This paper appears in the 24th International Symposium on Computer Architecture, June, 1997.

Minor editorial changes: May 7, 1997.

Reprinted by permission ofGM

Efficient Synchronization: Let Them EatQOLB*

Alain Kagi, Doug Buger, and James R. Goodman

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, Wsconsin 53706 USA

galil eo@s.w sc. edu -

Abstract

Efficient synbronization primitives a¥ essential for ddeving
high performance in fine-gin, shaed-memory pallel pro-
grams. One function of symonization primitives is to enable
exclusive access to shet data and critical sections of codghis
paper maks thee contrilutions. (1) W& enumeate the five soaes
of averhead that loking synbironization primitives can incuf2)
We describe four méanisms (local spinningqueue-based lée
ing, collocation, and syrtoonized pefetd) that educe these syn-
chronization werheads. (3) Wh detailed simulations, we show the
extent to whib these four méanisms can impwe the perfor-
mance of shad-memory mgrams. & evaluate the space of these
medanisms using senteen syrironization constructs, whicare
formed fom six base types of k& (TEs®&SET, TESRTES®&SET,
MCS LH, M, and Qo). W& show that lage performance gains
(speedups of merthan 1.5 for thee of five bermmarks) can be
achieved if at least thee optimizing mémnisms a& used simulta-
neously We find thatQoLe, which incorpoiates all four melta-
nisms, outperforms all other primitives (includingactive
syndironization) in all cases.iRally, we demonsate the superior
performance of a low-cost implementatiorQoig, which runs on
an unmodified cluster of commodity workstations.

1 Introduction

http://ww. cs.w sc. edu/ ~gal i | eo

Traditional message-passing programming models force the
programmer to embed implicit synchronization with each commu-
nication of data. Such a requirement restricts the parallelization
stratggy—dynamic task distriltion becomesxdremely dificult,
for example. The shared-memory programming modelvexsely
uses cache coherence protocolsdefkshared data consistent. The
programmer judiciously empjs explicit synchronization to pro-
vide mutual &clusion for data and code, as well as synchronizing
processors between phases of computation.

The two major classes ofelicit synchronization operations in
shared-memory multiprocessors are barriers and locks. Although
barriers are important tofefient shared-memory programs, yhe
are well-understood, and marefficient implementations a
been proposed and/ouiti [15, 20, 23, 32, 44]. In this studwe
focus on preiding more eficient mutual gclusion through better
locks.

Locks pravide indvidual processors withxelusive access to
shared data and a critical section of code. Tkitusive access is
particularly well-suited to the fine-grained nature of ynahared-
memory parallel programs. Fine-grained programs ideally associ-
ate as little data or code as possible with a critical section, mini-
mizing serialized processing, thus maximizingvaitable
parallelism. Since access to critical sections is by definition serial-
ized among processors, dar overheads when accessing a con-
tested critical section deade both parallel performance and
potential scalability To maximize both the performance of fine-

Shared-memory multiprocessors are rapidly becoming the grain parallel applications that use locking, and the potential to

machines of choice for solving tg, fine-grained scientific pro-
grams. Multiple &ctors support this trend. The adv of aford-
able desktop symmetric multiprocessos#gs) will increase the
application base. The successfulelepment of shared-memory
multiprocessing standards [43] reduce the time to etally
decreasing design time and by letting mastifrers use commod-
ity parts. Both the Camx Exemplar [7] and the SequeBTING
[27] relied on these standards. The eyeece of lav-cost, fine-
grain software implementations of shared-memaych asHasTA

scale to lager numbers of processors, we must minimize the
delays associated with the transfer ofclesively accessed
resources.

The act of transferring control of a critical section is a cormple
one, that may wolve multiple remote transactions. Compfeo-
tocols hae been proposed that perform this transféciehtly,
allowing reasonable performance when there is high contention for
a lock. The complety of these protocols causes unnecessary
delays when accessing a lock that is not held v&wsely simple

[38] or To [35] further reduce the cost of supporting the shared- |5cking schemes that can access a free lock quickly may perform

memory model. Finallysuccessful research prototypes such as the poorly in the presence of contention. This fundamental traide-of
StanfordDASH [25] have shevn that this class of machines can

has resulted in proposals of numerous priregiin the literature

obtain ecellent speedups for a wide range of programs that use[3 13 16, 26, 28, 30, 37].

fine-grained communication.

1. Pronounced “Colby

This paper contains a detailed and thoroughluation of a
range of locking primities. D understand where the opportunities
for optimization lie, we first decompose the time associated with a
complete locking period into three phas@sansfer Load/Com-

This work is supported in part by NSF Grant CCR-9509589 and by the pute andReleaseTogethey these phases formsgndironization

Intel Research Council.

Copyright 1997 (c) by Association for Computing MachinenC4). Per-
mission to cop and distrilute this document is hereby grantedvined
that this notice is retained on all copies and that copies are not altererd.

period which determines the global throughput of synchronization

operations and thus determines scalability for codes that rely
hearily on locks. W then describe four mechanisms that locks

may incorporate to reduce the time spent in the three phasaik:



spinning, queue-based locking, collocation (of a lock and data
within the same cache line), asghchronous prefetch.

Using detailed simulation with both microbenchmarks and real

applications (dran from theSPLASH and SPLASH-2 suites), we
measure the performance of six base prm#i TEST&SET,
TEST&TEST&SET [37], LH locks [28],M locks [28],MCS locks [30],
andQoLs [13]. We etend these primities with the mechanisms
listed abwee, plus @&ponential backff and prefetches inserted
automatically by a compilekMe also measure the performance of
reactve synchronization schemes. In all, we study a totalrse
teen primitve/mechanism combinations.eVfind thatQoLs, which
can incorporate all of the mechanisms listedvaboutperforms all
other locks in all cases (including reaetisynchronization). &/
also see thatery eficient locking cardouble the speedup of real
applications (for one of the fwvbenchmarks that we measured).
AlthoughQoLs outperforms the other primits, it requires mech-
anisms that the others do not (which usually implies hare\sup-
port). We discuss xactly what supporQoLs requires, and sko
that much of the necessary support alreadgt® in current sys-
tems. Finally we present performance results of an all-saiftw
implementation ofjoLe running on an unmodified cluster of com-
modity workstations, and we shothat this lev-cost implementa-
tion still outperforms the alternaés.

In Section2, we &plain our decomposition of a synchroniza-
tion period in greater detail. In SectiBnwe shav how the four
optimizing mechanisms that we identified can reducéerdifit
parts of the synchronization period. In Secdgrwe &plain the
primitives that we study in detail, and discussteach of them
uses a dferent set of the four mechanisms. In Seclprwe
describe our gerimental methodologyn Sectior, we present
and discuss our performance results from tkpeemental space.
In Section?, we discuss the cost of hamaw-supported synchroni-
zation. Finally in Sectior8 we proide a summary of our main
results and conclude.

2 Overhead of mutual exclusion

From the perspeett of an indiidual processorthe time asso-

prepares to release and @entually completes this operation. Our
breakdavn of a synchronization period consists of three phases:

e Transfer: the time at which processor A completes its release
of the lock to the time processor B completes its acquire. At the
point that the release completes; the releasing processor has atomi-
cally written the “unlockd” value to the lock. The contending
nodes may then issue or re-issue requests (depending on the lock-
ing primitive) to obtain the lock. A period of arbitration may
ensue. Once the xerecipient of the lock is determined, the lock
must be sent to that node.

e Load/compute: the time at which processor B completes its
lock acquire to the time processor B issues its lock release. Once a
processor obtains the lock, it enters the critical section. The pro-
cessor will most likly hare to read some loekl data, perform
some computation, and write some ledldata. Accessing the data

to read and write will likly incur some remote accesses.

* Release: which is the time from processor B issuing the lock
release to the completion of the lock release. When the processor
issues a release operation for the lock, remote accesses may be
necessary before that operation may complete. Other processors
may hae remaed the lock from the releasing processaache,

for example, or the releasing processor mayetta re-obtain write
permission for the lock’ cache line. Some aggregsimemory
models [1, 12] may alle some oerlap between thieoad/compute
andRelease phases.

In addition to illustrating this decomposition in Figdrewe
also list the components of each phase. The componentgdnark
with an asterisk are the only ones that are fundamental, which
would be part of a truly minimal synchronization period. The com-
ponents markd with a “+” are werheads that cannot be elimi-
nated, ot whose latencies may be partially or entirely hidden.
Unmarked components are ripe for elimination through optimiza-
tion.

3 Synchronization mechanisms

ciated with an access to a critical section consists of the time from ~ We hare isolated what we belie to be a fundamental set of
which the processor first requests access to the corresponding lockoUr mechanisms that synchronization priges may incorporate.
to the time at which the processor completes the release on thak? Tablel we shev the averheads (from Figure) reduced by each
lock. This time period does not directly correlate with global per- Of these mechanisms. The definitions amglanations of each

formance, hwever. Multiple processors contending for entry to
the same critical section mayaslap the time from the issue of

mechanism are as folls:
e Local spinning: allows a requesting node to spin on a local

their requests to the first release of the lock. A good analogy to thiscopy of the lock. Although local spinning does not directly reduce

distinction is the dftrence between the latgnof an indvidual
request to a memory system, and the throughput \adiiee by
pipelined accesses to that same memory system.

To determine hwo these critical section accesses limit global
performance and ultimately scalabilitye define the notion of a
synchronization period. The synchronization period is the length
of time between completion of twsuccesse synchronization
operations (e.g., tsuccesse releases) on the sanaiable. The
successie synchronization operations may occur ofed#nt pro-

overheads on the critical path of the synchronization period, it does

greatly reduce the load on the netiy particularly for longer crit-

ical sections. When the lock is released, the coherence mechanism
will invalidate all local copies (since the releasing node needed an

Pg release of
lock X completes
Pg issues release
of lock X
Pg acquire of

cessors. This synchronization period is the service time that the

processor incurs once the yimis processor releases the lock.

Since access to this critical section is by definition serialized, the

synchronization period will place an upper bound on possible per-

formance (codes that do not access critical sectionglyevill

see upper bounds on performance from other sources, of course).
We depict our breakam of a synchronization period in

Figurel. The figure shes esents to synchronizationaviable X.

The first @ent depicted is the completion of the release of Kck

by processor A. Seral processors are contending tingaccess

to X. We assume that processor B wins the ensuing arbitration.

When the lock acquire completes, processor B enters the critical

section. Upon finishing theark in the critical section processor B

Figure 1

lock X completes
P, release of
lock X completes

requests issued
arbitration
+ lock sent to new owner

lock re-obtained
* lock released

+ exclusive data loaded
* computation performed
+ exclusive data written

Time
Breakdown of one synchronization period.



PHASE OF THE SYNCHRONIZATION PERIOD

TRANSFER LOAD/COMPUTE RELEASE
SYNCHRONIZATION MECHANISMS Arbitration Lock transfer Data read Data write Re-obtain lock
Local spinning
Queue-based locking O O O
Collocation O O
Synchronous prefetch ] maybe

Table 1 How synchronization mechanisms reduce overhead.

exclusive copy to modify that line), and when theext access the LH locks, M locks, andQoLe. Table2 shavs which primitves

line, one requester will see that the lock has been freed and willincorporate which of the mechanisms described in Se8tidn

acquire the lock. Table3, we shav the minimum number of remote messages

required for acquiring a lock. The counts correspond to messages

on the critical path onlyEach pair of numbers slva represents

the number of messages required forsH-like [25] and arsCF

like [43] protocol, respeetely. In cases where the lock is not held

(columns one and WY, the number of transactions is from issue to

T e o e et ey, COMBIAN o h lock acquire. 1 anothr e hlds the ok, the

munication to bé between the releasing node and the acquirin pumber of remote transactions eimois the number from issue of
Yhe release by the lock holder to the completion of the acquire by

node only (although the number of remote accesses required tcfhe requestein the rest of this section, we define each base primi-

gﬁg?r:g;et:'tshgig?;e;a\é\”gf&:)é_ggg%?ndfﬁznltogrk'n;'r']t‘/t%; (ili tive and describe each in terms of the mechanisms that it incorpo-
9 rates, as shvwn in Table2.

phase, since no other nodes access the lock directly until the holder
releases the lock.

¢ Queue-based locking: eliminates arbitration \@rhead and
reduces lock transfer time, both in flransfer phase. This mecha-
nism reduces synchronizatiomeshead in the follwing ways: (i)
creates a queue ofaing requesters, thus performing arbitration

4.1 TEST& SET
«  Collocation:! lets protected data be transferred with the trans-
fer of the lock itself. Since the data aeriwith the lock, collocation TEST&SET (TS) was the sole synchronization prinitiavailable

eliminates read and writeverheads in théoad/Sore phase. The on numerous early systems (such as the IBM 360 series T57)).
implementations we study in this paper avaiollocation by  performs an atomic read-modify-write on a memory location. It
coupling a lock and critical data together in the same transfer blockeads the alue contained therein. and unconditionally sets the
(a cache line). If the critical data aregar than one cache line, col-  \51ye to be non-zerds returns the alue that vas obtained from

location will only partly reduce the read and write accesS-0 e read. It may be implemented with an atomiasaf as little as
heads. If the critical data are determined dynamicaifgctive one bit.

collocation is dificult.

We see in @ble3 that theTs primitive is eficient when a lock
is not held; the primitie can immediately load the lock into the
processos cache and lock itSis less dfcient when there is con-
tention for a lock, since the lockline is shifted from requester to
§equester in “eclusive” state. When the holder wishes to release
the lock, it must re-obtain the lock from the requester that has
moved the line into its cache. Concurrentyl requesters continue
% send requests for writable copies of the lock. Although this
scheme technically guarantees that some processasrfakard
. . progress, it does not guarante@riess, nor does it prent stara-
4 Synchronization primitives tion. Worse, it generates continuous remote transactions from the
requesters (if there are more than ongnenhile the lock is being
held. We see from @ble2 that the only optimization (of those in
the table) thar's may implement is collocation. Collocation may
be efective if requesters rarely attempt to obtain the lock while
1. col.lo.ca.tion (n) \.kal-*-’ka-sh*n\: the act or result of placing or arrang- held. When a request for a held lock occursyéver, the requester
ing together; specif: a noticeable arrangement or conjoining of linguistic and holder will ping-pong the lock (and collocated data) between
elements (as @rds) [45] (vords in this cont&t are 4-byte quantities of  their caches, as the holder accesses the data and the requester spins
data). on the lock. The ping-ponging of the block will stall the halder

e Synchronous prefetch: allows a processor to issue a request
for a particular lock in adcance of its critical section. The memory
system will efect the transfer of the lock from the holder to the
prefetching requester only when the holder releases the lock. Thu
this mechanism will not impede the current holslggtogress in
the critical section. If a node prefetches the lock and the holder
releases it before the requester reaches its critical section, th
requester may be able to hide the lock transfer lgteompletely

The six base primites we discuss in this paper amsTt&SET
(abbreviated TS), TEST&TEST&SET (abbreiated TTS), MCS locks,

SYNCHRONIZATION MECHANISM

SYNCHRONIZATION PRIMITIVE Local spinning Queue-based locking Collocation Synchronous prefetch
TS no no optional no
TTS yes no optional no
MCS, LH, M yes yes partial no
QoLs yes yes optional yes

Table 2 Synchronization primitives. For each synchronization primitive, this table shows which
synchronization mechanisms it incorporates. We deemed collocation to be optional, since the programmer may
choose not to exercise it.



MINIMAL NUMBER OF REMOTE MESSAGES

SYNCHRONIZATION PRIMITIVE Lock idle in memory Unlocked, cached elsewhere Locked, single contestant Locked, N contestants
TS 2,2 3,6 511 5,11

TTS 4,2 6,6 8,11 8, 9+2xN

MCS 2,2 3,6 7,15 59

LH 2,2 9,10 511 5,11

M 2,2 3,6 5,11 5,11

QoLe 2,2 3,4 1,1 1,1

Table 3 Number of remote transfers for acquire. The numbers in the table represent the minimal number of messages needed to acquire
a lock. The counts correspond to messages on the critical path only. We show numbers for several initial lock states and two cache-coherence
protocols. Each number on the left assumes a DASH-like protocol [25], and each number on the right assumes an ScCI-like protocol [43]. We
assume that the acquiring node, the releasing node (if applicable), and the directory node are all different nodes. In cases where the lock is not
held (columns one and two), the number of transactions is from issue to completion of the lock acquire. If another node holds the lock, the
number of remote transactions is from issue of the release by the lock holder to the completion of the acquire by the requester.

increasing the length of its critical section and thus increasing thethe time of the request, using atomic operations sucwasand

global synchronization period. CoMmPARE&SWAP to update the list correctlWith queue-based lock-

A policy often applied tors is exponential bacéff, in which ing, arbitration for the ventual recipient of the lock is therefore
after a #ilure to obtain the lock a requesteaits for succeseely performed in adance, first-come, first-sesv Arbitration forTs
longer periods of time before issuing another request for a lock [3].andTTS, corversely occurs at the time of lock release, increasing
We implemented a baoK scheme closely follwing the guide- the synchronization period.

lines that appear in the original article: when an attempt to obtaina The price of maintaining the requester queue in sofws

lock is unsuccessful, the requestaits for an amount of time ran-  larger averhead, especially under contentionless conditions. When

domly selected from a uniform distution; the algorithm doubles  a lock is released, n@ver, communication occurs only between

the mean of the distrition after eachdiled attempt up to a maxi-  the releaser and the requester at the head of the queuarkletw

mum. At the start of a fresh synchronization period the initial mean traffic is thus reduced to a constant number of ngtviraversals

corresponds to half of the mean used in theipos period. The per synchronization access, while the other requesters in the queue

maximum mean is set to 16Kaes, which is roughly the time  continue to spin locally

required to service a simple write miss (i.e., three odtwound Since each requester is spinning on #ediht address, these

trips or approximately 600ycles) times the number of nodes in  software queue-based algorithms cannot easily benefit from collo-

the system. Winitialize the mean to ongde, which corresponds  cation. Rirtial collocation can be achied by placing protected

also to the minimum mean. data along with the data structure that tracks the queue insertion

point. If there is little contention, partial collocation may beef

tive. A more sophisticated approach could bettptait colloca-
Rudolph and Sgall first proposed anxéension toTs that per- tion by plaping date_l either with tht_a insertion pointer when there is

forms a read of the lock before attempting the adiSaiperation N contention, or with the appropriate queue element when conten-

[37]. They called this primitie Tes&Test8Se (TTS). This primi- 1o &ists. Havever, this approach requires agpg of data which,

five enables witing requesters to spin on shared, read-only copies 40n€ carelesslynay sacrifice their inggity (€.g., in the coni¢ of

of the lock (local spinning waiting for the holder to release the €cursve data structures). 8vdid not inestigate this approach.

lock. When the holder issues the release, the read-only copies ar&"€Se algorithms are also unable to prefetch data without signifi-

invalidated, the holder obtains a writable gapthe lock, and then ~ c@nt changes that greatly add to their comiple

releases it. The requesters load readable copies into their caches,

and finding the lock released, attempttiseOne of the requesters 24 LH and M locks

will succeed in obtaining a writable oppf the lock and Iocking it. Magnusson, Landin, and Hagersten proposed software
Although TTS emplgs local spinning to reduce interconnect queue-based locking primitts, LH and M [28] (Craig indepen-

traffic while the lock is held, the time needed to acquire the lock is dently deeloped a lock identical taH [8]). They claimed that

longer tharTs (see able3), due to the requesters’ initial requests their primitives would require one feer remote access to transfer

for read-only copies (instead of axclisive copy, as withTS). The a lock than doeBICS, enabling their schemes to outperfonas

contention when the lock is freed can be substantial, as all requestwhen lock contentionxésts. TheLH lock achiges this behdor at

ers attempt to acquire the lock at that point, and then all attempt tathe expense of increased latgnto acquire an uncontested lock.

upgrade the lock to a writable state. Exponential Gfickay The M lock achiges the more é&tient lock transfer without

therefore impree TTS as well asTS. Collocation withTTS may increased uncontested lock access Iateatdhe gpense of signif-

work better than witlTS, since the lock holder can still read data icant additional compiéty in the lock algorithm. W implemented

allocated in the lock’ cache line, as it is shared with the request- both locks according to the description in their papdrich pre-

4.2 TEST& TEST& SET

ers. TTS collocation is not ideal, leever, since the holder will sents the actual algorithms in detail [28].

ping-pong the cache line with requesters wkien& writes to the ) o

collocated data. 4.5 Reactive synchronization

4.3 McSlocks In 1994, Lim and Agrwal proposed “reacte synchronization”

schemes [26], which dynamically switch among safevlocks
Several researchers Yiaindependently proposed locking prim-  that perform well underarious leels of contention. & instance,
itives that incorporate both local spinning and queue-based lockingt may combineTs for low-contention phases oikecution with
in software [2, 29, 16]. One of them is the locking prinétcalled MCS for periods of high-contention. Reasi synchronization
MCS, developed by MelloflCrumme and Scott [29]. TheMCS attempts to achie both lav lateny lock access and fedient
scheme inserts requesters for a held lock into a aoftqueue at  transfer at lav cost (e.g., using only all-softwe primitves).



We implemented reae synchronization, closely folling strﬁct I_l Oﬁked data {
the guidelines in the paper [26]oiFlow-contention phases, we char 1ock, . N
usedTS with exponential backff. For high-contention phases, we _char data[63]; /* 64-byte cache line */
usedMCS (our results she thatMCS is the best-performing soft-
ware lock under high contention, of the locks that we measured). void

Our implementation switched dCS after five consecutie lock critical _section(struct _locked data *ptr) {
L . . . . /* Prefetch |l ock & data (assumes proper alignnent) */
acquisitions gperienced higher \els of contention than a &g ENQOLB( &pt 1 - >I ock) ;
threshold (a mean delay of 32 clockcles). W switched from /* Various conputation here */
MCS to the lav-contention lock when the queueasvempty upon e )
lock release fig consecutie times. while (!EnQOLB(&ptr->lock)) ; f* Spin */

/* Critical section here */
4.6 QoLs DeQOLB( &pt 1 - >l ock) ; /* Rel ease | ock */

Goodman, ¥rnon, and \West proposed the Queue-On-Lock-
Bit primitive (QoLs—originally calledQosg) [13], which was the Figure2  QoLs code example.
first proposal for a distrited, queue-based locking sche@eLs
maintains a hardare queue of aiting processors, in which point-
ers to adjacent queue entries are held in the cache lmi&ngV
processors spin locally on a “shadocopy of the lock address,
preventing unnecessary netvk trafic or interference with the
lock holder Because lock requesters spin on the same address a;
that of the lock, without\écting or davngrading the lock holdes’
copy, effective collocation is possible (unkkthe other primities
that we hge discussed). When the holder releases its lock, the lock

is sent directly to the requester at the head of the queue, incurring & ; ;
h ! Y701 SRARC users guide [9]).WWT makes some assumptions
total of one netark crossing to transfer the lock (sexble3). about the taget system to simplify simulation—it assumes both a

In addition to enabling local spinning, collocation, arfeciet perfect instruction cache, and that stack accesseyshit in the
handofs through queueing@oLs is a non-blocking primitie. This data cache.

characteristic permits a processor to Qses for performing syn-
chronous prefetching, alMng the processor toverlap data and
lock access times with other usefubnk. If the prefetch is issued
sufficiently far in adance, it is possible for the requester torsee
overhead associated with the critical section entsither for
accessing the lock or the data. Figrehavs an @ample of hav
Sﬁéi:; (lgsﬁgnt-%lg(c:ﬁsnsgsodpag?atlir:)r% gﬂgggltessegtlso&n'l;hs (f)'ﬁ:]ga” to (or variable-length messages) reduces the node lookahead, which
cache line and sends a message that inserts the requester into tff@USEs Sere ncreases in 5|mu_lat|on time [6]. )

hardware requester queue. This early requestalithe processor Although we model contention at the node irdeefs, memory
to overlap the fetch time with useful computation. The subsequent@1d memory directories, using a constant pekviateng ignores
calls toENQoL in the loop spin locally until theamer releases the ~ contention in the netork itself. o account for netark conten-
lock and sends it directly to theaiting node. WherenQoLe tion, we used an analytlcal.mo.del [41] (whicheskhe netark
returns “trué, the processor enters the critical section. The proces- 108d as a parameter) to dexia diferent constant netwk lateny
sor relinquishes the lock with the call beQoLs, at which point for each benchmark. &Vestimated this aggete netwrk load
both the lock and andata in the loclg cache line are sent directly ~from the trafic statistics of préous simulations and their total
to the net waiting processorin this eample, we assume that the ~ €xecution times. Since the neivk lateng affects eecution time
critical section data can fit in 63 bytes. This will natays be the a_nd therefore agggate load, we iterated this estimation until the
case, of course. AlsQoLe is fair in general, xcept in the unusual  difference between the neivk lateng constant and thealue pro-
cases when a processoshadw copy of the lock is replaced from duced by the model cwverged to within oneycle (the final laten-

its cache, forcing the processor to rejoin the queue at its end. cies for the benchmarks ranged from 85 to $des). D validate
this methodologywe simulated seral points for each benchmark

. using thewwT extended with a detailedyent-driven SCI network
5 Experimental methodology simulator Our netvark simulator accurately simulates message

We measured the performance of the six synchronization prim-buffering, message retransmission, and ftmntrol [5]. The tayet

5.1 Simulation environment

Our simulation platform ws the MVisconsin Whd Tunnel
WWT) [33], which uses a 32-processor Thinking Machiasss
3] as its host machin@/wT executesSRARC binaries in natie
mode on thecM-5, only trapping into the simulator upon a cache
miss.WWT assumes fixd execution time for the instructions (the
actual alues correspond to the instruction delays listed in the

The de&ult WWT network model assumes a fully connected
point-to-point taget netvork, in which messages tla constant
number of gcles for a one-ay netvork traversal. A lage enough
constant latencprovides suficient lookahead for &tient parallel
simulation, as nodes stop and synchronize only oneeyeC
cycles, whereC is the constant netwk lateng. Using a smallC

itives discussed in Sectidn varying mechanisms fromable2 network that we used to dee the alidation is an 84 mesh of
when possible,»eept that we did not simulate collocation in con-  fings that routes requests in increasing dimension order (, y) and
junction with theLH andM locks (we will shav later thatMCS responses in decreasing ordey Xy. The internal details of the

generally performs better thanl andM, which are not inherently ~ Simulated neterk correspond closely to those of th@l transport
more amenable to collocation th&Cs). We also measured the layer standard [43]. The mean fdilence between thexecution
performance of reast synchronization (also without collocation  time of simulations using the constant netkymodel and simula-
since reactie synchronization is not inherently amenable to collo- tions using the detailed netwk simulator vas 2%. The dférence
cation). Our seen main locking schemes (and their corresponding Was alays under 5% [18].

abbreviations) are thus as folls: TES&SET (TS), TEST&SET&SET Using a global mean to model contention tends to underesti-
(TTS), MCS locks,LH locks,M locks, reactie synchronizationR), mate &ecution time, since trA€ often occurs in lirsts that add
andQoLe. We used the follwing abbreiations for optional mech- more queueing delay than if the sameficafias @enly distrituted
anisms or policies: collocation+¢), hand-inserted synchronous over time. Wth our \alidation, we hae bounded this discrepanc
prefetch ¢P), compilergenerated synchronous prefetett), and Even so, since our more aggressisynchronization primites
exponential bacsff (+E). (MCS, QoLB) generate less tifid than do the alternats, accu-



rately modeling contention in the neti would only sere to SYNCH.

increase the reported performancap goetween the Yeer and BENCHMARK TYPE OF SIMULATION  INPUT PERIOD
higherperforming primitves. Our results are therefore congserv Barnes Barnes-Hut N-body 2,048 bodies, 11 iter. 1,840
tive. Mp3d Hypersonic flow 24,000 mols, 25 iter. 44
Ocean Hydrodynamic 98x98, 2 days 17,469
Pthor Digital circuit risc, 1,000 timesteps 7,633

5.2 Target systems

Raytrace 3-D rendering TEAPOT 490

The taget systems that we simulate are all 32-procesache- Table4  Macrobenchmarks.

coherent shared-memory systems that use the Scalable Coherent

Interface 6Ci) [43] as their base cache-coherence protaolis ital circuit being simulated. Only aviefields of this descriptor are
- . . P - frequently modified in the course of the simulation tdle adan-
a particularly appropriate choice for our base platform, sinoce tw

. tage of automatic replication of read-only data and reduce cache
of the nevest shared-memory multiprocessors on the stark

: misses, we collocated the frequently modified Pthor fields in a sin-
implement cache-cohere8CI (the Cowex ExempLAR [7] and the gle cache line.

SequentSTING [27]), and numerous otheerdors are »@loring
SCI as an option. Each node in oDC-NUMA target system is

workstation-like, containing a process@ 1-Mbyte foway set- : o .

L . . period of critical section entry for each benchmark, computed by
associatre cache memory with 64-byte lines, a 64-entry transac- dividing the benchmarkxecution time (discounting initialization)
tion queue, a newk interiace, and some fraction of the distrib-  ,y the total number of critical section entries (across all 32 proces-
uted, globally-shared memory with the associated directory sors). W computed this statistic from the sequentially consistent
entries. The transaction queue is similar to a functionatsneled run of QoLs with all mechanisms enabled. The frequeatwhich
write huffer. It supports the follwing asynchronous operations: locks are obtained is an important metric, since ivipmpthe syn-
writes, prefetches, coherence operations, and cache line flusheshronization primitie will have little benefit for an application that
caused by replacement (rollouts). A complete description of the uses locks infrequently

We list the problems that the benchmarks s@wud the inputs
that we used in dble4. The fourth column of able4 lists the

system parameters and their associated timings appearb&ise For these macrobenchmarks, weried the memory model as
[18]. wwT allocates puate taget pages locallyand distribites well as the synchronization primié. By using tw memory mod-
shared taget pages to the @et nodes round-robin. Our simulated els (sequential consistgnand aggresse release consisteyjc we
memory system supports release consigtétie]. shawv that the performanceamed by impreing the synchroniza-
tion primitive cannot also beagned solely by making the memory
5.3 Microbenchmark experiment description model more aggresa. The memory models that we simulated are

two different implementations of release consisyersequential
. consisteng (denotedseq), and an aggres& implementation that
We repeat the method use_d_ by bOth. Anderson [3] and Lim andattempts tho( minimize Qt)he numberggf times Phat the processor is
Agarwal [26] to measure va critical section throughput. &vcon- stalled by memory operations (denoked). For the latter memory
structed a microbenchmark that accesses a critical section in a loopngdel, we labeled all memory accesses as aggedssis possible
repeatedly (the benchmark accesses the critical section a total ofccording to the structure proposed by Gharachorloo and others
3,200 times; these accesses are diggih #enly among the pro- [11, 12], and inserted the appropriate memory fences tovachie
cessors). Once in the critical section, a processis\800 gcles release consistepon our simulated hardwe platform. Although
before releasing the lock (this stall simulates access to, and compuour system assumes blocking loads, we implement gingewrite
tation of, protected data). After release, the releasing processopuffer of up to 64 non-blocking stores, which ai® multiple
waits for a random amount of time selected from a uniform distri- Stores to be combined and loads to be serviced by stores. Ghis lar

bution. The mean of the distrition is five times the critical sec-  PUffer permits ery aggresse relaxation of the consistgnmodel

tion delay (4,000yxles). As the number of nodes is increased, the for stores.

contention for the lock increases, anemtually the reduction in
execution time is stopped (and in some casesrsed) by the
increasing lock contention.

5.5 Prefetching compiler algorithm

We used an enhancedrgion ofGCC that automatically inserts

For this eperiment we assumed a dik netvork lateny prefetch operations, deloped locally by Aboulenein. This com-
between aytwo nodes of 100ycles. piler tales a critical section and the address of the associated lock
variable, and automatically inserts thH&QoLe and DEQoLB
5.4 Macrobenchmark experiment descriptions instructions for the lock. More importantlhe compiler attempts

to move aneEnQoLs instruction to a prespecified distance abthe
entry point to the critical section, thus performing a synchronous

The benchmark applications that we used for ogegments prefetch.

are Barnes, Mp3d, Ocean, Pthand Raytrace, dwan from the . . )
SPLASH and SPLASH-2 suites [42, 46]. Descriptions of these The compiler uses ww methods for trying to insert the

benchmarks appear in the original articles 8mpiled all bench- ~ PrefetchingEnQoLe instructions. It first attempts to we the
marks UsingGCC version 2.7.2 with the optior03. We padded prefetch operation into a basic block tdaminates [24] the basic

data in each benchmark, where necessargliminate dlse shar- block containing the entry point of the critical section. If the com-

. o . piler is unable to locate a basic block that dominates the critical
ing [14]. We modified Ocean both by translating it@oand by gection entry point, the compiler resorts to a technique similar to

skewing its array storage (slightly increasing the size of th&kw  trace scheduling [10], which inserEsQoLe operations in non-
ing arrays into arrays of prime size, from 128 to 131 elements in dominating basic blocks oTensure correctness, the compiler must
each dimension). @ used the lockingersion of Mp3d for all also inserDeQoLs operations along all possible paths that do not
experiments. Pthor assigns a descriptor to each element of the diginclude the critical section.



6 Results

In this section we present our microbenchmark and mac-
robenchmark results. &then compare pairs of macrobenchmark
runs in an attempt to identify thefedt that the indiidual synchro-
nization mechanisms @ on performance.

i
o
o

i
4
o

6.1 Microbenchmark results

We plot completion time of the microbenchmark loop in
Figure3. Since there is no shared data used in the critical section
we do not gplore collocation. W measure the throughput o
andTTsS both with and without>gonential bacsff, MCS, LH and
M locks, QoLs, and reactie synchronization (usingS+E for the
low-contention case anBICS for the high-contention case).eW
see thaoLs performs best in all cases, under botl Bnd high

Elapsed time (millions of clock cycles)

o
o

contention.TS andTTS perform second- and third-best undew lo 0.0 . . : ! :
contention (one or ta processors),ut their performance quickly 1 2 4 8 16 32 64
degenerates for more than foddding exponential baciff makes Number of processors

TS and TTS perform vworse under v contention, bt prevents a Figure 3 Microbenchmark performance.
severe performance deadation in the presence of numerous

requestors. ThéH andM locks outperform all primities other ) ) ) ] )
thanQoLe under medium contention (four processors). tention lut hinders performance slightly under medium contention.

Under high contentioMCS outperforms bothH andM. The In MCS, placing the lock bit and tail pointer together can result in
difference in performance is attifable to the cache behar of extra remote accesses when a node is adding itself to-lew
these primities and the cache coherence protocol we simulated, MeNt queue at the same time the head of the queue is freeing the

UndermMcCs, a processor alys reuses the same queue element (or lock. FinaII)_/, we see that our reaedi synchronization scheme is
memory address) to insert itself in the queue. Under iatand successful in that it closely tracks the performance of the best soft-

M, queue elements tend to migrate from releasing to acquiring"Var® alternatie under both M- and high-contention conditions.
nodes [28]. InsCl, a write to a migrating _cache block requires 6.2 Macrobenchmark results

more netwrk transactions than does a write to a block accessed

mostly by one processddther cache-coherence protocols may not We present the results of the macrobenchmaperments in

display this behdor. Table5. TS is the base case for each benchmark and memory
Magnusson, Landin, and Hagersten [28] state that under highmodel. W list the simulatedxecution time of each baseperi-
contention MCS generates onexga cache miss than dai or M. ment (in millions of gcles) in parentheses in ths row andSEQ

Careful collocation of th&ICS “next” pointer and the lock bit (as  column of Bble5. The other numbers ireible5 are all speedups
implied in the original article [29]) prents this rtra cache miss. relative to their particular base case. The running times that we
Under high contention, this collocation permitotread accesses  present correspond to the entikreeution of the benchmarks.

to be satisfied by a single miss instead af.thor all our eperi- What is most striking about these results is the magnitude of
ments we assumed that tki€s tail pointer is indeed collocated the speedups, considering that the only parameter bainggdvis

with the lock bit, which imprees its performance under high con- the synchronization primites. Raytracexecutes twice asabt in

BENCHMARK
BARNES MpP3D OCEAN PTHOR RAYTRACE

EXPERIMENT SEQ REL SEQ REL SEQ REL SEQ REL SEQ REL

TS (190) 0.94 (231) 1.02 (16.5) 1.19 (221) 1.16 (826) 1.22
TS+C 1.67 1.85 1.03 1.12 1.31 1.69 0.86 1.13 2.47 2.56
TS+E 1.17 1.40 0.86 1.21 1.12 1.37 0.88 1.22 2.06 2.15
TS+E+C 1.31 1.67 0.90 1.29 1.31 1.68 0.93 1.34 2.56 2.65
TTS 1.02 1.11 1.05 1.11 1.02 1.22 1.04 1.23 1.03 1.12
TTS+C 1.72 1.87 1.09 1.18 1.32 1.70 0.95 1.36 2.54 2.61
TTS+E 1.17 1.40 0.83 1.18 1.11 1.40 0.87 1.21 2.03 2.15
TTS+E+C 1.32 1.66 0.87 1.25 1.26 1.70 0.94 1.35 2.56 2.65
MCS 1.57 1.61 1.18 1.30 1.24 1.55 1.06 1.25 2.31 2.26
MCS+C 1.58 1.63 1.25 1.36 1.25 1.65 1.17 1.37 2.29 2.33
LH 1.21 1.48 0.81 1.12 1.24 1.55 0.87 1.22 2.26 2.31
M 1.21 1.47 0.75 1.06 1.24 1.55 0.87 1.18 2.25 2.29
R 1.19 1.47 0.76 1.08 1.19 1.49 0.87 1.20 2.28 2.35
QoLs 1.79 1.83 1.46 1.60 1.31 1.65 111 1.34 2.58 2.64
QoLe+C 1.89 1.92 1.65 1.75 1.34 1.70 1.25 151 2.62 2.69
QOLB+C+P 1.89 1.92 1.65 1.75 1.31 1.68 1.26 1.54 2.63 2.70
QoLB+C+CP 1.89 1.93 1.64 1.74 1.35 1.70 1.25 1.53 2.63 2.70

Table 5 Speedups of different synchronization primitives. The numbers in parentheses represent the execution time (in millions of clock
cycles) for the particular benchmark running on sequentially consistent hardware. The other numbers represent speedups, calculated as the
ratio of the execution time of the base run to that of the optimized synchronization primitive.



30 cases. The smallest speedup, with all four mechanismsQueue-based locking eliminates thegkarelatve oserhead that
emplo/ed, is sequentially consistent Pthor with 25%. Although occurs due to contention when the lock is released.

Pthor uses locks more than does Barnes or Ocean, Barnes has Adding exponential bactff improves performance moderately
bursty streaks of accesses to locks. Lock accesses in Pthor arfor all benchmarksdt Mp3d and Pthor in the sequentially consis-
more @enly distrituted, so thg do not dgrade performance  tent runs, in which we obsexd slavdowns of up to 20%.

nearly so much as in Barnes (thusviag less opportunity for Reactve synchronization is generally within 25% of the best
improvement). The speedups for Ocean are small not because theerforming synchronization primvés (disrgarding the colloca-
mechanisms are irfettive, lut because Ocean uses locks less fre- tion mechanism and th@ote runs). The eceptions are the
quently than do the other benchmarks (sa@é4). For all bench- sequentially consistent run of Barnes and Mp3d, where veacti
marks, havever, QoL with collocation consistently captures the synchronization is 32% and 53%\sker thanMCs, respectiely.

bulk of the performance impvement to be gined. Our imple- . .

mentation of synchronous prefetching is generally féugive, 6.3 Individual mechanisms

speeding up or slkiing dowvn the eecution by at most 2%.

This section isolates the performance coutitns of the indi-
Three of the benchmarks (Barnes, Ocean, and Raytretb)te P

. " . vidual mechanisms in Secti@ Figure4 shavs performance dif-
similar performance foQoLe andTs (or TTS) with collocation. ferences between eight pairs @periments (for each benchmark).
This is untrue for Mp3d and Pthanawever. Using collocation  g4ch pair of eperiments isolates one particular mechanism. There
with TTS improves the performance of Mp3d little, and reakhe is doubtless interaction between an “isolated” mechanism and the
performance of Pthor deteriorate. Thevéo performance of Pthor  oher components of the synchronization priveitiThis decompo-
with collocation results from the rebegily long length of Pthos' sition is not intended to quantify the performance coutigl of
critical sections. These long critical sectionsegrequesters the individual mechanisms definigly, but to aid in understanding of
op_portunity_to attempt to obtain the lock, puIIing both _the lock and gy their combinations &ct performance. & also isolate the
critical section data out of the.holdecache.. This bekimr doe; exponential bachff policy. We list the isolated mechanisms or pol-
not occur withQoLe because w@iting nodes in @oLe queue spin  jcies beloy, along with their correspondinggeeriment pairs:
on shadw lines, not the actual addresses.

Partial collocation withmCS improves the performance of all
benchmarks,»eept for Barnes and the sequentially consistent runs

EXPERIMENT PAIR

of Ocean and Raytrace. In these cases collocation either has littlg!SOLATED MECHANISM OR POLICY With Without
impact (Ocean and Barnes) ogdedes performance slightly (Ray-  Local spinning TS TS
trace). Unlile TS, MCS causes only a fed number of memory Exponential backoff TTS+E TS
operations to be issued per synchronization access, thus limiting Queue-based locking MCs TS
the disturbance caused by collocation. Qois TS
Raytrace ghibits much lager speedups than doesyasther Collocation TS+C TS
benchmark. The Raytrace base ca® (s extremely slov (as is TTS+C TS
TTS). Adding atry other mechanism besides local spinning Qots+C QoL
improves the performance of Raytrace substantidllyese tw Synchronous prefetch QoLB+C+CP QoLs+C
primitives perform so poorly because much of the locking is for
very small critical sections, for which there is Wwea@ontention. All runs in Figure4 assume a sequentially consistent memory
Collocation maks the small critical sectionsxteemely fst. model. The y-axis plots speedup. Figdrehavs that local spin-
50
67% 147% 106% 69% 146%  53% 124%  75% 150%
m» » B B B B P B
i B Barnes ]
[ ] mp3ad
_ [ ] Ocean
m D Pthor
25 B Raytrace 7]
o
=}
°
Q
[} - _
g _
2]
L
o b i i ﬂ:[[ i i e _
Exp. backoff Collocation Queue-based locking Compiler prefetch
(TTS+E vs. TTS) (TTS) (QoLB vs. TTS) (Qots)
Collocation Local spinning ] Queue-based locking Collocation
(TS) (TTS vs. TS) (MCS vs. TTS) (QoLs)
L e i
25

Figure 4  Effects of individual mechanisms.



ning is generally inééctive. Queue-based locking (usinCS) the net waiting processor in a queue, and bypass (or supplement)
increases speedup for all benchmarks. Using collocationT™g@ith  the global coherence protocol to permit sivadpinning.
and TTS causes ery different behaior across the benchmarks: To determine if lav-cost implementations @oLs will still out-
reducing speedup (Pthor)Miag a ngligible efect (Mp3d), caus- perform other primities, we compared the performanceQofs,
ing a moderate increase (Ocean), and causingge lacrease MCS, and a message-based centralized queue ©Gk) ([39]
(Barnes and Raytrace). This higariance with collocationxésts implemented on an unmodified cluster of commodityrksta-
because requesters may either steal the data from the lock, holdetions. The wrkstations used the Blizzard run-time system [40] to
hurting performance, or prent etra remote transfers into a net-  provide the illusion of shared memoiglizzard is an implementa-
work filled with arbitration trefc, thus mitigating exceptionally tion of the Bmpest intedce [34] which, through ustavel soft-
poor performance. ware, lets users customize the babaof shared memory to suit
Synchronization prefetching is ifiettive, naver afecting the ~ the needs of their parallel applicatiosCs andCQL are part of
running time by more than 2%.&/8uspect that there is much more  the locally aailable Blizzard distribtion and are implemented
opportunity for impreement with synchronous prefetch, as the directly on top of the 8mpest intedice. ¢ implementedQoLs
compiler algorithm \&s not as aggressi as possible, and we did  using the mpest intedce. Our implementation folls closely
not restructure the codes or algorithmsxpleit the paver of the ~ theQots specification in theCli standard [43]. Specific details on

QoL prefetch operator the lock implementations are describedwtsere [19]. Our cluster
of workstations consist of 40 unmodified dual processor Sun
7 Cost of QoLs SFARCStation 20s, each with on66-MHz HyperSRRC proces-

sors [36] and a Myricon Myrinet intexfe [4]. For our measure-

In Sections, we shwed thatQoLs outperforms all other syn- ments, we used onIy_a single processor per node; that processor is
chronization primities in all cases. This performance comes with €Sponsible forxecuting both the program and therfipest han-
an associated cost. Most of the other pririithat we discuss can  dI€rs. The detection of messageatis achiged through polling.
be implemented almost entirely in softe, requiring only an A blnc_stry revriting tool [22] autom_atlcally inserts po_Illng_ instruc-
atomic memory operation, such e, in hardvare.QoLs, con- tions in the parallel prografThe time spent polling is minimized
versely requires additional hardwe support. In this section, we PY &ploiting the coherence protocol in the memoug bThe poll-
enumerate the additional mechanisms Gt requires, discuss N9 code checks the status of the retwinterace through an
the cost spectrum of possible implementations of these mecha@CCess to a cachable location, thus limiting the number of these
nisms, and present performance results ofadost implementa- ~ 2CCesSes that require thesbio complete. The neark interace
tion of QoLa that runs on a cluster of commoditprkstations. uses its DMA interce to update the polled location [31]e\&et

. . . . the cache block size to 128 bytes.
QoL requires four mechanisms for a fully functional imple- To evaluate these implementations, we used a microbenchmark
mentation: non-blocking synchronizing instructions, direct node- :

d fer of the lock (f lock rel ; similar to that described in Sectiér8. 1o explore the impact of
g e ey i " cllcaton, s merobenchmrk doesnaive e amourt o
o . .___time in the critical section; instead, it writesaue into a shared-
queue), and the capablll_ty for r_m_JItlpIe nodes to perform Operatlonsmemory location. If the synchronization prinaéipermits colloca-
on the same address withoutdking the coherence protocol (the 4, i jocation may be collocated with the lock. As before, once
_shad(w Ilne_ described in .SeCt'm'G)' The hlghe_st-performance a processondts the critical section, it aits for a randomly gener-
implementation ofoLs requires hardare support in both the pro-

d th tem: lized bloat ated amount of time (selected from a uniform distidn with a
cessor and thé memory System. specializéd non-blodang mean of approximately 13f6). The benchmarkxecutes the loop
instructions in the processqius &tra state, direct cache-to-cache

transfer of the lock, and “shagacopy” support in the cache. The body 100,000 times, vdled a/enly among the contending nodes.

: - . In Figure5, we shw the elapsed time (in seconds) of the
SCI stanqardé implementation ofoLe incorporates the_ later three microbenchmark loop under contentiomdbs ranging from one to
mechanism$,for example, and lezs the processor implementa-

tion undefined 163 _The f@gure depicts the elapsed time f_or four synchronization
) ) ) ) ) configurationsMCS, CQL, QoLs, andQoLs with the lock and the

Much lover-cost implementations, which acéemuch of the  variable collocated@oLs+C). When there is no contentioMCS
potential performance afoLs, are possibleQoLs instructions in performs better than eith@QL or QoLs. The diference is due to
the processor may be replaced with generic non-blocking loads ofthe fact that the latter tavimplementations requireviacation of
stores, eliminating the need to modify a commodity proce3sor  protocol handlers to acquire or release a lock, Wi can per-
use generic memory operations, the memory controller must beform the same operations using simple loads and stores that hit in
able to recognize the issued instructions as synchronization operathe cache. Under high contentiappLe+C outperforms the other
tions. These operations may be Vieed] if the processor sup-  primitives. In the 16-node configuratioQoLe+C completes the
ports such loads and stores, oytheay be memory-mapped into a  |oop 5.6 asdst asviCS and 2.6 times as$t aLQL. CQL andQoLs
special “synchronization spatelhese operations must also be perform similarly with CQL being about 10%afkter thanQoLs
marked uncachable, lest théit in on-chip caches andves reach (without collocation) under high contention.
the memory controller Considering message counts only we could concludegthat

In addition to the processor supportyvioost memory system  should clearly outperforncQL. Indeed, under high contention,
alternatves forQoLs exist. Recent multiprocessor implementations QoLs has a single message on the critical path (abk3), while
have beyun to use protocol processors at widlial nodes to han-  CQL has tvwo (one message from the releaser to the lock manager
dle internode communication. These implementations may use aand another one from the manager to the acquirer). The ebserv
custom protocol engine, such as@bnsin ¥phoon [34], Stanford behaior is due to the transmission times of the messages used by
FLASH [21], or SequensTiNG [27], or a commodity protocol pro-  these implementation§QL uses short messages to communicate
cessor with some additionalfathip hardvare support [35]. These
protocol engines can store tQeLs state in either specialized stor-
age or main memopgend direct messages to ship the lock bit to

2. That tool is also responsible for inserting checks before each shared-
memory access [39].

3. Due to a shortcoming in the Myrinet intzé we could not collect num-

1. To our knavledge the SCI standard is the only design that inclQdes bers with more than 16 nodes.




120.0 T T T
@—@MCs
EECQL
9—6QoLs
100.0 [ A—AQoLe+C| T
0
2 L
S 80.0
[
[}
«Q
2 600
o
[}
@ L
kS 40.0
w
200 [
0.0 1 2 4 8 16
Number of processors
Figure5 Performance of software QOLB.

with the node managing the centralized queue, Wpiles trans-

form ourMCS lock by more than 30%Our results refute these
assertionsQoLs outperformsviCs by 40% for Mp3d.

Lim and Agarwal claimed [26] that reas# synchronization
“reduces the motation for praiding hardvare support for queue
locks! Since QoLe outperforms the best sofane locks under
either law- or high-contention conditions, #hould also outper-
form reactve synchronization schemes. Our results confirm this
hypothesis—QoLs speedups were from 10% to 92% higher than
reactive synchronization, and this disparity only increased by add-
ing collocation and synchronous prefetcitae.

Finally, we claim that the inherent cost requirementQafs
are not prohibitie. Hardvare queue-based locking is not prohibi-
tively expensve, asDASH implemented one such synchronization
scheme [25] (it dfers fromQoLs in that the centralized memory
directory lept track of queued requeste®pLs is an intgral part
of the SCI standard [43], and uses nyaof the same mechanisms
needed to implement the coherence protocol. As wevesthan
Section7, mary current- and nd-generation multiprocessors
already contain most of the harare support needed to implement
hardware-supportedoLs. We also shaed that a lw-cost, laver
performance &rsion ofQoLe can be implemented on current sys-
tems with no additional haragwe support and still outperform the

fers entire cache lines of 128 bytes. On our system, the round tripalternatves.
time of a message carrying a cache line is roughly twice the round

trip of a short message.

8 Summary and conclusion

This paper focused on priding eficient locking primitves to
improve the performance and scalability of fine-grain shared-
memory parallel programs. Instead of focusing on theviehaial
latencies associated with mutuallyckisve accesses to critical
sections, we focused on the global throughput of critical section
accesses. @defined the notion of syndironization period one
“cycle” of multiple serialized accesses to a critical sectioe. W
broke this time into three phase$rgdnsfer Load/compute and

Releasg and classified the components of each of these phases as

either unaoidable latencies or remable awerheads. W identified
four optimizing mechanisméoal spinning queue-based I&ing,
collocation andsyndironous pefett) that can assist in eliminat-
ing the remuable werheads of critical section accesses.

We performed a thorougtvauation of this space, simulating
the performance of senteen locking constructs (formed from six
base primitves: TEST&SET, TESW&TEST&SET, MCS, LH, M, and
Qovs) in detail with both real parallel applications and the more
traditional microbenchmarks. &Valso demonstrated the perfor-
mance of our synchronous prefetching comphémally, we com-

pared the performance of three queue-based locking scheme

running on an unmodified cluster oforkstations, the results of
which support our simulation results.

Our results shwed that local spinning consistently aids perfor-
mance bt not \ery much. Queue-based lockingswery efective,
except in the cases where theethead ofMCS, LH, andM locks
hurt lov-contention critical section access latencies. Collocation of
the lock and lockd data in the same cache linevsad wildly dif-
ferent efects withTEST&SET andTEST& T EST&SET; collocation may

greatly increase or decrease performance, depending on the bench-

mark. Collocation consistently impred the performance gfoLs.
Synchronous prefetching as the least &fctive of aiy of the
mechanisms.

The most important result of ouxgeriments is the consistent
and lage performance an thatQoLs achiees, which is further
increased by collocation. Graumkand Thakkar [16] concluded
that “... elaborate hardwe [synchronization] schemes are unnec-
essary een when considering lger non-bis-based [systems].
Mellor-Crumme and Scott stated [30] that “special purpose syn-
chronization mechanisms, such @sts, are unlilely to outper-

10

Acknowledgments

We are also thankful to the folling people: Daid Wood first
proposed to decompose synchronization pridtiinto mecha-
nisms. Mary ¥rnon commented on drafts of this pap®@atish
Chandra, Babakdfsafi, Stee Reinhardt, loannis Schoinas, Brian
Toonen helped clarify some fine points @nipest and Blizzard.
We benefited from discussions withN. Vijaykumar

References

[1]  SaritaV. Adve and MarlD. Hill. Weak Ordering — A Nw Defini-
tion. In Proceedings of the 17th Annual International Symposium on
Computer Achitecture, pages 2-14, May 1990.

[2] ThomasE. Anderson. The Performance Implications of SpigitW
ing Alternatves for Shared-Memory Multiprocessors. Rroceed-
ings of the 1989 International Conéerce on Brallel Processing
volume Il Softvare, pages 170-174, August 1989.

[83] ThomasE. Anderson. The Performance of Spin Lock Alterresti

for Shared-Memory Multiprocessot&EE Transactions on &allel
and Distributed Systemd (1):6-16, January 1990.

Nanette]. Boden, Damy Cohen, RobefE. Feldermann, Alak.
Kulawik, CharlesL. Seitz, Jakv N. Seizawic, and Wn-King Su.
Myrinet: A Gigabit-perSecond Local Area Netwk. IEEE Micro,
15(1):29-36, February 1995.

DouglasC. Buger and JameR. Goodman. Simulation of the SCI
Transport Layer on the Mtonsin Whd Tunnel. InProceedings of
the Second International afkshop on SCI-Based Highefor-
mance Low-Cost Computiniylarch 1995.

DouglasC. Buger and Deaid A. Wood. Accurag vs. Performance
in Parallel Simulation of Interconnection Nedvks. InProceedings
of the Ninth International &allel Processing Symposiympages
22-31, April 1995.

Corvex Computer Corporation, Richardson, TSPP1000 Systems
Overviay, 1994.

Travis S. Craig. Building FIFO and Priority-Queueing Spin Locks
from Atomic Swap. Technical Report 93-02-02, Department of
Computer Science and Engineering, \émnsity of \Aashington,
Seattle, VX, February 1993.

(4

]

(6]

(7]

[9] Cypress SemiconductoSan Jose, CACY7C601 SRRC RISC
User’s Guide second edition, 1990.

[10] JosephA. Fisher Trace Scheduling: Adchnique for Global Micro-
code CompactionlEEE Transactions on ComputgrC-30(7):478—
490, July 1981.

[11] Kourosh Gharachorloo, Sarita Adve, Anoop Gupta, John Hen-

nessy and MarkD. Hill. Programming for Diferent Memory Con-



[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

sisteng Models. Journal of Rarallel and Distriluted Computing
15(4):399-407, 1992.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Philip Gib-
bons, Anoop Gupta, and John Henneségmory Consisterycand
Event Ordering in Scalable Shared-MemdryProceedings of the
17th Annual International Symposium on Computethitecture,
pages 15-26, May 1990.

JameR. Goodman, MarK. Vernon, and Philid. Woest. Eficient
Synchronization Primiies for Lage-Scale Cache-Coherent
Shared-Memory Multiprocessors. Broceedings of the ThirSym-
posium on Achitectural Support for Pogramming Languges and
Opemting Systemspages 64—75, April 1989.

JameR. Goodman and Philip. Wbest. The Wsconsin Multicube:
A New Large-Scale Cache-Coherent MultiprocessoProceedings
of the 15th Annual International Symposium on Computetmit&c-
ture, pages 422—-431, May 1988.

Allan Gottlieb, Ralph Grishman, Clyd® Kruskal, Kevin P. McAu-
liffe, Larry Rudolph, and Marc SniThe NYU Ultracomputer—
Designing an MIMD Shared MemoryaRillel Computer IEEE
Transactions on ComputgrC-32(2):175-189, February 1983.
Gary Graunk and Shreekant Thakk&ynchronization Algorithms
for Shared-Memory Multiprocessoil&EE Computer23(6):60—-70,
June 1990.

International Business Machines, Inc., Powegpsie, NYIBM Sys-
ten/360 Principles of Opation, ninth edition, May 1970.

Alain Kéagi, Nagi Aboulenein, Douglas. Buiger, and JameR.
Goodman. &chniques for Reducing the émeads of Shared-Mem-
ory Multiprocessing. IProceedings of the 1995 International Con-
ference on Supeomputing pages 11-20, July 1995.

Alain Kagi and JameR. Goodman. SoftQOLB: An Ultra-tfient
Synchronization Primitie for Clusters of Commodity dvkstations.
Technical Report 1327, Computer Sciences Departmentgeksity

of Wisconsin, Madison, WI, Nember 1996.

R.E. Kessler and L. Schwartzmeier CRAY T3D: A New Dimen-
sion for Cray Research. Proceedings of the 38thIEEE Computer
Society International Confence (COMPCON)pages 176-182,
February 1993.

Jefrey Kuskin, Daid Ofelt, Mark Heinrich, John Heinlein, Richard
Simoni, Kourosh Gharachorloo, John Chapiny@aNakahira, Joel
Baxter Mark Horawitz, Anoop Gupta, Mendel Rosenblum, and
John Hennessyrhe Stanford FLASH Multiprocessdn Proceed-
ings of the 21st Annual International Symposium on Computer
Architecture, pages 302—-313, April 1994.

JamegR. Larus and Eric SchnatEEL: Machine Independent Ex
cutable Editing. IrProceedings of the 1995Condece on Regram-
ming Languge Design and Implementatippages 291-300, June
1995.

CharlesE. Leiserson, Zal$. Aluhamdeh, Dé&d C. Douglas,
CarlR. Feynman, MahesN. Ganmukhi, Jdfey V. Hill, W. Daniel
Hillis, Bradley C. Kuszmaul, Magaret A.St. Pierre, Deid S. Wells,
MonicaC. Wong, Sha-Wen Yang, and Robert Zak. The Neirk
Architecture of the Connection Machine CM-5. Pmoceedings of
the Fourth Annual £M Symposium ondrallel Algorithms and
Architectues pages 272-285, June 1992.

Thomas Lenguer and Robe#. Tarjan. A Fast Algorithm for Find-
ing Dominators in a Flegraph.Transactions on Rigramming Lan-
guages and System$(1):121-141, July 1979.

Daniel Lenoski, James Laudon,olfosh Gharachorloo, if-
Dietrich Weber Anoop Gupta, John Hennes$§ark Horawitz, and
Monica Lam. The Stanford &8H MultiprocessarlEEE Computer
25(3):63-79, March 1992.

Beng-Hong Lim and Anant Agwal. Reactre Synchronization
Algorithms for Multiprocessors. IRroceedings of the Sixth Sympo-
sium on Achitecturl Support for Pegramming Languges and
Opemting Systemgages 25—-35, October 1994.

Tom Lovett and Russell Clapp. 88G: A CC-NUMA Computer
System for the Commercial Matplace. IrProceedings of the 28r
Annual International Symposium on Computechitecture, pages
304-315, May 1996.

Peter Magnusson, Anders Landin, and Erik Hagersteficidfft
Software Synchronization on Lge Cache Coherent Multiproces-

11

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]
[46]

sors. Echnical Report T94:07, Swedish Institute of Computer Sci-
ence, Kista, Sweden, February 1994.

JohnM. Mellor-Crummeg and MichaeL. Scott. Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors.
ACM Transactions on Computer Systen®1):21-65, February
1991.

JohnM. Mellor-Crummeg and Michael. Scott. Synchronization
Without Contention. InProceedings of thedtrth Symposium on
Architectural Support for Pogramming Languges and Opeating
Systemspages 269-278, April 1991.

Shubhend®. Mukherjee, Babak dfsafi, MarkD. Hill, and
David A. Wood. Coherent Netark Interface for Fine-Grain Com-
munication. InProceedings of the 28rAnnual International Sym-
posium on Computer &nitectuie, pages 247-258, May 1996.

G.F. Pfister W.C. Brantly, D.A. Geoge, SL. Harwey, W.J.
Kleinfelder K.P. McAuliffe, E.A. Melton, V. A. Norton, and
J.Weiss. The IBM ResearchaRillel Processor Prototype (RP3):
Introduction and Architecture. IRroceedings of the 1985 Interna-
tional Confeence on Brallel Processing pages 764—771, August
1985.

StevenK. Reinhardt, MarkD. Hill, JamesR. Larus, AlvinR. Leb-
eck, Jame€. Lewis, and D&id A. Wood. The Visconsin VWhd
Tunnel: Mrtual Prototyping of Brallel Computers. IfProceedings
of the 1993 &M Sigmetrics Confence on Measements and
Modeling of Computer Systenmages 48-60, May 1993.

StevenK. Reinhardt, Jamds. Larus, and Ded A. Wood. Tempest
and Typhoon: Usetevel Shared Memoryln Proceedings of the
21st Annual International Symposium on Computeshifecture,
pages 24-33, April 1994.

StevenK. Reinhardt, RobelV. Pfile, and Daid A. Wood. Decou-
pled Hardvare Support for Distrilted Shared Memoryn Proceed-
ings of the 23t Annual International Symposium on Computer
Architectule, pages 35-44, May 1996.

ROSS Echnology Inc., Austin, TX.SFARC RISC Uses Guide:
hyperSRRC Edition third edition, September 1993.

Larry Rudolph and Zary $ell. Dynamic Decentralized Cache
Schemes for MIMD Rrallel Processors. IRroceedings of the 11th
Annual International Symposium on Computechitecture, pages
340-347, June 1984.

DanielJ. Scales, Burosh Gharachorloo, and Chandramohan
Thekkath. Shasta: A ko Overhead, Softare-Only Approach for
Supporting Fine-Grain Shared Memohy Proceedings of the 8e
enth Symposium on déhitectural Support for Pegramming Lan-
guages and Opating Systemsages 174-185, October 1996.
loannis Schoinas, BabakaBafi, MarkD. Hill, JamesR. Larus,
ChristophelE. Lukas, Shubhends. Mukherjee, SteenK. Rein-
hardt, Eric Schnarand Daid A. Wood. Implementing Fine-Grain
Distributed Shared Memory on Commodity SMPoMétations.
Technical Report 1307, UWCS, March 1996.

loannis Schoinas, BabalaBafi, AlvinR. Lebeck, SteenK. Rein-
hardt, JameR. Larus, and Dad A. Wood. Fine-Grain Access Con-
trol for Distributed Shared Memonyn Proceedings of the Sixth
Symposium on Ahitectural Support for Pogramming Languges
and Opeating Systemsages 297-306, October 1994.

StevenL. Scott, JameR. Goodman, and Matg. Vernon. Perfor-
mance of the SCI Ring. IRroceedings of the 19th Annual Interna-
tional Symposium on Computerchitectue, pages 403-414, May
1992.

JaswindePal Singh, V@lf-Dietrich Weber and Anoop Gupta.
SPLASH: Stanford &allel Applications for Shared Memoi@om-
puter Achitecture Nevs 20(1):5-44, March 1992.

IEEE Computer SocietyScalable Coherent Intede (SCI). ANSI/
IEEE Std 1596-1992, August 1993.

Teruo Utsumi, Masayuki Bda, and Moriyuki akamura. Architec-
ture of the VPP500 d&allel Supercomputerin Proceedings of
Supecomputing '94 Washington, D.C., Neember 1994.
WebsterWebsters Seenth Dictionary 1965.

StevenCameron o, Moriyoshi Ohara, Ean Torrie, JaswindePal
Singh, and Anoop Gupta. The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations Hroceedings of the 22nd
Annual International Symposium on Computechitectue, pages
24-36, June 1995.



