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ABSTRACT

Despite large caches, main-memory access latencies still cause significant
performance losses in many applications. Numerous hardware and soft-
ware prefetching schemes tolerate these latencies. Software prefetching
typically provides better prefetch accuracy than hardware, but is limited
by per-prefetch overheads and the compiler’s limited prefetch scope. Hard-
ware prefetching can be much more effective at hiding level-two cache miss
latencies, but generates many useless prefetches and considerable mem-
ory bandwidth. In this paper, we propose a cooperative hardware-software
prefetching scheme called Guided Region Prefetching (GRP), which uses
compiler-generated hints encoded in load instructions to regulate an ag-
gressive hardware prefetching engine. We compare GRP against a sophis-
ticated pure hardware stride prefetcher and a scheduled region prefetching
(SRP) engine. SRP and GRP show the best performance, a 23% gain over
no prefetching, but SRP incurs 153% extra memory traffic—more than dou-
bling bandwidth requirements. GRP achieves the same performance but
with one fifth the traffic increase of SRP, a 31% increase over no prefetch-
ing. The GRP hardware-software collaboration thus combines the accuracy
of compiler-based program analysis with the performance potential of ag-
gressive hardware prefetching.

1. Introduction

Modern out-of-order processors can tolerate latencies for multi-
cycle level-one cache hits, and many of the level-one cache misses
that result in level-two hits [40]. However, the hundreds of cy-
cles that result from physical memory accesses cannot be tolerated,
and as such cause significant performance degradations. For the
SPEC2000 benchmarks running on a modern, high-performance
microprocessor, over half of the time is spent stalling for loads that
missed in the level-two cache [26].

There have been a large number of prefetching schemes proposed
using both software and hardware techniques. Each of these two
classes of prefetch solutions have distinct advantages and draw-
backs. Pure software prefetching is typically highly accurate, but
incurs runtime overhead and cannot issue prefetches sufficiently
far in advance of a load to hide main memory access latencies [26].
Hardware-only schemes prefetch both spatial regions [8, 9, 22, 32,
36] and pointer chains [12, 21, 33]. While these schemes can
hide much of the main memory access time, they can also con-
sume substantial amounts of memory bandwidth. This additional
memory traffic need not degrade performance for a uniprocessor,
but it increases power consumption, and will likely degrade perfor-
mance in a multiprocessor environment. Off-chip bandwidth will
be the dominant limiter of scalability for future chip multiproces-
sors (CMPs) [20], so prefetch schemes that consume bandwidth in-
efficiently will not be practical. Some schemes throttle prefetching

8 Department of Computer Science
University of Texas, Austin

+ Department of Electrical Engineering and
Computer Science
University of Michigan

traffic | Performance gap

Speedup | increase | from perfect L2
No prefetching 1 1 33.37
Stride prefetching 1.153 1.09 23.16
SRP 1.231 2.53 17.94
GRP 1.226 1.31 18.32

Table 1: Summary of prefetching performance gains and traffic
increases

when the accuracy drops below a threshold, but they miss opportu-
nities for issuing prefetches [15].

In this paper, we propose a cooperative hardware-software prefetch
framework called Guided Region Prefetching (GRP). The hardware
engine generates prefetches triggered by L2 cache misses when the
missing load contains a hint. A sophisticated compiler analysis pro-
duces a rich set of hints. GRP thus benefits from compiler analy-
sis of application reference patterns, but unlike traditional software
prefetching, the compiler is not required to generate or schedule
individual prefetch addresses. Because the hardware generates the
prefetches, it can run far ahead of the missing references, yet it need
not struggle to deduce future application references by performing
complex pattern matching on prior accesses.

Using previously proposed techniques, GRP’s hardware prefetch-
ing engine keeps uniprocessor bus contention low by prefetching
only when the memory bus is otherwise idle, and keeps cache pol-
lution low by loading prefetches into the LRU set of the L2 cache.
Without the compiler support, this prefetching hardware is effec-
tive at improving performance, but consumes copious amounts of
bandwidth. GRP’s compiler analyses inform the hardware of ap-
plication reference patterns, enabling the hardware to prefetch only
when it is likely to be effective. We evaluate compiler hints that
mark loads with the following hints: spatial: prefetch the spatial
region around a load; pointer: prefetch by following the pointer
in the load’s cache line; recursive: prefetch this pointer data struc-
ture recursively. The compiler also generates indirect prefetching
instructions which trigger prefetching a set of references using an
indirection array.

With this cooperative hardware/software interface, the memory sys-
tem is able to obtain the high performance of previously proposed
scheduled region prefetching (SRP) [26] on most of the SPEC2000
benchmarks, and a speedup of over 10% on two others. Table 1
shows a summary of the GRP results using the geometric mean.



Without prefetching, the mean performance across the benchmark
suite is 33% lower than would be obtained by a perfect level-two
cache, as shown in the rightmost column, a significant drop in
performance. Following Sherwood et al. [36], stride prefetching
provides an 15% speedup over no prefetching. SRP, which uses
no compiler analysis, outperforms stride prefetching by 7%, and
closes the gap between performance with SRP and performance
with a perfect L2 cache to 18%. However, SRP consumes exces-
sive memory bandwidth, a 153% increase over the no prefetching
case. GRP, conversely, provides near-equal performance to SRP (a
mean of 0.4% lower, with gains of greater than 10% for two bench-
marks). GRP performance is actually consistently slightly higher
than SRP on average, but incurs a large drop for one benchmark
(mcf) which counteracts numerous smaller gains across the bench-
mark suite. More important, GRP provides equivalent performance
to SRP but with substantially less traffic, an increase of only 31%
over the no-prefetching case. This reduction in traffic saves power
and also will provide performance gains in a multiprocessor setting.

We review related work in Section 2, showing how little of it at-
tempts to find a balance between aggressive prefetching and effi-
cient use of memory bandwidth. Section 3 describes the hardware
used for the GRP hardware prefetching engine, and how it uses the
hints. Section 4 describes the necessary compiler analysis in de-
tail. Section 5 evaluates the success of the GRP engine at bringing
performance of most benchmarks close to a perfect L2 cache while
reducing memory traffic. We also compare it with stride prefetch-
ing [36]. We conclude in Section 6 that GRP eliminates main mem-
ory accesses as a source of performance loss for all but four of the
SPEC2000 benchmarks. Of those four, one simply requires more
memory bandwidth, and three need more software/hardware assis-
tance.

2. Related Work

In this section, we focus on the pertinent aspects of copious prior
work in software and hardware data prefetching, along with the
small number of previously proposed hybrid schemes.

Software prefetching relies on non-binding prefetch instructions
which bring the indicated block of memory into the cache, much
like a load instruction. Conceptually, the latency of a given load
instruction is hidden by inserting a prefetch with the same effective
address into the instruction stream sufficiently far in advance of the
load. Because the compiler only inserts prefetches for known (or
very likely) loads, software prefetch accuracy is typically high. In
practice, the compiler faces two key challenges in data prefetching:
selection and scheduling.

Because prefetch instructions occupy instruction cache space, pipeline

slots, and data cache ports, the compiler must select a subset of
the loads for which to generate prefetches. Accurate compile-time
identification of which loads will cause cache misses at runtime is
complex, requiring both knowledge of hardware parameters (cache
block size, capacity, and associativity) and sophisticated code anal-
ysis (e.g., to determine the volume of other data accessed between
references to a particular block) [5, 17, 31, 43].

The compiler also faces the difficult challenge of issuing the prefetches

sufficiently early to hide the memory latency, but not so early that
useful data are needlessly evicted. To find that point, the compiler
must estimate cache miss latencies and run-time instruction execu-
tion rates [24]. For arrays, the compiler can compute the address di-
rectly and solves this problem fairly well [4, 31]. For greedy pointer

prefetching [3, 28, 34], it is limited because it can only schedule
a prefetch when it knows the effective address. “Jump” pointers
identify a record n links ahead in the structure, but require much
more sophisticated analysis [3, 28, 34]. Other approaches prefetch
pointer arguments at call sites [27], and decouple prefetches from
the main program using a separate thread context [11, 13, 29].

In contrast, the runtime behavior of a program’s regular missing
load instructions triggers hardware prefetching. Since the prefetches
do not not incur overhead in the processor itself, the hardware
need not be as selective about issuing prefetch operations. Recent
work shows that simple dynamic prioritization techniques elim-
inates memory bandwidth contention and cache pollution prob-
lems [26]. However, unlike the compiler, the hardware has no di-
rect knowledge of future memory references; the key challenge in
hardware-based prefetching is coming up with a reasonable set of
predicted addresses to use as prefetch targets. Hardware prefetch-
ing thus suffers relative to software prefetching in both accuracy
(because the predictions may be wrong) and coverage (because
some addresses may be extremely difficult to predict).

Because of the need to predict addresses, many hardware prefetch-
ers exploit only spatial locality, prefetching one or more subsequent
blocks on a cache miss [14, 22, 38]. More sophisticated schemes
detect non-unit strided access patterns, such as Chen and Baer’s
reference prediction table (RPT) [8] and Palacharla and Kessler’s
strided stream buffers [32]. Other approaches prefetch pointer-
based access patterns, as with correlation-based and Markov prefetch-
ing [1, 7, 21], or a broader class of prefetches, using dead block in-
formation [25] all of which predict cache blocks to prefetch based
on repeated past access patterns. Another approach involves decou-
pling the data structure traversal from the computation, using spe-
cialized pointer-traversal hardware [33] or dedicated pre-execution
hardware [2]. Researchers have also proposed memory-side prefetch-
ing to reduce latencies between prefetches [19, 39, 44].

Most pertinent to this work are two previous papers. First, predictor-
directed stream buffering, proposed by Sherwood et al. [36], uni-
fies strided stream buffers and Markov prefetching into a single,
consistent hardware prefetching framework. We compare the GRP
scheme to this scheme in Section 5, except without the Markov
predictor which consumes too much state to be practical. Sec-
ond, Cooksey et al. [12] recently proposed a “stateless” approach
to pointer prefetching, foregoing explicit identification of pointer
traversal patterns and simply prefetching any referenced memory
value that could be reasonably interpreted as a memory address.

In the end, all hardware schemes are forced to trade coverage for
accuracy (or vice versa), and either focus only on structured ac-
cess patterns which can be predicted with high accuracy (forgoing
coverage of less structured access patterns), or expend significant
amounts of useless bandwidth in an attempt to cover less structured
references.

The relative strengths and weaknesses of hardware and software
prefetching are complementary and thus suggest a combined hard-
ware/software approach. An ideal scheme would exploit the com-
piler’s knowledge of future reference patterns, using a low-overhead
channel to convey this information to a hardware prefetching en-
gine, which could then generate and schedule appropriate prefetches
based on dynamic information regarding cache miss events and re-
source availability. The limited previous work in this area has ei-
ther exploited prefetching for overly restrictive access patterns, or
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provided an interface that provides too much generality and com-
plexity. On the conservative side, Gornish and Veidenbaum [18] let
software select the number of contiguous blocks to prefetch upon
a miss, whereas Chen and Baer [9, 10] use the compiler to supply
address and stride information to augment a reference prediction
table. Skeppstedt and Dubois use a trap handler to trigger prefetch-
ing using similar information [37]. Zhang and Torrellas [45] use
the compiler to program bits in memory that identify contiguous
spatially local regions and mark pointers for fast forwarding. Since
these bits mark addresses and imply specific policies, their flexibil-
ity is limited. Karlsson et al. [23] use a technique called prefetching
array (PA) to address the problems of short list traversal and un-
known tree traversal path in greedy prefetching and jump-pointer
prefetching. They insert a loop or a special instruction to trigger
prefetches. Their technique shows less performance improvement
for a lower bandwidth system. This problem is exactly the focus
of our work. On the general side, fully programmable prefetch en-
gines provide much flexibility but require significant memory sys-
tem support and have not demonstrated that the required compiler
support is realistic [41, 44, 39].

This paper describes GRP which combines the best of software and
hardware prefetching in a scheme that is simple, yet effective. We
convey sophisticated compiler analysis by associating a range of
hints with loads, which an aggressive, simple, and general hard-
ware prefetcher uses as necessary. Thus, we convey much of the
information that the compiler knows, without requiring extensive
static lookahead, software guarantees, or high instruction overhead.
In the subsequent sections, we describe first the hardware engine,
then the software hints and analysis necessary for the hardware to
issue an aggressive yet accurate stream of prefetches.

3. Hardware Prefetching Engine

Our hardware prefetching engine builds on the scheduled region
prefetching design by Lin et al. [26]. We extend the original design
in two dimensions. First, we add support for aggressive prefetch-
ing of pointer-based data structures. Second, we add the ability to
prefetch indirect array references under software control.

3.1 Scheduled Region Prefetching

Scheduled region prefetching (SRP) [26] aggressively exploits spa-
tial locality by attempting to prefetch large (4 KB) memory regions
on each L2 cache miss. The two negative effects of aggressive
prefetching—memory bus contention and cache pollution—are ad-
dressed directly by reducing the priority of prefetches in memory
request scheduling and in replacement decisions, respectively. Un-

like most prefetching schemes, which must maintain high prefetch
accuracy to avoid degrading performance, SRP can identify and ac-
cess prefetch candidates liberally without degrading uniprocessor
performance.

Figure 1 shows the memory system with the SRP engine that forms
our prefetching experimental baseline. The access prioritizer is the
central component of our prefetching engine. It forwards requests
to the memory controller whenever the controller indicates that the
memory channels are idle. The prioritizer forwards prefetch re-
quests only when there are no outstanding demand misses from the
L2 cache. Demand misses thus encounter contention only from
prefetches the memory controller has already issued, and not from
prefetch candidates buffered in the prefetch queue. The miss status
holding registers (MSHRs) track all outstanding accesses, regard-
less of type.

On an L2 cache miss, the prefetching engine allocates a new en-
try in the prefetch queue representing the aligned memory region
containing the accessed block. Each prefetch queue entry contains
the base address of the region, a bit vector indicating the prefetch
candidate blocks in the region, and an index field which identifies
the next block within the region to prefetched. On the first miss to
a region, the engine initializes the bit vector to identify the blocks
not already present in the L2 cache, and sets the index field to indi-
cate the next prefetch candidate block after the miss block. It adds
these new entries to the head of the queue, giving them priority
over older, and thus typically less relevant, entries. On a miss to a
region already in the queue, it clears the bit corresponding to the
miss block, sets the index field to the the next prefetch candidate
block after the new miss block, and moves the entry to the head
of the queue. In this work, we use a region size of 4 KB and a
cache block size of 64 bytes, resulting in a 64-bit vector and a 6-
bit index field. Once the controller prefetches all the candidates, it
deallocates the entry.

Although the access prioritizer practically eliminates performance
loss from useless prefetches due to bandwidth contention, prefetch-
ing can still pollute the cache by generating a heavy prefetch stream.
‘We address this issue by placing prefetched data in the lowest prior-
ity position of the replacement scheme. Under LRU replacement,
the controller puts prefetched data in the LRU position; it moves
a block to the MRU position only if it is referenced directly by
the CPU. As a result, useless prefetches in an n-way associative
cache can displace at most one nth of the least useful data in the
cache. (We use a 4-way set associative cache in our experiments.)
The drawback is that the controller occasionally replaces poten-
tially useful prefetches before they are referenced; however, previ-
ous work [26] shows this effect to be insignificant. The final pri-
oritization optimization is to issue prefetches first to those DRAM
banks that already have the needed page open.

Scheduled region prefetching is highly effective at exploiting spa-
tial locality to improve performance [26]. However, it has two
shortcomings which we address here. First, SRP does not pro-
vide any benefit for non-spatial reference patterns, such as those
generated by pointer-based data structures and indirect array ref-
erences. We add a pure hardware pointer prefetching mechanism
to address this issue (see Section 3.2). We also add an indirect ar-
ray scheme that works only with compiler hints (see Section 3.3).
Second, SRP can produce copious amounts of excess memory traf-
fic. Although this useless traffic has minimal performance impact
thanks to SRP’s prioritization techniques, it consumes energy, takes



code in loop | spatial indirect pointer recursive pointer
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Table 2: Compiler Hints for Representative References in
Loops

bandwidth from useful prefetches, and may reduce its effectiveness
in a multiprocessor environment. We thus use compiler hints for
spatial and pointer accesses to gain both low bandwidth and accu-
racy. We describe the GRP hardware modifications and hints below
in Section 3.3, and the compiler analysis itself in Section 4.

3.2 Prefetching for Pointer-Based Structures

As discussed in Section 2, hardware prefetching for pointer-based
structures is challenging. Instead of using complex hardware to
recognize pointer traversal patterns or store pointer correlations,
our base pointer prefetching scheme simply greedily generates a
prefetch for any fetched value that falls within the ranges of le-
gitimate heap memory addresses. Our implementation performs a
simple base-and-bounds check using the start and end addresses of
the heap. In the Alpha ISA, pointers are aligned 8-byte entities;
thus the engine must check only eight values out of each 64-byte
cache block. Cooksey et al. [12] describe a similar but more effi-
cient pointer test using bit masks, and apply it to prefetching in the
more challenging IA32 environment.

Once the controller identifies a datum as a possible pointer value, it
translates the virtual address to a physical address and forwards it
to the SRP prefetch queue, which allocates a region-style entry for
the prefetch. Because these pointer dereferences frequently do not
exhibit spatial locality, it sets only two bits in the entry’s prefetch
bit vector, indicating the block containing the prefetch address and
its immediate successor (which is useful when the prefetch address
is near the end of its enclosing block). This mechanism thus does
not chase recursive pointers.

3.3 GRP: Incorporating Compiler Prefetch Hints

This section describes our compiler hints and how the GRP hard-
ware uses them to improve the precision of L2 spatial and pointer
prefetching, reducing the potentially large amount of wasted band-
width.

We introduce a communication channel between the compiler (or
other software) and the prefetch engine. The compiler annotates
load instructions with hints predicting whether particular spatial or
pointer-based prefetches based on the load’s address will be use-
ful. (In this study, the compiler conveys the hints using the other-
wise unused Alpha VAX-format floating point load opcodes.) The
memory system propagates the load’s hint bits through the memory
hierarchy with any resulting request. Table 2 presents the four hints
and shows typical representative code snippets for each. We sum-
marize the changes to the hardware for each hint below, and then
describe pointers, recursive pointers, and the indirection hardware
in more detail.

e A spatial hint indicates that a reference is likely to exhibit
spatial locality. GRP initiates a spatial prefetch only when
the L2 miss is marked spatial.

o A indirect hint indicates that the program is using an array to
index a second array. On an indirect L2 miss, GRP generates
sets of prefetches based on the base address and the index
values.

e A pointer hint indicates that the reference is to a structure
that contains one or more other pointers that the program is
likely to follow. If the reference is an L2 miss, GRP scans
the returned data for pointer values and generates prefetches
only for these values.

e A recursive pointer hint indicates not only that the refer-
ence is to a structure that contains other pointers, but that the
program recursively follows these pointers. On a recursive
pointer L2 miss, GRP scans the returned data for pointer val-
ues, generates prefetches for these addresses, and continues
generating prefetches on the result n levels into the recursive
data structure. (We use n = 6 in our experiments).

GREP for Pointer References

GRP uses the same mechanism for pointer and recursive pointer
hints. However, GRP applies the mechanism once to a pointer hint
miss, and GRP applies it repeatedly to the resulting prefetched lines
for recursive pointer hints.

We implement GRP for pointer and recursive pointer hints by adding
a three-bit counter to both the L2 MSHRs and prefetch queue en-

tries to control pointer and recursive pinter prefetching uniformly.

GRP initializes the counter on the L2 miss: for pointers, it sets the

value to one, and for recursive pointers, it sets the value to six.

Thus the only difference between a pointer and recursive pointer

prefetching is their initial counter value.

Let pointer include single level and recursive pointers in the re-
mainder of this discussion. When GRP fetches a pointer hinted
missing line, it starts the pointer prefetching engine on the returned
line. The engine checks the counter. If it is zero, it stops queu-
ing prefetches. Otherwise, it decrements the counter, and queues
prefetches for pointers in the returned line. We prefetch two cache
blocks for each pointer based on our statistics that the typical struc-
ture size in SPEC benchmarks is less than 64 bytes - one L2 cache
line in our configuration. Two-block fetching is sufficient consid-
ering structure alignment. The engine thus terminates after one
level for pointers and six levels for recursive prefetching.! (Un-
like Cooksey et al. [12], we do not extend the pointer or recursive
pointer lookahead as prefetched blocks are referenced, but wait for
another miss.)

GRP for Indirect Array References

A few of the benchmarks from the SPEC2000 suite incur a signifi-
cant number of misses due to indirect array references of the form
a[b[i]]1. References to a are not amenable to spatial prefetch-
ing unless the b [1] values are clustered, which cannot be deter-
mined statically. Pointer prefetching for these references is ineffec-
tive since the desired addresses are computed, not contained in the
memory as pointers. We introduce a specialized extension of GRP
to target these patterns. A single indirect prefetch instruction con-

veys both a base address (¢a [0]), an element size (¢sizeof (a[0])),

and an indirection array address (&b [ 1]) to the prefetching engine.
The prefetch engine reads the cache block containing &b [1i] and,
for each word in the block, generates a prefetch address by adding

YFor mcf, we terminate recursion after three levels to make simula-
tion tractable.



the scaled value to &a [0]. GRP then forwards these addresses to
the prefetch queue, as in the pointer prefetching scheme. Currently,
we assume the element size for index arrays is 4, which is a typical
size on most systems. Since the compiler can detect the element
size, it can easily pass it to the run-time if necessary.

This scheme is unique among all the mechanisms proposed in this
paper because the information is encoded as a separate instruction,
not a hint on an existing load. Although the introduction of an
explicit prefetch instruction adds overhead, the number of such in-
structions is small, and each one generates up to 16 prefetches (one
for each index within a cache block of the indirection array). In
practice, this hint could be encoded as a store, with the effective
address corresponding to one parameter and the store data to the
other. An alternate implementation could use a single instruction
prior to a loop nest to set the base address, and an additional hint
bit on the b [i] loads to trigger the indirect prefetches. This ap-
proach would reduce execution overhead at the cost of limiting an
application to prefetching one single indirection array concurrently
per base address/indirect hint pair.

4. Compiler Analysis Framework

This section describes the analysis that results in the four classes of
hints (spatial, indirect, pointer, recursive pointer) used to guide the
L2 prefetching engine. We implement these analyses in the Scale
compiler and use it to generate these hints automatically for both C
and Fortran codes.

4.1 Spatial Locality Analysis for Arrays

In GRP, the compiler indicates which misses truly have spatial lo-
cality, examining arrays in Fortran or C, and spatial pointer ac-
cesses to structures in C. The compiler uses locality analysis to
mark references with the spatial hint annotation, and the compiler
back-end generates a special load instruction with a spatial hint.
The prefetch engine then only prefetches misses with marked spa-
tial references and does not prefetch misses without spatial marks.
We describe our array analysis and then spatial pointer analysis.

We augment prior work that statically detects spatial locality by
extending dependence testing [30, 42]. Dependence testing first
finds induction variables and then detects when the affine spatial
dimension (the row in C, the column in Fortran) is accessed as a
function of the index variable, and whether it is the inner or outer
nesting level. This approach marks references with either inner or
outer loop spatial locality. The typical array reference with spatial
locality is accessed in its spatial dimension in an innermost loop.
For example, we mark a(i,j) in Figure 2, assuming column-major
Fortran storage. The compiler also marks arrays with spatial local-
ity that crosses larger distances within a deep nest or between two
nests (inter-nest reuse). We use the level 2 cache size as our upper
bound on the distance of the spatial reuse we mark, assuming that
the level 2 cache has sufficient set associativity to avoid conflict
misses and exploit the reuse.

If the compiler can determine the loop bounds and steps of the
index variables, it can compute the reuse distances accurately at
compile time. For arrays with spatial intra- and inter-nest locality,
it computes the reuse distances. It marks all array references with
spatial locality with a known distance less than the level 2 cache
size. When the compiler does not know the reuse distances stati-
cally due to symbolic loop bounds and uncertain executions paths,
it estimates the reuse distance based on the loop levels. The com-
piler is conservative when reuse distance is unknown; we only mark

generate_spatial_hints ()
{
/* recognize induction variables including pointers %/
induction_variable_recognition ();
/* perform dependence testing */
dependence_testing ();
for (each loop) {
/* generate basic spatial hints =/
for (each memory reference r in the loop) {
if (r is an array reference) {
if (r has spatial reuse in the enclosing
innermost loop)
mark r spatial ;
else {
compute the reuse distance for r
if applicable ;
if (reuse distance < the level 2 cache size)
mark r spatial ;
}

if (r is an loop induction pointer)
mark r spatial ;
}

/* propagate spatial hints for
loop induction pointers x*/
do {
for (each memory reference r) {
if (r is a loop induction pointer)
mark *r as spatial ;
else if (r is a—>f && a is marked as spatial ) {
mark a—>f as spatial ;

}

} while (no new hints generated);

}

Figure 6: Algorithm generating spatial and non-spatial hints

a reference as spatial if its spatial reuse is in the innermost enclos-
ing loop.

The above analysis works well for Fortran arrays and heap arrays
in C if the array elements are referenced as subscript expressions.
We handle heap arrays in C using the same analysis. In Figure 3,
buf is a heap array with type 7** This compiler algorithm can
find a wide set of spatial reuse. In addition to detecting the obvious
spatial reuse of bu f[4][j] when j is an loop induction variable, the
compiler can find the spatial reuse of bu f[i][a * 7 + b] when a and
b are constants.

4.2 Spatial Locality Analysis for Pointer Dereferences

To prefetch pointer deferences that show spatial locality, as illus-
trated in Figure 4, the compiler performs loop induction variable
recognition on pointers to find constant increments of pointers. The
type T in Figure 3 and Figure 4 does not have to be a primary type.
We treat pointer p as a special integer, and insert spatial hints for
xp or p — f, if constant ¢ is small. The ensuing analysis on L2
cache misses shows that the cases in Figure 3, Figure 4, and regu-
lar spatially local array references, together cover almost all spatial
reuses in C code.

4.3 Spatial Algorithm

Figure 6 summarizes the algorithm used for generating spatial hints
for both arrays and spatial pointer accesses. The dependence testing
requires affine subscription expressions®. The first part of the algo-
rithm inserts the spatial hints for arrays and loop induction point-
ers, and the second part propagates spatial hints to the uses of loop
induction pointers. Our algorithm is intra-procedural and flow in-

2 An expression is affine if it can be represented by a linear of ex-
pression of loop induction variables.



integer a[N][M], B[N]

do j=1, m

do i=1, n
ca(ij)...
ce(b(i), j))...

Figure 2: Sample Fortran code

T *x* buf;

buf = malloc (...);
l-);llf[i] = malloc (...);
for (i=0; i<m; i++)

for (j=0; j<n; j++)
buf[i1[j ] ...

Figure 3: Typical heap array in C

for (; p<s; p+=c)A
Lk pLLLg /+ if T is a primary type x*/
.op—>f ... /% if T is a structure x*/

}

Figure 4: Typical induction pointer in C

struct t *a;

while (...) {
ca—>f ...
a = a—>next;
}

Figure 5: Typical recursive pointer in C

sensitive. If a reference in a routine is not enclosed in a loop, it is
not marked.

4.4 Indirect Analysis

The compiler also detects and marks indirect array accesses, such
as ¢(b(2), j) in Figure 2. In particular, it looks for the access pattern
in the form of a(s * b(z) + e) where s and e are constants, and &
is a loop induction variable. Dependence testing detects the spatial
reuse on b(z) in the standard way. We add a simple analysis that
detects when a sequentially accessed array is used as an index into
another array, ¢ in this case, and generate an indirect prefetching
instruction using the address of b(¢) and the base address of array
¢, as previously described.

4.5 Pointer and Recursive Pointer Analysis

As with spatial locality, the compiler can improve the accuracy of
hardware-based pointer prefetching by restricting it to misses to a
field reference from a structure containing pointer or recursive field.
We mark a field reference as pointer if a pointer field from the same
structure is accessed in the same loop. We say a pointer update is
recursive if it updates itself in a loop with an object of the same
data type. In Figure 5, a is updated with its next field which points
to a structure of the same type struct t. This idiom analysis simply
identifies pointer updates in a loop that use a field with the same
type and marks them as recursive pointer updates.

We mark pointer accesses with the spatial hint for references to
arrays of pointers. For example, Figure 3 shows an array refer-
ence bu f[i], whose access pattern results in a spatial hint from the
compiler. Furthermore, each bu f[¢] points to a heap array, so the
compiler marks it with the pointer hint as well. GRP will then use
the address to prefetch the pointed-to array.

The complete algorithm to generate pointer hints is shown in Figure
7. It is complementary to the spatial marking algorithm shown in
Figure 6, which marks spatially local pointer accesses.

5. Experimental Evaluation

generate_pointer_hints ()

for (each field access) {
if (a pointer field from the same structure
is accessed in the same loop)
mark the field access as pointer;

if (the field access updates a recurrent pointer)
mark the field access as recursive pointer;

for (each array reference marked as spatial } {
if (the reference points to a heap array)
mark the reference as pointer;
}

Figure 7: Algorithm generating pointer and recursive pointer
hints

In this section, we compare the performance benefits of SRP, GRP,
and unified stride prefetching for the SPEC CPU2000 benchmarks.
We demonstrate that GRP provides a compelling balance between
higher performance and increased memory traffic among the three
prefetching techniques. We conclude with a discussion of the char-
acteristics of the remaining three benchmarks for which GRP does
not eliminate main memory as a bottleneck.

5.1 Experimental Methodology

The Scale compiler infrastructure inserts the prefetch hints. It com-
piles C and Fortran 77 code to Alpha assembly code, with the
memory hints annotated as comments. We then post-process the
annotated assembly code to generate binaries containing compiler-
hinted instructions.

We use the 17 SPEC CPU2000 C and Fortran benchmarks for which
the Scale infrastructure generates performance comparable to the
commercial Alpha compiler. Table 3 lists these benchmarks, along
with statistics on memory instructions and compiler hints. The sec-
ond column contains the total number of static memory reference
instructions. Columns 3 to 5 show the number of instructions the
compiler marks as spatial, pointer, and recursive. Column 6 lists



Benchmark mem insts | spatial | pointer | recursive ratio(%) indirect
164.gzip 1873 433 268 0 37.1 9
168.wupwise 507 152 0 0 30.0 0
171.swim 250 115 0 0 46.0 0
172.mgrid 314 232 0 0 73.9 3
173.applu 1491 858 0 0 57.5 0
175.vpr 4230 1001 682 74 33.8 84
177.mesa 26777 4532 4419 76 32.8 9
179.art 1016 732 278 0 77.6 0
181.mcf 845 168 287 201 60.8 0
183.equake 1679 597 473 0 51.3 7
186.crafty 11702 1994 736 0 21.6 5
188.ammp 6271 1043 1158 0 33.2 5
197 .parser 4090 915 932 1263 70.2 2
254.gap 29781 5102 11243 0 52.6 36
256.bzip2 698 279 59 0 48.3 14
300.twolf 12397 2080 2577 1398 45.1 38
301.apsi 3225 1001 0 0 31.0 0

Table 3: Number of compiler hints for each benchmark

the fraction of static memory operations with hints. Note that the
compiler can mark an instruction both spatial and pointer. Column
6 shows the static number of indirect prefetch instructions.

We simulated these binaries on a version of sim-alpha [16] with
scheduled region prefetching (SRP) [26] added to the simulator.
We added the GRP pointer prefetching mechanisms, and modified
the simulator to accept compiler hints and schedule prefetches ac-
cordingly if the binaries contain the hints. The simulator is config-
ured to simulate a 1.6 GHZ, 4-way issue, 64-entry RUU (reorder
buffer), out-of-order core with 64K 2-way split level one caches
and a unified 4-way 1MB level 2 cache. This cache hierarchy is
combined with an effective 800-Mhz, 4-channel Rambus memory
system. The L1 and L2 latencies are 1 and 16 cycles, respectively.
Each cache contains 8 MSHRs. For SRP, the prefetching queue
size is 32 and uses LIFO scheduling. The stride predictor [36] uses
a 4-way history table with 1K entries. There are 8 entries in each
of 8 streaming buffers sharing the history table.

We use the SimPoint [35] tool set to detect the initialization phase
of the benchmarks, and use a starting simulation point beyond the
initialization phase. All performance numbers use 200M instruc-
tions. Figure 8 shows the performance using IPC of the system
with a realistic memory hierarchy versus performance with a per-
fect memory system (perfect L1) and a perfect L2 cache. We sort
the benchmarks by the difference between a realistic memory hier-
archy and one with a perfect L2 cache, which is a gap of 33% on
average (geometric mean). Of these benchmarks, only crafty shows
a negligible L2 miss rate (0.4%). Consequently, we do not include
results for crafty in subsequent experiments.

5.2 Performance Comparison of Stride Prefetching, SRP,
and GRP

In this section, we first present the effects of both pointer prefetch-
ing and recursive pointer prefetching. We show that explicit pointer
prefetching is generally subsumed by aggressive spatial prefetching
(SRP or GRP). We then compare stride prefetching with SRP and
GRP.

We applied pointer prefetching alone to all benchmarks. Of course,
it does not improve performance on the Fortran benchmarks. Seven
C benchmarks show a significant performance improvement, no-
tably a 48.3% boost for equake and a 15.9% increase for mcf as
shown in Figure 9 (higher IPC is better). For equake, the perfor-
mance gain is not from the pointer structure traversal as expected.

It stems instead from prefetching arrays of pointers from the heap
arrays. Similarly, in mcf, the performance gain comes from the
loop which sequentially initializes a heap array. The array element
is a structure and pointer prefetching happens to prefetch the el-
ements accessed later. For equake, when combined with region
prefetching (SRP+Pointer), the performance gain is about the same
as applying region prefetching only. For mcf, the combination de-
grades the performance due to low prefetching accuracy. Pointer
prefetching outperforms SRP only for twolf with 2%, and recur-
sive pointer prefetching achieves an additional one-half percent. In
all other cases, SRP performs much better than pointer or recur-
sive prefetching. Applying SRP and pointer prefetching together
gives little benefit and sometimes degrades the performance due
to much higher bandwidth consumption, which can result in fewer
successful prefetches. GRP with pointer and recursive hints shows
performance gains similar to SRP for the seven benchmarks, but
with lower average memory traffic.

Figure 10 and Figure 11 show the performance of SRP, GRP, and
stride prefetching for SPEC2000 integer and floating point bench-
marks respectively. In most cases and on average, SRP and GRP
both perform better than stride prefetching. SRP narrows the gap
from a perfect L2 to within 10% for 10 benchmarks. For swim and
bzip2, GRP performs over 10% better than SRP due to its lower
traffic or indirect prefetching. It also outperforms SRP for art and
ammp. For gzip, mcf, parser, and gap, the IPC of GRP is at least 2%
less than that of SRP. A typical reason is that the compiler misses
some hidden localities outside of loops. Stride prefetching shows a
better IPC than GRP and SRP in mesa and art. But the gap is small.

GRP applies indirect prefetching to vpr and bzip2. Although we
detect indirect references among 11 benchmarks, indirect prefetch-
ing only shows significant gains in performance for vpr and bzip2.
For vpr, the indirect references show high spatial locality. SRP thus
performs as well as GRP, but with 50% additional traffic. bzip2 is
one of the benchmarks where SRP does not perform well. With
indirect prefetching, the gap from a perfect L2 is reduced to 7.7%
from 16.7%, with only 15% of the memory traffic of SRP.

5.3 Prefetching Accuracy, Coverage, and Memory Traffic

Although SRP and GRP provide comparable performance, SRP
consumes much more bandwidth than does GRP. Figure 12 reports
the normalized memory traffic for the three prefetch schemes. SRP
increases memory traffic from 2% to a factor of 25.6 times over no
prefetching. GRP causes only 31.4% additional traffic, on average,
versus an SRP increase of 153.4%, compared to no prefetching.
GRP eliminates over 20% of the total memory traffic for nine of the
sixteen benchmarks—compared to SRP—and over 50% of its mem-
ory traffic for five benchmarks. The traffic for stride prefetching is
17.3% less than GRP, but stride prefetching only achieves 68% of
the performance improvement that GRP provides.

Table 4 shows prefetching accuracies and prefetching coverage for
the three prefetching techniques we implemented. We use the per-
centage miss reduction as a measurement for prefetching coverage.
On average, SRP provides the best coverage and the worst accu-
racy. Stride prefetching trades the lowest coverage with the highest
accuracy. GRP has an accuracy that is closer to stride prefetching,
but coverage closer to SRP.

Since the normalized traffic in Figure 12 does not reflect the abso-
lute bandwidth consumption of each benchmark, we list the actual
memory traffic of each benchmark in Table 4. On average, SRP
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Benchmark Performance Gap (%) miss characteristics | ratio (%)
171.swim 38.32 transpose array access 92.08
179.art 56.07 bandwidth 24.26
transpose heap array access 35.92
181.mcf 63.94 tree traversal 60.70
188.ammp 15.18 linked list traversal 88.64
256.bzip2 16.74 indirect array reference 66.58
300.twolf 22.40 linked list and random pointers 35.37

Table 5: Level 2 miss characteristics

consumes 86.57% more memory bandwidth over the no-prefetching
system. GRP and stride prefetching report a 17.1% and 9.9% in-
crease in memory requests, respectively.

5.4 Compiler Sensitivity

We implemented an aggressive compiler scheme and a conserva-
tive scheme to compare with the scheme discussed in Section 4.
The aggressive marks a reference as spatial even its reuse distance
is greater than L2 cache size. The conservative scheme marks
a reference as spatial only when its reuse sits in the innermost
loop. The aggressive scheme degrades performance by 2% over-
all and increases traffic by an additional 5%. The conservative
scheme shows little effect on memory traffic compared with GRP,
but causes moderate performance losses across four benchmarks:
applu, art, equake, and apsi by from 1% to 34%, and reduces per-
formance by an average of 5% across the benchmark suite.

5.5 Remaining Issues

Six of the benchmarks show a gap of greater than 10% between
SRP and a perfect L2. We list them in Table 5 with a description of
the key causes of the misses, obtained by analyzing the source.

With its more accurate prefetching, coupled with indirect accesses
and pointer prefetching, GRP is able to bring bzip2 under 10%,
and improve ammp as well. swim has a low IPC due to patholog-
ical array conflicts. We can prevent that benchmark from being
memory-bound by manually applying loop distribution and loop
permutation [6]. art is bandwidth bound. While the reduced GRP
prefetches reduce traffic and increase performance over SRP by
10.7%, the performance gap is still large. Larger caches and wider
channels improve art appreciably. Finally, mcf and twolf contain
heavy traversals of short linked lists and tree data structures, mak-
ing them unamenable to either the GRP pointer or spatially-based

schemes.

6. Conclusions and Future Work

Main memory access latencies are a significant performance issue
in modern systems. Purely compiler-based prefetching techniques
have difficulty managing such large latencies. Previous work shows
that aggressive hardware prefetching addresses this issue effectively
for applications with spatial locality, at the cost of potentially sig-
nificant increases in memory bandwidth. As the number of pro-
cessors per chip goes up, this bandwidth will become increasingly
precious as well.

This paper shows that a cooperative approach between compiler-
based analysis and hardware-based aggressive prefetching provides
similar benefits at a much lower bandwidth cost. Compiler tech-
niques identify accesses that clearly possess spatial locality stat-
ically. Rather than use this information to attempt to schedule
software prefetches—with the resulting complications of provid-
ing timely prefetches while minimizing instruction overhead—our
system simply passes this access-pattern information to a hardware
prefetching engine. The engine then generates prefetches at the L2
cache with low overhead. Compared to pure hardware prefetch-
ing, the compiler analysis saves bandwidth by avoiding useless
prefetches on accesses without locality.

We also extend the scheduled region prefetching engine to address
pointer-based applications by aggressively prefetching any datum
which appears to be a pointer. As with spatial locality, we see sig-
nificant traffic benefits from having the compiler indicate pointer
and recursive-pointer loads. However, for the SPEC2000 bench-
marks, the aggressive spatial locality analysis subsumes the pointer
prefetches for most benchmarks, due to spatially local layouts of
distinct objects. It remains to be seen whether this phenomenon
will apply to the benchmarks that other researchers used to show
the importance of greedy pointer hardware prefetching [12].

Finally, we note that with just the spatial and indirect hints, our
compiler/hardware prefetch framework eliminates most L2-related
stalls across the SPEC2000 suite, with comparatively modest in-
creases in traffic. The remaining three benchmarks that are limited
by L2 memory system performance are either bandwidth bound
(art), or contain many irregular linked-list or tree traversals (mcf,
twolf) where memory-side prefetching may help. For the rest of
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[ Benchmark [ Base i Stride I SRP i GRP |
[ |[ missrate | traffic [ coverage [ accuracy [ traffic |[ coverage [ accuracy | traffic || coverage [ accuracy [ traffic |
mesa 9.3 50K 68.8 95.6 52K 29.0 14 1301K 25.8 5.8 303K
apsi 25.0 85K 79.2 99.8 85K 96.4 95.8 86K 88.8 97.6 84K
gzip 25.3 182K 65.2 99.8 183K 76.3 94.4 192K 0.0 91.2 182K
gap 46.8 179K 66.7 99.6 179K 97.6 86.3 202K 52.8 99.3 179K
ammp 15.3 594K -7.8 23.1 982K -7.8 0.9 8340K 0.7 27.5 665K
wupwise 73.1 486K 42.5 75.4 553K 96.3 60.2 788K 96.2 61.6 772K
mgrid 43.9 504K 719 89.9 544K 87.5 80.7 597K 85.6 81.7 589K
vpr 40.2 730K 15.9 85.5 749K 86.3 27.6 2820K 76.4 494 1399K
twolf 12.6 1125K 0.0 27.3 1167K 15.9 4.2 | 17878K 32 28.7 1575K
bzip2 224 1356K 8.0 85.7 1380K 28.6 5.3 | 11624K 46.0 48.1 1817K
parser 334 1450K 67.4 75.0 1756K 77.5 44.7 2804K 56.0 82.5 1625K
mcf 61.6 | 43901K 51.0 80.5 | 49284K 24.7 53.9 | 65263K 5.4 51.1 | 52656K
applu 58.0 2578K 62.6 95.7 2631K 96.9 89.0 2810K 96.9 89.2 2806K
equake 59.8 3628K 75.6 99.2 3649K 96.3 86.9 4127K 95.2 95.3 3790K
art 44.4 | 20229K 17.3 99.7 | 21189K 8.6 40.6 | 28632K 20.9 78.0 | 23031K
swim 57.8 7861K 34.6 70.8 8966K 67.3 65.2 | 10249K 68.2 96.5 8021K
[average || 393 | 539K || _ 453 | 814 | 583K || 611 ] 523 | O85/K || 514 ] 670 | G2ISK ]

Table 4: Prefetching accuracy, coverage and memory traffic



the SPEC2000 suite, however, the GRP approach eliminates phys-
ical memory accesses as a performance bottleneck while making
significantly more efficient use of the system bandwidth than simi-
larly aggressive prefetch engines.
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