Sim-alpha: a Validated, Execution-Driven Alpha 21264
Simulator

Rajagopalan Desikan* Doug Burger! Stephen W. Keckler! Todd Austin?
fDepartment of Computer Sciences *Department of Electrical and Computer Engineering
The University of Texas at Austin
! Department of Electrical Engineering and Computer Sciences
The University of Michigan at Ann Arbor

Department of Computer Sciences
Tech Report TR-01-23
The University of Texas at Austin

ABSTRACT

This technical report describes installation, use, and design of sim-alpha, an execution driven
Alpha 21264 simulator. To increase simulator accuracy, we have incorporated many of the low
level features found in the Alpha 21264. When compared to a hardware 21264 implementation,
sim-alpha achieves 2% error across a suite of microbenchmarks designed to stress the various
microarchitectural features in the simulator. The error across the 10 SPECINT 2000 benchmarks
is 6.6% and the 12 SPECFP 2000 benchmarks is 21%, with the net error being 15% across the 22
of the 26 SPECCPU 2000 benchmarks.

1 Introduction

The computer architecture community relies heavily on simulators to evaluate new ideas. Publicly
available simulators like SimpleScalar [1], Rsim [10], Trimaran [5], and SimOS [11] are widely used
and shared by researchers, and numerous papers have been published using the results from these
tools. However, few of these tools have been compared against actual hardware. In this report, we
describe sim-alpha, a validated, execution driven, Alpha 21264 processor simulator. sim-alpha was
written by extending the SimpleScalar [1] tool suite.

sim-alpha models both the implementation constraints, as well as the performance-improving low
level features in the 21264. The simulator includes flags which allows the user to enable and
disable these features to study their influence. The simulator allows the user to vary the different
parameters of the processor such as the issue queue sizes, the fetch width, and the reorder buffer
size. sim-alpha achieves 2% error across the set microbenchmarks we used for the validation, and
15% across a set of 22 macrobenchmarks from the SPECCPU 2000 suite. The error across the 10
SPECINT 2000 benchmarks is 6.6%.

The rest of the report is organized as follows. Section 2 describes how to obtain and build sim-
alpha. Section 3 describes our target system that includes the Alpha 21264 processor, the DS-
10L Alphaserver system against which we validate sim-alpha, the Digital Continuous Profiling
Infrastructure tool set for measuring performance of programs on the native DS-10L system, and
the microbenchmarks we used for validating the microarchitecture and memory system in sim-
alpha. We present sim-alpha error across our suite of microbenchmarks and macrobenchmarks in
Section 4, and describe usage and internal workings of the tool in Section 5. Finally, Section 6
summarizes our work and suggests future enhancements.

2 Obtaining sim-alpha

The sim-alpha simulator source code is available as a tar gzipped file through the world wide web
at :
http://www.cs.utexas.edu/users/cart/code/alphasim-1.0.tgz

The microbenchmarks used for the validation can be obtained from :
http://wuw.cs.utexas.edu/users/cart/code/microbench.tgz

The SPECCPU 2000 benchmark binaries can be obtained from :
ftp://ftp.simplescalar.org/pub/benchmarks/spec2000/spec2000alpha.tar.gz

sim-alpha currently runs only on x86/Linux boxes; Since it does not currently have cross-endian
support, it cannot run on big-endian machines. The system call support on sim-alpha also currently
supports only Linux calls. To build the simulator, uncompress the tgz file and type make in the
resulting alphasim directory to build sim-alpha

tar -xvzf alphasim-1.0.tgz

cd alphasim-1.0

make

The alphasim/tests directory contains compiled test binaries. The simulator uses the Sim-
pleScalar 3.0 Alpha front end emulator, so it can run any binary compiled for the Alpha ISA.
sim-alpha takes command line arguments and also accepts arguments in a file. The simulator can
be compiled in three modes:

1. Normal mode where it includes all Alpha 21264 features. This is the default mode. Type
make <sim-alpha>

2. Flexible mode where the low level features in the 21264 can turned on or off. Type
make flexible

3. Functional debug mode where a functional simulator checks the correctness of the timing
simulator. While running in functional debug mode, early instruction retire should be dis-
abled, and only eio traces, introduced with release 3.0 of the SimpleScalar suite, should be
used. Type

make functional

3 Target Specification

In this section we describe the Alpha 21264 microarchitecture, the Compaq DS-10L Alphaserver
machine we used as our reference machine, the Digital Continuous Profiling Infrastructure tool
from Compaq which allowed us to measure the performance of programs on the native machine,
and the microbenchmarks which helped us isolate errors in sim-alpha.

3.1 Alpha 21264 Overview

The Compaq Alpha 21264 [2] [3] [8] [9] microprocessor was introduced in 1998. It implements the
Alpha architecture, which is a 64-bit load and store RISC architecture. To operate at high clock
frequencies, the 21264 incorporates innovative features such as clustered functional units, merging
the branch target buffer with the instruction cache, and using a set-predict cache. In the following
subsections, we describe the general features of the microprocessor, as well as some of the low level
features, which we have implemented in sim-alpha.

3.1.1 Microprocessor features

The 21264 has a seven stage pipeline as shown in Figure 1. The fetch stage of the pipeline fetches
a set of four instructions from the instruction cache every cycle. It uses the line predictor to get
the address of the instruction to fetch the next cycle. The slot stage of the pipeline statically slots
instructions to sub-clusters on which they can execute. The branch predictor also returns with
a prediction in this stage. The next stage of the pipeline, the map stage, performs renaming of
registers and puts instructions in the issue queues. Instructions issue from the integer and floating-
point issue queues in the issue stage, read their input operands in the register read stage, and
start executing in the functional unit assigned. The instruction outputs are written back in the
writeback stage of the pipeline.

Below we list the main features of the 21264. In sim-alpha, all these features can be configured
with command line parameters, and the default values are those listed in this section.

FETCH SLOT MAP ISSUE - REGISTER READ EXECUTE WRITEBACK
Stage 0 1 ¢ 2 3 ‘ 4 ‘ > : ‘
Cluster 0 (C0)
Bran.Ch Integer Integer Register uo
Predictors | Register Issue File 3 ‘
Map Queue (80) Lo | Addr : Sys Bus
) —| LiData | : S E
: Cache : 64-bit
: Cluster 1 (C1 64 KB :
] : €D _ Bus Interface
Register : 2-way Unit Cache Bus
File Ul : set -
(80) Addr Lol
Ll e
Phys Addr
e E—
R 44-hit
A
Line
Predictor .
L1 Inst. : T e .| FPAdd y
Cache f FP Register ‘ Div/Sqrt Victim
™ 64 KB | FP Issue File : Buff
:| Register Queue 72) : utter
2-way e >~]
Map ‘ i
ot (15) : FP MUL Miss
‘ T 3 Address File

Figure 1: Alpha 21264: Block Diagram (Original diagram courtesy Jim Keller’s Alpha 21264

presentation)

e An issue width of six instructions (4 integer and 2 floating point) during each CPU cycle from
a 20-entry integer issue queue and a 15-entry floating point issue queue.

e An 80-entry reorder buffer for tracking instructions in flight.

e A demand-paged memory-management unit consisting of a 128-entry, fully-associative data
translation buffer (DTB) and a 128-entry, fully-associative instruction translation buffer
(ITB).

e Four integer units with an 80 entry register file. These units are called sub-clusters in the
alpha, and operate on specific classes of instructions. The 80 entry register file consists of 31
architectural registers, 8 PAL shadow registers, and 41 registers for renaming.

e Two pipelined floating-point units. One unit executes adds, divides, and square roots, and
the other unit executes multiplication instructions. The 21264 has 72 floating registers. Of
these, 31 are architectural registers, and 41 are used for renaming destination registers of
instructions in flight.

e A 64KB virtually addressed instruction cache. The cache is two-way set associative with 64
byte blocks. The 21264 uses a set predictor to choose between the two sets on each access.
This ensures single cycle access latency to the I-cache when the set is predicted correctly.

e A virtually indexed, physically tagged dual-read-ported, 64KB data cache. The cache is
two-way set associative with 64 byte blocks. The access time for the cache is 3 cycles.

e A tournament branch predictor which consists of
a) A two level local predictor that has 1024 entries in the first level (indexed by the PC), with
10 bits in each entry, used to index another 1024 entry table of 3-bit saturating counters.
b) A 4096 entry global predictor with 2-bit saturating counters.
c) A 4096 entry choice predictor to choose between local and global predictors with 2-bit
saturating counters.

e An 8-entry victim data buffer.
e A 32-entry load queue.
e A 32-entry store queue.

e An 8-entry miss address file

3.1.2 Low-level features in the 21264

The following paragraphs describe some of the implementation constraints the designers faced
for achieving high clock frequency, and the low-level features they incorporated to achieve high
performance.

In the 21264, the branch predictor takes two cycles to make a prediction. This results in a one-
cycle bubble between the cycle the instruction is fetched and the cycle the prediction is made.
To eliminate this bubble, the 21264 has a line predictor, that effectively acts as a branch target
buffer. Each cycle, the line predictor predicts the I-cache line to be accessed in the next cycle.
When instructions are fetched from the I-cache, the line prediction bits are also fetched along with

the instructions. These bits are used the next cycle to get the next set of instructions. When the
branch predictor completes, the prediction is compared with the line predictor in the slot stage of
the pipeline. For certain classes of control instructions like branches and immediate jumps, if the
branch predictor prediction differs from the line predictor prediction, fetch is re-initiated with the
branch predictor address. The line predictor can store a target for a set of four instructions. In
sim-alpha, using command line parameters, we can vary the number of instructions for which the
line predictor stores a prediction. We can also disable the line predictor, and use a regular btb
instead.

The instruction cache is two-way set-associative. To achieve single cycle access, a way predictor
in the I-cache predicts which set is being accessed in the current cycle. Way prediction gives the
effective access time of a direct mapped cache, although it does result in a 2-cycle bubble on a set
misprediction. The way predictor latency can be varied in sim-alpha.

In the map stage, the processor does not know the number of free registers available to rename
in the current cycle. Hence, it ensures that there are always enough registers available to rename
for the next two cycles by stalling for 3 cycles, whenever the number of free physical registers falls
below 8. After 3 cycles it again evaluates the number of free physical registers, and will stall again
for 3 cycles if the free register condition is still unsatisfied.

The integer execution core is partitioned into two clusters CO and C1. Each cluster has a copy of
the 80-entry physical register file, and two sub-clusters called lower (L) and upper (U), containing
the integer functional units. These sub-clusters are not symmetric, and contain different numbers
and types of functional units. For example, an integer multiply functional unit is present only in
Ul. The register files contain identical values. These is a one-cycle delay to transfer data from
one cluster to another. Thus, dependent instructions can issue during successive cycles only to the
same cluster, and will have to wait one cycle to issue to the other cluster. The 21264 statically
slots instructions to the two sub-clusters in the slot stage to achieve a better load balance, and then
dynamically chooses the cluster during issue. For example, if a fetched octaword contains an add,
amult, a load, and a shift instruction in that order, the slot stage will slot it as LULU to ensure
maximum usage of execution resources. sim-alpha provides command line options for varying the
number of clusters, disabling slotting and clustering, and for setting the value of the cross cluster
delay.

The D-cache in the 21264 has a 3-cycle hit latency. To facilitate faster instruction wakeup on
a cache hit, the 21264 uses a technique called load-use speculation, where it issues instructions
dependent on the load assuming a load hit. If the load misses in the cache, these instructions are
squashed and reissued. In sim-alpha, we approximate load-use speculation by reissuing only the
instructions that are dependent on the missing load.

The 21264 also uses prefetching on an I-cache miss to improve performance. The 21264 can prefetch
four instruction cache lines from the L2 cache on an I-cache miss. Four lines is also the default
prefetch value in sim-alpha. However, the number of lines to prefetch can be varied using command
line parameters. The 21264 has an 8-entry unified victim buffer to cache recently evicted blocks
from the I-cache, D-cache, and L2 cache. sim-alpha caches blocks only from the level-one D-cache
in the victim buffer. The size of the victim buffer can be varied in sim-alpha.

The branch predictor uses an adder to precompute targets of immediate branches. This adder
enables the 21264 to predict targets of immediate branches correctly even if the line predictor is
wrong. The 21264 also has a mechanism called early instruction retire to detect no-ops early in the
pipeline (map stage). These no-ops are retired immediately, and thus do not consume execution
resources. The user can enable or disable the adder and the early instruction retire in sim-alpha.

To enforce correct memory accesses, the 21264 uses order traps. Order traps result in the pipeline
being flushed, and the instruction being restarted from the fetch stage of the pipeline. There are two
main types of order traps: Load-Load order traps and Store-Load order traps. The 21264 invokes
a load trap on a newer load instruction that has been issued before an older load instruction to the
same address. To detect a store trap, the 21264 compares the addresses of all store instructions
as they are issued to loads in the load queue. If the processor detects a newer load to the same
address in the load queue, it invokes a store trap on the newer load. Store traps are necessary to
ensure that loads and stores to the same address happen in program order. Traps are expensive in
terms of performance, the minimum cost being 12 cycles. Hence the 21264 uses special hardware
to reduce the occurrence of store traps. The processor has a 1024 one bit table called the stWait
table, indexed by the PC, to stall issue of loads causing order traps. This bit is fetched from the
I-cache with each instruction. The processor does not issue a load for which the stWait bit is set,
until all previous stores have issued. On a store trap, this bit is set for the faulting load when it is
re-fetched. All bits in the stWait table are unconditionally cleared every 16,384 cycles. The 21264
also has another type of trap called Mbox trap, for ensuring correctness in the memory system.
The Mbox traps also result in a flushing of the pipeline but are triggered by events occurring in the
memory system such as outstanding misses to two loads to same address but different destination
registers, outstanding misses to different physical addresses that map to the same D-cache or L2
cache line, and store queue overflow. The Load-Load order traps and the Mbox traps can be
disabled in sim-alpha. The user can also set the size of the stWait table.

3.2 Compaq DS-10L Alphaserver

We used the Compaq DS-10L Alphaserver to validate sim-alpha. The workstation has a single
21264 processor clocked at 466 MHz, a 2 MB external L2 cache (direct mapped, with 64 byte
blocks), and 256 MB of physical memory. The workstation runs version 5.1 of Compaq Tru64
UNIX. The DS-10L has custom memory controller chips which consists of a single control chip, the
Digital DC1046C, and two chips which act as data switches, the Digital DC1047B. The SDRAM
consists of 16 chips of 8MB each running at 125 MHz and an 8-ns access time. The C compiler on
the DS-10L is version 6.3-025 of the Compaq C compiler.

3.3 Digital Continuous Profiling Infrastructure

The Digital Continuous Profiling Infrastructure (DCPI) [4] for Compaq Alpha platforms permits
continuous low-overhead profiling of entire systems, including the kernel, user programs, drivers,
and shared libraries. DCPI (subsequently renamed Continuous Profiling Infrastructure) samples
the Alpha performance monitoring counters to collect information about each program running on
the system.

DCPI can be used for measuring the frequency of certain events on the Alpha 21064, 21164, and
the 21264. On the 21264, DCPI can measure the number of cycles taken by a program, number

of instructions retired, Mbox traps incurred, number of retired itlb misses, number of single and
double dtlb misses, number of retired conditional branches, and number of retired unaligned traps

DCPI calculated the number of cycles taken by the programs to complete on the native DS-10L
system. This number can then be compared against the number of cycles taken in the simulator,
to compute the simulator error.

3.4 Microbenchmarks

Figure 2 gives a brief description of the microbenchmarks we used for validating sim-alpha. The
first row lists the microbenchmarks we used for testing the front-end such as the line predictor
implementation and the branch predictor implementation. The C infront of the names of these mi-
crobenchmarks signifies that these test control flow. The second row lists the microbenchmarks for
testing the execution core such as the scheduler. The E in the microbenchmark name stands for the
execution core. The last row lists the microbenchmarks for testing the memory system parameters
such as the level-one cache latency, the level-two cache latency, and the main memory latency. The
M here stands for the memory system.A more complete description of the microbenchmarks can
be found in [6] [7]. The source code for all the microbenchmarks can be obtained from the website
listed in Section 2.

C-C:

/* ifthen-else benchmark
which repeatedly toggles
between the if block and the
else block. C-Ca and C-Cb
represent two different
assembly versions of C-C */
for (i=0; i<1000000; i++) {
j=i % 2;
if (1)
p++;
else
I'++;

C-Ca:

and t0,0x1,t2

blt t0, <144:loop_end>
unop

unop

bne t2, <80:else>

addl a1,0x1,a1

br <84:endif>

unop
C-Ch:

and t0,0x1,t2

blt t0, <144:loop_end>

bne 2, <80:else>

addl a1,0x1,a1

br <84:endif>

unop

C-R:

/* A recursive bechmark which

recurs 1000 levels deep */
static int m=0;

void func(int k, int j) {
m=j+Kk;
if (k) return;
else
func(k-1, j);

C-Sn:

/* Switch benchmark to test the
line predictor. Contains indirect
jumps which are taken 1,2, and
3 times */
for (i=0; i<4000000; i++) {
j=1% 10;
switch (j) {
case 0,1,2:
Kk++;
break;
case 3,4,5:
++;
break;
/* repeat case 8 times */

E-l:

/* Series of independent arith-
metic integerops operations */
intk,I, m,n,o0,p,q,r;

for (i O|<250000|++){
k=k+
I—I+|
m=m+h
n=n+i;
0=o0+i;
pP=p+i
Q=g+
r=r+i
/*repeatZOtHnes*/

E-F:

/* Series of independent
arithmetic fp operations */
floatk,l,m,n,0,p,q,r;

for (i O|<250000|++){
k=k+

I=1+

m = |n+|

n=n+i;

0=o0+i;

pP=p+i

q=q+i

r=r+i

/*repeatZOtHnes*/

E-Dn:

/* String of depenedent operations
*/

for (i=0; i<250000; i++) {
a=d+i;
b=a+i
c=b+i
d=c+i;

a=d+i;
b=a+i
c=b+ij
d=c+i

/* repeat n insts 320/n times */

/* Series of independet loads
to L1 data cache */
for (i=0; i<8192; i++)
ali] = i;
for (r=0; r<1500; r++)
for (j=0; i<8191; i++)
j = alil+j;

M-D:

[* Series of dependent loads
to L1 data cache */
for (i=0; i<2047; i++)

a[i] = (int *)&a[i+1];

for (i=0; i<15000; i++) {
b[i] = (int **)a[0];
for (k=1; k<1000; k++)
b = (int **) b[1];

M-L2:

/* Series of dependent loads to L2

cache */
for (i=0; i<131071; i++) {
afi] = (int *) &a[i+1]

for (i=0; i<1500; i++) {
b = (int **)a[7];
for (k=8; k<13105; k+=8) {
b = (int **) b[8];

/* Series of dependent loads to
main memory */
for (i=0; i<524387; i++) {
a[i] = (int *)&al[i+1];
for (i=0; i<1500; i++) {
b = (|nt **) a[7]
or (k=8; k<13105; k+=8)
b = (|nt **) b[8];
= (int **) a[7+262144];
r (k 8; k<13105; k+=8)
= (|nt **) b[8];

Figure 2: Microbenchmarks

Table 1: Microbenchmark Error
benchmark | 21264 IPC | sim-alpha IPC | %error

C-Ca 1.80 1.87 4.3
C-Cb 1.87 0.87 0.6
C-R 2.65 2.66 0.2
C-S1 0.56 0.54 -4.3
C-S2 0.85 0.87 2.5
C-S3 0.95 0.95 0.3
C-Co 1.75 1.68 -4.2
E-I 4.00 3.97 -0.9
E-F 1.01 1.01 0.2
E-D1 1.03 1.04 04
E-D2 2.16 2.01 -7.2
E-D3 2.72 2.71 -0.3
E-D4 2.79 2.90 3.7
E-D5 3.3 3.23 -1.9
E-D6 3.11 3.15 1.3
E-DM1 0.15 0.15 -0.3
M-I 2.98 2.99 0.6
M-D 1.66 1.66 0.3
I-P 1.75 1.83 4.3
M-L2 0.29 0.28 -2.3
M-M 0.06 0.06 -1.8
Mean Abso- 2.0
lute Error

4 Simulator Performance

In this section, we tabulate the error of sim-alpha across our set of microbenchmarks, and a set of
22 macrobenchmarks from the SPECCPU 2000 suite. The error was computed using the formula

% Error = (Cycles on the native machine — Cycles on the simulator) * 100

(Cycles on the native machine)

4.1 Microbenchmark Evaluation

Table 1 shows the results of sim-alpha across our set of microbenchmarks. We can see from Table
1 that the error is less than 5% for all but E-D2. The mean absolute error across our set of
microbenchmarks is 2%.

4.2 Macrobenchmark Evaluation

Tables 2 and 3 show the error for sim-alpha across the SPECCPU 2000 integer and floating-point
benchmarks. From Table 2 we can see that the mean absolute error of sim-alpha, across the integer
benchmarks, is 6.6%. Looking at Table 3 however, we see that sim-alpha shows greater error
across the set of floating point benchmarks. We attribute insufficient modeling of the floating point

Table 2: SPECINT 2000 Error

benchmark | 21264 IPC | sim-alpha IPC | %error

gzip 1.53 1.59 1.71
vpr 1.02 1.06 2.77
gce 1.04 1.17 9.59
mcf 0.60 0.64 15.65
crafty 1.40 1.37 0.68
parser 1.18 1.34 11.30
eon 1.21 1.21 -1.21
gap 0.87 0.97 8.58
bzip2 1.74 1.55 -8.58
twolf 1.10 1.07 -6.30
Mean Abso- 6.64
lute Error

Table 3: SPECFP 2000 Error

benchmark | 21264 IPC | sim-alpha IPC | %error

wupwise 1.58 1.39 -7.47
swim 0.87 0.79 -11.02
mgrid 1.32 0.95 -37.23
applu 1.09 1.15 6.41
mesa, 1.57 1.17 -38.37
galgel 1.45 1.91 24.55
art 0.48 0.85 43.64
equake 1.02 0.84 -24.46
facerec 1.14 1.10 5.99
ammp 0.47 0.55 23.04
lucas 1.57 1.40 -12.32
apsi 0.79 0.93 15.81
Mean Abso- 21.52
lute Error

10

pipeline, and inaccuracies in our memory system implementation to be the source for the error in
the floating point benchmarks [6] [7].

5 Using sim-alpha

sim-alpha supports many of the options found in sim-outorder. It also has a number of new options
to support the 21264 pipeline, and some options found in sim-outorder are not included. The source
code includes a number of new files for modeling the 21264 microarchitecture. In this section, we
describe the various command line options in sim-alpha, and also describe its internal workings.

5.1 Command Line Options
5.1.1 Processor core configuration

All the options in this subsection take an integer argument unless otherwise specified

-mach:freq - Frequency of simulated machine. This is used by system calls like rusage to return
time values consistent with that on a native machine with same frequency.

-fetch:ifqsize - Fetch queue size. The fetch stage stalls if the fetch queue cannot accommodate
fetch width number of instructions.

-fetch:speed - Number of discontinuous fetch width fetches per cycle.
-fetch:width - Number of instructions to fetch each cycle.

-slot:width - Number of instructions which can be slotted per cycle.
-map:width - Number of instructions which can be mapped per cycle.
-issue:intwidth - Number of integer instructions which can be issued per cycle.
-issue:fpwidth - Number of floating point instructions which can be issued per cycle.
-commit:width - Number of instructions which can be committed per cycle.
-fetch:stwait - Specifies size of the stWait table.

-issue:int_reg lat - Integer register read latency.

-issue:fp_reg lat - Floating point register read latency.

-issue:int_size - Integer issue queue size.

-issue:fp_size - Floating point issue queue size.

-reg:int_p_regs - Number of integer physical registers.

-reg:fp_p_regs - Number of floating point physical registers.

-rbuf:size - Specifies the size of the reorder buffer.

-1q:size - Specifies the size of the load queue.

-sq:size - Specifies the size of the store queue.

-res:iclus - Number of integer execution clusters in the processor core.
-res:fpclus - Number of floating point clusters in the processor core.

-res:delay - Minimum cross cluster delay between adjacent clusters.

11

5.1.2 Memory Hierarchy flags
-bus:queuing_delay - Enables delay due to contention in the buses to lower levels of the memory
hierarchy.

-cache:perfectl2 - Simulates perfect level 2 cache.
-prefetch:dist - Number of blocks to prefetch on a level 1 I-cache miss .

-cache:define - <name>:<nsets>:<bsize>:<subblock>:<asso>:<repl>:<lat>:<trans>:<
#resources>:<rescode>

where
<name> - Defines name of the cache.
<nsets> - Specifies the number of sets in the cache.
<bsize> - Specifies the block size of the cache.
<subblock> - Specifies sub-block size of the cache.
<asso> - Specifies associativity of the cache.
<repl> - Specifies the cache replacement policy. Choose from LRU, FIFQO, random, and LFU.
<lat> - Hit latency.
<trans> - Translation policy (vivt, vipt, pipt).
-cache:vbuf_lat - Victim buffer latency.
-cache:vbuf_ent - Number of entries in the victim buffer.
-cache:mshrs - Sets maximum number of MSHRs per cache.
-cache:prefetch_mshrs - Sets maximum number of prefetch MSHRs per cache.
-cache:mshr_targets - Sets maximum number of allowable targets per mshr.

-bus:define - <name>:<width >:< cyclelatency >:< arbitrationpenalty >:<infbandwidth >:<
#resources>:<resourcecode>:<resourcenames>

where

<name> - Specifies bus name.

<width> - Specifies bus width in bytes.

<cyclelatency> - bus latency in terms of processor cycles.

< abitrationpenalty> - Number of cycles for arbitration.

<infbandwidth> - if 1, infinite bandwidth.

<resourcenames> - Name of structure to which this bus connects (eg. L2).
-mem:clock multiplier - ratio of cpu frequency to DRAM frequency.
-mem:page_policy - DRAM page policy (O - open page, 1 - close page autoprecharge).
-mem:ras_delay - time between start of ras command and cas command.
-mem:cas_delay - time between start of cas command and data start.
-mem:pre_delay - time between start of precharge command and ras command.
-mem:data rate - 1 specifies single data rate and 2 specifies double data rate.
-mem:bus_width - width of bus from cpu to dram.
-mem:chipset_delay req - delay in chipset for request path.
-mem:chipset_delay_return -delay in chipset in data return path.

-tlb:define - <name>:<nsets>:<bsize>:<subblock>:<assoc>:<repl>:<hitlatency>:<translation>:<
prefetch>:<#resources>:<resourcecode>
the flags have similar meanings to cache define.

12

5.1.3 Predictor configuration (Line and branch predictor)
-line_pred:ini_value - Initial value of the 2-bit line predictor training counter.

-line_pred:width - Number of instructions for which the line predictor stores a prediction.

-way:pred - Specifies the latency of the way predictor.

The branch predictor configuration supports the following new flags along with those specified
in [1].

-bpred 21264 21264 tournament predictor

The predictor-specific arguments are listed below:

-bpred:21264 - <lIlsize> <I2size> <lhist_size> <gsize> <ghist_size> <csize> <chist_size>

where the different flags are :
<l1size> - the local predictor level 1 table size.
<I2sie > - the local predictor level 2 table size.
<lhist_hist> - the number of history bits in the second level table.
<gsize> - the size of global predictor.
<ghist_size> - number of history bits in the global predictor.
<csize> - choice predictor size.
<chist_size> - number of history bits in the choice predictor.

5.2 Low-level feature configuration

For each of these features, a 1 enables it and a 0 disables it. These features can be made operational
by compiling the simulator with the FLEXIBLE_SIM flag.
-issue:no_slot_clus - 1 disables clustering of functional units.

-slot:adder - Enable/disable the adder for computing targets of PC relative control instructions
in the slot stage.

-slot:slotting - Enable/disable static slotting in the slot stage.
-map:early retire - Enable/disable early instruction retire in the map stage.
-wb:load_trap - Enable/disable load traps.

-wb:diffsize_trap - Enable/disable traps due to loads and stores with different sizes to the same
address.

-cache:target_trap - Enable/disable trap if two loads map to same MSHR target.
-cache:mshrfull_trap - Enable/disable trap if MSHRs are full.

-map:stall - Enable/disable stall of map stage for 3 cycles if the number of free physical registers
to map falls below 8.

-bpred:spec_update - Enables speculative update of the global and choice predictors if 1.
-line_pred:spec_update - Enables speculative update of line predictor if 1.

-load:spec - Enable/disable load use speculation.

13

5.3 sim-alpha internals

This section, describes the internal working of sim-alpha. Since stm-alpha is an execution-
driven simulator, it executes instructions down the mis-speculated path, in the same way an actual
processor would execute them. Thus, sim-alpha can capture the behavior of these mis-speculated
instructions. However, a disadvantage of this approach is that the correct path is known only at
commit time, and hence unlike sim-outorder perfect prediction cannot be simulated easily. Each
stage of the 21264 pipeline is modeled in a separate file, except the register read stage, which is
bundled along with the issue stage. The main loop of the simulator, located in simulate.c, appears
as follows:

while (TRUE) {
eventq_service_events();
commit_stage();
writeback_stage () ;
issue_stage();
map_stage() ;
slot_stage();

fetch_stage();

This loop is walked once for each simulated machine cycle. The simulation is partly event driven.
Before the entering the main loop, the simulator calls the initialization functions for each pipeline
stage. These functions set up the various data structures needed for timing simulation. Like sim-
outorder, if fast-forwarding is enabled, functional simulation is performed till the required number
of instructions are committed, and then timing simulation starts.

The fetch stage of the pipeline is implemented in fetch_stage() and is in the file fetch.c. The fetch
stage accesses the instruction cache, and fetches fetch_width number of instructions per access.
The accesses are always aligned on a fetch_width boundary. The fetch speed determines how many
discontinuous fetches can be performed by the processor per cycle. The line predictor provides the
next I-cache line to fetch.

The slot stage of the pipeline resides in slot.c and is implemented by the function slot_stage().
In the slot stage, instructions are statically slotted to either the UPPER or the LOWER sub-
clusters depending on their position in the fetch packet, and their resource requirements. The
slotting algorithm is implemented as an array slot_instclass2slotclass. The control instructions also
access the branch predictor in this function with a call to bpred_lookup(). For PC-relative control
instructions, the target is computed using an adder. The speculative update of the branch and
the line predictors also happens in this stage. For certain classes of instructions, the slot stage
overrides the line predictor prediction with the branch predictor prediction if they differ. In this
case, the remaining instructions in the fetch queue are squashed, and fetch is restarted the next
cycle by changing regs_PC to the branch predictor target address. We also check to make sure that

14

the fetch is continuous in the absence of control instructions. If not, the fetch is restarted with the
correct PC. However, we don’t charge any penalty here as the 21264 fetch engine can detect the
absence of control instructions the same cycle.

The map stage is implemented in the function map_stage() in map.c. The map stage initially
identifies the input and output registers for the current instruction. It then checks for the availability
of a reorder buffer entry, integer or floating point issue queue entry (depending on whether the
instruction has an integer or floating point destination register), output physical register, and
load or store queue entry if the instructions is a load or store instruction. The map stage then
identifies the input physical physical registers for this instruction, and if these are ready, places
the instruction in the ready queue. Otherwise, the map stage identifies the producer(s) of the
instruction’s operands, and queues the instruction for wakeup, by linking it to the dependence chain
entry of the producer’s reorder buffer entry. Some instructions with destination register 31 are also
retired in this stage as part of early instruction retire. FTOI and floating point store instructions
are queued in both integer and floating point queues. ITOF and floating point load instructions
are queued in the integer queue. The map stage also checks the stWait bit for load instructions,
and if set, it adds these instructions to the dependence chain of the last store instruction before
the current load. CMOYV instructions have three input operands, and these are handled using the
cmovdeps dependence chain. The map stage also assigns a unique inum to each instruction, which
is used for determining its age, for insertion into the ready queue.

The code for the issue stage resides in the file issue.c, and is implemented in the function is-
sue_stage(). The issue stage is responsible for picking instructions from the integer and floating
point ready queues, checking for the availability of functional units, and issuing the instruction to
the functional unit. The register read latency is also charged here. Instructions whose operands
are ready are inserted in the integer and floating point ready queues by the writeback_stage() and
the map_stage(). These instructions also have corresponding entries in the integer and floating
point issue queues. Instructions are ordered in the ready queue strictly by age. Each cycle, the
issue stage issues issue width number of oldest instructions from the ready queues. The issue stage
uses the slotting performed by the slot stage to decide which sub-cluster an instruction should be
issued to. The functional unit code is contained in resource.c. The function res_find_clus() finds
the cluster on which an instruction can execute. The functional unit allocation is less flexible in
sim-alpha than other simulators because of the presence of clusters and sub-clusters in the 21264.
By removing clustering, the functional unit code can be made more scalable. The issue stage also
assigns the appropriate latency for each instruction, depending on its type. The issue stage finally
sets up events to free the instruction entry in the integer and floating point queues 2 cycles after
issue, and to signal completion of the execution of this instruction.

The writeback stage implemented in writeback_stage() is responsible for waking up the depen-
dent instructions when a producing instruction completes. This function is contained in the file
writeback.c. In the simulator, the functional execution of the instruction also takes place in
this stage. The writeback stage picks up completed instructions from the event queue, and walks
their dependence chain marking the pertinent operands of dependent instructions ready. If all the
operands of an instructions are ready, the routine inserts this instruction into the ready queue. The
writeback stage also sets the completed flag in the reorder buffer entry for these instructions. The
targets for control instructions are resolved, and mis-predictions are indicated in the corresponding

15

reorder buffer entry, along with the correct target. Load instructions access the D-cache, and store
instructions are marked as ready to access the D-cache during commit.

The commit stage in commit_stage() is responsible for retiring instructions from the reorder buffer.
The commit.c contains the code for this function. Every cycle, the commit stage retires com-
mit_width number of instructions. As in the 21264, the commit stage does not retire past a branch
in one cycle. The commit stage examines the head of the reorder for mis-predictions and traps, and
flushes the pipeline by calling commit_flush_pipeline() if the instruction caused a mis-predict or a
trap. Otherwise, it retires the instruction, and updates the architectural register file. The commit
stage also sends the store instructions to the D-cache.

sim-alpha incorporates a detailed memory system with support for a multi-level cache hierarchy,
address translation, bus contention, and an SDRAM memory model. The memory code is mostly
event driven, and is scheduled by the global event queue contained in eventq.c. At the beginning
of each cycle, the eventq_service_events() function checks for memory operations completing that
cycle. The files cache_timing.c, tlb.c, bus.c, memory.c, and dram.c contain most of the
memory timing code for sim-alpha.

6 Summary

sim-alpha provides a flexible, validated baseline for researchers to evaluate new architectural en-
hancements. By incorporating many of the constraints found in a real implementation, sim-alpha
provides a lower-level point of comparison to measure trends. The option to turn off these con-
straints, provides the researcher with the ability to remove the features which might interfere with
the evaluation of new higher-level ideas, while retaining the low level features which are orthogonal
to the idea being evaluated. Future work on sim-alpha may include reducing floating point bench-
mark errors and building a more flexible functional unit model. Future work may also include
building a more accurate memory system, and measuring error using scientific and multimedia
workloads.

References

[1] D. Burger and T. M. Austin. The simplescalar tool set version 2.0. Technical Report 1342,
Department of Computer Sciences, University of Wisconsin-Madison, June 1997.

[2] Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Reference Manual,
July 1999.

[3] Compaq Computer Corporation. Compiler Writer’s Guide for the Alpha 21264, 1999.

[4] Compaq Systems Research Center. Digital Continuous Profiling Infrastructure project.
http:/ /www.research.digital.com/SRC/dcp.

[6] Compiler and H. P. Architecture Research Group. Trimaran, an infrastructure for research in
instruction-level parallelism. http://www.trimaran.org/.

16

[6] R. Desikan. Design and validation of an accurate microprocessor simulator. Master’s the-
sis, Department of Electrical and Computer Engineering, The University of Texas at Austin,
December 2001.

[7] R. Desikan, D. Burger, and S. W. Keckler. Measuring experimental error in microprocessor
simulation. In Proceedings of the 28th Annual International Symposium on Computer Archi-
tecture, pages 266277, June 2001.

[8] R. Kessler. The alpha 21264 microprocessor. IEEE micro, 19(2):24-36, Mar 1999.

[9] R. Kessler, E. McLellan, and D. Webb. The alpha 21264 microprocessor architecture. In
Proceedings of International Conference on Computer Design, pages 90-105, October 1998.

[10] V. Pai, P. Ranganathan, and S. Adve. Rsim: A simulator for shared-memory multiprocessor
and uniprocessor systems that exploit ilp. In Proceedings of the 3rd Workshop on Computer
Architecture Education, 1997.

[11] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete computer simulation: The
SimOS approach. In IEEE Parallel and Distributed Technology, 1995.

17

