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Abstract

Optical interconnects offer interesting new possibilities 
because of the potential for scalable broadcast. Unfortu-
nately, most current algorithms using broadcast do not 
scale well because of the rapid increase in message pro-
cessing resulting from broadcast, and particularly because 
of potential uneven distribution of the work. We describe a 
novel design as an example of how an architecture might 
exploit broadcast capability not so much to speed up easily 
parallelized code as to minimize the effects of serial bottle-
necks. While compatible with compiler-discovered parallel 
programs, the architecture appears particularly promising 
for code that exhibits serial bottlenecks. The architecture 
appears well suited for future directions of semiconductor 
and optical technologies.

1  Introduction

From the architect’s perspective, optical interconnects pro-
vide a new and interesting set of opportunities for design-
ing multiprocessor systems. Intrinsically high bandwidth, 
potentially low latencies, and the “free space” nature of 
optical interconnects all provide new opportunities for 
both evolutionary and revolutionary changes in multipro-
cessor architectures.

Optical technologies have yet to move into the main-
stream, however, and have so far failed to supplant electri-
cally-based interconnects as the technology of choice for 
multiprocessor interconnects. This is historically due to a 
lag in the level of available optical technology compared 
to the electrical equivalent. More recently, however, cost 
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and utility constraints have eclipsed the optical technol-
ogy’s rapid advances. Evolutionary improvements are 
insufficient to overcome the long history and tremendous 
investment in electrical transmission media.

To succeed, optical technologies must demonstrate not 
just superiority, but a major advance over the dominant 
technologies they hope to replace. The computer industry 
has taken its place among the largest industries in the 
world, while still continuing to produce rapid advances 
across a wide range of technologies. The semiconductor 
business is large and well financed, with a history of 
progress so rapid and consistent that it is hazardous to pre-
dict when progress may slow. The massive resources avail-
able for the advancement of dominant technologies—
benefiting from economies of scale—present an enormous 
challenge to any new technology, no matter how superior 
it may appear. Core memory systems continued to sur-
vive—and even grow—years after they were predicted to 
be supplanted with semiconductor RAM technology.

Though optical devices are likely to see increased use 
in long-haul networks, it is not apparent that they offer a 
clear benefit to conventional massively-parallel machines. 
These machines already depend on high-bandwidth com-
munication to exploit fine-grained parallelism. They have 
been well studied, and dramatic improvements are not 
likely to be achieved by the elimination of a single bottle-
neck. We will discuss the two major classifications of par-
allel computers—shared-memory multiprocessors and 
multicomputers—showing that no single improvement in 
the interconnect is likely to provide dramatic improve-
ment. Thus optical interconnects are unlikely to become 
ubiquitous in today’s conventional MPPs.

Networks that provide high-bandwidth, low-latency 
communication between arbitrary nodes are critical to the 
success of massively-parallel computers. Raw bandwidth 
alone is not sufficient, however. Even if network band-
width were increased arbitrarily, other bottlenecks would 



soon emerge, precluding substantial performance gains. In 
bus-based snooping cache systems, for example, all com-
munications are broadcast, and each such communication 
requires processing at every node, including a memory 
lookup. Thus processing at each node grows linearly with 
the number of processors in the system.

A major limitation of parallel computing is the chal-
lenge of balancing the workload. The availability of twenty 
processors does not automatically translate into a speedup 
of twenty, even if the code can be readily parallelized. It 
may be that some parts take longer to compute than others, 
or may be unpredictable, so that many of the processors are 
idle much of the time, waiting for others to finish their 
assigned work. Systems may have hot spots [15] both in 
processors and in memory, where progress is impeded 
because a computation, or access to a particular memory 
location, is required excessively.

Hot spots are particularly troublesome in broadcast net-
works. A free-space optical interconnection network can 
achieve extremely high bandwidth because many nodes 
can be simultaneously broadcasting at a very high rate. 
Unfortunately, if a single node must respond to a signifi-
cant portion of the messages being broadcast, it can be rap-
idly swamped. It must therefore have some mechanism for 
throttling the sources of the data, a procedure known as 
flow control. This problem emerges as a major limitation of 
free-space optical interconnections: how to throttle sending 
nodes that are overloading a particular receiver without 
interfering with communications among other nodes.

Another limit to the successful implementation of mas-
sively-parallel systems (hundreds or thousands of proces-
sors) is serialized code within applications. Amdahl’s Law 
states that a the speedup of a program is limited by the 
reciprocal of the serial portion of the program. For exam-
ple, a program for which 95% of its code can be parallel-
ized will have a speedup of only 20 even if the non-serial 
portion of the code is performed in zero time. Although 
optical interconnects may enable very large systems to be 
constructed, this serial overhead must be considered.

Thus the availability of a high bandwidth, low-latency 
network (such as might be available using free-space opti-
cal interconnect) cannot be much better utilized by conven-
tional MPPs. Architectures that can exploit the high 
bandwidth capability without having to provide elaborate 
flow control are the best hope for inclusion of optical inter-
connect technology. This paper provides an example of a 
novel architecture that exploits the unique features of opti-
cal interconnects to reduce serial overheads within a paral-
lel program. Our assumption is that microprocessors will 
continue their exponential performance growth, with the 
consequence that communication becomes relatively much 
more expensive in future systems. Because computation in 
such systems will be cheap compared to communication, 

we propose to perform serial code redundantly at every 
node, broadcasting all operands needed for that code on the 
optical interconnect.

We call our proposed execution model Single-Program, 
Single-Data stream (SPSD), extending Flynn’s classifica-
tion [7]. This execution model was devised for our pro-
posed DATASCALAR architecture [3], which targets future 
uniprocessor programs running on a small number of pro-
cessors. The SPSD execution model was derived from the 
Massive Memory Machine work of the early 1980s [8]. We 
believe that the DATASCALAR concepts are an excellent 
match for the small fraction of large-scale parallel pro-
grams that is difficult or impossible to parallelize. More 
efficient execution of this serialized fraction will reduce the 
fraction of execution time that it requires, thus increasing 
the scalability of the program.

The rest of this paper is organized as follows: in 
Section 2 we present an overview of multiprocessor archi-
tectures, and discuss how optical interconnects may inter-
act with each class of multiprocessors. We also discuss the 
pitfalls that prevent these architectures from realizing sig-
nificant benefits from the use of optics. In Section 3 we 
describe the SPSD execution model, and discuss how it 
may be applied to massively-parallel systems. In Section 4
we engage in speculation as to how optics and parallel 
architectures may interact in the future. Finally, in 
Section 5 we provide a summary of our ideas.

2  Interaction of MPP architectures and optics

There are two major categories of multiprocessor architec-
tures that have emerged over the years. In this section, we 
discuss how each category may or may not benefit signifi-
cantly from optical (as opposed to electrical) interconnects.

2.1  Shared-memory multiprocessors

The first shared-memory multiprocessors, in which all 
memory lies equidistant from every processor, were what 
are commonly called “dancehall” architectures. They were 
so named because all processors were located on one side 
of a general interconnect, while all memory modules 
resided on the other (an eight-processor example is shown 
in Figure 1). Examples of these machines include the IBM 
GF-11 [1], the NYU Ultracomputer [10], and the IBM RP3 
[15].

This organization had the advantage of a high-band-
width interconnect with uniform latency to all memory, 
making the machines easy to program. The drawback to 
these architectures is the long latency incurred by travers-
ing the multistage interconnect. Placing caches at the pro-
cessor side of the interconnect can reduce the average 
memory latency, but introduces the well-known cache 



coherence problem, which is difficult to solve for such 
architectures. In addition, hot spot contention in the mem-
ory system can be extremely disruptive

An optical interconnect cannot hope to boost perfor-
mance substantially beyond what it is with the already 
large bandwidths of multistage networks. Furthermore, 
with processor caches to cut down on memory latency, the 
optical network would incur the same scalability problems 
as with the bus-based system described below.

Another class of shared-memory multiprocessor is the 
bus-based, snooping cache machine (we show an example 
in Figure 2). This architecture now forms the bulk of all 
multiprocessor systems sold. In this architecture, the multi-
stage interconnection network is replaced by a single bus. 
The broadcast capability of the bus is exploited to solve the 
cache coherence problem by assuring that every processor 
monitors every memory operation,. Each processor can 
then intervene when necessary to assure that a single view 
of memory is maintained.

As processor speeds have increased, fewer processors 
can be placed on a single bus before the bus becomes satu-
rated. Vendors have managed to place as many as thirty or 
forty processors on a single bus by pushing the electrical 
interface to its limit, but this level of parallelism becomes 
increasingly difficult as ever faster processors emerge.

An optical crossbar or free-space interconnect could 
function much as an ultra high-bandwidth bus. This is no 
panacea for scalability of bus-based systems, however. A 

bus with infinite bandwidth and zero latency would quickly 
swamp the snooping mechanisms as more processors were 
added. Because each memory operation must be monitored 
by every processor, the total processing requirement in the 
system grows as the square of the number of processors, 
and neither the bus interface nor the cache tag ports could 
sustain a linear growth in traffic.

Thus, we see that even the best optical interconnects do 
not provide a cure-all for shared-memory multiprocessor 
communication limitations, for either type of shared-mem-
ory machine.

2.2  Multicomputers

The incredible performance growth rate of microproces-
sors, plus the benefits of economies of scale, have allowed 
the multicomputer to emerge as the dominant scalable mul-
tiprocessor. Workstation-like multicomputer nodes provide 
low-latency access to a fraction of the system memory 
(although the two-tiered memory model makes these 
machines very hard to program). Recent examples of mul-
ticomputers include the Thinking Machines CM-5 [12], the 
Intel Paragon [5], and the IBM SP-2. We show a simple 
example of a multicomputer architecture in Figure 3.

Multicomputers can provide either a message-passing 
interface, such as the SP-2, or a shared-memory interface, 
implemented either with hardware or software sending 
inter-processor messages and providing the illusion of 
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shared memory (these systems are often called distributed-
shared-memory machines). 

Not only are the microprocessors off-the-shelf, com-
modity parts, but increasingly the memory system, inter-
connect, and communication interface are exploiting 
economies of scale. This fact is driving the use of software 
protocols, such as in the Sequent STiNG [14], and the use 
of standards, such as the Scalable Coherence Interface [17] 
in the Convex Exemplar [4].

The emphasis on cost makes it difficult for even an ideal 
optical network to provide huge performance gains. In 
message-passing computers, the latency through the actual 
network wires is typically a small fraction of the total net-
work traversal time; most of the time is spent in the net-
work interface at the sender and receiver. In machines that 
implement software protocols, such as the Wisconsin 
Typhoon [16] and Stanford FLASH [11], most of the mes-
saging time is spent running the protocol handlers. Even in 
hardware-based shared-memory interface systems, such as 
SCI-based systems or the Stanford DASH [13] machine, 
the shared-memory protocol logic may be a bottleneck. 
While support could be added to increase the bandwidth of 
the protocol engines, the increasing reliance on commodity 
parts makes adding such support problematic. Again, an 
ideal optical network achieving infinite bandwidth and zero 
latency would not improve the performance dramatically 
for these machines.

If the network interface problems were alleviated, a 
very low-latency optical network could possibly provide 
near-uniform access times to all of the memories in the sys-
tem, whether local or remote. This situation would be tran-
sitory at best, however.

As microprocessors become ever faster, long access 
latencies for even local memories, as well as limited band-
width off the processor die and on the system bus, will 
force the local memory progressively closer to the CPU. 
We believe that this trend will culminate with a node’s 
local memory on the same die (or module) as the processor, 
exploiting the tremendously high bandwidth and low 
latency out of on-chip memory banks.

This design point will serve to make remote communi-
cation orders of magnitude more expensive than local (on-
chip) communication, as the gap between a local on-chip 
memory access and a remote memory access grows. This 
gap will in turn make good speedups in massively parallel 
systems even harder to obtain for codes that are not 
“embarrassingly parallel.”

It is therefore paramount that both sequential portions of 
the code, including the affiliated communication, be as effi-
cient as possible. It will also be critical that communication 
during parallel phases be minimized or tolerated by over-
lapping with computation; otherwise scalability will suffer.

3  Implementing SPSD execution

Our proposal for reducing serial overhead in parallel pro-
grams exploits the fact that computation will be signifi-
cantly cheaper in future systems, particularly those that 
have tightly-coupled processors and main memories (ren-
dering remote communication more expensive). For the 
purposes of this discussion, we will assume that every par-
allel program can be decomposed (albeit at a fine grain) 
into two modes: serial and parallel.

We can improve both the serial portion of a parallel pro-
gram, and uniprocessor programs, with an execution model 
that is analogous to the Single-Program, Multiple Data 
stream (SPMD) execution model identified by Darema-
Rogers et al. in 1985 [6]. This execution model, which we 
call Single-Program, Single Data stream (SPSD), was 
derived from the Massive Memory Machine work from the 
early 1980s [8]. In SPSD mode, each of the processors exe-
cutes the entire program, reading and writing exactly the 
same data (unlike SPMD, in which each processor writes 
to different addresses).

SPSD execution was conceived to run on DATASCA-

LAR systems [3], which are small-scale systems that con-
tain processors tightly coupled with main memory, running 
uniprocessor programs. DATASCALAR architectures are 
optimized for efficient serial execution with exploitation of 
coarser-grain parallelism when possible. For an MPP with 
an optical network, the goal of SPSD execution is precisely 
the converse: the program runs in parallel mode the major-
ity of the time, switching to SPSD to race through a serial 
section of code.

Each node assumes ownership of the portion of physical 
address space that it contains. When a node is operating in 
SPSD mode, and issues a load to an operand that it owns, it 
broadcasts that operand to the other nodes (since they are 
all running the same code, they too will eventually need 
that operand). When a node issues a load to an operand that 
a different node owns, the load stalls, if necessary, until the 
needed operand arrives over the optical network, broadcast 
by the owning node. This ownership/broadcast scheme was 
called ESP by the Massive Memory Machine work.

To cut down on inter-chip communication, and the 
latencies associated therewith, we replicate some of the 
heavily-accessed pages across all nodes. Accesses to this 
statically-replicated data will complete locally on every 
node, not requiring a broadcast. Memory on each node is 
thus divided into two classes: replicated and communi-
cated. A load to a replicated datum never requires a broad-
cast since it completes on every node, and a load to a 
communicated datum always requires a broadcast, since it 
completes only on the node that owns that particular 
datum. Data may also be replicated dynamically; we allow 
each node to cache data owned by other nodes. A load to a 



communicated datum that is found in all processor caches 
is not broadcast.

In Figure 4 we show how loads and stores to replicated 
versus communicated memory differ; both CPUs issue a 
load and store to replicated memory (L1 and S1), which 
complete on both nodes. Both CPUs also issue commands 
L2 and S2, which are located in the communicated mem-
ory of node 1 only. Node 1 broadcasts L2, which node 2 
receives and consumes. S2 completes at node 1, but is 
dropped at node 2.

The rest of this section describes the three categories of 
benefits that the SPSD mode of execution provides.

3.1  Request elimination through ESP

The Massive Memory Machine (MMM) defined ESP, the 
notion of running the same program across multiple com-
putational engines, broadcasting accessed local data to all 
non-local processors. However, the MMM proposed con-
ventional, non-pipelined uniprocessors connected by a sin-
gle global bus, and was therefore unlikely to provide better 
cost-performance than competing solutions. Furthermore, 
the MMM was a fully synchronous architecture, in which 
all processors proceeded in lock-step, with one processor 
running slightly ahead of the others (the lead processor). In 
Figure 5a we illustrate the high-level design of the MMM. 
In Figure 5b we show an example of the MMM’s opera-
tion, in which processor 3 owns the first four operands, so 
is the lead processor for the first four accesses. Processor 2 
owns operands five through seven, so upon the fifth access, 
a lead change occurs and processor 2 becomes the lead 
processor. Finally, another lead change occurs on the 
access to the eighth operand, and processor 3 again 
becomes the lead processor.

An MPP system running in SPSD mode enjoys the same 
benefits from ESP as did the MMM proposal. The major 
benefit in this case is reduced remote access latency, since 
only one network traversal is needed for a remote operand 
(as opposed to two for the traditional request/response pair, 
or more if coherence protocol actions are required). Other 
related benefits for SPSD are: (1) elimination of intercon-

nect request traffic, and (2) elimination of interconnect 
write traffic. 

Because each node runs the same program, a communi-
cated operand can be sent to the other nodes as soon as its 
address is resolved and the operand is fetched from the 
local memory. The request part of the access involves only 
an on-chip lookup. The operand is sent directly to the other 
nodes, eliminating half of the communication delay by 
requiring only one-way communication. 

This “response-only” model also reduces traffic 
(increasing effective off-chip bandwidth) because off-chip 
requests are unneeded. Finally, all inter-chip write traffic is 
eliminated under ESP. Stores (or write-backs of dirty cache 
lines) complete locally on every node if their target address 
is contained within a replicated page. Stores or write-backs 
to a communicated page occur only on the owning node, 
which preserves consistency since that node holds the only 
copy in main memory. Note that there are no consistency 
issues, because every node is running the same code.

3.2  Pipelined memory prefetching

Consider an access to a datum obtained through a pointer. 
In conventional systems: (1) a request must be sent off-chip 
to memory, (2) the pointer is returned, the processor com-
putes the address of the datum, (3) sends a request to mem-
ory, and (4) the operand is returned. This sequence requires 
a total of four chip-to-chip crossings. An ESP-based sys-
tem would incur two chip crossings at most: (1) the owner 
of the pointer broadcasts the address, all nodes compute the 
address of the datum, and then (2) the owner of the datum 
broadcasts the datum.

An MPP running in SPSD mode can do even better. If 
both the pointer and datum reside on the same node—the 
owner can therefore read both without waiting for an off-
chip access, pipelining the broadcast of both operands to 
the other nodes. We call the phenomenon of multiple con-
secutive accesses falling on the same node pipelined mem-
ory prefetching. Since each memory chip has an on-chip 
processor, consecutive accesses falling on any memory 
chip will cause memory prefetching. Another way of visu-



alizing memory prefetching is from the point of view of 
one node—from its perspective, it is the processor actually 
performing the serial phase of the program, and all other 
nodes are simply memory—which can send it operands 
that it will need, before it has even computed their 
addresses.

Whenever an operand depends on another operand, and 
the two reside on different nodes, an inter-chip message is 
required. That communication effectively halts any mem-
ory prefetching occurring down that dependence chain on 
any node. An example can be seen in Figure 5: if each 
wi 1+  is dependent on wi , there are only two inter-chip 
latencies on the critical path (after accessing w4  and w7 ). 
To increase the performance gains from memory prefetch-
ing, it is therefore desirable to maximize the number of 
consecutive references on single nodes. We refer to the 
number of consecutive references to operands on a single 
node as a streak. A streak includes both replicated and 
communicated references. 

With an in-order issue processor, a break in a streak will 
force the node to stall until another node broadcasts the 
needed operand. An out-of-order issue machine lends itself 
particularly well to this model, however, as multiple nodes 
may simultaneously prefetch down distinct dependence 
chains if the instruction window is sufficiently large. The 
ideal case is where all nodes are memory prefetching down 
separate dependence chains that they contain locally.

Memory prefetching does not require software support 
or re-compilation—running SPSD in a parallel system may 
exploit spatial locality already inherent in reference 
streams. (Programs may benefit from re-compilation or 

programmer tuning, of course, since explicit support could 
increase average streak length.) When streaks are greater 
than average, the SPSD model benefits, since inter-chip 
latencies on the critical path are reduced.

3.3  New opportunities for parallelism
When communication becomes relatively much more 
expensive than computation, performing redundant compu-
tation to avoid communication becomes more attractive. 
SPSD uses redundant computation to reduce remote laten-
cies. We can also use SPSD to extract new forms of “mem-
ory parallelism” that further reduce serial code.

For example, assume that a chained hash table is distrib-
uted across the physical memory of multiple nodes. We 
modify the run-time storage allocator to place any chained 
elements on the same node as the head of the chain. 
Because this is code that is hard-to-parallelize, we are run-
ning in SPSD mode. All nodes thus compute the index of 
the array when performing a hash table lookup, insertion, 
or deletion. 

Serial overhead is reduced by placing a “locality 
branch” around the hash table operation. When performing 
insertions and deletions, only the node containing the chain 
performs the operation, with no remote communication. 
For a lookup, the owner broadcasts the result of the lookup, 
without any of the intervening chain addresses or keys.

Many other examples of such opportunities under SPSD 
exist, but are beyond the scope of this paper. More detail 
can be found elsewhere [3].
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3.4  SPSD and optical interconnects

The major drawback of the SPSD model is that it requires 
broadcast of data to all nodes. This limits its appeal using 
traditional electrical interconnects to a small number of 
nodes. To be successful, the SPSD model requires inexpen-
sive broadcasts, which makes it a good match for optics. 
Since all nodes on a time-multiplexed or wave-multiplexed 
optical interconnect can see any channel they choose (any, 
but not all), broadcasts essentially come for free. With 
electrical interconnects, SPSD is limited to small-scale sys-
tems that also have low-overhead broadcasts (e.g., buses 
and small rings).

Furthermore, the optical interconnect can multicast to 
subsets of the nodes in an MPP, and in fact can simulta-
neously multicast different data to different subsets. This 
capability may eventually prove useful for more creative 
and flexible ways of reducing communication, both in par-
allel and serial phases of the program’s execution.

The need for flow control is greatly mitigated with the 
SPSD model. Since the processors are all executing the 
same code, the number of communications depends not on 
the number of nodes, but the number of operands being 
communicated. This number will grow much more slowly, 
since more nodes means more of the data can be replicated. 
In addition, hot spots are less likely, because the single pro-
gram execution effectively produces its own flow control.

3.5  SPSD implementation issues

Because all operands for the serial phases must be present 
at every processor, running in SPSD mode can only be 
more efficient if most accesses can be found locally, reduc-
ing the average local memory access latency. It is well 
known, however, that a large majority of memory refer-
ences tend to access a small minority of the memory loca-
tions. For this reason, cache memories—particularly those 
specifically designed with this in mind—are often able to 
reduce remote accesses, sometimes dramatically [2, 9]. 
While static replication of small numbers of “hot pages” 
can cut down substantially on remote accesses, dynamic 
replication—achieved with cache memories—can reduce 
remote accesses even further. Using caches to reduce the 
number of broadcasts introduces the problem of keeping 
caches across nodes correspondent; the details of the solu-
tion are beyond the scope of this paper and appear else-
where [3].

Speculative execution also complicates this model. 
Speculative code resulting from branch prediction can 
either hold onto broadcasts until the branch target is 
resolved, or speculatively broadcast communicated oper-
ands with some sort of sophisticated tagging scheme. 
Coarse-grain speculative processors must guarantee that 

large-scale speculative tasks issue the same way across 
nodes.

One drawback to using SPSD execution in massively-
parallel processors is the reliance on commodity micropro-
cessors in such systems. It is difficult to justify architec-
tural changes to support a market as small as MPPs. 
However, SPSD was originally envisioned for aggressive 
uniprocessor systems[2]. The success of such small-scale 
systems might well produce much of the required support 
on future microprocessors (e.g., queues for buffering 
broadcasts and matching them with processor requests).

4  Looking into the future

Optical interconnects provide a host of interesting opportu-
nities for the development of future massively-parallel sys-
tems. However, economies of scale—coupled with 
architectures balanced and tuned for electrical intercon-
nects—will force optics to demonstrate a quantum leap in 
capability before their widespread adoption.

The SPSD execution model is particularly appealing 
because the computer appears to be a conventional unipro-
cessor. We envision that a computer employing the SPSD 
model will run programs not explicitly written for it, with 
the compiler discovering and exploiting the obvious paral-
lelism of the program. The DATASCALAR architecture can 
easily switch between the conventional parallel (MIMD) 
model and the SPSD model, exploiting the compiler-dis-
covered parallelism as appropriate, yet achieving very high 
performance on the portions not easily parallelized. In 
addition, with the help of the programmer (or a sophisti-
cated compiler) further optimizations are possible to cap-
ture opportunities for memory parallelism. The 
DATASCALAR model appears promising for semiconduc-
tor-based technologies just over the horizon, when process-
ing power is readily available where needed. With 
semiconductor interconnects, however, the scalability is 
seriously limited by the requirement of broadcast, and in 
fact we do not envision DATASCALAR systems beyond 
twenty or so separate modules. These systems, of course, 
might be used as components in larger systems. The oppor-
tunity for low-latency, scalable broadcast using free-space 
optical interconnects promises the potential for much 
larger systems. How far such systems could be extended 
before other factors limit their scalability is a subject of 
future research.

For the SPSD model, adding more processors can be 
effective for applications where the data set grows without 
increases in computation. Problems that require more 
memory, but do not require more computation, can be 
accommodated by larger numbers of modules. This model 
scales from the communications standpoint because the 
program execution inherently provides flow control that 



limits the emergence of hot spots.
How far the SPSD model can scale depends on the 

extent to which communications can be limited. The use of 
replicated data may result in one to two orders of magni-
tude reduction in traffic. Other optimizations are also pos-
sible.

5  Summary

In this paper we have presented an execution model, 
adapted from an aggressive uniprocessor proposal, which 
exploits the cheap broadcasting capability of optical net-
works to reduce sequential overheads. Optical intercon-
nects will not become the communications method of 
choice unless they are able to demonstrate clearly superior 
capabilities. To do this, the architecture must exploit the 
unique opportunities that the technology offers, not simply 
settle for a higher-bandwidth communications network. 
Novel architectures are needed to take advantage of the 
benefits offered by optical technology. We have demon-
strated one such architecture and given arguments for why 
the DATASCALAR architecture is well matched for optical 
networks in large-scale, high-performance systems of the 
future.
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