
Memory-Centric Architectures: Why and Perhaps What

Doug Burger and James R. Goodman

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

{dburger,goodman}@cs.wisc.edu

Relative to computation, the costs of communication in computer systems are growing with each new generation of tech-
nology. This trend applies to both communication within the processor chip and communication between the processor and
the rest of the system. Communication within the processor is growing more expensive as the RC (resistive-capacitive)
delays of the on-chip wires scale poorly compared to the processor clock and transistor switching speeds. Communication
off of the processor chip grows more expensive as long memory latencies and limited bandwidth (across the memory bus
and the processor package) inhibit performance gains.

Long communication delays between system resources force the partitioning of resources, which should do as much
work as possible within each partition, communicating with remote resources infrequently. As communication latencies
climb, the extent to which resources must be partitioned will grow correspondingly. We view partitioning as occurring in
four stages: computation, instruction fetch, control flow, and memory. The first partitioning to occur on-chip has been func-
tional unit clusters (as in the DEC Alpha 21264 and other proposed architectures). Although the actual computation is par-
titioned, instruction fetch and control flow remain centralized. The Multiscalar architecture (and subsequent derivations,
such as the trace processor) partition the instruction fetching as well, while retaining a single logical flow of control. Chip
multiprocessor architectures (such as the Stanford Hydra) take distribution one step further, partitioning the control flow.
These partitioning models all assume that the computational core is centralized, isolated from the system memory. The
fourth partitioning in this conceptual framework is memory, in which each of the partitioned unit “owns” a fraction of the
system’s physical memory. It is this level of partitioning that we argue is the right model for the longer-term future, where
performance will be dominated by communication overheads.

Distributing processors to regions of memory necessitates partitioning the problem and decomposing the data to the par-
titioned regions. Both can be hard to do well statically; some codes lend themselves well to one or both, while others are not
amenable to static analysis. If the problem partitioning does not match the data decomposition, extremely poor program
performance will result. When both problems cannot satisfactorily be addressed statically, we propose to partition the pro-
gram dynamically based on the given data decomposition. It is this concept that forms the basis of what we call memory-
centric architectures.

We have proposed two such architectures; DataScalar and DDT. DataScalar architectures use massively redundant com-
putation to improve communication performance. In a DataScalar architecture, physical memory is divided into distinct
regions, each of which is coupled with a processor. All processors execute the same program (asynchronously), performing
all of the program’s computation redundantly. Furthermore, all communication consists of sends; whenever a processor
reads an operand from its local memory, it broadcasts that operand to all other processors. No processor thus ever sends a
remote request for data; all non-local data it needs are broadcast by the owners of those data. Thus all communication is one
way; remote writes are never sent (since all processors generate all store values). Furthermore, individual processors may
run ahead on data dependences found locally, thus effectively prefetching down that dependence chain for the other proces-
sors. Our simulation results show 9% to 100% performance improvements on a four-node DataScalar system running
SPEC95.

The second memory-centric architecture that we describe here is called DDT, for Dynamic Data Threads. In a DDT
machine, the memory is distributed among multiple processors, as with a DataScalar architecture, but computation along a
local dependence chain occurs uniquely at one node. When a data dependence spans nodes, the source register value is
broadcast to all processors, and the intermediate instructions are squashed at all processors except for the owning processor
that executed them. Three techniques can benefit dynamic data threads:computation updating (described above); control
updating, in which a processor ahead of the others sends a point at which the others should resume control flow; andspecu-
lation throttling, in which processors speculate down multiple pathsonly on data they find locally (inter-processor depen-
dences thus throttle speculation). DDT architectures can benefit from other support, such as static and run-time software
support, tagged instructions, and memory system support (allowing a finer-grain naming and migration of data than the
granularity of a page).

Increasing communication costs will force microprocessor-based systems to be more and more partitioned. We argue
that this partitioning must eventually include the system memory, and that for codes that are hard to analyze statically, the
problem partitioning will be done dynamically, based on the data decomposition. We call such architecturesmemory-cen-
tric, and describe two (DataScalar and DDT) that are evolutionary first steps in this unconventional direction.


