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Abstract

The fine-grain nature of shared-memory multiprocessor com-
munication introduces overheads that can be substantial. Using
the Scalable Coherent Interface (SCI) as a base hardware platform
and the SPLASH benchmark suite for applications, we analyze
three techniques to reduce this overhead: (i) efficient synchroniza-
tion primitives, and in particular a hardware primitive called
QOLB; (ii) weakened memory ordering constraints; and (iii) opti-
mization of the cache-coherence protocol for two nodes sharing
data. We perform simulations both for current technology and
technology that we anticipate will be available five years hence.
We find that QOLB (of which this study performs the first detailed
simulations) shows a large and consistent improvement, much
larger than that predicted by Mellor-Crummey and Scott [20]. The
relaxation of memory ordering constraints also provides a consis-
tent performance improvement. In accordance with prior results,
we show that a more aggressive memory model produces more
substantial performance improvements. The optimization for two-
node sharing shows mixed results, correlating unsurprisingly with
the presence of that sharing pattern in an application. Our most
important results are (i) that the overheads eliminated with these
optimizations are largely orthogonal—the performance gains from
supporting multiple optimizations concurrently are for the most
part additive—and (ii) that technological improvements increase
both these overheads and the success of the optimizations at reduc-
ing them.

1  Introduction

The shared-memory multiprocessing paradigm has had sub-
stantial impact in academic circles, but has only established itself
with small-scale machines in the industrial community. The
increasing reliance of supercomputer manufacturers on commod-
ity parts has contributed to the lack of large-scale shared-memory
machines, as no such shared-memory parts have previously been
available. The establishment of standards—such as the IEEE Scal-
able Coherent Interface [1]—has resulted from this growing indus-
trial inertia. Consequently, parts are becoming available that
integrate entire aspects of these standards, reducing system design
complexity, time-to-market, and total system cost. Convex based
their Exemplar system [8], for instance, largely on third-party
components.

The growing number of bus-based shared-memory systems
will further strengthen the success of the shared-memory process-
ing paradigm. The increasing prevalence of these systems will cre-
ate a large base of parallel applications, which should ease the
acceptance of larger-scale shared-memory systems.

The shared-memory model has persuasive advantages. It pro-
vides a uniform global address space, transparent communication
of data, and relative ease of programming. However, the fine-grain
nature of its communication introduces overhead that can be sub-
stantial. The bulk of this overhead comes from synchronization
and the maintenance of data coherence, making the support of
these two operations critical for the efficient execution of shared-
memory applications.

This paper explores three classes of optimizations aimed at
reducing shared-memory overheads: (i) sophisticated synchroniza-
tion primitives, (ii) improved processor utilization through weak-
ened memory ordering constraints, and (iii) optimized coherence
latencies for common data sharing patterns. Although these opti-
mizations are all options of SCI, the results of this study are more
generally applicable.

The first class of optimizations we study is improved synchro-
nization primitives. A straightforward approach to building syn-
chronization functions uses instructions provided by the
commodity microprocessor (such as the atomicswap instruction
in the SPARC instruction set [10]) in much the same way as uni-
processor platforms use them. Typically, the processor accesses a
lock repeatedly until the processor finds it unlocked. On a multi-
processor, these repeated accesses often translate directly into net-
work traffic that leads to heavy network contention and potentially
severe performance degradation. We therefore compare two more
advanced primitives,QOLB [14] andMCS locks [20].

The second class of optimizations that we examine consists of a
range of memory models. Programmers naturally assume a mem-
ory model formally calledsequential consistency, defined by Lam-
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port [18]. The strict ordering of sequential consistency severely
limits concurrency of memory operations in a parallel computer.
Most memory operations could in fact be completed out of order
without affecting the program result. The identification of those
which could affect the result is difficult, however, as synchroniza-
tion through shared variables can be extremely subtle. Memory
models—such as data-race-free-0 [3] and release consistency
[13]—allow the system to relax the constraints of sequential con-
sistency by creating a contract between the software and the hard-
ware, defining what memory orderings are legal. Implementations
may then be conservative or aggressive in supporting the memory
model.

The final optimization we study reduces overhead for one par-
ticular pattern of data sharing. General cache-coherence protocols
may not optimally handle the majority of common data sharing
patterns. Consequently, researchers have investigated many proto-
col extensions [7, 9, 11, 25] that allow existing protocols to per-
form better under specific classes of data sharing patterns. These
extensions attempt to reduce network traversals and/or memory
accesses. Two common classes of sharing patterns are migratory
data [17] and producer-consumer data sharing. In this paper we
study onlypairwise sharing—an optimization aimed at two-node
sharing—primarily because pairwise sharing is a feature of the
SCI cache-coherence protocol.

In addition to the three classes of optimizations, we quantify
the effects of two additional related issues: optimization interac-
tion and technological advances. An important goal of this work is
determining the level of overlap that occurs among our three opti-
mization classes. Thus, in addition to focusing on the effectiveness
of each optimization independently, we also analyze the cross-
product of their interactions.

A significant component of network latencies for multiproces-
sors is the fundamental delay associated with the speed of light.
While there will undoubtedly be further reductions in network
delays, we expect that continuing improvements in processor tech-
nology will far exceed these network improvements. We wish to
understand how these technology trends will affect the relative
benefits of system optimizations. While we are unable to accu-
rately model the performance of future processors, we believe that
raw performance (as measured, for example, by the time to com-
plete a uniprocessor application), will increase relative to improve-
ments in network speeds. Therefore, we have attempted to
estimate performance by adjusting relative delays for instruction
times versus memory access times and network delays.

The main contributions of this paper are threefold. We present
the first quantitative performance analysis of the QOLB synchroni-
zation primitive [14]. We analyze the subtle interaction of QOLB

and other synchronization primitives with weakened memory
ordering constraints. Finally, we demonstrate the effect of advanc-
ing technology on the three machine optimizations in general, with
an emphasis on QOLB.

We have organized the remainder of this paper as follows:
Section2 describes our simulation environment—the Wisconsin
Wind Tunnel—and provides pertinent background information on
the Scalable Coherence Interface, synchronization primitives,
relaxed consistency model issues, pairwise sharing, and the appli-
cation benchmarks that we used. Section3 defines the simulated
system, discusses our simulation assumptions, lists the experi-
ments performed, and describes the experimental methodology.
Section4 presents our experimental results, Section5 reviews
some important related work, and Section6 summarizes our con-
clusions and contributions.

2  Background
Our simulation platform is the Wisconsin Wind Tunnel

(WWT), which allows us to study the performance of large-scale,
high-performance systems through massive simulation (more than
two trillion cpu cycles). In order to establish a complete and
detailed environment, we simulate a target system of 32 nodes pro-
viding hardware-guaranteed cache coherence by means of the
ANSI/IEEE standard 1596 Scalable Coherent Interface (SCI) [1].
The target system consists of workstation-like nodes possessing a
processor, cache memory, transaction queue (similar to a function-
ally-extended write buffer), network interface, and some fraction
of the distributed, globally-shared memory with the associated
directory entries (see Figure1). Our target applications are five
programs selected from the SPLASH benchmark suite [24].

2.1  The Scalable Coherent Interface
SCI defines both an interface to a network and a cache coher-

ence protocol. The protocol is a robusthardware solution to the
cache coherence problem. Messages may be addressed to any node
in the system, but the protocol does not use broadcast. The proto-
col is able to survive the loss of packets in the network with no
loss of data. SCI guarantees forward progress for all transactions,
and was intended to support high performance on a full range of
system sizes, from tens to thousands of processors.

SCI specifies a distributed, directory-based cache-coherence
protocol. In addition to specifying that the physical memory is dis-
tributed across the nodes, the list of nodes holding copies of a
given cache line is also distributed, along with the cached copies.
The protocol creates a doubly-linked list to maintain the directory
information for each valid cached line. The home node’s memory
directory keeps a pointer to the last requester. An example of an
SCI sharing list is shown in Figure2.

SCI defines the following basic operations on a sharing list: (i)
a node may join the list, becoming the head; (ii) a node in the list
may delete itself from the list by serially communicating with its
upstream and downstream neighbors, informing each in turn of its
new neighbor; (iii) a head node may purge (i.e. invalidate) all the

Figure 1. Target system
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other elements of the list (one at a time) to become a single-ele-
ment list. SCI carefully defines these operations to permit arbitrary
concurrency in their execution.

To maintain a local copy of a cache line, a node executes oper-
ation (i). It receives a copy of the data either from the home node’s
memory or from the old sharing-list head. If a node wishes to mod-
ify the line (a store instruction), it must perform operations (ii) and
(i) if it is not at the head of the list; once it is at the head of the list
it can perform operation (iii).

Standardization efforts must be certain to make standards cost-
effective using current technology, without compromising poten-
tial high performance for future systems. SCI provides such flexi-
bility by containing numerous optional features, which can
provide a range of systems with varied cost and performance. Two
such options are efficient support for two-node sharing (pairwise
sharing) and efficient support for synchronization (QOLB).

2.2  Synchronization

2.2.1  QOLB
Naive synchronization primitives can drastically increase net-

work traffic in multiprocessor systems. Goodman, Vernon, and
Woest proposed the Queue-On-Lock-Bit primitive (QOLB—origi-
nally called QOSB) as a hardware solution to this problem
[14]. QOLB provides a direct implementation of a binary sema-
phore (with approximate first-come-first-serve service) by building
a hardware queue of waiting processors. It avoids unnecessary net-
work traffic as waiting processors spin locally, repeatedly access-
ing a local “shadow” copy of the lock’s cache linewithout
generating network traffic. Consequently, the placing of a lock and
data in the same cache line does not degrade performance, unlike
other synchronization primitives.

When the current holder of a given lock releases that lock, the
cache line containing both the lock and the corresponding data is
automatically sent directly to the next processor in the queue. This
technique substantially reduces latency associated with handing
protected data to the next waiting processor. In fact, QOLB
reduces the synchronization overhead to the theoretical minimum,
unless the system speculatively overlaps critical sections. In addi-
tion, QOLB is a non-blocking primitive—it allows the waiting
processor to overlap data prefetching with other useful work.

Figure3 shows an example of how QOLB is used to access
data in a critical section. The first call toEnQOLB (a non-blocking
operation) allocates a shadow copy of the line and sends a message
that inserts the node into the hardware requester queue. This
allows the processor to overlap the fetch time with useful compu-
tation. The subsequent calls toEnQOLB in the loop spin locally
until the owner releases the lock and sends it directly to the wait-
ing node. WhenEnQOLB returns true, the processor enters the crit-
ical section. The processor relinquishes the lock with the call to

DeQOLB, at which point both the lock and any data in the lock’s
cache line are sent directly to the next waiting processor. Note that
in this example, the data associated with the lock are sufficiently
small in number that no extra remote accesses need to be made
once the lock is prefetched. This will obviously not always be the
case.

2.2.2  MCS locks

Mellor-Crummey and Scott proposed software solutions to
minimize network traffic and synchronization access latencies, as
did Anderson. Mellor-Crummey and Scott (MCS) implement a
queue as a linked list, and use atomic operations such asswap or
compare-and-swap to update the list correctly [19]. Anderson pre-
sented a scheme that implements a queue as a circular array [4].
Inspired by QOLB, these algorithms also reduce the network traf-
fic to a constant number of traversals per synchronization access,
allowing processors to spin locally while waiting for the release of
the lock. Unlike QOLB, these algorithms cannot benefit from plac-
ing the lock and data in the same cache line, since the linked list
along which the lock is passed is composed of different addresses.
These algorithms are also unable to prefetch data without extend-
ing them and adding significantly to their complexity.

Aboulenein et al. [2] showed that Anderson’s solution per-
forms no better than the MCS solution; therefore in this study we
restrict ourselves to comparing MCS with QOLB. If the synchro-
nization contention is low, the use of a naive synchronization algo-
rithm (as mentioned above) may lead to better performance than
the MCS solution, as the latter has a large overhead per synchroni-
zation access even in the absence of contention. We will therefore
also evaluate simple locks, in an attempt to identify the cases
where simple locks outperform MCS and/or QOLB.

2.3  Memory ordering
Lamport defined sequential consistency as follows:

[A memory system is sequentially consistent if] the result
of any execution is the same as if the operations of all the
processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program [18].

Sequential consistency is overly restrictive with respect to mul-
tiprocessor memory orderings. Systems can achieve higher perfor-
mance by relaxing the memory orderings, without compromising
the correctness of the program. The class of weakened consistency
models that we implemented belong to the release consistency
model [13], which divides groups of memory accesses with
acquire, release, andspecial accesses. So long as a program obeys
the rules specified by this model, many memory accesses can
bypass others, allowing the processor to tolerate the longer laten-
cies associated with remote transactions.

Our benchmarks assume a memory system that supports
release consistency. We study three different implementations, all
of which satisfy the constraints of release consistency: (i) sequen-
tial consistency, (ii) a more relaxed consistency model that
exploits the easily-obtained concurrency inherent in the SCI
cache-coherence protocol, and (iii) an aggressive implementation
that attempts to minimize the number of times that the processor
must be stalled for memory operations.

This range of consistency models is perfectly compatible with
SCI, which defines a network interface, not a system implementa-
tion. SCI does not specify the memory model; instead, it permits a
variety of models to be supported, including sequential consis-
tency. The SCI standard allows the processor to continue execu-
tion concurrently while multiple, sequential transactions are in

struct _locked_data {
int lock;
int data[15]; };

void critical_section(struct _locked_data *x)
{

EnQOLB(x->lock); /* Prefetch lock, data */
/* Various computation here */
while (! EnQOLB(x->lock)); /* Spin */
/* Critical section using x->data */
DeQOLB(x->lock); /* Release lock */

}

Figure 3. QOLB code example
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progress. This flexibility allows us to evaluate a range of memory
models.

2.4  Data sharing patterns
In the base SCI protocol, the delay associated with two-element

sharing can be substantial. For a producer-consumer relation-
ship—where one node writes a cache line frequently and another
reads it—the protocol repeatedly creates and breaks down the
sharing list. The writer must become the head of the list and then
purge the reader. To read again, the reader must rejoin the list as
the head. In order for the writer to write again, it must remove
itself from the list, become the head, then purge the reader. Thus,
the transfer requires numerous transactions, including two inquir-
ies to the home node.

An optional extension to the SCI protocol addresses this prob-
lem. Known aspairwise sharing, this extension permits the tail
node of a two-element list to modify its copy of the cache line after
notifying the head node to mark its copystale. The list is main-
tained even though the head no longer has a valid copy of the data.
The stale head can then read (or write) the data by simply commu-
nicating with the tail (which becomes stale in case of a write) and
reasserting itself as head. Thus, no enquiries to the home node are
necessary for stable pairwise sharing.

The protocol was constructed in a way that pairwise sharing, if
supported, degrades gracefully into a conventional list; if the list
consists only of two nodes, it employs pairwise sharing. If a third
node joins the list, the protocol reverts back to the standard
method. SCI accomplishes this transition without extra messages
in most cases, although there are circumstances where perfor-
mance suffers because pairwise sharing defers the breaking-down
of a two-element list when a third requester joins the list.

2.5  Wisconsin Wind Tunnel
Our experiments were performed on the Wisconsin Wind Tun-

nel virtual prototyping system [21]. WWT executes parallel
shared-memory programs on a parallel message-passing computer
(the host). It uses execution-driven, distributed, discrete-event
simulation techniques that accurately calculate program execution
time. Execution occurs in fixed windows of time, called quanta,
which the simulator alternates with synchronization events that
maintain causality. WWT exploits similarities between the target
system and the host system to allow the host to execute directly all
target program instructions and memory references that hit in the
target cache. WWT accomplishes this by using the error-correcting
codes on the CM-5 to trap into the simulator when a miss occurs in
a target cache. Because of the direct execution and efficient traps,
the scale of applications that WWT is able to simulate approaches
that of real applications.

2.6  Benchmark applications
The target programs we used for our experiments are five appli-

cations drawn from the SPLASH benchmark suite. They areBar-

nes, Mp3d, Ocean, Pthor, and Water (see Table1). A
description of these benchmarks appears in the original article
[24]. We focus the following discussion on specifics related to our
study.

We labeled all memory accesses as aggressively as possible
according to the structure proposed by Gharachorlooet al. [13].
We then inserted memory fences to achieve release consistency on
our simulated hardware platform. The memory fences are consis-
tent with those proposed by Gharachorloo [12, 13].

We performed additional optimizations on each benchmark to
maximize performance on the simulated hardware. For simula-
tions evaluating QOLB, data structures were modified to couple
locks in the same line with the data that they protect. We padded
data in each benchmark, where necessary, to eliminate false shar-
ing [15]. We compiled the benchmarks using GCC version 2.6.2
with the option-O3.

Barnes originally used locks to protect the higher levels of the
tree during its tree-building phase, which results in an often-locked
root. The designers of Barnes optimized this process by locking
tree nodes only for writing, permitting read sharing of write-
locked nodes. This optimization is critical for good performance of
MCS locks, but is not essential for good performance of QOLB.
We therefore turned the optimization off for all QOLB experi-
ments.

We modified Ocean by converting it from FORTRAN to C
(WWT currently does not support applications written in FOR-
TRAN). To reduce conflicts in the cache we skewed storage by
embedding the working arrays in larger arrays of prime size (131
by 131 elements).

Mp3d can be run with or without locks. Elimination of locks
results in a non-deterministic execution, precluding repeatability
of results, but potentially permitting higher performance. Because
of competitive accesses to shared variables, however, the non-
locking version requires great care to assure that it executes cor-
rectly on hardware only guaranteeing release consistency. This
drawback negates much of the potential benefit of this technique.
We used only the locking version of Mp3d for our experiments.

Benchmark Type of simulation Input

Barnes Barnes-Hut N-body 2048 bodies, 11 iterations

Mp3d Hypersonic flow 24000 mols, 25 iterations

Ocean Hydrodynamic 98 x 98, 2 days

Pthor Digital circuit risc, 1000 timesteps

Water Water molecule 288 mols, 10 iterations

Table 1: Benchmarks

Technology: Current Future

Node parameters

Processor speed 200 MHz 500 MHz

Sustained IPC 1 2

Cache access 3 12

Directory access 10 40

Network parameters

Network bandwidth 500 MB/s 1 GB/s

Parse delay 4 6

Wire delay 3 8

Agent delay 22 28

Staging delay 14 28

Table 2: Parameter settings
All delays are in CPU cycles. The network is assumed to have two-
byte-wide links. Parsing delay accounts for the time spent on the
routing decision; wire delay accounts for buffering and multiplexing;
agent delay accounts for dimension switching delays; and staging
delay accounts for data transfers occurring at the source and target
nodes.
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3  Methodology

3.1  Assumptions
Our simulation host is a Thinking Machines CM-5 partition

with 32 processors. The simulation target is a 32-node shared-
memory multiprocessor supporting the SCI cache-coherence pro-
tocol. WWT executes SPARC binaries, and assumes fixed execu-
tion time for the instructions (the actual values correspond to the
instruction delays listed by the CY7C601 SPARC user’s guide
[10]). The execution times forEnQOLB andDeQOLB (executed at
the entry and the exit of a critical section) are 3 and 2 cycles
respectively. Both instruction and stack accesses to the cache are
not simulated in WWT; they are assumed always to hit. Our MCS
locks use theswap primitive and perform all operations locally as
much as allowed by the algorithm.

3.1.1  Memory system parameters

The invariant simulation parameters are as follows: a 64-byte
line size, consistent with the SCI standard, a 1 cycle hit time for
the caches, and a 1 cycle per 32-bit word fill time. The caches were
4-way set-associative. Replacements were selected based on
which line least recently missed or write-faulted (we made this
choice because of WWT constraints). Memory loads always
blocked, and main memory had an invariant of 1 cycle per 32-bit
word fill time. WWT allocates private target pages locally, and dis-
tributes target pages residing in the shared address space among
the target nodes round-robin. Table2 lists the cache and directory
access latencies that the two different technology levels used.

All experiments assumed transaction queues (of 64 entries
each) for updating memory asynchronously upon a replacement of
a cache line. Note that even a sequentially consistent system would
permit such asynchronous flushes because a program memory
access is not associated with the flush. A minimal-cost design
employing sequential consistency may eliminate the transaction
queue entirely. We did not analyze the performance of such a sys-
tem.

Each target node was capable of having 64 outstanding transac-
tions, consistent with the SCI standard. Although the target proces-
sors used blocking memory loads, writes, coherence and
synchronization operations were able to proceed in parallel with
both each other and any outstanding memory request.

3.1.2  Interconnection Network

A simple network model assumes a fully connected point-to-
point target network and assumes that messages take a constant

number of cycles for traversal. This assumption of constant
latency provides sufficient lookahead at each node to allow effi-
cient parallel simulation. Reducing the minimum end-to-end net-
work latency reduces the node lookahead, which causes severe
increases in simulation time [6].

The constant latency assumption ignores network contention,
which can play a pivotal role in evaluating various optimizations.
Optimizations that reduce target execution time without a corre-
sponding reduction in communication raise the effective load on
the network. Other optimizations that reduce the number of mes-
sages lower the offered load. A constant latency model may there-
fore be either too optimistic or too pessimistic, depending on the
simulation parameters.

We used the constant latency model for our experiments. In
order to account for network contention, we derived a constant
network latency to use for each benchmark, which we obtained
with an analytical model. The analytical model that we used [23]
requires the network load as a parameter. We estimated this aggre-
gate value from the traffic statistics of previous simulations and
their total execution times. The model produces the mean latency
of a network traversal, to which we set the constant for the net-
work latency. We iterated this process until the difference between
the network latency constant and the value produced by the model
for that run converged to within one cycle per message.

To validate this process, we used a detailed, event-driven SCI
network simulator (based on the original WWT network simulator
[6]) that accurately simulates message buffering, message retrans-
mission, and flow control [5]. The implementation serializes the
network simulation at a central node, making simulation perfor-
mance suffer by roughly a factor of 15.

The target network that we used to derive the validation was an
 mesh of rings. The target network routes requests in increas-

ing dimension order and responses in decreasing order. The inter-
nal details of the simulated network correspond closely to those of
the SCI transport layer standard. A message’s delay through the
network includes staging time at the source and target nodes, pars-
ing and wire delay through each intermediate node, and possibly a
delay through an agent queue [1], if the message switches dimen-
sions. Table2 lists the specific times for these delays, for both cur-
rent and future networks.

 Table3 shows the errors (in terms of target execution time)
that the constant latency network model suffers when compared
against the detailed network simulation. The two columns of net-
work latencies represent the mean message latency returned by the
SCI network simulator and the model, respectively. The error col-
umns show the error in target execution time that we calculated by
comparing the constant latency runs against runs that used the SCI
network simulator. These network validation runs assumed
sequential consistency and MCS locks, and were run using smaller
data sets than the other experiments.

3.2  Experiments
QOLB, relaxed memory ordering constraints, and pairwise

sharing are all techniques for reducing and tolerating the latencies
associated with accesses to shared data. An important question is
whether they capture the same optimization opportunities or
whether they actually optimize different aspects of the parallel
execution. We examined the cross-product of all cases, to catch all
cases in which optimizations overlap as well as the cases for which
the performance gains are additive.

3.2.1  Synchronization

Our goal in this study was to measure the conditions under
which QOLB realizes its performance potentials, and obtain quan-
titative results for the performance improvements QOLB can pro-

8 4×

Benchmark Simulated Modeled

Latency % Error Latency % Error
Barnes 93 -1.18 88 2.12

Mp3d 92 0.26 89 1.72

Ocean 93 1.46 93 3.08

Pthor 102 -2.09 88 4.61

Water 91 -0.27 87 -0.04

Table 3: Inaccuracies of the constant latency
network model

We compare execution time using the detailed network simulator to
determine execution times using two different constants for the net-
work latency: (i) the mean message latency returned by the simula-
tor, and (ii) the mean message latency returned by our analytical
network model.
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vide. We did not exploit the prefetching capabilities of QOLB; we
used it only for straightforward synchronization accesses.

We also measured the effect of substituting MCS locks for sim-
ple locks, in order to identify circumstances where simple locks
outperform MCS or QOLB or both. Our implementation of simple
locks uses theswap primitive.

Enabling the QOLB option in SCI automatically enables pair-
wise sharing also, as the required mechanisms (primarily direct
cache-to-cache write transfer of data) are similar. However, to per-
mit the study of the two options separately we extended the coher-
ence protocol to permit QOLB support without pairwise sharing.

Finally, we performed an experiment to determine the sensitiv-
ity of benchmark performance to the QOLB instructions’ execu-
tion cost.

3.2.2  Memory ordering constraints

Our simulator allows for analysis of memory systems with dif-
ferent ordering constraints on memory operations. We analyzed
three designs permitted by the SCI protocol, which cover the spec-
trum from a conservative, inexpensive design to a very aggressive
design approaching the limits imposed by release consistency. Our
baseline design, calledseq, achieves sequential consistency by
restricting memory reads and writes to a single outstanding opera-
tion at any time. A second design (r1) allows substantial overlap
by permitting multiple outstanding memory operations (note that
WWT does not permit simulation of multiple outstanding loads).
This design blocks on writes until the writing node has become
head of the sharing list and the cache line to be modified is resident
and writable, and then permits the purge and the actual write to
proceed in parallel. This approach is a natural relaxation that can
be achieved with a minimum of additional complexity in an SCI-
based design. A third design (r2) relaxes the constraints of write
operations further by allowing the processor to insert writes in the
transaction queue and continue immediately when appropriate.
This scheme can be implemented within the SCI protocol, but adds
significantly to the complexity of the design. The WWT assump-
tion of non-blocking loads prevents this scheme from being as
aggressive as possible, since it only relaxes writes, some synchro-
nization accesses (specifically DeQOLB), and coherence opera-
tions. Even so, this model still has a very high implementation
cost, particularly when compared to that forr1.

A subtle point arises when considering ordering constraints on
QOLB instructions. Strictly speaking, QOLB is a memory opera-
tion, but it can also be considered a hint to the memory system that
helps the hardware propagate data in advance of its use. It does not
perform either read or write operations, and can not by itself cause
violations of memory ordering constraints. Therefore, QOLB
instructions may always proceed asynchronously.

QOLB instructions do, however, provide an opportunity for
further weakening memory ordering constraints. Since an entire
line is passed between nodes atomically, any data modified before
the release of a lock contained in the same cache line can be guar-
anteed to be consistent everywhere at its release point (DeQOLB).
Thus no other ordering constraints are necessary for memory
accesses to data protected by a lock contained in the same line.
While this observation is correct for any system that transfers only
entire cache lines, it is only useful where it is efficient to place data
in the same cache line as the associated lock. For this reason, we
refer to this phenomenon asQOLB consistency. Careful analysis of
well-structured code can result in the total elimination of many
barriers and other synchronization points. We did not, however,
perform such optimizations for our benchmarks.

3.2.3  Pairwise sharing

Our goal with respect to examining pairwise sharing was to
determine what application classes can take advantage of the pair-
wise sharing optimization, as well as the quantitative gain obtained
by such applications. Also important is how an application’s per-
formance is affected when it can not take advantage of pairwise
sharing, when the protocol degrades from a pairwise-sharing list to
a conventional list.

The pairwise sharing option defers the breakdown of the shar-
ing list, based on the assumption that two sharing caches will con-
tinue to share the data in the near future. In cases where this
assumption does not hold, the delayed breakdown of the list may
cause the sending of additional messages, adversely affecting pro-
gram performance.

3.2.4  Cache size

Our experiments were performed assuming two sizes of
caches. Most of our measurements were taken assuming a 1MB
cache, which is a reasonable size for current technology. For the
data sets we used, a cache of this size enabled us to evaluate the
performance of the three classes of optimizations, without experi-
encing finite cache effects. Assuming a large cache, benchmarks
with small data sets may tend to overemphasize the benefits of
improvements in the efficiency of sharing [22]. Thus, we reran
some of the experiments with a smaller cache size, to understand
the behavior of the optimizations in the presence of capacity and
conflict misses. For this experiment we set the cache size to 8KB.
We chose our cache size so that the number of sets is comparable
to that in a previous study [16].

3.2.5  Future technology

Simulation results for two types of systems are presented in this
paper: target systems using current technology and target systems
using future technology (our estimates are for approximately 5
years in the future). This permits us to analyze which of the stud-
ied optimizations will increase in importance as technology
advances. Specifically, we wished to discover whether system
parameters that change due to technological improvement will
qualitatively change our results. Table2 lists the system parame-
ters that we use for the two assumed levels of technology (current
andfuture). Note that the future processor is effectively five times
as fast in terms of instructions executed per unit time.

4  Results and discussion

Table4 summarizes the main results of this paper. We first ana-
lyze each of the three optimizations studied in this paper indepen-
dently, and then discuss their interactions. We also discuss the
effects of technology improvements, and finally the effects of
smaller caches. Both the raw data and the data in a different format
are presented in Appendix A, along with the results of a full facto-
rial analysis of the data.

4.1  Synchronization
Benchmarks using QOLB consistently perform better than

when using MCS. The most impressive improvement occurs for
Mp3d, the execution time of which QOLB improves by nearly
70%. For this benchmark, most of the sharing occurs in migratory
fashion where different nodes in turn update fields of structures.
Because these updates are protected with locks, the performance
of the benchmark benefits particularly well from QOLB.

Barnes, Ocean and Pthor also benefit from QOLB, by 25%,
12%, and 11%, respectively. The gains are less impressive for two
reasons. First, unlike Mp3d, not all fields of the protected struc-
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Benchmark Synch Current Future Ratio

seq r1 r2 seq r1 r2 c/f

Barnes MCS 1.00 1.06 1.13 1.00 1.08 1.18 3.70

Pair, MCS 1.00 1.06 1.12 1.00 1.07 1.13

QOLB 1.25 1.28 1.30 1.34 1.40 1.41

Pair, QOLB 1.24 1.28 1.29 1.31 1.38 1.39

Mp3d MCS 1.00 1.12 1.26 1.00 1.14 1.28 3.14

Pair, MCS 0.95 1.06 1.18 0.94 1.06 1.19

QOLB 1.68 1.72 1.79 2.02 2.08 2.14

Pair, QOLB 1.58 1.65 1.72 1.85 1.95 2.01

Ocean MCS 1.00 1.05 1.31 1.00 1.08 1.42 3.18

Pair, MCS 1.20 1.26 1.43 1.27 1.39 1.62

QOLB 1.12 1.17 1.45 1.14 1.23 1.62

Pair, QOLB 1.39 1.46 1.63 1.55 1.69 1.96

Pthor MCS 1.00 1.03 1.28 1.00 1.03 1.28 3.23

Pair, MCS 0.98 1.01 1.24 0.98 1.01 1.24

QOLB 1.11 1.15 1.41 1.13 1.18 1.46

Pair, QOLB 1.09 1.13 1.38 1.10 1.15 1.42

Water MCS 1.00 1.02 1.03 1.00 1.03 1.06 4.68

Pair, MCS 0.99 1.01 1.02 0.98 1.02 1.04

QOLB 1.05 1.05 1.05 1.08 1.09 1.09

Pair, QOLB 1.04 1.05 1.05 1.07 1.08 1.08

Table 4: Results for 1MB caches
These numbers depict application speedups, calculated as the ratio of the execution time of the
base run to that of the optimized hardware. The rightmost column shows the speedup of the
future technology, seq/MCS simulation to that for current technology with seq/MCS.

tures of Barnes and Pthor fit in a single cache line. The overflow
fields do not benefit from the improved hand-off latency offered by
QOLB (though careful programming or a very sophisticated com-
piler could increase the benefit). In addition, some fields in these
structures were not placed in the same line as the lock because the
applications sometimes access them as unsynchronized data, and
false sharing of a locked line can obviously be extremely ineffi-
cient. Second, the number of accesses to migratory data is not as
frequent in these benchmarks. Both Barnes and Pthor have a num-
ber of accesses to mostly-read memory locations, for which QOLB
offers no improvement. The majority of shared accesses in Ocean
are to memory locations that follow producer/consumer patterns.
QOLB is theoretically able to handle such patterns. We did not,
however, modify Ocean to take advantage of this ability, since we
would have had to rewrite most of the application (invalidating our
comparisons).

Table5 shows the speedups for Mp3d running withswap,
MCS, and QOLB locks, and with each of the three relaxed mem-
ory models used in this study. We observe that for this particular
benchmark the MCS algorithm consistently improves performance
over the simple lock runs by at least 12%. QOLB, however,
improves performance a minimum of 56%.

We performed several experiments to measure the program
sensitivity to the execution time of the QOLB instructions. The
experiments increased the latencies forEnQOLB and DeQOLB
from 2 and 3 processor cycles respectively to 20 cycles each.
Slowdowns for these programs were less than 1%, leading us to
conclude that the benefits of QOLB are insensitive to large varia-
tions in the latencies of QOLB instructions.

4.2  Relaxed memory ordering constraints

Relaxing memory ordering consistently benefits all bench-
marks, particularly in the absence of other optimizations. Mp3d
shows the largest improvement usingr1, with a speedup of 12%.
All benchmarks but Watershow significantly larger improvements
usingr2, ranging from 13% for Barnes to 31% for Ocean.

While the gains are modest forr1, the consistency of the bene-
fit, along with the fact that it is readily achievable with minimal
additional hardware or may already be implemented by the proces-
sor, make this optimization attractive. The more aggressive imple-
mentation of release consistency used forr2 produces
substantially better performance. As discussed below, however, its
benefit is often reduced for systems that also exploit QOLB.

4.3  Pairwise sharing

Ocean is the only application for which pairwise sharing is vis-
ibly successful, speeding up its execution by 20%. The bulk of the
sharing in Ocean occurs during phases of stencil computation that
involve communication of columns between fixed neighbors. This
sharing pattern is common in many scientific applications. Con-
versely, for applications lacking static pairwise sharing patterns,
the execution time remains unchanged (cf. Barnes) or even
increases slightly (cf. Mp3d, 5% slowdown).

Pairwise sharing benefits one of our benchmarks substantially
and at worst only marginally degrades the performance of the oth-
ers. Although our results do not indicate that pairwise sharing is
frequently cost-effective, a study testing pairwise sharing on a
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broader range of applications is needed before we can definitively
evaluate its utility.

4.4  Interactions among optimizations

While different benchmarks benefit to varying degrees from the
different optimizations, the optimizations produce largely indepen-
dent improvements. The most surprising result is that most of our
benchmarks show more improvement by applying both QOLB and
pairwise sharing than would be predicted from applying each indi-
vidually. Usingseq, the QOLB optimization speeds Ocean up by
12%. Applying pairwise sharing (but not QOLB) results in a
speedup of 20%. If the reductions in overhead are fully indepen-
dent, a speedup of 37% would be expected when both are applied.
Applying both obtains a speedup of 39%. The two optimizations
clearly have a small positive interaction. We speculate that this
interaction is due to the fact that since MCS locking structures are
not able to exploit pairwise sharing, eliminating them increases the
percentage of shared data accesses that can effectively exploit
pairwise sharing.

QOLB and relaxed consistency

QOLB efficiently hides many of the remote latencies for Bar-
nes and Mp3d, speeding them up 25% and 68%. These applica-
tions gain little more by having an aggressive relaxed consistency
model implemented on top of QOLB. Conversely, Ocean and
Pthor benefit less from QOLB, speeding up only 12% and 11%,
respectively. Additional performance improvements from relaxing
consistency are significant (29% and 27%, runningr2). Two fac-
tors explain this improvement. The first is that—in both Ocean and
Pthor—there is a repetitive pattern of read-sharing involving many
processors followed by writes to the shared data. The first write
operation results in a large number of purges that must complete
before the write can proceed. This kind of sharing is not captured
by QOLB, but is very well captured by weaker memory models.
We attribute the other factor—in Ocean only—to static producer/
consumer-type sharing, which could be captured by QOLB, but is
not in the implementation of Ocean that we currently use.

QOLB and relaxed memory ordering are effective techniques
for tolerating latencies associated with given sharing patterns.
QOLB does well in hiding latencies that result from sharing pat-
terns involving serialized exclusive access to shared data. A
relaxed memory model effectively hides the latencies associated
with multiple readers sharing data, followed by write accesses to
that data.

Relaxing memory consistency constraints clearly eliminates
some of the same overhead removed by the use of QOLB, particu-
larly when the more aggressiver2 implementation is considered.
Applying r1 along with QOLB and pairwise sharing reduces the
overhead by an amount roughly equal to the sum of the reductions
from applying the three optimizations individually. In all cases,
applying all three reduces the overhead by at least 75% of the sum
of the reductions observed by applying them individually. Apply-

ing r2 in the same way was less successful: Ther2 design clearly
removes some of the same overhead eliminated by QOLB.

4.5  Future technology
In a previous study Mellor-Crummey and Scott conclude [20]

that “special-purpose synchronization mechanisms such as the
[QOLB] instruction are unlikely to outperform our MCS lock by
more than 30%.” This claim does not hold as shown by the results
in Table5, where QOLB improves the performance by nearly 70%
for Mp3d. Furthermore, this claim becomes ever less tenable as
processors become faster, system size increases, and the relative
cost of interconnect traffic increases. This is borne out by the
results we obtained with our future technology assumptions, where
improvements gained by using QOLB for synchronization can be
greater than 100%. This performance improvement is likely to
increase as processors grow even faster, suggesting that special
synchronization hardware support such as QOLB will become
more important in future shared-memory multiprocessors. We
note, however, that high-performance processor designs that use
aggressive prefetching and speculative execution may well be able
to capture some of the same latency reduction achieved by QOLB.

The results for the pairwise sharing optimization are consistent
with those for current technology, but substantially larger. The
relaxing of memory ordering constraints also shows a distinctive
performance increase with our future technology assumptions.

Water was relatively insensitive to any of the applied optimiza-
tions, since it is a compute-intensive benchmark that communi-
cates little. Such programs are difficult to speed up by improving
interprocessor communication precisely because there is so little
communication involved. This is why Water showed the greatest
improvement in performance when run with future technology
assumptions, which sped up the base run by a factor of 4.68.
Speeding up the processor relative to the network latencies, how-

Benchmark Synch. 8K Cache

seq r1 r2

Barnes MCS 1.00 1.02 1.07

Pair, MCS 1.00 1.02 1.06

QOLB 1.30 1.30 1.32

Pair, QOLB 1.30 1.30 1.32

Mp3d MCS 1.00 1.11 1.25

Pair, MCS 0.96 1.05 1.19

QOLB 1.64 1.68 1.76

Pair, QOLB 1.60 1.64 1.71

Ocean MCS 1.00 1.02 1.19

Pair, MCS 1.02 1.03 1.21

QOLB 1.08 1.09 1.26

Pair, QOLB 1.11 1.11 1.30

Pthor MCS 1.00 1.02 1.18

Pair, MCS 0.99 1.01 1.16

QOLB 1.07 1.08 1.23

Pair, QOLB 1.06 1.07 1.22

Water MCS 1.00 1.01 1.03

Pair, MCS 1.00 1.01 1.03

QOLB 1.04 1.04 1.04

Pair, QOLB 1.04 1.04 1.04

Table 6: Results for 8K caches
These numbers depict application speedups; the ratio of the execu-
tion time of the base run to that of the optimized hardware.

Benchmark Lock Consistency model

seq r1 r2

Mp3d Swap 1.00 1.12 1.18

MCS 1.14 1.27 1.43

QOLB 1.91 1.96 2.04

Table 5: Performance of Mp3d varying locks
These numbers depict application speedups; the ratio of the execu-
tion time of the base run to that of the optimized hardware.
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ever, not only increases the execution speed dramatically; it also
increases the benefits of optimization. With the future technology
assumptions, the combined speedup from QOLB andr2 increased
from 5% to 9%. The critical observation is that even computation-
bound jobs eventually become communication-bound, either as
improvements in the processing speed outstrip gains in the net-
work or as these programs are scaled to larger systems. Thus the
optimizations investigated here eventually become effective even
for such programs.

4.6  Small caches

Table6 shows the results for runs assuming current technology
and a 8KB cache. Two conflicting behaviors affect the perfor-
mance improvement due to QOLB. Placing lock and data in the
same cache line increases the effectiveness of the cache when
compared to data organization imposed by MCS. This is countered
by the opportunities for QOLB becoming less frequent, because of
the longer execution—due to more cache misses—lessening the
potential for performance improvement.

We observed both of these trends in our experiments. The per-
formance improvements attributable to QOLB for Barnes (30%
speedup) is larger than those with the larger cache. The perfor-
mance improvements from using QOLB for the other benchmarks
are smaller than those with the larger cache.

Relaxing memory ordering shows the same general trends as in
the 1M cache experiments, but to a smaller degree. The only
exception occurs with Water, the improvements of which usingr2
are comparable for both cache sizes, primarily because the benefits
are so small (3% speedups).

The benchmarks that did not benefit from pairwise sharing with
1M caches incurred smaller performance losses with the smaller
cache. Ocean does not benefit significantly from the pairwise shar-
ing optimization with an 8K cache. Its working set exceeds the
size of the cache, forcing the eviction of sharing information
between iterations.

In general, the conclusions drawn earlier in this section remain
valid for the smaller cache size. The only exception is the pairwise
sharing optimization, which is quite sensitive to the size of the
cache. For caches smaller than an application’s working set size,
the effectiveness of pairwise sharing remains to be demonstrated.

5  Related work

Gupta et al. [16] present a comparative evaluation of some
latency reduction and tolerance techniques. They study the perfor-
mance impact of coherent caches, relaxation of the memory con-
sistency model, non-binding prefetching, and multiple-context
processors on shared-memory parallel programs. They report con-
sistent performance improvements for coherent caches, relaxed
memory ordering and prefetching. The major difference between
our two works is our focus on the interaction between synchroni-
zation mechanisms and relaxing consistency. Their methodology
also differs from ours in several respects. They used a smaller set
of benchmarks than is used in our study. The memory hierarchies
were much different—their hierarchy had a 16-entry write buffer
and two levels of cache, with a 2KB L1 write-through cache and a
4KB L2 write-back cache, both with 16-byte lines. Another differ-
ence is the manner in which speedups for release consistency are
measured. For Mp3d, Guptaet al report speedups of about 1.5
over sequential consistency. These results exceed the speedups
that we observed in our simulations. If we combine the speedups
resulting from release consistency with those resulting from sim-
ple sequentially consistent transaction queues (we support asyn-
chronous flushes in the base case), we obtain results comparable to
those reported by Guptaet al.

Abouleneinet al. [2] present a detailed analysis study of the
QOLB synchronization primitive. A QOLB implementation in the
framework of the Scalable Coherent Interface (SCI) is presented.
They also present a qualitative performance comparison of QOLB
versus MCS and Anderson locks, in which the number of intercon-
nect messages and remote memory accesses are compared. This
analysis shows that QOLB outperforms both of these algorithms,
both in terms of interconnect messages and memory accesses
needed to gain access to a critical section.

Cox and Fowler [9], and Stenström, Brorsson, and Sandberg
[25] present studies that propose different solutions for dealing
with the problem of migratory sharing patterns. Both studies
present adaptive schemes that can be implemented by a hardware
cache coherence protocol. QOLB—which predates these studies—
captures the same opportunities for optimization, while adding less
complexity to the protocol.

6  Conclusions

Although the shared-memory paradigm has many advantages,
it incurs overhead—as a result of its fine-grained communica-
tion—that can be substantial. Many techniques have been pro-
posed in the literature for reducing this overhead. Using the
Wisconsin Wind Tunnel as a simulation engine, and a target sys-
tem based on the Scalable Coherent Interface standard, we have
analyzed the performance effects of three such overhead-reducing
techniques.

We have shown that the synchronization primitive QOLB pro-
vides a substantial benefit over a broad range of applications. The
only benchmarks failing to show significant improvement from
QOLB are those that are spend most of their time computing or
waiting at barriers. In the results reported, QOLB was used exclu-
sively to implement synchronization more efficiently than was
possible using MCS locks. Performance was improved by more
than 10% for four of the five benchmarks, and Mp3d experienced a
speedup of 1.68. Further performance improvements are to be
expected with the aggressive use of QOLB as a synchronizing
prefetch and possibly with the exploitation of QOLB consistency.

The SCI-specific feature of pairwise sharing showed mixed
results. For one benchmark—Ocean—pairwise sharing improved
performance by 20%. For all others, performance suffered slightly.
While an analysis of the sharing patterns can predict the effective-
ness of pairwise sharing, it benefits only a limited range of applica-
tions, and even these applications may fail to see a large benefit
from the optimization if the application is seriously constrained by
capacity misses in the cache. However, the interaction with
QOLB, and the fact that their hardware implementations under
SCI are similar, suggests that pairwise sharing may be a good
design choice when cost/performance is considered.

The SCI protocol exhibits its most severe delays when a write
is initiated on a cache line that is widely shared. It is a small
change to relax consistency by allowing the processor to proceed
in parallel with the purging of cached copies. Such a relaxation of
the memory model consistently improves performance, though not
dramatically.

QOLB and relaxed consistency exploit mostly different oppor-
tunities for tolerating latency. For r1, we observed that perfor-
mance improvements from pairwise sharing or QOLB are nearly
additive to those of relaxed consistency. The aggressive imple-
mentation of release consistency (r2) is sometimes less effective
in the presence of QOLB, indicating some overlap in the overhead
that they reduce. The greatly increased complexity ofr2 must be
weighed against its benefit, particularly if QOLB is also imple-
mented.

QOLB and pairwise sharing benefits show a surprisingly super-
additive correlation. In Ocean, the only benchmark benefitting
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substantially from pairwise sharing, the combined benefit is
greater than that predicted from the two separate improvements. In
both the cases where pairwise sharing improved performance and
those where it degraded it, the combined effect of the QOLB and
pairwise sharing options is generally better than expected from
their individual contributions. Among our benchmarks, only Water
failed to show this effect, and even there the effects were orthogo-
nal within the margin of error of the study.

The results of this work are more dramatic when the system
parameters are adjusted to reflect technology trends. Assuming
faster processors that are more heavily penalized by network
delays, the benefits from relaxing consistency increase. Pairwise
sharing results are still mixed, but the benefit to Ocean is more
impressive. The benefits of QOLB also increase substantially, sug-
gesting that this type of primitive will become an important feature
of future systems.

While our results are specific to the Scalable Coherent Inter-
face, the lessons are much more broadly applicable. First, we have
established that special support for hardware synchronization,
such as QOLB, can have a profound effect on the performance of
current systems. More importantly, we have shown that future
trends are likely to increase that benefit. Second, we have demon-
strated that relaxing memory ordering constraints consistently
improves performance, and in combination with QOLB, can show
dramatic improvement.
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Appendix A
In this appendix we present the paper’s results in several differ-

ent formats, enabling the reader to more easily perform different
analyses. We also present a more quantitative analysis of the opti-
mization interactions.

Table7 lists the raw virtual times, in millions of cycles, of the
benchmarks’ executions. Table8 presents the percentage change in
virtual time of a given experiment in relation to the base case. They
are calculated as follows:

(1)

There are two different base cases; one assuming current tech-
nology and one assuming future technology. The base cases assume
a sequentially consistent system, using MCS locks, 1M caches, and
no pairwise sharing. Unlike the speedups presented in Section4,
the changes in execution time can be added directly to determine if
there exist any interactions among optimizations.

We performed four full factorial analyses on the results in
Table8 to quantify the interactions among optimizations. The
results of these analyses are shown in Tables 9-12. The numbers
shown represent the percent change in execution time attributable
to the main effect or interactions at the head of the column. For
these tables,P represents the presence of the pairwise sharing
option, Q represents QOLB, and8K represents an 8K cache. The
absence of those letters implies the opposite of those optimizations,
i.e. MCS locks, pairwise sharing off, a 1M cache, and sequential
consistency. P+8K would therefore indicate the execution time
change solely attributable to the interaction between pairwise shar-
ing and an 8K cache. It is important to note that the numbers pre-
sented here are the inverse minus one hundred of those presented in
Section4. A value of -50% here corresponds to a speedup of 2. The
row in each table labeledMean shows the arithmetic mean of that
column’s interaction across all five benchmarks. All subsequent
references to “mean” will refer to these rows unless otherwise
noted.

Since the presence of three variables in one factor greatly com-
plicates the analysis, we performed separate analyses forseq vs.
r1 andseq vs.r2. Separate analyses were also performed for cur-
rent and future technology, yielding a total of four analyses. The
future technology analyses do not contain an 8K cache factor. The
four tables are organized as follows:

• Table9: Current technology, seq vs.r1
• Table10: Current technology, seq vs.r2
• Table11: Future technology, seq vs.r1
• Table12: Future technology, seq vs.r2
The results in these tables show that QOLB reduces execution

time by an average of 17% for current technology, and 19% for the
future technology experiments.r1 shows an improvement of 3%

%change
VTexperiment

VTBasecase
----------------------------- 1–

 
 
 

100×=

for current technology and 5% for future;r2 shows an improve-
ment of 8% for current and 13% for future technology. The over-
lap between QOLB andr2 grows as technology advances. The
overlap consumes a mean (across all benchmarks) of 9% of the
added benefits from QOLB andr2 for current technology. This
overlap increases to 12% for future technology. The amount of
overlap between the two is much more closely correlated with the
amount of improvement produced by QOLB than withr2’s
improvement.

The synergistic interaction between QOLB and pairwise shar-
ing exists for all of the experiments except for Barnes with future
technology. Interestingly, this interaction is largest when pairwise
sharing does very well (c.f. Ocean), or very poorly (c.f. Mp3d).

Using a smaller cache causes a slight deterioration in the per-
formance improvement of QOLBexcept with Barnes. In this case,
the interaction reduces the execution time from the experiment
with the 1M cache by over 7%. This effect is explained in
Section4.6. The smaller cache also makesr1 slightly less effec-
tive (an average of about 1% less effective), but makesr2 consid-
erably more effective (over 9% for Pthor). The diminished
effectiveness ofr1 can be explained by the fact thatr1 is most
effective when sharing lists are longer. Smaller caches tend to
reduce the average length of sharing lists, because flushes occur
more frequently in between coherence operations.

The only other anomalous effect that we observed in Tables 9-
12 is the interaction betweenr2 and pairwise sharing for Ocean,
assuming future technology. Whereas the interaction betweenr2
and pairwise sharing has almost no discernible effect for current
technology, for a future machiner2 reduces the improvement of
pairwise sharing for Ocean from 16% to 10%.
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Benchmark Synch Current (1M) Future (1M) Current (8K)

seq r1 r2 seq r1 r2 seq r1 r2

Barnes MCS 132.45 124.98 117.77 178.77 165.39 151.95 210.48 205.74 197.09

Pair, MCS 132.61 125.42 117.93 179.02 166.64 158.10 210.66 206.63 198.32

QOLB 106.41 103.43 102.31 133.70 128.07 126.89 162.20 161.56 159.09

Pair, QOLB 106.72 103.81 102.76 136.33 129.77 128.75 162.41 162.16 159.80

Mp3d MCS 243.55 217.95 193.51 391.08 345.31 302.49 247.34 223.91 197.40

Pair, MCS 255.43 230.48 205.90 414.61 371.95 326.20 257.57 235.17 207.98

QOLB 145.40 141.36 136.01 191.59 185.90 180.73 150.42 147.07 140.84

Pair, QOLB 153.79 147.33 141.74 209.39 198.34 193.01 154.18 150.39 144.62

Ocean MCS 13.78 13.09 10.56 21.65 20.04 15.26 16.79 16.48 14.13

Pair, MCS 11.48 10.91 9.65 16.99 15.56 13.34 16.49 16.31 13.84

QOLB 12.36 11.76 9.52 18.92 17.58 13.40 15.50 15.40 13.32

Pair, QOLB 9.94 9.42 8.44 13.98 12.79 11.06 15.16 15.08 12.87

Pthor MCS 220.45 214.33 172.90 341.66 330.41 266.41 352.76 347.25 299.11

Pair, MCS 224.26 218.58 178.34 350.36 336.97 275.99 356.78 350.98 304.33

QOLB 198.17 191.99 156.59 301.82 289.95 233.59 330.75 327.48 286.41

Pair, QOLB 202.22 194.95 159.68 309.92 297.41 240.09 332.70 330.03 288.22

Water MCS 487.66 478.58 473.05 521.21 504.23 493.63 546.22 541.26 529.16

Pair, MCS 491.98 483.20 477.48 529.80 513.21 502.41 548.28 543.12 530.99

QOLB 466.60 463.61 463.37 484.41 478.48 478.12 526.58 525.19 524.46

Pair, QOLB 468.37 465.55 465.27 487.78 482.19 481.73 527.44 525.82 525.12

Table 7: Raw virtual times of experiments, in millions of target cycles

Benchmark Synch Current (1M) Future (1M) Current (8K)

seq r1 r2 seq r1 r2 seq r1 r2

Barnes MCS 0.00 -5.63 -11.08 0.00 -7.48 -15.00 58.91 55.34 48.81

Pair, MCS 0.12 -5.31 -10.96 0.14 -6.79 -11.56 59.05 56.01 49.73

QOLB -19.66 -21.91 -22.75 -25.21 -28.36 -29.02 22.47 21.98 20.12

Pair, QOLB -19.43 -21.63 -22.42 -23.74 -27.41 -27.98 22.62 22.44 20.65

Mp3d MCS 0.00 -10.51 -20.55 0.00 -11.70 -22.65 1.56 -8.06 -18.95

Pair, MCS 4.88 -5.36 -15.46 6.02 -4.89 -16.59 5.76 -3.44 -14.61

QOLB -40.30 -41.96 -44.15 -51.01 -52.47 -53.79 -38.24 -39.61 -42.17

Pair, QOLB -36.86 -39.51 -41.80 -46.46 -49.28 -50.65 -36.69 -38.25 -40.62

Ocean MCS 0.00 -5.05 -23.35 0.00 -7.45 -29.49 21.84 19.56 2.51

Pair, MCS -16.67 -20.81 -29.95 -21.50 -28.12 -38.37 19.67 18.32 0.40

QOLB -10.30 -14.63 -30.94 -12.58 -18.77 -38.09 12.50 11.76 -3.37

Pair, QOLB -27.89 -31.63 -38.74 -35.42 -40.93 -48.93 10.01 9.45 -6.58

Pthor MCS 0.00 -2.77 -21.57 0.00 -3.29 -22.02 60.02 57.52 35.68

Pair, MCS 1.73 -0.85 -19.10 2.54 -1.37 -19.22 61.84 59.21 38.05

QOLB -10.11 -12.91 -28.97 -11.66 -15.14 -31.63 50.04 48.55 29.92

Pair, QOLB -8.27 -11.56 -27.56 -9.29 -12.95 -29.73 50.92 49.71 30.74

Water MCS 0.00 -1.86 -3.00 0.00 -3.26 -5.29 12.01 10.99 8.51

Pair, MCS 0.88 -0.92 -2.09 1.65 -1.53 -3.61 12.43 11.37 8.88

QOLB -4.32 -4.93 -4.98 -7.06 -8.20 -8.27 7.98 7.70 7.55

Pair, QOLB -3.96 -4.53 -4.59 -6.41 -7.49 -7.57 8.16 7.82 7.68

Table 8: Percent changes in virtual time of experiment execution, normalized to base case
The base cases in this table are sequentially consistent runs using MCS locks and assuming no pairwise sharing option.
All of the current technology runs (columns 1-3 and 7-9) are normalized to the base run (for each benchmark) in column
1, and all of the future technology runs are normalized to the base cases in column 4.
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Benchmark Q r1 Q+r1 P Q+P r1+P Q+r1+P

Barnes -26.45 -2.85 1.57 0.30 -0.02 0.14 -0.05

Mp3d -37.03 -5.85 4.04 3.46 -1.26 -0.06 -0.23

Ocean -9.70 -2.77 0.43 -9.40 -0.44 0.33 -0.13

Pthor -10.04 -2.41 0.21 1.55 -0.24 -0.02 -0.03

Water -3.87 -0.94 0.49 0.46 -0.20 0.00 -0.01

Mean -17.42 -2.96 1.35 -0.73 -0.43 0.08 -0.09

8K Q+8K r1+8K Q+r1+8K P+8K Q+P+8K r1+P+8K Q+r1+P+8K Benchmark

51.53 -8.50 1.03 -0.08 0.06 -0.03 0.07 -0.01 Barnes

1.58 -0.12 0.41 -0.07 -0.52 -0.22 0.12 0.08 Mp3d

31.26 0.78 1.54 0.15 7.35 0.10 -0.05 -0.05 Ocean

60.32 0.20 0.45 0.40 -0.16 -0.13 0.06 0.14 Pthor

12.26 0.09 0.27 -0.13 -0.19 0.07 -0.03 -0.00 Water

31.39 -1.51 0.74 0.05 1.31 -0.04 0.03 0.03 Mean

Table 9: Factorial analysis results contrasting QOLB, r1, pairwise sharing, and an 8K
cache

Benchmark Q r2 Q+r2 P Q+P r2+P Q+r2+P

Barnes -25.31 -4.91 2.71 0.34 -0.04 0.18 -0.07

Mp3d -34.89 -9.22 6.18 3.45 -1.20 -0.07 -0.18

Ocean -9.22 -11.04 0.91 -9.62 -0.45 0.11 -0.14

Pthor -9.37 -12.48 0.89 1.59 -0.37 0.02 -0.16

Water -3.29 -1.60 1.08 0.46 -0.19 0.00 -0.00

Mean -16.41 -7.85 2.35 -0.76 -0.45 0.05 -0.11

8K Q+8K r2+8K Q+r2+8K P+8K Q+P+8K r2+P+8K Q+r2+P+8K Benchmark

49.48 -7.35 -1.03 1.06 0.10 -0.06 0.11 -0.03 Barnes

-1.79 2.02 -2.96 2.07 -0.53 -0.16 0.11 0.14 Mp3d

23.00 1.26 -6.73 0.63 7.13 0.09 -0.27 -0.06 Ocean

50.24 0.87 -9.62 1.07 -0.12 -0.25 0.10 0.01 Pthor

11.61 0.67 -0.39 0.46 -0.19 0.07 -0.03 0.00 Water

26.51 -0.51 -4.15 1.06 1.28 -0.06 0.00 0.01 Mean

Table 10: Factorial analysis results contrasting QOLB, r2, pairwise sharing, and an 8K cache

Benchmark Q r1 Q+r1 P Q+P r1+P Q+r1+P

Barnes -22.65 -5.31 1.90 0.81 0.40 0.01 -0.27

Mp3d -47.16 -6.72 4.58 5.14 -1.27 -0.14 -0.54

Ocean -12.66 -6.44 0.59 -21.79 -0.71 0.38 -0.04

Pthor -11.73 -3.59 0.02 2.26 0.02 -0.20 0.11

Water -6.50 -2.16 1.06 1.19 -0.50 0.04 -0.00

Mean -20.14 -4.84 1.63 -2.48 -0.41 0.02 -0.15

Table 11: Factorial analysis results for future technology contrasting QOLB, r1, and pairwise sharing

Benchmark Q r2 Q+r2 P Q+P r2+P Q+r2+P

Barnes -19.88 -8.69 4.66 1.52 -0.27 0.72 -0.93

Mp3d -42.17 -13.06 9.57 4.94 -1.10 -0.34 -0.36

Ocean -11.42 -21.34 1.83 -16.02 -0.82 6.16 -0.15

Pthor -10.90 -21.05 0.84 2.40 -0.27 -0.05 -0.18

Water -5.51 -3.23 2.05 1.17 -0.50 0.02 0.00

Mean -17.98 -13.47 3.79 -1.20 -0.59 1.30 -0.33

Table 12: Factorial analysis results for future technology contrasting QOLB, r2, and pairwise sharing


