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Abstract

 Parallel simulation is emerging as the dominant
technique for studying parallel computers. However, the
interconnection networks of these machines can be
modeled at many different levels of abstraction, allowing
researchers to trade off accuracy and performance. In this
paper, we use the Wisconsin Wind Tunnel, a parallel
simulator for cache-coherent shared-memory machines, to
study the trade-offs of accuracy versus performance for
six different network simulation models. We evaluate these
models for a variety of parallel applications, cache-
coherence protocols, and topologies. We show that only
the two most expensive models—which model contention
at individual links—are robust in the presence of high
network loads or non-uniform traffic patterns.

1  Introduction

Simulation has long been the dominant technique used
to study the hardware, software, and hardware/software
interactions of both current and proposed parallel
machines [4, 5, 10]. Hardware designers use it to evaluate
correctness and performance of new designs; software
developers use it to develop codes for non-existent and
non-accessible machines; computer architects use it to
evaluate and refine the hardware/software interface.

Parallel simulations of parallel computers have recently
become widely used to accelerate these studies [6, 10, 18].
These systems exploit the inherent parallelism of the sys-
tem under study (thetarget) by simulating it on an existing
parallel machine (thehost). They can be orders of magni-
tude faster than sequential simulators [11, 18], permitting
researchers to evaluate system-level performance by run-
ning real applications on real data sets.

 Unfortunately, all simulations must balance the need
for simulation accuracy versus the desire for good simula-
tion performance. Closer modeling of target system details
by a simulator will produce more accurate results but will
result in a slower simulation. This trade-off is particularly
distinct when modeling the interconnection network of a
parallel computer. At one extreme, a software engineer
doing initial program development for a hypothetical
machine cares only for a functionally correct simulation,
not accurate performance estimates. At the other extreme,
hardware designers implementing the interconnection net-
work router require cycle-by-cycle simulation to under-
stand the detailed interactions within their design.

Between these two extremes lies a wide range of stud-
ies where the trade-off between simulation speed and
accuracy is less clear: application performance tuning,
memory system design, cache-coherence protocol design,
etc. If given a choice of network models, a researcher
would presumably choose the fastest simulation model
that gives “sufficient” accuracy for the given study. Unfor-
tunately, without sufficient data on these trade-offs,
researchers must either be conservative, and select a
slower algorithm than necessary, or risk incurring unac-
ceptable error.

To illustrate the potential pitfalls, consider our recent
study of cache-coherence protocols using a parallel com-
puter simulator [21]. The simulation assumed a simple
point-to-point network with constant message delivery
time (theC100 model described below). The results using
this simulation indicate little performance difference
between the simplerdir1SW+ protocol and the more
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complicateddirNNB protocol, for most applications. As
Table1 shows, the more complex protocol is only 3-6%
faster thandir1SW+ for two applications, and 26% faster
for the poorly behaved Ocean application1. However,
using a more accurate network model (theBaseline
model described below) for a 2-dimensional mesh indi-
cates a significantly greater difference. ThedirNNB pro-
tocol is actually 10-12% faster thandir1SW+ for Barnes
and Appbt, and 63% faster for Ocean. While these results
do not invalidate the conclusions of that paper, they sug-
gest that the simpler protocol will not scale to larger sys-
tems with 2-dimensional meshes.

In this paper, we explore the simulation trade-off of
accuracy versusperformance, with the intent of under-
standing when simple network models are sufficient and
when slower, more detailed models must be used. We use
the Wisconsin Wind Tunnel (WWT)—a system for simu-
lating cache-coherent, shared-memory multiprocessors
using a parallel message machine [18]—to evaluate and
compare six network models, for a variety of parallel
applications, network topologies, and cache-coherence
protocols. The six network models range from very fast to
very accurate:

• C100: the original WWT model which assigns a con-
stant 100 cycle delay to every message, independent of
network topology, system size, and other network traf-
fic.

• CMean: assigns a constant delay equal to the mean
message time for a particular application, protocol,
topology, and system size (as measured by a previous
run of theBaseline simulator, below).

• Free: assigns a variable delay to account for network
topology (i.e., number of hops) and message length,
but ignores possible network contention.

• Random: adds a random delay, representing conten-
tion, to the variable delay of theFree model.

1. We do not use thecheckin andcheckout annotations [21], which
significantly improve the performance of Ocean.

Network Model Appbt Barnes Ocean

C100 1.03 1.06 1.26

Baseline 1.10 1.12 1.63

Table 1.  Relative protocol performance for two
network simulations

This table compares the relative performance of
two cache coherence protocols, dir1SW+ and
dirNNB, for each of two network simulations, C100
and Baseline. The values are the logical execu-
tion time of dir1SW+ divided by the run time of
dirNNB.

• Approximate: a distributed approximate simulator
that accurately models channel utilization for each net-
work node and uses past global information to estimate
local contention and message ordering.

• Baseline: a detailed centralized event-driven simu-
lation that accurately models network contention.

Our results quantify the intuitive trade-off between
accuracy and performance. The “exact”Baseline simu-
lation runs an average of 10 times slower than the original
C100 model. Conversely, theC100 model has an average
error (with respect to theBaseline model) of 12%, and
over 20% error in several cases. The other models provide
a continuum between these two extremes; for example, the
Random model achieves mean error less than 5% while
running an average of 2.5 times slower thanC100.

However, our results also indicate that non-uniform
traffic patterns (e.g., broadcasts), can introduce significant
error if a model does not accurately account for conten-
tion. For example, despite its low mean error, we observed
thatRandom has over 20% error for several combinations
of application and cache coherence protocol that cause
many broadcasts.

We show that theApproximate model—which esti-
mates contention for each network link—is much more
robust than these simpler models: 33 of 36 cases have
error less than 5% and the remaining three—all of which
exhibit heavy broadcast traffic—incur error less than 10%.
The price for this increased accuracy is, of course, perfor-
mance: theApproximate model runs five times slower
than theC100 model, on average. For the 32-node sys-
tems studied,Approximate is only a factor of 2 faster
than the centralizedBaseline simulator. However,
becauseApproximate estimates the contention in paral-
lel, it will scale to larger systems whileBaseline will
not.

The next section describes the parallel simulation envi-
ronment, target system assumptions, and workloads.
Section3 qualitatively discusses the trade-off between
simulation accuracy and performance, and describes the
six simulation schemes in detail. Section4 presents the
simulation results and discusses the quantitative trade-
offs. Finally, Section5 summarizes the results.

2  Background

2.1  Parallel simulation environment

The Wisconsin Wind Tunnel (WWT) provides an
abstraction of a user-specified parallel machine which
directly executes application binaries [18]. A software
layer implements this abstraction on a commercial hard-
ware platform (a Thinking Machines CM-5). Given an



3

application, topology, protocol, and network model, WWT
calculates the logical execution time (in cycles).

WWT achieves good simulation performance for two
reasons. First, direct execution, in which a target instruc-
tion is “simulated” by executing the identical host instruc-
tion [7], allows most target instructions to execute at the
speed of the underlying host hardware. WWT uses a fine-
grain extension of shared virtual memory [17] to directly
execute all load and store instructions (excluding instruc-
tion fetches), rather than just computation instructions.

Second, WWT exploits parallelism by simulating each
target processor node on a separate host node. WWT uses
a conservative synchronous discrete-event simulation
algorithm [15, 16, 20] to insure causal event ordering
between nodes [12]. This algorithm allows each node to
directly execute instructions within a fixed-length quan-
tum (also called a fixed-time window or time bucket [20]).
At the end of a quantum, the host nodes must synchronize
to ensure that all target messages have arrived, so that
events that must be processed in the next quantum are
properly ordered. This is illustrated in Figure1: messages
sent during quantumQi are guaranteed to arrive before the
barrier synchronization  completes [14].

The performance of WWT is very sensitive to the quan-
tum length,QL, the number of target system cycles simu-
lated between barriers. As the quanta shrink, the overhead
of initiating direct execution—essentially a context
switch—dominates the simulation time. This is graphi-
cally illustrated in Figure2, which shows that simulation
performance decreases by a factor of 5–6 as the quantum
length decreases from 100 cycles to 5 cycles. This slow-
down is caused both by increased synchronization over-
head and by an increase in load imbalance between the
host nodes.

Clearly, we would like to simulate using large quanta;
unfortunately, the maximum quantum length is limited by

Si

the speed and topology of the target network. To insure
causality, the quantum length must be less than or equal to
the minimum (logical) time that one target node may
affect the simulation state of another.

The original version of WWT achieves a relatively
large quantum (100 target cycles) by using a very simple
topology-independent network model. This model ignores
all network details and assigns messages a fixed end-to-
end latency from any node to any other. However, because
this simple model ignores network topology, contention,
and other important factors, we have no guarantees that it
accurately represents any real network.

2.2  Network assumptions

In the central focus of this paper, we compare a detailed
“baseline” simulation against a set of increasingly approx-
imate simulations. The baseline model takes into account
not only system size and topology, but also details of the
router implementation such as channel width, buffer sizes,
and transmission delay.

The topology-dependent simulators used in this study
are general enough to modelk-ary n-cubes of arbitrary
dimensionality—which include meshes, cubes, tori, and
hypercubes—and fat-trees of arbitrary degree [14]. A fat-
tree is av-ary tree in which the aggregate bandwidth
remains constant at each level; each internal (non-leaf)
node hasv children and a logical link to its parent withv
times the bandwidth of each child link. In practice, multi-
ple physical nodes (with constant bandwidth on each link)
are grouped together to form logical internal nodes.

The implementation-dependent simulations assume
network routers loosely based on the Torus routing chip

Figure 1. Quantum-based synchronization

Target messages sent at logical time T in quantum Qi are
scheduled as simulation events at logical time T + QL.

Qi Si Qi+1

Node j

Node k

Time

Qi = ith quantum

Si = ith synchronization

QL = quantum length

T

T+QL

Message from j to k

Scheduling of
message receipt

Figure 2. Effect of quantum length on
simulation time

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100
Quantum Length

S
lo

w
do

w
n

appbt

barnes

ocean




4

[8]. The Torus chip implements wormhole routing, where
a message is broken into flow control digits, orflits, which
are forwarded to an output channel as soon as it becomes
available. A channel isacquired by the first flit in a mes-
sage (the header) and isrelinquished only after the last flit
(the tail) passes through. Since a message can simulta-
neously occupy multiple channels on different routers,
other messages may block waiting for a message to relin-
quish a channel.

In the k-ary n-cube topologies, messages use simple
dimensional routing: each message is routed as far as nec-
essary along each successive dimension, from the lowest
dimension to the highest. In fat-tree topologies, messages
are routed pseudo-randomly up the tree to the lowest com-
mon ancestor of the source and destination nodes, and then
deterministically down the unique path to the destination.
Deadlocks are prevented by providing a total ordering of
physical channels, preventing cyclic blockage in the net-
work [9].

Other differences with the Torus chip are: synchronous
(rather than asynchronous) handshaking, unidirectional
(rather than bidirectional) channels, and the network inter-
face chip, which connects the CPU to the network. The
network interface chip is modeled as a physical channel
that experiences contention in the same manner as router
channels. While these differences were introduced to sim-
plify the simulation, the resulting target network repre-
sents a point in the design space which is both feasible and
reasonable. We assume 8-bit flits, each channel buffers up
to four flits, and can transmit one flit per cycle. There is a
one cycle delay to resume the sending of a buffered mes-
sage after it has been blocked. Message headers require 12
bytes.

2.3  Target system parameters

To evaluate the accuracy and performance of the vari-
ous network simulators, we use the Wisconsin Wind Tun-
nel to model a cache-coherent shared-memory
multiprocessor. All simulations assume that each process-
ing node consists of a CPU, a 256-kilobyte 4-way set-
associative data cache, a network interface, and a portion
of the logically shared memory. A directory-based coher-
ence protocol is used to maintain a sequentially consistent
view of shared memory.

We vary three system parameters: network topology,
cache coherence protocol, and workload. The interconnec-
tion network is one of ak-ary 2-cube,k-ary 3-cube, 2-ary
fat tree, or 4-ary fat tree. The directory-based coherence
protocols are:

• dirNNB — an all-hardware protocol which maintains
a directory pointer for each cache in the system (e.g.,
a bit vector).dirNNB sends exactly the number of

invalidation messages needed when a cache requests
an exclusive copy [1].

• dir1SW — a hybrid hardware/software protocol
which maintains one hardware directory pointer
which doubles as a counter for more than one sharer.
dir1SW traps to a software handler when it must
send invalidation messages and sends broadcast inval-
idations when there is more than one sharer [13].

• dir1SW+ — an improved version ofdir1SW that
optimizes the cases when there is only one copy of a
cache block [21], eliminating a large fraction of the
traps incurred bydir1SW.

2.4  Benchmarks

The three benchmarks used for this study were Appbt,
Barnes, and Ocean. Appbt is a locally parallelized version
of a NAS Parallel Benchmark [3], and Barnes and Ocean
are members of the SPLASH Benchmark suite [19]. We
chose these three benchmarks because they exhibit very
different communication patterns.

Appbt is a computational fluid dynamics program that
solves multiple independent systems of non-diagonally
dominant block tridiagonal equations. The block sizes are
5x5, since the solution requires 5 independent linear equa-
tions. The data in the cubic domain are partitioned into
subcubes, each of which is assigned to a different proces-
sor. Communication occurs only on the boundaries of the
domain subcubes. Two processors share points on the
faces of the subcubes, four share points on the edges of the
subcubes, and eight share points on the corners of the sub-
cubes.

Barnes is a gravitational N-body simulation that uses
the Barnes-Hut algorithm. The bodies are stored in an (8-
ary) oct-tree, the nodes of which are partitioned dynami-
cally across all available processors. Spatial proximity
provides no guarantee of processor proximity. The sharing
patterns are very irregular due to their dynamic nature.

Ocean is a hydrodynamic simulation that models a two-
dimensional cross-section of a cuboidal ocean basin. The
main data structures are two-dimensional arrays, which
are divided up into columns and assigned in sequences to

Benchmark
Shared
misses

Cycles/
shared miss

Sharers/
line

Appbt 907551 3840 1.04

Barnes 396008 4704 6.48

Ocean 3612652 832 1.01

Table 2: Benchmark communication patterns
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individual processors. All sharing occurs between 2 pro-
cessors which hold adjacent columns (boundary columns).

Table2 shows communication statistics for the three
applications: the number of misses to shared data, the fre-
quency of misses to shared data (per processor), and the
mean number of sharers when a cache line is upgraded
from shared to exclusive state. To obtain these numbers,
the applications were run with thedir1SW+ protocol, the
C100 network model, and 32 target processors.

3  Network simulation models

Parallel computer simulators like the Wisconsin Wind
Tunnel exploit direct execution and parallelism to both
efficiently and accurately model the CPU and memory
system. Ideally, we would like to apply these techniques to
simulate interconnection networks with the same levels of
accuracy and performance.

Direct execution improves simulation performance by
using an underlying host operation to “simulate” a target
machine operation. Thus, since WWT uses the CM-5’s
network to send target messages, it is tempting to claim it
directly executes them. However, direct execution has two
distinct steps: (i) simulate the functionality of the target
operation and (ii) calculate the target execution time. For
CPU instructions, WWT achieves the second by instru-
menting the executable file to advance the logical clock by
an appropriate number of ticks. This static analysis is suf-
ficient to accurately model most current processors, even
superscalar processors1. Unfortunately, the delivery time
for a message depends upon what other messages are in
the network, and hence cannot be calculated statically.

Efficient parallel simulation of interconnection net-
works is also difficult. Conservative discrete-event simula-
tion algorithms achieve parallelism by exploiting
lookahead, the minimum (logical) time before one node
can affect the state of another. By never simulating past
the current lookahead time, conservative algorithms
ensure that simulation events are simulated in the correct
order, and the simulation obtains “exact” results. Unfortu-
nately, for the general class of wormhole-routed networks,
this lookahead time is no more than one or two cycles (the
hop-to-hop flit transmission time). As discussed in
Section2.1, shrinking the quantum size to this level obvi-
ates most of the advantages of directly executing CPU
instructions.

An optimistic simulation algorithm, on the other hand,
can simulate beyond the lookahead time, but must rollback
the simulation state whenever it detects that simulation
events are processed out of their logical time sequence
(i.e., a causal violation). Optimistic algorithms offer supe-

1. As dynamic scheduling techniques—such as dynamic branch predic-
tion—become more popular, static analysis may prove insufficient.

rior performance when rollbacks are infrequent and the
overhead of saving and restoring target state is sufficiently
small. Unfortunately, preliminary analysis indicates that
rollbacks would be frequent in network simulation: for
some applications, over half of all messages see some con-
tention, and hence might require rollback. Furthermore,
rolling back a direct-execution simulation requires fre-
quent, expensive checkpoint operations to save the proces-
sor state. Consequently, we do not consider optimistic
algorithms in the remainder of this paper.

Instead of focusing on making exact simulation fast,
this paper examines a set of approximate network models.
A central tenet of this paper is that most users of parallel
computer simulators do not require exact interconnection
network simulation. They are either ambivalent about per-
formance, or they care mostly about relative (rather than
absolute) performance. For example, consider the devel-
opment of a new cache coherence protocol. During the ini-
tial debugging stages, the designer does not care about
accurate performance measurements. Even during evalua-
tion, accurate relative performance (i.e., protocol A is 10%
faster than protocol B) is much more important than accu-
rate absolute performance (i.e., protocol A takes 9 seconds
and protocol B takes 10). A fast simulator that provides
accurate relative performance is much more valuable than
a slow, exact simulator.

In this paper we examine the accuracy versus perfor-
mance trade-offs for six different network simulators.
There is no single “best” network model, but rather a
range of alternatives, from which users can chose a partic-
ular accuracy/speed ratio. Of course, some models will be
clearly superior to others for a given speed or accuracy,
but no one model supersedes all others. We study three
general categories of network models, listed in order of
increasing accuracy and decreasing performance:

• Constant latencies

• Variable, analytically-generated latencies

• Detailed simulations

The remainder of this section describes these schemes
in more detail.

3.1  Constant latency models

The simplest approximation, used in the original ver-
sion of the Wisconsin Wind Tunnel, assigns a constant
end-to-end latency to each message, independent of the
distance between source and destination nodes. Since no
computation is needed to determine the latency, this model
incurs the minimum possible overhead. In addition, the
lookahead (and hence the maximum quantum length) is
equal to the constant network latency. Since the constant
approximates the mean message latency, the quanta are
generally much larger than for more accurate schemes,
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which have lookahead no greater than theminimum net-
work latency.

While constant models obviously ignore network con-
tention, they may still provide reasonable results if we
select a good constant. The right constant depends upon
the target’s architectural parameters and the application’s
communication behavior. No single constant will provide
accurate results for both a lightly-loaded network and a
heavily-loaded network.

We consider two constant latency models:C100 and
CMean. C100 is the original network model of WWT,
where the constant is 100 target cycles, independent of
application, topology, protocol, and system size.CMean
uses “perfect knowledge” (obtained from theBaseline
simulator, described below) to use the mean message
latency for a given application, topology, protocol, and
system size. This model is impractical because it performs
a slower, more detailed simulation simply to obtain its
parameter, however, it provides an indication of the best
we can do with a constant model.

3.2  Variable (analytic) latency models

Variable latency models analytically compute latencies
for each message, taking into account the distance from
source to destination and possibly using local or past
information to estimate contention. Variable latency mod-
els will generally be more accurate than constant models,
because they explicitly account for network topology and
correctly predict that messages to distant nodes take
longer than those to neighboring nodes. These models will
still not account for non-uniform access patterns, and the
potential resulting contention.

The variable models will not run as fast as the constant
models for two reasons. First, they must calculate the mes-
sage latency for each message. Second, and more impor-
tantly, the quantum length must be less than or equal to the
minimum message latency (15 cycles on our target sys-
tems). The increase in synchronization overhead and load
imbalance will significantly degrade performance.

We examine two variable latency models in this study.
Free assumes contention-free communication, where the
message latency is the sum of the message length (in flits)
plus the distance in network hops times the number of
cycles to transmit a flit1.

TheRandom model simply adds a random variable—
to estimate contention—to the contention-free latency.
Contention is modeled using a 2-stage hyperexponential
distribution, given the squared coefficient of variation and
the mean contention [2]. These parameters are obtained by
performing aBaseline simulation for the given applica-

1. We assume that messages must completely arrive at the destination
node before they affect the state of the system.

tion, topology, and protocol. ThusRandom incorporates
“perfect knowledge” in the same way asCMean. More
detail is provided in AppendixA.

3.3  Detailed simulation models

Detailed simulations, which model the utilization of
individual channels in the interconnection network, are
potentially much more accurate than the simpler constant-
and variable-latency models. The simpler models do not
account for the contention caused by non-uniform traffic
patterns, e.g., hot-spots, localized communication, and
distinct communication and computation phases.

However, because of the vastly greater bookkeeping
and communication requirements of these models, they
also incur much higher overheads. More importantly,
because they model internal details of the network routers,
they require a short quantum length to run in parallel. Gen-
eral wormhole routers, which may multiplex two or more
virtual channels per physical channel, require a quantum
length of one cycle. This worst case occurs because at any
given cycle, a message may arrive for a higher priority vir-
tual channel, preempting another message. This not only
affects the delivery time of the preempted message, but
also any messages that are waiting for channels held by
the preempted message.

Simulating with single cycle quanta is prohibitively
slow on the Wisconsin Wind Tunnel2. To provide greater
lookahead—as described in Section2.2—we do not multi-
plex virtual channels onto physical channels. This restric-
tion allows the simulator to calculate the time at which a
channel is relinquished as soon as there is sufficient buffer
space between the channel and the header flit to hold the
entire message. Since the message does not affect the des-
tination’s state until the last flit arrives, this property pro-
vides lookahead—at the destination node—proportional to
the minimum message size.

We exploit this lookahead property in two detailed sim-
ulators.Approximate is a distributed simulation that
accurately models the utilization of individual channels,
but sacrifices exact message ordering for improved perfor-
mance.Baseline uses a centralized simulator to accu-
rately model all details of the network routers and
contention.

3.3.1  A distributed approximation

Disallowing multiplexed virtual channels provides
increased lookahead for the calculation of the message
completion but it does not provide adequate lookahead to
simulate network nodes in parallel. Early calculation of

2.  WWT could be extended to support short quanta for network simula-
tion and long quanta for processor simulations, but such an extensive
modification is beyond the scope of this study.
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message completion improves end-to-end lookahead,
because a message does not affect a processing node’s
state until the tail flit arrives. However, network router
nodes are affected by the header flit, and hence still have
only single cycle lookahead.

We have developed a distributed approximate scheme
(described more fully in AppendixB) that decouples the
behavior of the network routers along a message’s path.
Each node estimates the local contention seen by the mes-
sage, usingno information from previous hops along the
path. By eliminating the dependencies between intermedi-
ate hops, the lookahead increases to the minimum end-to-
end message traversal time. This introduces error, as the
header arrival time at each intermediate time becomes an
estimate. The original message ordering along intermedi-
ate nodes is also lost. We expect that this model will per-
form accurately for networks that are not too heavily
loaded. This model is also scalable to simulation of larger
systems, as the network simulation messages and compu-
tation are completely distributed.

3.3.2  Baseline simulation

The Approximate scheme sacrifices exact conten-
tion calculations to simulate network nodes in parallel.
TheBaseline simulator, conversely, sacrifices parallel-
ism to compute contention exactly. By centralizing the
network simulation,Baseline can exploit the message
length lookahead provided by the restriction on multi-
plexed channels in the target network. Target nodes send
all messages to the centralized network simulator, which
exactly models all network traffic and contention before
forwarding the message and the correctly calculated
arrival time to the destination node. As with all simulation,
assumptions are made inBaseline that introduce dis-
crepancies with the results that would be obtained from an
actual network. However, we believe that the error result-
ing from the assumptions is negligible. AppendixC
describes the simulation algorithm in more detail.

The fundamental disadvantage ofBaseline is clearly
the centralization of the network simulation. In addition to
reducing overall simulation performance, this scheme
becomes a more severe bottleneck as the simulated target
system grows larger, making long simulations infeasible.

4  Results

In this section, we compare the accuracy and perfor-
mance of the six simulation schemes for the applications,
topologies, and protocols described in Section2. As illus-
trated in Figure3(a), our results indicate that there is a
clear trade-off between accuracy and performance. This
figure plots meanslowdown—a measure of perfor-
mance—on the x-axis against mean percent error—a mea-

sure of accuracy—on the y-axis. The slowdown for
simulation modelX is defined as the CM-5 run-time for a
simulation using modelX, divided by the CM-5 run-time
for a simulation using the Wisconsin Wind Tunnel’s origi-
nal C100 model. Similarly, percent error compares the
logical time for modelX to the logical time forBase-
line. The horizontal dotted line marks 5% relative error,
an estimated level of accuracy that we believe is necessary
for many system performance studies (e.g., cache coher-
ence protocols).

Figure3(a) illustrates that the six models provide a
wide range of accuracy and performance. The Baseline
simulation runs an average of 10 times slower than the
original C100 model. At the other extreme, theC100
model has an average error of 12%. The other models rep-
resent additional points in the continuum, allowing
researchers to balance their need for accuracy against their
desire for performance.

BothCMean andRandom have average accuracy at or
below the 5% threshold and achieve reasonable perfor-
mance.CMean incurs a slowdown of 1.5, while Random,
which is somewhat more accurate, has a slowdown of 2.5.
Unfortunately, to achieve this accuracy, both models
require “perfect knowledge” of the mean latency or mean
contention, respectively. In practice, additional error will
be introduced when researchers estimate these values
incorrectly. TheFree model does not require any external
parameters, but incurs an average error of 7%. Since it
exactly computes the minimum delivery time for each
message, the error is introduced by the failure to model
contention.

The problem with these simple models is illustrated in
Figure3(b). Even though the mean error is low, several
combinations of application, topology, and protocol incur
significantly greater error: for example, even with perfect
knowledge of the mean contention,Random underpre-
dicts the logical time by over 20% in two cases. The fac-
tors that contribute to this error can be seen—by
exclusion—in Figure3(b and c). The figures show that
none of the extreme error cases occur with the applications
Barnes and Appbt or thedirNNB cache coherence proto-
col. Consequently, the large errors are caused by the inter-
action between the application Ocean and the broadcast-
based protocols (dir1SW and dir1SW+). The simpler
models all have a fundamental problem with broadcasts,
because they implicitly assume uniform traffic loads and
broadcast is inherently non-uniform.

Figure3(e) plots error against offered load, the average
number of flit-hops (message length times number of net-
work hops) each processor injects per cycle. The data
clearly show that for low offered load, all simulation mod-
els attain good accuracy. This follows for the obvious rea-
son that the lower the offered load, the less effect network
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Figure 3. Comparison of error vs. slowdown and load

Graphs (a)-(d) show the error in logical time produced by different network simulation models. The errors are relative
to the Baseline result, run with identical parameters. Each point corresponds to a combination of application, topol-
ogy, network model, and cache-coherence protocol. Note that these graphs have differing scales on the y-axes.
Graphs (e)-(f) compare the error of different network models as a function of offered load. The offered loads are calcu-
lated by multiplying the number of messages, the flits per message, and the distance each message travelled and
dividing by the total logical run time and the number of target processors being simulated.
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simulation error will have on the total logical time. Also,
low offered load implies low contention, for which the
simpler models are reasonably accurate. For high offered
load—primarily caused by broadcasts—the error is much
greater for the less robust topologies (i.e., a 2-D mesh and
a 2-ary fat-tree).

Figure3(f) shows that theApproximate model is
much more robust than the simpler schemes. Because
Approximate estimates the contention at each network
link, it captures the congestion caused by excessive broad-
cast traffic. 33 of 36 cases have error less than 5% and the
remaining three—all of which exhibit heavy broadcast
traffic—incur error less than 10%. The price for this
increased accuracy is, of course, performance: the
Approximate model runs five times slower than the
C100 model, on average. Half of this slowdown is caused
by decreasing the quantum length from 100 cycles to 15;
the remainder is due to the extra host messages that must
be sent to the intermediate nodes and the overhead of
modeling the contention at each link.

At first glance, theApproximate model may seem
little faster than theBaseline simulator: for the 32-node
systems presented here, the difference is only a factor of
two. However, the centralizedBaseline simulator is
fundamentally unscalable, while theApproximate
model is scalable because it estimates the contention in
parallel.

5  Conclusions

In this paper we use the Wisconsin Wind Tunnel to
examine the accuracy and performance trade-offs of six
different network simulation models. The models range
from the original constant model of the Wisconsin Wind
Tunnel,C100, to a centralizedBaseline simulator that
exactly models a restricted wormhole-routed design. The
accuracy versus performance trade-off is striking: there is
a factor of 10 performance difference between the fastest
and slowest of the models. The fastest model—the original
C100 model—incurs an average error of 12%. The other
models provide a continuum between these two extremes;
for example, theRandom model achieves a mean error of
less than 5% while running an average of 2.5 times slower
thanC100.

However, only the Approximate model generates
results with less than 10% maximum error for the 36 com-
binations of protocol, topology, and application considered
in this study. Our results indicate that non-uniform traffic
patterns, specifically broadcasts, can introduce significant
error if a model does not accurately account for conten-
tion. For example, despite its low mean error, theRandom
model produces errors over 20% for several combinations
of application and cache-coherence protocols that broad-
cast frequently.

In summary, these results indicate that simple models,
while adequate for some simulation applications, are much
too inaccurate for others. The inaccuracies of the simple
models will only be exacerbated by studying larger target
systems. More detailed models—such as theApproxi-
mate model described in this paper—are needed to accu-
rately account for the contention caused by non-uniform
communication patterns.
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A  Variable latency model details

The variable latency modelFree assumes contention-
free communication. Thus the message latency ( ) is
the sum of the message length (in flits) plus the distance
(in hops) across the network1:

(1)

where  is the time to transmit a flit,  is the number of

hops, and  is the number of flits in the message.

TheRandom model extendsFree by adding a random
variable  to account for contention:

(2)

The random variableX is computed as a 2-stage hyper-
exponential random variable [2]. The squared coefficient

of variation  and the mean contention  are

input as simulator parameters. The appropriate values of

 and  are obtained by performing aBaseline

simulation for the given application, topology, protocol,
and system size.

B  Implementation of a distributed approxi-
mation

Approximate removes the serialization of the mes-
sage travelling through intermediate nodes. When a mes-
sage is injected into the network, simulator messages are
immediately sent to every intermediate node along the
message’s path. Each of these nodes estimates the local
arrival time of the message, and the resulting local conten-

1. We assume that messages must completely arrive at the destination
node before they affect the state of the system.

NL free

NL free Tf Nk Lk+( )=

Tf Nk

Lk

X

NL random Tf Nk Lk+( ) X+=

CX
2 E[X] µ 1–=

E[X] CX
2

Qi Si1

Qj+1

Sj2

Node B

Node E
Time

Header and data

Sim. msgs Intermediate nodes

Contention msgs

Schedule message

A target message is logically sent from node
B to node E. Sim. msgs are sent to all
intermediate nodes in quantum i. When the
intermediate nodes calculate local contention
for the message, contention messages are sent
to node E. The receipt is logically scheduled
as an event in quantum j.

Figure 4. Synchronization for the distributed approximate model
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Qi Si1 Qj+1Sj2

Node SN

Node B

Node E
Time

Header Simulate

Data
Header

Schedule

In order to send a target message to node E, node B sends the data
portion of its message to node E. The header is sent to the simulating
node (SN), which holds it until the simulation of that message completes
after quantum j. The header is then sent to node E and the target
message receipt is logically scheduled.

Qi = ith quantum

Sik = kth synchronization for Qi

SN = centralized simulating node

Figure 5. Synchronization for Baseline simulation

tion. The estimated local contention is then forwarded by
each node to the destination. This scheme is illustrated in
Figure4. The key advantage of this scheme is that it
allows the intermediate hops to simulate each message in
parallel. The price of this parallelism is the loss of the
exact time at which a message’s header flit arrives at each
intermediate network node. By relaxing the arrival times
of messages, we also relax their arrival order and therefore
the channel acquisition order. We estimate the arrival time
at a hopi by adding the message’s injection time to the
product of the distance from the source and the mean glo-
bal contention per hop in the network. This global estimate
is obtained by computing the mean of all queueing delays
seen by an arriving message at every channel in the net-
work:

(3)

NC is the total number of channels in the target net-
work, TG is the current global logical time, and  is the
time at which theith channel is released. The arrival time
at a hopi is simply:

(4)

We calculate contention at an intermediate hop by
scheduling a target message at its estimated arrival time.
The contention seen at this hop—i.e., the time between the
estimated arrival time and the eventual acquisition of the
channel—is sent to the target message’s destination. The
destination node collects the local contention estimates
from each hop along the target message’s path, then sched-
ules the arrival. The network latency is a simple function
of the message length, distance travelled, and local con-

GML

Ri
TG

TG–
i 1=

NC

∑
NC

---------------------------------=

Ri
TG

H
ki H

kO i Tf GML+( )+=

tention estimates (  is the contention seen at hop of
message ):

(5)

Unfortunately, if there is high global contention, but lit-
tle or no local contention, this simple approximation can
introduce a causal violation. The destination node may not
receive the local contention estimate untilafter it should
have scheduled the target message arrival. We solve this
by simply scheduling the message as early as possible if it
arrives late, effectively assuming that it encountered some
extra contention during transit. This problem can arise fre-
quently when applications exhibit distinct communication
and computation phases, in which the network is subjected
to bursts of heavy traffic immediately followed by periods
of light traffic. In these casesApproximate will tend to
overestimate the mean message latency.

C  Implementation of baseline simulation

In Baseline, target nodes send all messages to the
centralized network simulation node. As an optimization
on the CM-5, only the message header packet is sent to the
centralized node; all data packets (which contain pieces of
cache blocks) are sent directly to the target destination
nodes. The central node performs a detailed simulation of
the network at the end of each quantum, and forwards
message completions to their original destinations.

This centralized simulation structure requires an addi-
tional global synchronization at the end of each quantum1.

1.Approximate also requires an extra synchronization per quantum to
drain the network of local contention estimates.

ci
k i

k

NLk TfLk Nk+ ci
k

i 1=

Nk

∑+=
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The first synchronization ensures that all messages have
been received by the central network simulation node; the
second guarantees that messages sent by the central node
have been received at their destinations. This structure is
depicted in Figure5.

The centralBaseline simulation is event-driven and
only needs to model (i) when the header of a message tries
to acquire a channel, (ii) when the tail of a message relin-
quishes a channel, and (iii) when a blocked message is
awakened, acquiring the channel for which it was queued.

The non-trivial part of this simulation involves the cal-
culation of the time at which a channel may be relin-
quished. This is performed by calculating the buffer space
between the channel and the header flit; when the space is
sufficient to contain the entire message, the flits will pass
through the channel in question regardless of whether or
not the header flit is eventually blocked.

We first compute the hop number that the header flit
must reach to enable channeli’s release time to be deter-
ministically calculated.

(6)

Any channel in between  and i that had sufficient
contention to delay the tail flit leaving nodei must be
taken into account. Nearer contention is subsumed by con-
tention at nodes farther ahead, so only the farthest node
which affects the tail flit must be factored into the chan-
nel’s release time. The following equation calculates the
farthest node which affects the tail:

(7)

Equation8 represents the actual time at which the
channel in question is made available. That time is
obtained by summing the time at which the header flit
acquired the channel, the time spent transmitting flits
through the channel, and the contention experienced by
the tail flit (the last three terms in Equation8).

(8)
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