chips, each of which costs more than avemtional DRAM chip,
Figure7, except that we ary one parameter in each graph. The but less than a processor chip. When comparing the cost of a Data-
parameters wearied were: data cache size, main memory accessScalar system and a traditional system with one processor and
time, global lis clock speed, width of the globald) and number  “dumb memory” (such as the comparison in Figdethe Data-
of RUU entries. On each graph, we plot the IPC for the saree fiv Scalar system becomes codeefive when the performance it

In this subsection we describe other issues pertinent to Data-
Scalar architectures—nametye cost verheads of thexéra pro-
cessors, the xpense of requiring broadcasts, speculation in
DataScalgrand operating systems issues.

Cost

systems as we measured in Figt@erfect data cache, ¢wand adds outstrips the cost of the additional processors.
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Figure 7. Timing simulation DataScalar results
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Figure 8. Sensitivity analysis of DataScalar experiments
Late BSHR Data found I nter-chip communication
Benchmark broad h in BSHR )
roadcasts | squashes n Because of the symmetric nature of the DataScalar model, all
(# of nodes) 2 4 2 4 2 4 communicated alues must be broadcast to all nodes. In general,
applu 10% | 9%| 12%| 12%| 10%| 7% broadcast operations are bo#tpensve and not scalable. On cer-
conpr ess 11% 8% | 16% | 22% 8% 4% ta_ir;1 int(airconnects(j—dsuch Ias on ahring Em-%thg mday'be e‘(gected
a0 9% 1 10% | 12% 1 15%1 19% 7% with only minor additional cost, though reliable ely an error
_ recovery are ingitably more complicated for broadcast operations.
ngrid 23% | 21%| 31%| 31% 6% 4% . o
> > > > > > Broadcasts on auls are free, sincevery hus transaction is an
turb3d 38%| 37%| 59%| S9%| 3%| 1% implicit broadcast. Heever, the \ery feature that mas broad-
waveb 9% 7%| 11% 3% 3% 1% casts cheap—the centralized nature ofus—bmales the bs an

Table 3: DataScalar broadcast statistics
The parameters are the same as for the experiments described in
Section 4.3. The numbers are the arithmetic mean at all nodes. The
percentages are out of total number of broadcasts (column one) and
out of BSHR accesses (columns two and three).

Wood and Hill sheved [28] that for a parallel system to be cost-
effective, thecostup (the relatve increase in total cost as more pro-
cessors are added) should be less tharsgéeslup (the relatve

unlikely candidate for the high-performance interconnect of the
future. Havever, the demise of theus has been much sler than
predicted, anduses may persist for some time to come.

Ring operations, such as the IEEE/ANSI standard Scalable
Coherent Intedce [16, 23] seem well-suited for this kind of opera-
tion. On a ring, operations are obsshby all nodes if the sender is
responsible for remang its ovn message. ¥ ewision a ring
interconnect because of the high-performance capability [22], b
broadcast on a ring is complicated by thetfthat operands origi-

increase in performance as more processors are added). Whemating at diferent processors are regsil at other nodes in €kf-
memory or interconnect costs dominate those of the additional pro-ent orders. A simple tag can sort out data tiediht addressesub

cessors, the system may still be co$teative even if the speedups
are comparately small.

A majority of the die of most modern processors otk to

the issue is complicated whenawiccesses to the same datum are
broadcast close in time. Complications also arise whegrezrtain
data items must be rebroadcast (e.g., because aeapsgue is

memory even though the total cache capacity for each is generally full), or cancelled.

only in the tens of kilobytes. 8Vbeliere that the ratio of on-chip
memory area to total chip area will continue tovgio the future,
making the relatie expense of the processing logic shrimkep
time. If true, this trend will makmemory and packaging the dom-

One technology that may be axcellent match for DataScalar
programs running on Ige systems is optical interconnects. One of
the properties of free-space optical interconnects is thathizwe
extremely cheap (essentially free) broadcasts.nrassiely paral-

inant costs of future systems. DataScalar architectures could thugel systems that use optical interconnects, the SP&uéon

be cost-dkctive, even though the speedupsyh@ovide are much
less than linear

model may be a gooday to reduce thexecution time spent in
serialized code, thus imprimg scalability [2].



Speculative execution
Fine-grain speculaté execution is na present in state-of-the-

In Section5.2 we present some issues associated with running a
mixed-mode program, in which some parts of the program run in
DataScalar mode and others run as on a traditional MIMD

art processors, and a successful DataScalar architecture must Re_ .-

compatible with speculation. Much of the promise we see in Data-

Scalar comes from out-of-ordexexution, which enables multiple
processors to race ahead simultaneously derdiit instruction
sequences. Hweever, speculation must be tightly controlled: the
broadcast of data may well be a critical limitation of this model,
and frequent superfluous broadcastaild greatly hinder perfor-
mance. The te endpoints for speculaé policies are (1) to hold
onto speculatie broadcasts until the speculati condition is

resoled, and (2) to send the broadcast immediately upon issue an
then send a corresponding squash if the load that generated the

broadcast is squashédrhe former consees bandwidth at the
expense of added lateycwhile the latter consumes bandwidth
while reducing latenc (bandwidth limitations add latepchow-
ever, so there is ligly a crosseer point at which one polc

becomes better than the other). A promising approach is to assig

confidence alues to speculat loads; loads with high correctness

confidence should be broadcast and squashed if incorrect, whered&

loads with lav confidence should be held locally until the specula-
tive condition is resokd.

Operating systems issues

To the a&tent that aneecuting program is non-deterministic,
operating system code can be&euted in the same manner as user
code. Synchronousxeeptions, such as for an unaligned address,
would be obserd at slightly diferent times at diérent proces-
sors, lut would cause no special problems wéwer, asynchronous
events could potentially cause fitillty if they are not obseerd at

5.1 Multiprocessing from a Datascalar per spective

DataScalar systems benefit from both ESP and datathreading
transparently without requiring recompilation. In mgncodes
there is limited parallelism, which is in§iefent to justify porting
the code to a full-blen parallel processprbut which could
improve DataScalar performance e\dropose using softwe sup-
ort to expose this parallelism in a DataScalar cante
When the programmer or compiler identifies an isolated block
of code that can bexecuted on one node and not the others
(requiring fav or no remote operands), that processor may tempo-
rarily “peel of” from ESP mode. The processor will then compute

ome result, and either store the result localyommunicate it to
the other processors when the processor rejoins ERRteon. V¢
Il this techniqueesult communication. Only the participating
processor(s) mustxecute the code block in question; the others
must branch around the code. The compiler must perform the anal-
ysis to ensure that the non-participating nodes do not ngedfan
the intermediate results generated during the isolated computation.

Result communication has the potential to reduce globéictraf
as well as reduce the critical path at the non-participating nodes.
We note that this is a special case of data paradéglution; if all
nodes are independently performing computations and writing the
results to communicated data thatytloevn, the &ecution looks
similar to traditional data parallel [5].

Performing this parallelizing analysis in a DataScalar stnte

precisely the same point by all processors. Consider the case imas distinct adantages. Hardare support in the processaou-

which a write causes a pagauft. Since only one processor actu-

pled with run-time system support (described W¢l@an assist in

ally performs a write to communicated data—the other Pprocessorsmaking run-time checking fgient. When the data for a computa-

all simply discard their result—only thevaing processor auld
obsere the pagedult. If the other processors did not recognize the
page &ult, they might proceed b@nd the &ult point indefinitely
While it is interesting to consider suchariation on the idea of an
imprecise gception, the problem can beaded by making sure

that all processors ti@ the same page table entries, and actually

check for @ceptions on eery memory operation. Thus each pro-
cessor wuld obsere this pagedult. External interrupts, léwise,

sors obserm them at the same point in thereeution.

5 Exploiting parallelism with DataScalar

tion are scattered across all nodes, the system haScnefall-
back case (asynchronous ESP). The compifeb is therefore to
provide the hardware withoptions (break from ESRf most or all
of the data are local), n@uarantees about where the data are
located.

When a processor diates from ESRthe code it xecutes must
not perturb the state of the correspondent caches, if the caches are
indeed used to implement dynamic replicatiore Way preent

Ssuch a perturbation by marking non-ESP accesses, and dropping

them at commit time, rather than updating the caches. If, while in
this mode, a processor requires a communicated datum that it does
not awvn, either the compiler mustV@generated code to force the
owning processor to send the operand, or the processor edluld f

DataScalar is a memory system optimization, intended for back to a traditional request/response model. The most important

codes that are (1) limited by the memory system and @uifto
parallelize. Eery DataScalar machine iglafacto multiprocessaqr

guarantee the compiler must mealhavever, is that there are no
side-efects in the isolated code that were supposed i@ ha

however. When codes contain coarse-grain parallelism, the systemchanged the state atey processor

should be run more l&k a traditional multiprocessowe view
DataScalar and multiprocessing a® tendpoints on a spectrum:
the former runs transparently and reako attempt toxploit par-

allelism in the code; the latter requires compiler and/or program-

mer support, and its main focus wpécit exploitation of coarse-
grain parallelism.

In the rest of this subsection we present an illusgaiample
of result communication. The branch test could be implemented by
performing a test on a bit stored in the page tabkecll this test
the “local” function. A processor might t@kthe branch if the
| ocal bitinthe TLB for a gren address as zero (thé ocal bit
corresponds townership of the operand)oTmale this run-time

In this section we discuss some of the intermediate points alongcheck eficient, havever, the processors should notveao check

this spectrum. In Sectidhl we describe me opportunities for
exploiting medium-grain parallelism in a DataScalar architecture.

1. A squash is necessary because all incoming broadcastsfferedin

the BSHRs. Incorrectly speculated broadcastuldy not alvays be

matched with a request from the retwej processqgrand vould thus accu-
mulate until the BSHR as full. An alternatie solution is to periodically
flush the BSHRs, cleansing them of stale broadcasts.

10

ownership of multiple addresses, the resolution of some of which
the processors quld need to run the code being parallelized to
resohe. We can fold the check for multiple operands into a single
check, by securing a guarantee from the run-time system that cer-
tain data items are placed local to the same proceSser tech-

nique for doing so is to modify the run-time storage allocator by
both giing it an avnership assignation function and passing it an
address on a request for storage. The storage allocator then ensures



that the allocated storageasrallocated at the same processor as Processor O . Processor 1
the address thatas passed to it. The goal is to ensure that all of an 7
aggreate (either an array or a dynamically allocated structure)
falls entirely on one node. Binding the aggte to one node
should be woided if the aggmate is so lage that it should be
spread across multiple nodes.

The notion of placing data can be generalized so that pages
containing parts of a structure are tagged with a class identifier
This would decouple structures from specific nodes, so that the
number of processors (and page assignation) could change dynam-
ically (the OS wuld ensure that all of the pages of eegi class
came to reside entirely on one processor).

In Figure9 we depict anxample that could makefective use

A: Remove element B: Insert element

struct t_entry *HASH TABLE[ SI ZE] ;
insert_entry(int key)

of result communication. @/shav a chained hash table, the main {
array of which is distribted across multiple processors. Belkbe struct t_entry *entry;
hash table we shothe high-leel code transformation thatowld int h_index = HASH FN(key);

entry = (struct t_entry *)

alter the insertion routine. The additions to the code areeaudark mal | oc(si Zeof (struct t_entry),

with arrovs. Wheneer a collision occurs and an entry must be — &HASH TABLE[ h_i ndex]);
added to a chain, the run-time allocatwal(| oc in this ekample) — if (local (&HASH TABLE[ h_index])) {

is passed the address of the head of the chain, and it returns storage em :y— iﬁei’t :—kﬁe&;SH TABLEl h i ndexl :
that is local to the same processor as is the head of the chain. When entry_next = T [ h_i ndex];
. ; . . HASH TABLE[ h_i ndex] = entry;
insertions or deletions into the hash table need to be made, the —» 3

compiler places a branch around the insertion or deletion code. }

The processor thatwms the head of the chain will thusvio the

entire chain, and can malkhe insertion or deletion without requir-

ing ary off-chip communication. . . o
. . cation. We propose to run a CMP as afeliént oganization for

Since eery part of the array resides local to some processor each limiting catgory.

every insertion and deletion can be made wittremote communi- . ) L

cation. The run-time test is féient because the locality bit for the *  Computation-bound: the application has enough coarse-

head of the table is obtained with a simple address translation, angrain parallelism that functional unit throughput is the limitiag:-f

the tests for eery element in entire chain are subsumed by the OF If @nough verk can be found to aWeall processing units to be

locality test for the head of the list. Masuch optimizations are  Utilized, the CMP should be run as awemtional multiprocessor

possible, and are a promising area of research. «  Control-bound: limited instruction-lgel parallelism requires
the CMP to perform coarse-grain speculation. Control dependen-
5.2 DataScalar from a multiprocessing per spective cies preent a single processor from runningry far ahead. The
program gecution could therefore benefit fromvireg the proces-
If much coarse-grain parallelism isteactable from a program,  sors function as stages in a Multiscdlke architecture [12, 25],
the program should be run using the system as a multiprocessowherein each processor specwiely executes lage blocks of
rather than as a DataScalar architecturev Eedes are “embar-  code. The processor thereby obtains a mudetanstruction win-
rassingly parallel, however. Codes should perhaps be run on a dow in which to find sufcient ILP.
hybrid architecture, which runs a program as a multiprocessor,
when there is sfitient coarse-grain parallelism, and as a Data-
Scalar architecture when there is not (thereby reducing seeial o
heads). The program may either switch statically or dynamically
between the tev modes, or run both modes simultanequs$jing
tagged instructions or geons of data addresses to decide which
mode to use at aygn point.

Figure 9. Medium-grain parallelism in a hash table

Communication-bound: a single processor is limited by fre-
quent, slav accesses to non-local (on-chip) memory banks. The
program gecution could benefit from an architecture that uses
multiple processors to reduce communicatioerbeads. Data-
Scalar architectures are one suciarsple, and may be a good
match for this cagory.

Many applications are unlédy to fall squarely into one cate-

Future microprocessors will soonveasuficient resources to ther it i bable that licati il It
put multiple processing units on a single chip. Whether chip multi- 9°7Y Or another; it is probable that an application will run after-
nately in tw or all three of these modes. Both characterizing

processors (CMPs) will succeed is a subject of debate in the o SR o .
research communityWidespread use of CMPs is moreeli if applications in this manneqnd de3|gn|.ng the mechamsms negded
techniques are steloped that speed up uniprocessor programs— to support concurreniecution of multiple modes, are interesting
particularly those that are not easily parallelizable—by running research issues to bepdored.

them on a tightly coupled multiprocessDataScalar architectures . . .
may be one such candidate, depending on the future disparin® Futuredirectionsand conclusions

betwgen the co§t of ngaer\sus ar |ntra-ch|p cgmmunlcatlt_)n. This work began as a solution for running programs on multiple
Given the wide ariance of characteristics across important gingle-chip computers, when theysital memory requirements

applications, CMPs may benefit by supporting multiple modes of gxceeded the capacityailable on a single chip. Other groups are

executio_n_, SO as toxecute the broadest possible range of applica- 5154 working on issues associated with the gnégion of proces-

tions eficiently. To this end, we propose a “threesCmodel for sors and main memargotably the IRAM project at UC-Beeley

CMP execution modes.In our model, we characterize an applica- [20] and the PPRAM project atyishu Unversity [18]. Some

tion as being limited by eitheomputation, control, or communi- companies are already prototyping preliminary designs that incor-
porate processing logic with a substantial amount of memory on a

1. Our model is not to be confused with Mark Hillthree C$” model that single die; Sun Microsystems [21] and Mitsubishi [9] are tw

characterizes cache misses [14]. examples. Our proposal uses multiple processing units to enhance
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the performance of uniprocessor programs. Other groups are als®]
exploiting this concept—Stanford Hydra [19] uses automatic par-
allelization, Wsconsin Multiscalar [12, 25] uses coarse-grain spec-
ulation, and both the M-machine [10] and the Simultaneous
Multithreading vork [27] use aggress multithreading.

In this paper we hee proposed a systemganization that
exploits cheap computation to reduce memory systeenheads.
DataScalar architectures combine dynamiecetion and specula-
tion with the Massie Memory Machine ESP gecution mode.
This class of architecturesorks well when remote memory
accesses are significantly morgpensve than local memory
accesses, when global broadcasts are velgtinexpensve, and
when the cost of additional processors is a small addition to they; 3
total cost of the system. &\&valuated one concgible DataScalar
implementation, and sked that these ideas can indeed impro
performance when memory system performance is critical. [14]

Our current researchfefts include a performance decomposi-
tion of DataScalarnecution, to determine the relatifractions of
performance gins coming from the elimination of write tfiaf the
elimination of requests, and datathreading &ve &tending our
cache correspondence protocol to handle speculatieraré/also
studying the potential of static replication, both coarse- and fine-
grained, the ééctiveness of more coarse-grained dynamic replica-
tion, and softare support for imprang datathread length.
Finally, a major ebrt undervay addressesxploiting parallelism
within the DataScalar contge both at a medium grain (compiler
support for result communication) and at a coarser graine¢iix
mode eecution of SPSD and MIMD).
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