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Abstract

The fine-grain natg of shaed-memory multigrcessor com-
munication intoduces ovdreads that can be substantial. Using
the Scalable Cohent Interface (SCI) as a base Hamare platform
and the SPLASH benchmark suite for applications, we analyze
three techniques t@duce this ovéread: (i) efficient synchniza-
tion primitives, and in particular a hdware primitive called
QOLB,; (ii) weakened memorydering constraints; and (iii) opti-
mization of the cache-colerce potocol for two nodes sharing
data. V¢ perform simulations both for cemt technology and
technology that we anticipate will be available five years hence.
We find that QOLB (of which this study performs the first detailed
simulations) shows a lge and consistent impvement, much
larger than that pedicted by MellofCrummey and Scott [20]. The
relaxation of memory dering constraints also prides a consis-
tent performance imprement. In accdiance with prior esults,
we show that a meraggessive memory modelquuces ma
substantial performance impvements. The optimization for two-
node sharing shows mixeesults, corelating unsurprisingly with
the pesence of that sharing pattern in an application. Our most
important esults ae (i) that the ovdreads eliminated with these
optimizations ag largely orthogonal—the performance gainsnfr
supporting multiple optimizations concantly ae for the most
part additive—and (ii) that technological inguements in@ase
both these ovéeads and the success of the optimizationsdta-
ing them.
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1 Introduction

The shared-memory multiprocessing paradigm has had sub-
stantial impact in academic circles, but has only established itself
with small-scale machines in the industrial communithe
increasing reliance of supercomputer manufacturers on commod-
ity parts has contributed to the lack ofgerscale shared-memory
machines, as no such shared-memory parts have previously been
available. The establishment of standards—such as the IEEE Scal-
able Coherent Interface [1]—has resulted from this growing indus-
trial inertia. Consequentlyparts are becoming available that
integrate entire aspects of these standards, reducing system design
complexity time-to-market, and total system cost. Convex based
their Exemplar system [8], for instance,dely on third-party
components.

The growing number of bus-based shared-memory systems
will further strengthen the success of the shared-memory process-
ing paradigm. The increasing prevalence of these systems will cre-
ate a lage base of parallel applications, which should ease the
acceptance of lgerscale shared-memory systems.

The shared-memory model has persuasive advantages. It pro-
vides a uniform global address space, transparent communication
of data, and relative ease of programming. Howeterfine-grain
nature of its communication introduces overhead that can be sub-
stantial. The bulk of this overhead comes from synchronization
and the maintenance of data coherence, making the support of
these two operations critical for theiefent execution of shared-
memory applications.

This paper explores three classes of optimizations aimed at
reducing shared-memory overheads: (i) sophisticated synchroniza-
tion primitives, (ii) improved processor utilization through weak-
ened memory ordering constraints, and (iii) optimized coherence
latencies for common data sharing patterns. Although these opti-
mizations are all options of SCI, the results of this study are more
generally applicable.

The first class of optimizations we study is improved synchro-
nization primitives. A straightforward approach to building syn-
chronization functions uses instructions provided by the
commodity microprocessor (such as the atosmviap instruction
in the SRRC instruction set [10]) in much the same way as uni-
processor platforms use thenypically, the processor accesses a
lock repeatedly until the processor finds it unlocked. On a multi-
processarthese repeated accesses often translate directly into net-
work trafiic that leads to heavy network contention and potentially
severe performance degradatiore Yherefore compare two more
advanced primitiveQOLB[14] andMCS lockd20].

The second class of optimizations that we examine consists of a
range of memory models. Programmers naturally assume a mem-
ory model formally calledequential consistencgefined by Lam-
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ing technology on the three machine optimizations in general, with
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We have aganized the remainder of this paper as follows:
Section2 describes our simulation environment—thésainsin
Wind Tunnel—and provides pertinent background information on
port [18]. The strict ordering of sequential consistency severely the Scalable Coherence Interface, synchronization primitives,
limits concurrency of memory operations in a parallel computer relaxed consistency model issues, pairwise sharing, and the appli-
Most memory operations could in fact be completed out of order cation benchmarks that we used. SecBatefines the simulated
without afecting the program result. The identification of those System, discusses our simulation assumptions, lists the experi-
which could aflect the result is difcult, howeveras synchroniza- ~ ments performed, and describes the experimental methodology
tion through shared variables can be extremely subtle. Memory Section4 presents our experimental results, Secioreviews
models—such as data-race-free-0 [3] and release consistencypome important related work, and Sectiosummarizes our con-
[13]—allow the system to relax the constraints of sequential con- clusions and contributions.
sistency by creating a contract between the software and the hard-
ware, defining what memory orderings are legal. Implementations 2 Background
may then be conservative or aggressive in supporting the memory
model. Our simulation platform is the Mtonsin Whd Tunnel

The final optimization we study reduces overhead for one par- (WWT), which allows us to study the performance oféascale,
ticular pattern of data sharing. General cache-coherence protocoldligh-performance systems through massive simulation (more than
may not optimally handle the majority of common data sharing tWo trillion cpu cycles). In order to establish a complete and
patterns. Consequentiiesearchers have investigated many proto- detailed environment, we simulate geersystem of 32 nodes pro-
col extensions [7, 9,11 25] that allow existing protocols to per- Viding hardware-guaranteed cache coherence by means of the
form better under specific classes of data sharing patterns. Thes@NSI/IEEE standard 1596 Scalable Coherent Interface (SCI) [1].
extensions attempt to reduce network traversals and/or memoryThe taget system consists of workstation-like nodes possessing a
accesses.Wo common classes of sharing patterns are migratory Processarcache memorytransaction queue (similar to a function-
data [17] and produceonsumer data sharing. In this paper we aIIy-extende_d write bdér), network interface, ar_1d some fract!on
Study 0n|ypajrvvi&3 Sharing_an Optimization aimed at two_node Of the dIStrIbuted, g|0ba||y-shal’ed memory Wlth the aSSOCIated

sharing—primarily because pairwise sharing is a feature of the directory entries (see Figuig. Our taget applications are five
SCI cache-coherence protocol. programs selected from the SPLASH benchmark suite [24].

Interconnection Network

Figure 1. Target system

In addition to the three classes of optimizations, we quantify
the efects of two additional related issues: optimization interac- 2.1 The Scalable Coherent Interface

tion and technological advances. An important goal of this workis g gefines both an interface to a network and a cache coher-
determining the level of overlap that occurs among our three opti- ence protocol. The protocol is a robisrdware solution to the
mization classes. Thus, in addition to focusing on tfeeg¥eness cache coherence problem. Messages may be addressed to any node
of each optimization independentiywe also analyze the Cross- i the system, but the protocol does not use broadcast. The proto-
product of their interactions. col is able to survive the loss of packets in the network with no
A significant component of network latencies for multiproces- |oss of data. SCI guarantees forward progress for all transactions,
sors is the fundamental delay associated with the speed of lightand was intended to support high performance on a full range of
While there will undoubtedly be further reductions in network system sizes, from tens to thousands of processors.
delays, we expect that continuing improvements in processor tech- ~ SCI specifies a distributed, directory-based cache-coherence
nology will far exceed these network improvemente Wish to protocol. In addition to specifying that the physical memory is dis-
understand how these technology trends wikafthe relative  tributed across the nodes, the list of nodes holding copies of a
benefits of system optimizations. While we are unable to accu- given cache line is also distributed, along with the cached copies.
rately model the performance of future processors, we believe thatThe protocol creates a doubly-linked list to maintain the directory
raw performance (as measured, for example, by the time to com-information for each valid cached line. The home redesmory
plete a uniprocessor application), will increase relative to improve- directory keeps a pointer to the last requegierexample of an
ments in network speeds. Therefore, we have attempted toSC| sharing list is shown in Figuge
estimate performance by adjusting relative delays for instruction  sC| defines the following basic operations on a sharing list: (i)
times versus memory access times and network delays. a node may join the list, becoming the head; (ii) a node in the list
The main contributions of this paper are threefole. piesent may delete itself from the list by serially communicating with its
the first quantitative performance analysis of the QOLB synchroni- upstream and downstream neighbors, informing each in turn of its
zation primitive [14]. V& analyze the subtle interaction of QOLB new neighbor; (iii) a head node may gei(i.e. invalidate) all the



struct _locked_data {
int |ock;
int data[15]; };
void critical _section(struct _l|ocked_data *x)
{
EnQOLB( x- >| ock) ; /* Prefetch | ock, data */
/* Various conputation here */
while (! EnQOLB(x->l ock)); /* Spin */
/* Critical section using x->data */

DeQCOLB( x- >l ock) ; /* Rel ease | ock */

Figure 3. QOLB code example

DeQOLB, at which point both the lock and any data in the Bck’
cache line are sent directly to the next waiting procebkiie that

in this example, the data associated with the lock afecisutly

small in number that no extra remote accesses need to be made
once the lock is prefetched. This will obviously not always be the
case.

2.2.2 MCSlocks

Mellor-Crummey and Scott proposed software solutions to
minimize network trafc and synchronization access latencies, as
did Anderson. Mello«cCrummey and Scott (MCS) implement a
queue as a linked list, and use atomic operations sushiapsor
compare-and-swap to update the list correctly [19]. Anderson pre-
sented a scheme that implements a queue as a circular array [4].
Inspired by QOLB, these algorithms also reduce the network traf-

other elements of the list (one at a time) to become a single-ele-fic to a constant number of traversals per synchronization access,
ment list. SCI carefully defines these operations to permit arbitrary allowing processors to spin locally while waiting for the release of

concurrency in their execution.

the lock. Unlike QOLB, these algorithms cannot benefit from plac-

To maintain a local copy of a cache line, a node executes opering the lock and data in the same cache line, since the linked list

ation (i). It receives a copy of the data either from the home fiode’

memory or from the old sharing-list head. If a node wishes to mod-

ify the line (a store instruction), it must perform operations (ii) and
(i) if it is not at the head of the list; once it is at the head of the list
it can perform operation (jii).

Standardization &frts must be certain to make standards cost-
effective using current technologwithout compromising poten-
tial high performance for future systems. SCI provides such flexi-
bility by containing numerous optional features, which can
provide a range of systems with varied cost and performance. T
such options are fgient support for two-node sharing (pairwise
sharing) and &tient support for synchronization (QOLB).

2.2 Synchronization

221 QOLB

Naive synchronization primitives can drastically increase net-
work trafic in multiprocessor systems. Goodmarernon, and
Woest proposed the Queue-On-Lock-Bit primitiQ@¥(B—origi-
nally called QOSB) as a hardware solution to this problem
[14]. QOLB provides a direct implementation of a binary sema-
phore (with approximate first-come-first-serve service) by building

a hardware queue of waiting processors. It avoids unnecessary net-

work trafiic as waiting processors spin localigpeatedly access-
ing a local “shadow” copy of the lock’cache linewithout
generating network tri€. Consequentlythe placing of a lock and

along which the lock is passed is composed détifit addresses.
These algorithms are also unable to prefetch data without extend-
ing them and adding significantly to their complexity

Abouleneinet al. [2] showed that Andersas’solution per-
forms no better than the MCS solution; therefore in this study we
restrict ourselves to comparing MCS with QOLB. If the synchro-
nization contention is loythe use of a naive synchronization algo-
rithm (as mentioned above) may lead to better performance than
the MCS solution, as the latter has @éaoverhead per synchroni-
zation access even in the absence of contentienvitherefore
also evaluate simple locks, in an attempt to identify the cases
where simple locks outperform MCS and/or QOLB.

2.3 Memory ordering
Lamport defined sequential consistency as follows:

[A memory system is sequentially consistent if] the result
of any execution is the same as if the operations of all the
processors were executed in some sequential ,cader
the operations of each individual processor appear in this
sequence in the order specified by its program [18].

Sequential consistency is overly restrictive with respect to mul-
tiprocessor memory orderings. Systems can achieve higher perfor-
mance by relaxing the memory orderings, without compromising
the correctness of the program. The class of weakened consistency

data in the same cache line does not degrade performance, unlikgodels that we implemented belong to tieease consistency

other synchronization primitives.

model [13], which divides groups of memory accesses with

When the current holder of a given lock releases that lock, the acquire, release, andspecial accesses. So long as a program obeys
cache line containing both the lock and the corresponding data isthe rules specified by this model, many memory accesses can
automatically sent directly to the next processor in the queue. Thisbypass others, allowing the processor to tolerate the longer laten-
technique substantially reduces latency associated with handingcies associated with remote transactions.

protected data to the next waiting procesdar fact, QOLB

Our benchmarks assume a memory system that supports

reduces the synchronization overhead to the theoretical minimum,release consistencWe study three diérent implementations, all

unless the system speculatively overlaps critical sections. In addi-

tion, QOLB is a non-blocking primitive—it allows the waiting
processor to overlap data prefetching with other useful work.

of which satisfy the constraints of release consistency: (i) sequen-
tial consistency (i) a more relaxed consistency model that
exploits the easily-obtained concurrency inherent in the SCI

Figure3 shows an example of how QOLB is used to access cache-coherence protocol, and (jii) an aggressive implementation

data in a critical section. The first callEaQOLB (a non-blocking

that attempts to minimize the number of times that the processor

operation) allocates a shadow copy of the line and sends a messagsust be stalled for memory operations.

that inserts the node into the hardware requester queue. This This range of consistency models is perfectly compatible with
allows the processor to overlap the fetch time with useful compu- SCI, which defines a network interface, not a system implementa-
tation. The subsequent calls BEnQOLB in the loop spin locally tion. SCI does not specify the memory model; instead, it permits a
until the owner releases the lock and sends it directly to the wait- variety of models to be supported, including sequential consis-
ing node. WheenQCLB returns true, the processor enters the crit- tency The SCI standard allows the processor to continue execu-
ical section. The processor relinquishes the lock with the call to tion concurrently while multiple, sequential transactions are in



Benchmark  Type of simulation  Input Technology: Current Future

Node parameters

Barnes Barnes-Hut N-body 2048 bodies, 11 iterations
Mp3d Hypersonic flow 24000 mols, 25 iterations Processor speed 200MHz 500 MHz
Ocean Hydrodynamic 98 x 98, 2 days Sustained IPC ! 2
Cache access 3 12
Pthor Digital circuit ri sc, 1000 timesteps Directory access 10 40
Water Water molecule 288 mols, 10 iterations Network parameters
Table 1: Benchmarks Network bandwidth 500 MB/s 1GBI/s
Parse delay 4 6
Wire delay 3 8
progress. This flexibility allows us to evaluate a range of memory Agent delay 22 28
models. Staging delay 14 28
2.4 Datasharing patterns Table 2: Parameter settings
In the base SCI protocol, the delay associated with two-elementAll delays are in CPU cycles. The network is assumed to have two-
sharing can be substantial. For a proccersumer relation- byte-wide links. Parsing delay accounts for the time spent on the

ship—where one node writes a cache line frequently and anotherouting decision; wire delay_accou_nts for_ buffering and muItipIexing;
reads it—the protocol repeatedly creates and breaks down thedgent delay accounts for dimension svv_|tch|ng delays; and staging
sharing list. The writer must become the head of the list and thende‘Iay accounts for data transfers occurring at the source and target
purge the readeiTo read again, the reader must rejoin the list as nodes.

the head. In order for the writer to write again, it must remove
itself from the list, become the head, thengauthe readefThus, nes, Mp3d, Ccean, Pthor, and Water (see Bblel). A

the transfer requires numerous transactions, including two inquir- description of these benchmarks appears in the original article

ies to the home node. . . ! o
An optional extension to the SCI protocol addresses this pmb'[j[ﬁgije focus the following discussion on specifics related to our

lem. Known aspairwise sharing, this extension permits the tail
node of a two-element list to modify its copy of the cache line after e labeled all memory accesses as aggressively as possible
notifying the head node to mark its capyal e. The listis main-  according to the structure proposed by Gharachaia. [13].

tained even though the head no longer has a valid copy of the dataye then inserted memory fences to achieve release consistency on

The stale head can then read (or write) the data by simply commus, ¢ gimylated hardware platform. The memory fences are consis-
nicating with the tail (which becomes stale in case of a write) and teent with those proposed by Gharachorloo [12, 13].

reasserting itself as head. Thus, no enquiries to the home node ar
necessary for stable pairwise sharing. We performed additional optimizations on each benchmark to
The protocol was constructed in a way that pairwise sharing, if maximize performance on the simulated hardware. For simula-
supported, degrades gracefully into a conventional list; if the list tions evaluating QOLB, data structures were modified to couple
consists only of two nodes, it employs pairwise sharing. If a third |ocks in the same line with the data that they proteet.patded
node joins the list, the protocol reverts back to the standard yais in each benchmark, where necesgargliminate false shar-

method. SCI accomplishes this transition without extra messages,g 115]. We compiled the benchmarks using GCC version 2.6.2
in most cases, although there are circumstances where perfor; o the.option- B o

mance suers because pairwise sharing defers the breaking-down

of a two-element list when a third requester joins the list. Barnes originally used locks to protect the higher levels of the
tree during its tree-building phase, which results in an often-locked
2.5 Wisconsin Wind Tunn€ root. The designers of Barnes optimized this process by locking

Our experiments were performed on thesdnsin Whd Tun- Itreek zodeds on_|r3;]_for writing, pe_rmlt_tl_ngl fread sgann? of wrlte—f
nel virtual prototyping system [21]. WWT executes parallel ocked nodes. This optimization is critical for good performance o

shared-memory programs on a parallel message-passing computéY'CS locks, but is not essent_ial' for_ good performance of QOLB.
(the host). It uses execution-driven, distributed, discrete-event We therefore turned the optimizationf 6ér all QOLB experi-
simulation techniques that accurately calculate program executionMents.

time. Execution occurs in fixed windows of time, called quanta,  \ve modified Ocean by converting it from FORAN to C

which the simulator alternates with synchronization events that (WWT currently does not support applications written in FOR-

maintain causalityWWWT exploits similarities between the get S
system and the host system to allow the host to execute directly aIITRAN)' To reduce conflicts in the cache we skewed storage by

target program instructions and memory references that hit in the MPedding the working arrays inger arrays of prime size (131
target cache. WWT accomplishes this by using the @oarecting by 131 elements).

codes on the CM-5 to trap into th_e simulator yvhen_a miss occurs in Mp3d can be run with or without locks. Elimination of locks
a taget cache. Because of the direct execution afitesft traps, results in a non-deterministic execution, precluding repeatability
the scale of applications that WWT is able to simulate approachesyy resyits, but potentially permitting higher performance. Because
that of real applications. of competitive accesses to shared variables, howévernon-

locking version requires great care to assure that it executes cor-

2.6 Benchmark applications rectly on hardware only guaranteeing release consistaricy
The taget programs we used for our experiments are five appli- drawback negates much of the potential benefit of this technique.
cations drawn from the SPLASH benchmark suite. Theare We used only the locking version of Mp3d for our experiments.



Benchmark Simulated Modeled
Latency % Error Latency % Error
Barnes 93 -1.18 88 2.12
Mp3d 92 0.26 89 1.72
Ocean 93 1.46 93 3.08
Pthor 102 -2.09 88 4.61
Water 91 -0.27 87 -0.04

Table 3: Inaccuracies of the constant latency
network model
We compare execution time using the detailed network simulator to
determine execution times using two different constants for the net-
work latency: (i) the mean message latency returned by the simula-
tor, and (ii) the mean message latency returned by our analytical
network model.

3 Methodology

3.1 Assumptions

Our simulation host is a Thinking Machines CM-5 partition
with 32 processors. The simulationger is a 32-node shared-

number of cycles for traversal. This assumption of constant
latency provides sfi€ient lookahead at each node to allovi-ef
cient parallel simulation. Reducing the minimum end-to-end net-
work latency reduces the node lookahead, which causes severe
increases in simulation time [6].

The constant latency assumption ignores network contention,
which can play a pivotal role in evaluating various optimizations.
Optimizations that reduce gt execution time without a corre-
sponding reduction in communication raise thfieaive load on
the network. Other optimizations that reduce the number of mes-
sages lower the fared load. A constant latency model may there-
fore be either too optimistic or too pessimistic, depending on the
simulation parameters.

We used the constant latency model for our experiments. In
order to account for network contention, we derived a constant
network latency to use for each benchmark, which we obtained
with an analytical model. The analytical model that we used [23]
requires the network load as a parameétér estimated this aggre-
gate value from the trfi¢ statistics of previous simulations and
their total execution times. The model produces the mean latency
of a network traversal, to which we set the constant for the net-
work latency We iterated this process until thefdience between
the network latency constant and the value produced by the model
for that run conveged to within one cycle per message.

To validate this process, we used a detailed, event-driven SCI

memory multiprocessor supporting the SCI cache-coherence pro-network simulator (based on the original WWT network simulator

tocol. WWT executes $fRC binaries, and assumes fixed execu-

[6]) that accurately simulates messagefdririg, message retrans-

tion time for the instructions (the actual values correspond to the mission, and flow control [5]. The implementation serializes the

instruction delays listed by the CY7C601ART usets guide
[10]). The execution times fd&nQOLB andDe QOLB (executed at
the entry and the exit of a critical section) are 3 and 2 cycles

network simulation at a central node, making simulation perfor-
mance suér by roughly a factor of 15.
The taget network that we used to derive the validation was an

respectively Both instruction and stack accesses to the cache areg x 4 mesh of rings. The tget network routes requests in increas-

not simulated in WW(Tthey are assumed always to hit. Our MCS
locks use thewap primitive and perform all operations locally as
much as allowed by the algorithm.

3.1.1 Memory system parameters

The invariant simulation parameters are as follows: a 64-byte
line size, consistent with the SCI standard, a 1 cycle hit time for

the caches, and a 1 cycle per 32-bit word fill time. The caches were'
4-way set-associative. Replacements were selected based o

which line least recently missed or write-faulted (we made this
choice because of WWT constraints). Memory loads always
blocked, and main memory had an invariant of 1 cycle per 32-bit
word fill time. WWT allocates private @et pages locallyand dis-
tributes taget pages residing in the shared address space amon
the taget nodes round-robinable?2 lists the cache and directory
access latencies that the twdeliént technology levels used.

All experiments assumed transaction queues (of 64 entries
each) for updating memory asynchronously upon a replacement o

ing dimension order and responses in decreasing. drderinter-
nal details of the simulated network correspond closely to those of
the SCI transport layer standard. A messagelay through the
network includes staging time at the source argetarodes, pars-
ing and wire delay through each intermediate node, and possibly a
delay through an agent queue [1], if the message switches dimen-
sions. Bble2 lists the specific times for these delays, for both cur-
ent and future networks.
Table3 shows the errors (in terms ofdat execution time)
ﬂwt the constant latency network modelfensf when compared
against the detailed network simulation. The two columns of net-
work latencies represent the mean message latency returned by the
SCI network simulator and the model, respectivéhe error col-
mns show the error in @&t execution time that we calculated by
omparing the constant latency runs against runs that used the SCI
network simulatar These network validation runs assumed
sequential consistency and MCS locks, and were run using smaller

fdata sets than the other experiments.

a cache line. Note that even a sequentially consistent system would .
permit such asynchronous flushes because a program memond-2 EXperiments

access is not associated with the flush. A minimal-cost design

QOLB, relaxed memory ordering constraints, and pairwise

employing sequential consistency may eliminate the transactionsnaring are all techniques for reducing and tolerating the latencies

queue entirely\We did not analyze the performance of such a sys-
tem.

Each taget node was capable of having 64 outstanding transac-

tions, consistent with the SCI standard. Although thgetgsroces-

associated with accesses to shared data. An important question is
whether they capture the same optimization opportunities or
whether they actually optimize @fent aspects of the parallel
execution. V& examined the cross-product of all cases, to catch all

sors used blocking memory loads, writes, coherence andcases in which optimizations overlap as well as the cases for which

synchronization operations were able to proceed in parallel with
both each other and any outstanding memory request.

3.1.2 Interconnection Network

A simple network model assumes a fully connected point-to-

the performance gains are additive.

3.2.1 Synchronization

Our goal in this study was to measure the conditions under
which QOLB realizes its performance potentials, and obtain quan-

point taget network and assumes that messages take a constartitative results for the performance improvements QOLB can pro-



vide. We did not exploit the prefetching capabilities of QOLB; we 3.2.3 Pairwise sharing

used it only for straightforward synchronization accesses. . - L .
Our goal with respect to examining pairwise sharing was to

We also measured thefedt of substituting MCS locks for sim-  determine what application classes can take advantage of the pair-
ple locks, in order to identify circumstances where simple locks wise sharing optimization, as well as the quantitative gain obtained
outperform MCS or QOLB or both. Our implementation of simple by such applications. Also important is how an applicasiqer-
locks uses thewap primitive. formance is décted when it can not take advantage of pairwise

. . ) _sharing, when the protocol degrades from a pairwise-sharing list to

_ Enabllng the QOLB option in SCI autome}tlcally enablgs pair- 4 conventional list.
wise sharing also, as the required mechanisms (primarily direct  rhe pajrwise sharing option defers the breakdown of the shar-
cache-to-cache write transfer of data) are sirawever to per- ing list, based on the assumption that two sharing caches will con-
mit the study of the two options separately we extended the coheryin,e o share the data in the near future. In cases where this
ence protocol to permit QOLB support without pairwise sharing.  4ssumption does not hold, the delayed breakdown of the list may

Finally, we performed an experiment to determine the sensitiv- cause the sending of additional messages, advers$etyiag pro-
ity of benchmark performance to the QOLB instructions’ execu- 9ram performance.

tion cost. )
3.2.4 Cachesize

3.2.2 Memory ordering constraints Our experiments were performed assuming two _sizes of
caches. Most of our measurements were taken assuming a 1MB

cache, which is a reasonable size for current technofamythe

data sets we used, a cache of this size enabled us to evaluate the

ferent ordering constraints on memory operations. allalyzed AR . .
three designs permitted by the SCI protocol, which cover the Spec_performgnce of the three classes. of optimizations, without experi-
encing finite cache fects. Assuming a lge cache, benchmarks

trum from a conservative, inexpensive design to a very aggressive- . ) X
design approaching the limits imposed by release consis®@uocy W'th small datg sets may tend to ovgremphasue the benefits of
baseline design, callesieq, achieves sequential consistency by MProvements in the #éiency of sharing [22]. Thus, we reran
restricting memory reads and writes to a single outstanding opera-S0me of the experiments with a smaller cache size, to understand
tion at any time. A second designi() allows substantial overlap € behavior of the optimizations in the presence of capacity and
by permitting multiple outstanding memory operations (note that conflict misses. For this experiment we set the cache size to 8KB.
WWT does not permit simulation of multiple outstanding loads). We chqse our qache size so that the number of sets is comparable
This design blocks on writes until the writing node has become © thatin a previous study [16].

head of the sharing list and the cache line to be modified is resident

and writable, and then permits the geirand the actual write to ~ 3-2.5 Futuretechnology

proceed in para||e|. This approach is a natural relaxation that can Simulation results for two types of Systems are presented in this
be achieved with a minimum of additional Complexity in an SCI- paper: taget Systems using current techno]ogy ange:asystems
based design. A third design2) relaxes the constraints of write  ysing future technology (our estimates are for approximately 5
operations further by allowing the processor to insert writes in the years in the future). This permits us to analyze which of the stud-
transaction queue and continue immediately when appropriate.jed optimizations will increase in importance as technology
This scheme can be implemented within the SCI protocol, but addSadvances_ Specificallywe wished to discover whether system
significantly to the complexity of the design. The WWT assump- parameters that change due to technological improvement will
tion of non-blocking loads prevents this scheme from being as gualitatively change our resultsafle2 lists the system parame-
aggressive as possible, since it only relaxes writes, some synchroters that we use for the two assumed levels of technotoggext
nization accesses (specifically DeQOLB), and coherence opera-andfuture). Note that the future processor ifeefively five times

tions. Even so, this model still has a very high implementation a5 fast in terms of instructions executed per unit time.
cost, particularly when compared to thatifdr.

A subtle point arises when considering ordering constraints on 4 Results and discussion
QOLB instructions. Strictly speaking, QOLB is a memory opera- ) ] ) ]
tion, but it can also be considered a hint to the memory system that ~Table4 summarizes the main results of this paj first ana-
helps the hardware propagate data in advance of its use. It does ndyze each of the three optimizations studied in this paper indepen-
perform either read or write operations, and can not by itself causedently, and then discuss their interactionse \so discuss the

violations of memory ordering constraints. Therefore, QOLB effects of technology improvements, and finally théeab of
instructions may a|Ways proceed asynchronous|y smaller caches. Both the raw data and the data ifesedif format

) ) ) ) are presented in Appendix A, along with the results of a full facto-
QOLB instructions do, howeveprovide an opportunity for rial analysis of the data.

further weakening memory ordering constraints. Since an entire

line is passed between noc_ies a_tomlczail‘w data mod_lfled before 4.1 Synchronization
the release of a lock contained in the same cache line can be guar-
anteed to be consistent everywhere at its release peQOLB). Benchmarks using QOLB consistently perform better than
Thus no other ordering constraints are necessary for memory when using MCS. The most impressive improvement occurs for
accesses to data protected by a lock contained in the same lineMp3d, the execution time of which QOLB improves by nearly
While this observation is correct for any system that transfers only 70%. For this benchmark, most of the sharing occurs in migratory
entire cache lines, it is only useful where it ificé#nt to place data ~ fashion where diérent nodes in turn update fields of structures.

in the same cache line as the associated lock. For this reason, wBecause these updates are protected with locks, the performance
refer to this phenomenon @OLB consistency. Careful analysis of of the benchmark benefits particularly well from QOLB.
well-structured code can result in the total elimination of many Barnes, Ocean and Pthor also benefit from QOLB, by 25%,
barriers and other synchronization pointse Wd not, however 12%, and 1%, respectivelyThe gains are less impressive for two
perform such optimizations for our benchmarks. reasons. First, unlike Mp3d, not all fields of the protected struc-

Our simulator allows for analysis of memory systems with dif-



Benchmark Synch Current Future Ratio

seq rl r2 seq rl r2 c/f
Barnes MCS 1.00 1.06 1.13 1.00 1.08 1.18 3.70
Pair, MCS 1.00 1.06 1.12 1.00 1.07 1.13
QOoLB 1.25 1.28 1.30 1.34 1.40 1.41
Pair, QOLB 1.24 1.28 1.29 1.31 1.38 1.39
Mp3d MCS 1.00 1.12 1.26 1.00 1.14 1.28 3.14
Pair, MCS 0.95 1.06 1.18 0.94 1.06 1.19
QoLB 1.68 1.72 1.79 2.02 2.08 2.14
Pair, QOLB 1.58 1.65 1.72 1.85 1.95 2.01
Ocean MCS 1.00 1.05 1.31 1.00 1.08 1.42 3.18
Pair, MCS 1.20 1.26 1.43 1.27 1.39 1.62
QOLB 1.12 1.17 1.45 1.14 1.23 1.62
Pair, QOLB 1.39 1.46 1.63 1.55 1.69 1.96
Pthor MCS 1.00 1.03 1.28 1.00 1.03 1.28 3.23
Pair, MCS 0.98 1.01 1.24 0.98 1.01 1.24
QOoLB 1.11 1.15 1.41 1.13 1.18 1.46
Pair, QOLB 1.09 1.13 1.38 1.10 1.15 1.42
Water MCS 1.00 1.02 1.03 1.00 1.03 1.06 4.68
Pair, MCS 0.99 1.01 1.02 0.98 1.02 1.04
QOLB 1.05 1.05 1.05 1.08 1.09 1.09

Pair, QOLB 1.04 1.05 1.05 1.07 1.08 1.08

Table 4: Results for 1IMB caches
These numbers depict application speedups, calculated as the ratio of the execution time of the
base run to that of the optimized hardware. The rightmost column shows the speedup of the
future technology, seq/MCS simulation to that for current technology with seq/MCS.

tures of Barnes and Pthor fit in a single cache line. The overflow 4.2 Relaxed memory ordering constraints

fields do not benefit from the improved hanélitafency ofered by

QOLB (though careful programming or a very sophisticated com- ~ Relaxing memory ordering consistently benefits all bench-
piler could increase the benefit). In addition, some fields in thesemarks, particularly in the absence of other optimizations. Mp3d
structures were not placed in the same line as the lock because thghows the lagest improvement usingl, with a speedup of 12%.
applications sometimes access them as unsynchronized data, anfill benchmarks but \&tershow significantly lager improvements
false sharing of a locked line can obviously be extremelyfiinef — usingr 2, ranging from 13% for Barnes to 31% for Ocean.

cient. Second, the number of accesses to migratory data is not as While the gains are modest fot, the consistency of the bene-
frequent in these benchmarks. Both Barnes and Pthor have a numfit, along with the fact that it is readily achievable with minimal
ber of accesses to mostly-read memory locations, for which QOLB additional hardware or may already be implemented by the proces-
offers no improvement. The majority of shared accesses in Ocearsor, make this optimization attractive. The more aggressive imple-
are to memory locations that follow producer/consumer patterns. mentation of release consistency used foR produces
QOLB is theoretically able to handle such patterns. did not, substantially better performance. As discussed hdiowever its
however modify Ocean to take advantage of this ahikince we benefit is often reduced for systems that also exploit QOLB.

would have had to rewrite most of the application (invalidating our
comparisons).

Table5 shows the speedups for Mp3d running wsthap,
MCS, and QOLB locks, and with each of the three relaxed mem-  Ocean is the only application for which pairwise sharing is vis-
ory models used in this studye observe that for this particular  ibly successful, speeding up its execution by 20%. The bulk of the
benchmark the MCS algorithm consistently improves performance sharing in Ocean occurs during phases of stencil computation that
over the simple lock runs by at least 12%. QOLB, however involve communication of columns between fixed neighbors. This
improves performance a minimum of 56%. sharing pattern is common in many scientific applications. Con-

We performed several experiments to measure the programVersely for applications lacking static pairwise sharing patterns,
sensitivity to the execution time of the QOLB instructions. The the execution time remains unchanged. Barnes) or even
experiments increased the latencies EmQOLB and DeQOLB increases slightlycf. Mp3d, 5% slowdown).
from 2 and 3 processor cycles respectively to 20 cycles each. Pairwise sharing benefits one of our benchmarks substantially
Slowdowns for these programs were less than 1%, leading us toand at worst only mgmally degrades the performance of the oth-
conclude that the benefits of QOLB are insensitive welaaria- ers. Although our results do not indicate that pairwise sharing is
tions in the latencies of QOLB instructions. frequently cost-déctive, a study testing pairwise sharing on a

4.3 Pairwise sharing



Benchmark Lock Consistency model Benchmark Synch. 8K Cache

seq rl r2 seq rl r2
Mp3d Swap 1.00 1.12 1.18 Barnes MCS 1.00 1.02 1.07
MCS 1.14 1.27 1.43 Pair, MCS 1.00 1.02 1.06
QOLB 1.91 1.96 2.04 QOLB 1.30 130 1.32
. Pair, QOLB 1.30 1.30 1.32
Table 5: Performance of Mp3d varying locks Q
. o . . Mp3d MCS 1.00 111 1.25
These numbers depict application speedups; the ratio of the execu- -

tion time of the base run to that of the optimized hardware. Pair, MCS 096 105 1.19
QOLB 164 168 1.76
broader range of applications is needed before we can definitively Pair, QOLB 160 164 171
evaluate its utility Ocean MCS 1.00 1.02 1.19
Pair, MCS ~ 1.02 1.03 1.21
4.4 |nteractions among optimizations QOLB 1.08 109 1.26
. . . . Pair, QOLB 111 111 1.30
While different benchmarks benefit to varying degrees from the B MCSQ 100 102 118

different optimizations, the optimizations produceédy indepen- or : ' ‘ :
dent improvements. The most surprising result is that most of our Pair MCS 099 1.01 116
benchmarks show more improvement by applying both QOLB and QoOLB 1.07 1.08 1.23
pairwise sharing than would be predicted from applying each indi- Pair, QOLB  1.06 1.07 1.22
vidually. Usingseq, the QOLB optimization speeds Ocean up by Water MCS 100 101 103

12%. Applying pairwise sharing (but not QOLB) results in a

speedup of 20%. If the reductions in overhead are fully indepen- Pair, MCS 100 101 108

dent, a speedup of 37% would be expected when both are applied QOLB 104 1.04 104
Applying both obtains a speedup of 39%. The two optimizations Pair, QOLB  1.04 1.04 1.04
clearly have a small positive interactioneWWpeculate that this

interaction is due to the fact that since MCS locking structures are Table 6: Results for 8K caches

not able to exploit pairwise sharing, eliminating them increases the These numbers depict application speedups; the ratio of the execu-
percentage of shared data accesses that ¢ectiwetly exploit tion time of the base run to that of the optimized hardware.

pairwise sharing.

ingr 2 in the same way was less successful: iTheesign clearly

QOL B and relaxed consistency removes some of the same overhead eliminated by QOLB.

QOLB eficiently hides many of the remote latencies for Bar-
nes and Mp3d, speeding them up 25% and 68%. These applica4.5 Futuretechnology
tions gain little more by having an aggressive relaxed consistency
model implemented on top of QOLB. Converse@ycean and
Pthor benefit less from QOLB, speeding up only 12% dr%d,1
respectively Additional performance improvements from relaxing
consistency are significant (29% and 27%, runmiyj Two fac-
tors explain this improvement. The first is that—in both Ocean and
Pthor—there is a repetitive pattern of read-sharing involving many
processors followed by writes to the shared data. The first write
operation results in a lg&¢ number of pges that must complete
before the write can proceed. This kind of sharing is not captured
by QOLB, but is very well captured by weaker memory models.
We attribute the other factor—in Ocean only—to static producer/

consumedtype sharing, which could be captured by QOLB, but is synchronization hardware support such as QOLB will become

not in the implementation of Ocean thgt we curr-ently use_. more important in future shared-memory multiprocessors. W
QOLB and relaxed memory ordering aréeefive techniques  note, howeverthat high-performance processor designs that use
for tolerating latencies associated with given sharing patterns. aggressive prefetching and speculative execution may well be able
QOLB does well in hiding latencies that result from sharing pat- to capture some of the same latency reduction achieved by QOLB.
terns involving serialized exclusive access to shared data. A The results for the pairwise sharing optimization are consistent
relaxed memory model feictively hides the latencies associated jith those for current technologyput substantially lger The
with multiple readers sharing data, followed by write accesses t0re|axing of memory ordering constraints also shows a distinctive
that data. performance increase with our future technology assumptions.
Relaxing memory consistency constraints clearly eliminates  Water was relatively insensitive to any of the applied optimiza-
some of the same overhead removed by the use of QOLB, particutions, since it is a compute-intensive benchmark that communi-
larly when the more aggressiv@ implementation is considered.  cates little. Such programs arefidifilt to speed up by improving
Applying r 1 along with QOLB and pairwise sharing reduces the interprocessor communication precisely because there is so little
overhead by an amount roughly equal to the sum of the reductionscommunication involved. This is why aér showed the greatest

In a previous study Melle€rummey and Scott conclude [20]
that “special-purpose synchronization mechanisms such as the
[QOLB] instruction are unlikely to outperform our MCS lock by
more than 30%.” This claim does not hold as shown by the results
in Table5, where QOLB improves the performance by nearly 70%
for Mp3d. Furthermore, this claim becomes ever less tenable as
processors become fastsystem size increases, and the relative
cost of interconnect tr€ increases. This is borne out by the
results we obtained with our future technology assumptions, where
improvements gained by using QOLB for synchronization can be
greater than 100%. This performance improvement is likely to
increase as processors grow even fast@ggesting that special

from applying the three optimizations individuallyn all cases, improvement in performance when run with future technology
applying all three reduces the overhead by at least 75% of the sunassumptions, which sped up the base run by a factor of 4.68.
of the reductions observed by applying them individuaiyply- Speeding up the processor relative to the network latencies, how-



ever not only increases the execution speed dramatically; it also  Abouleneinet al. [2] present a detailed analysis study of the
increases the benefits of optimizationitWthe future technology QOLB synchronization primitive. A QOLB implementation in the
assumptions, the combined speedup from QOLBr&nithcreased framework of the Scalable Coherent Interface (SCI) is presented.
from 5% to 9%. The critical observation is that even computation- They also present a qualitative performance comparison of QOLB
bound jobs eventually become communication-bound, either asversus MCS and Anderson locks, in which the number of intercon-
improvements in the processing speed outstrip gains in the net-nect messages and remote memory accesses are compared. This
work or as these programs are scaled tgelasystems. Thus the  analysis shows that QOLB outperforms both of these algorithms,
optimizations investigated here eventually beconfectfe even both in terms of interconnect messages and memory accesses

for such programs. needed to gain access to a critical section.
Cox and Fowler [9], and Stenstrdm, Brorsson, and Sagdber
4.6 Small caches [25] present studies that proposefefiént solutions for dealing

] with the problem of migratory sharing patterns. Both studies
Table6 shows the results for runs assuming current technology present adaptive schemes that can be implemented by a hardware
and a 8KB cache.Wo conflicting behaviors #dct the perfor- cache coherence protocol. QOLB—which predates these studies—
mance improvement due to QOLB. Placing lock and data in the captures the same opportunities for optimization, while adding less
same cache line increases théeafveness of the cache when  complexity to the protocol.
compared to data ganization imposed by MCS. This is countered
by the opportunities for QOLB becoming less frequent, because of .
the longer execution—due to more cache misses—lessening the6 Conclusions
potential for performance improvement. _ Although the shared-memory paradigm has many advantages,
We observed both of these trends in our experiments. The per+; incyrs overhead—as a result of its fine-grained communica-
formance improvements attributable to QOLB for Barnes (30% t{jon—that can be substantial. Many techniques have been pro-
speedup) is Iger than those with the er cache. The perfor-  posed in the literature for reducing this overhead. Using the
mance improvements from using QOLB for the other benchmarks \yjisconsin Vihd Tunnel as a simulation engine, and aéarsys-
are smaller than those with thedar cache. tem based on the Scalable Coherent Interface standard, we have

Relaxing memory ordering shows the same general trends as imanalyzed the performancefesdts of three such overhead-reducing
the 1M cache experiments, but to a smaller degree. The onlytechniques.

exception occurs with et the improvements of whichusin@ ~ \we have shown that the synchronization primitive QOLB pro-
are comparable for both cache sizes, primarily because the benefit§jges a substantial benefit over a broad range of applications. The
are so small (3% speedups). only benchmarks failing to show significant improvement from

The benchmarks that did not benefit from pairwise sharing with QOLB are those that are spend most of their time computing or
1M caches incurred smaller performance losses with the smallerwaiting at barriers. In the results reported, QOLB was used exclu-
cache. Ocean does not benefit significantly from the pairwise shar-sively to implement synchronization morefigiently than was
ing optimization with an 8K cache. Its working set exceeds the possible using MCS locks. Performance was improved by more
size of the cache, forcing the eviction of sharing information than 10% for four of the five benchmarks, and Mp3d experienced a
between iterations. speedup of 1.68. Further performance improvements are to be

In general, the conclusions drawn earlier in this section remain expected with the aggressive use of QOLB as a synchronizing
valid for the smaller cache size. The only exception is the pairwise prefetch and possibly with the exploitation of QOLB consistency
sharing optimization, which is quite sensitive to the size of the  The SCl-specific feature of pairwise sharing showed mixed
cache. For caches smaller than an applicatiororking set size,  results. For one benchmark—Ocean—pairwise sharing improved
the efectiveness of pairwise sharing remains to be demonstrated. performance by 20%. For all others, performanciesed slightly

While an analysis of the sharing patterns can predict fhetiee-
5 Related work ness of pairwise sharing, it benefits only a limited range of applica-
tions, and even these applications may fail to seege laenefit

Guptaet al. [16] present a comparative evaluation of some from the optimization if the application is seriously constrained by
latency reduction and tolerance techniques. They study the perfor-capacity misses in the cache. Howevtte interaction with
mance impact of coherent caches, relaxation of the memory con-QOLB, and the fact that their hardware implementations under
sistency model, non-binding prefetching, and multiple-context SCI are similar suggests that pairwise sharing may be a good
processors on shared-memory parallel programs. They report condesign choice when cost/performance is considered.
sistent performance improvements for coherent caches, relaxed The SCI protocol exhibits its most severe delays when a write
memory ordering and prefetching. The majofatiénce between is initiated on a cache line that is widely shared. It is a small
our two works is our focus on the interaction between synchroni- change to relax consistency by allowing the processor to proceed
zation mechanisms and relaxing consistefidyeir methodology ~ in parallel with the pging of cached copies. Such a relaxation of
also difers from ours in several respects. They used a smaller sethe memory model consistently improves performance, though not
of benchmarks than is used in our stufllye memory hierarchies ~ dramatically

were much dierent—their hierarchy had a 16-entry write fieuf QOLB and relaxed consistency exploit mostlyfeti&nt oppor-
and two levels of cache, with a 2KB L1 write-through cache and a tunities for tolerating latencyForr 1, we observed that perfor-
4KB L2 write-back cache, both with 16-byte lines. Anotheiedif mance improvements from pairwise sharing or QOLB are nearly

ence is the manner in which speedups for release consistency aradditive to those of relaxed consistendye aggressive imple-
measured. For Mp3d, Gupth al report speedups of about 1.5 mentation of release consistency?) is sometimes lessfettive

over sequential consistencyhese results exceed the speedups in the presence of QOLB, indicating some overlap in the overhead
that we observed in our simulations. If we combine the speedupsthat they reduce. The greatly increased complexity2omust be
resulting from release consistency with those resulting from sim- weighed against its benefit, particularly if QOLB is also imple-
ple sequentially consistent transaction queues (we support asynmented.

chronous flushes in the base case), we obtain results comparable to QOLB and pairwise sharing benefits show a surprisingly super
those reported by Gupéhal. additive correlation. In Ocean, the only benchmark benefitting



substantially from pairwise sharing, the combined benefit is
greater than that predicted from the two separate improvements. In
both the cases where pairwise sharing improved performance angg)
those where it degraded it, the combindeéafof the QOLB and
pairwise sharing options is generally better than expected from
their individual contributions. Among our benchmarks, onbt&y
failed to show this ééct, and even there thefedts were orthogo-

nal within the magin of error of the study

The results of this work are more dramatic when the system
parameters are adjusted to reflect technology trends. Assumindlo]
faster processors that are more heavily penalized by network
delays, the benefits from relaxing consistency increase. Pairwise[11]
sharing results are still mixed, but the benefit to Ocean is more
impressive. The benefits of QOLB also increase substansatly
gesting that this type of primitive will become an important feature
of future systems.

While our results are specific to the Scalable Coherent Inter-[12]
face, the lessons are much more broadly applicable. First, we have
established that special support for hardware synchronization,
such as QOLB, can have a profounfief on the performance of
current systems. More importantlwe have shown that future [13]
trends are likely to increase that benefit. Second, we have demon=
strated that relaxing memory ordering constraints consistently
improves performance, and in combination with QOLB, can show
dramatic improvement.

9]
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Appendix A

In this appendix we present the pdpeesults in several dir-
ent formats, enabling the reader to more easily perforfarelift
analyses. W also present a more quantitative analysis of the opti-
mization interactions.

Table7 lists the raw virtual times, in millions of cycles, of the
benchmarks’ executionsafle8 presents the percentage change in

virtual time of a given experiment in relation to the base case. They

are calculated as follows:

VT - a
%change = —=PMent _ 1 Mx 100 (1)
0 VTBasecase U

There are two diérent base cases; one assuming current tech-

nology and one assuming future technoldye base cases assume

for current technology and 5% for futumre2 shows an improve-
ment of 8% for current and 13% for future technoldbye over-

lap between QOLB and2 grows as technology advances. The
overlap consumes a mean (across all benchmarks) of 9% of the
added benefits from QOLB and for current technologyThis
overlap increases to 12% for future technologlye amount of
overlap between the two is much more closely correlated with the
amount of improvement produced by QOLB than with’'s
improvement.

The syneagistic interaction between QOLB and pairwise shar-
ing exists for all of the experiments except for Barnes with future
technology Interestingly this interaction is lgyest when pairwise
sharing does very well (c.f. Ocean), or very poorly (c.f. Mp3d).

Using a smaller cache causes a slight deterioration in the per-
formance improvement of QOL&cept with Barnes. In this case,
the interaction reduces the execution time from the experiment
with the 1M cache by over 7%. Thisfadt is explained in
Sectiond.6. The smaller cache also makdsslightly less dec-
tive (an average of about 1% lesteefive), but makes2 consid-
erably more déctive (over 9% for Pthor). The diminished
effectiveness of 1 can be explained by the fact that is most
effective when sharing lists are long@maller caches tend to
reduce the average length of sharing lists, because flushes occur
more frequently in between coherence operations.

The only other anomalousfe€t that we observed irables 9-

12 is the interaction betweer? and pairwise sharing for Ocean,
assuming future technologWhereas the interaction betweeh
and pairwise sharing has almost no discernibfiecefor current
technology for a future machine2 reduces the improvement of
pairwise sharing for Ocean from 16% to 10%.

a sequentially consistent system, using MCS locks, 1M caches, and

no pairwise sharing. Unlike the speedups presented in Sédgtion

the changes in execution time can be added directly to determine if

there exist any interactions among optimizations.

We performed four full factorial analyses on the results in
Table8 to quantify the interactions among optimizations. The
results of these analyses are shownablds 9-12. The numbers

shown represent the percent change in execution time attributable

to the main déct or interactions at the head of the column. For
these tablesP represents the presence of the pairwise sharing
option, Q represents QOLB, amgK represents an 8K cache. The

absence of those letters implies the opposite of those optimizations,

i.e. MCS locks, pairwise sharingfo 1M cache, and sequential
consistency P+8K would therefore indicate the execution time

change solely attributable to the interaction between pairwise shar-
ing and an 8K cache. It is important to note that the numbers pre-
sented here are the inverse minus one hundred of those presented in
Sectiond. A value of -50% here corresponds to a speedup of 2. The
row in each table labeledean shows the arithmetic mean of that
columns interaction across all five benchmarks. All subsequent
references to “mean” will refer to these rows unless otherwise
noted.

Since the presence of three variables in one factor greatly com-
plicates the analysis, we performed separate analyse®pws.
r 1 andseq vs.r 2. Separate analyses were also performed for cur-
rent and future technologyielding a total of four analyses. The
future technology analyses do not contain an 8K cache fadter
four tables are ganized as follows:

* Table9: Current technologyseq vs.r 1

» Table10: Current technologyseq vs.r 2

e Tablell: Future technologyeq vs.r 1

» Tablel2:  Future technologyseq vs.r 2

The results in these tables show that QOLB reduces execution
time by an average of 17% for current technol@md 19% for the
future technology experimentsl shows an improvement of 3%
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Benchmark Synch Current (1M) Future (1M) Current (8K)

seq rl r2 seq rl r2 seq rl r2
Barnes MCS 13245 12498 117.77 178.77 165.39 151.95 210.48 205.74 197.09
Pair, MCS 132.61 12542 117.93 179.02 166.64 158.10 210.66 206.63 198.32
QOoLB 106.41 103.43 102.31 133.70 128.07 126.89 162.20 161.56 159.09
Pair, QOLB  106.72 103.81 102.76 136.33 129.77 128.75 162.41 162.16 159.80
Mp3d MCS 24355 217.95 19351 391.08 345.31 302.49 247.34 22391 197.40
Pair, MCS 255.43 230.48 20590 414.61 37195 326.20 257.57 235.17 207.98
QOoLB 14540 141.36 136.01 19159 185.90 180.73 150.42 147.07 140.84
Pair, QOLB  153.79 147.33 141.74 209.39 198.34 193.01 154.18 150.39 144.62
Ocean MCS 13.78 13.09 10.56 21.65 20.04 15.26 16.79 16.48 14.13
Pair, MCS 11.48 10.91 9.65 16.99 15.56 13.34 16.49 16.31 13.84
QOoLB 12.36 11.76 9.52 18.92 17.58 13.40 15.50 15.40 13.32
Pair, QOLB 9.94 9.42 8.44 13.98 12.79 11.06 15.16 15.08 12.87
Pthor MCS 220.45 214.33 17290 341.66 330.41 266.41 352.76 347.25 299.11
Pair, MCS 22426 21858 178.34 350.36 336.97 27599 356.78 350.98 304.33
QOoLB 198.17 191.99 156.59 301.82 289.95 233.59 330.75 327.48 286.41
Pair, QOLB  202.22 19495 159.68 309.92 297.41 240.09 332.70 330.03 288.22
Water MCS 487.66 47858 473.05 521.21 504.23 493.63 546.22 541.26 529.16
Pair, MCS 491.98 483.20 477.48 529.80 513.21 502.41 548.28 543.12 530.99
QOoLB 466.60 463.61 463.37 484.41 47848 478.12 526.58 525.19 524.46

Pair, QOLB  468.37 465.55 465.27 487.78 48219 481.73 527.44 52582 52512

Table 7: Raw virtual times of experiments, in millions of target cycles

Benchmark  Synch Current (1M) Future (1M) Current (8K)
seq rl r2 seq rl r2 seq rl r2
Barnes MCS 0.00 -5.63  -11.08 0.00 -7.48 -15.00 58.91 55.34 48381
Pair, MCS 0.12 -5.31 -10.96 0.14 -6.79  -11.56 59.05 56.01 49.73
QOLB -19.66 -21.91 -22.75 -2521 -28.36 -29.02 22.47 21.98 20.12
Pair, QOLB  -19.43 -21.63 -22.42 -23.74 -27.41 -27.98 22.62 22.44 20.65
Mp3d MCS 0.00 -10.51 -20.55 0.00 -11.70 -22.65 1.56 -8.06 -18.95
Pair, MCS 4.88 -5.36  -15.46 6.02 -489 -16.59 5.76 -3.44  -1461
QOLB -40.30 -41.96 -4415 -51.01 -52.47 -53.79 -38.24 -39.61 -42.17
Pair, QOLB  -36.86 -39.51 -41.80 -46.46 -49.28 -50.65 -36.69 -38.25 -40.62
Ocean MCS 0.00 -5.05 -23.35 0.00 -7.45 -29.49 21.84 19.56 2,51
Pair, MCS -16.67 -20.81 -29.95 -21.50 -28.12 -38.37 19.67 18.32 0.40
QOLB -10.30 -14.63 -30.94 -12.58 -18.77 -38.09 12.50 11.76 -3.37
Pair, QOLB  -27.89 -31.63 -38.74 -35.42 -40.93 -48.93 10.01 9.45 -6.58
Pthor MCS 0.00 -2.77  -21.57 0.00 -3.29 -22.02 60.02 57.52 35.68
Pair, MCS 1.73 -0.85 -19.10 2.54 -1.37  -19.22 61.84 59.21 38.05
QOLB -10.11  -12.91 -2897 -11.66 -15.14 -31.63 50.04 4855 29.92
Pair, QOLB -8.27 -11.56 -27.56 -9.29 -1295 -29.73 50.92 49.71 30.74
Water MCS 0.00 -1.86 -3.00 0.00 -3.26 -5.29 12.01 10.99 8.51
Pair, MCS 0.88 -0.92 -2.09 1.65 -1.53 -3.61 12.43 11.37 8.88
QOLB -4.32 -4.93 -4.98 -7.06 -8.20 -8.27 7.98 7.70 7.55

Pair, QOLB -3.96 -4.53 -4.59 -6.41 -7.49 -7.57 8.16 7.82 7.68

Table 8: Percent changes in virtual time of experiment execution, normalized to base case
The base cases in this table are sequentially consistent runs using MCS locks and assuming no pairwise sharing option.
All of the current technology runs (columns 1-3 and 7-9) are normalized to the base run (for each benchmark) in column
1, and all of the future technology runs are normalized to the base cases in column 4.
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Benchmark Q rl Q+rl P Q+P ri+p Q+r1+P
Barnes -26.45 -2.85 1.57 0.30 -0.02 0.14 -0.05
Mp3d -37.03 -5.85 4.04 3.46 -1.26 -0.06 -0.23
Ocean -9.70 -2.77 0.43 -9.40 -0.44 0.33 -0.13
Pthor -10.04 -2.41 0.21 1.55 -0.24 -0.02 -0.03
Water -3.87 -0.94 0.49 0.46 -0.20 0.00 -0.01
Mean -17.42 -2.96 1.35 -0.73 -0.43 0.08 -0.09
8K Q+8K  r1+8K  Q+r1+8K P+8K Q+P+8K  r1+P+8K  Q+r1+P+8K | Benchmark
51.53 -8.50 1.03 -0.08 0.06 -0.03 0.07 -0.01 Barnes
1.58 -0.12 0.41 -0.07 -0.52 -0.22 0.12 0.08 Mp3d
31.26 0.78 1.54 0.15 7.35 0.10 -0.05 -0.05 Ocean
60.32 0.20 0.45 0.40 -0.16 -0.13 0.06 0.14 Pthor
12.26 0.09 0.27 -0.13 -0.19 0.07 -0.03 -0.00 Water
31.39 -1.51 0.74 0.05 1.31 -0.04 0.03 0.03 Mean

Table 9: Factorial analysis results contrasting QOLB, rl, pairwise sharing, and an 8K

cache
Benchmark Q r2 Q+r2 P Q+P r2+pP Q+r2+P

Barnes -25.31 -4.91 2.71 0.34 -0.04 0.18 -0.07

Mp3d -34.89 -9.22 6.18 3.45 -1.20 -0.07 -0.18

Ocean -9.22 -11.04 0.91 -9.62 -0.45 0.11 -0.14

Pthor -9.37 -12.48 0.89 1.59 -0.37 0.02 -0.16

Water -3.29 -1.60 1.08 0.46 -0.19 0.00 -0.00

Mean -16.41 -7.85 2.35 -0.76 -0.45 0.05 -0.11
8K Q+8K  r2+8K  Q+r2+8K P+8K Q+P+8K  r2+P+8K  Q+r2+P+8K | Benchmark
49.48 -7.35 -1.03 1.06 0.10 -0.06 0.11 -0.03 Barnes
-1.79 2.02 -2.96 2.07 -0.53 -0.16 0.11 0.14 Mp3d
23.00 1.26 -6.73 0.63 7.13 0.09 -0.27 -0.06 Ocean
50.24 0.87 -9.62 1.07 -0.12 -0.25 0.10 0.01 Pthor
11.61 0.67 -0.39 0.46 -0.19 0.07 -0.03 0.00 Water
26.51 -0.51 -4.15 1.06 1.28 -0.06 0.00 0.01 Mean

Table 10: Factorial analysis results contrasting QOLB, r2, pairwise sharing, and an 8K cache

Benchmark Q rl Q+rl P Q+P ri+P  Q+r1+P
Barnes -22.65 -5.31 1.90 0.81 0.40 0.01 -0.27
Mp3d -47.16  -6.72 4.58 514 -1.27 -0.14 -0.54
Ocean -12.66 -6.44 059 -21.79 -0.71 0.38 -0.04
Pthor -11.73  -3.59 0.02 2.26 0.02 -0.20 0.11
Water -6.50 -2.16 1.06 1.19 -0.50 0.04 -0.00
Mean -20.14  -4.84 1.63 -248 -041 0.02 -0.15

Table 11: Factorial analysis results for future technology contrasting QOLB, r1, and pairwise sharing

Benchmark Q r2 Q+r2 P Q+P r2+P  Q+r2+P
Barnes -19.88 -8.69 4.66 152 -0.27 0.72 -0.93
Mp3d -42.17  -13.06 9.57 494 -1.10 -0.34 -0.36
Ocean -11.42 -21.34 1.83 -16.02 -0.82 6.16 -0.15
Pthor -10.90 -21.05 0.84 240 -0.27 -0.05 -0.18
Water -5.51 -3.23 2.05 1.17 -0.50 0.02 0.00
Mean -17.98  -13.47 3.79 -1.20  -0.59 1.30 -0.33

Table 12: Factorial analysis results for future technology contrasting QOLB, r2, and pairwise sharing
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