
1

System-Level Implications of Processor-Memory Integration

Doug Burger

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

dburger@cs.wisc.edu - http://www.cs.wisc.edu/galileo

This work is supported in part by NSF Grant CCR-9509589, an unre-
stricted grant from the Intel Research Council, and equipment donations
from Sun Microsystems.

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

Abstract
In this paper, we address the system-level implications

of processor/memory integration. Specifically, we explore
the effects that very large on-processor memories will have
upon both the memory hierarchy as a whole and the pro-
cessor organization. Our focus is on the migration of
memory to the processor, not the migration of inexpensive
processors onto commodity DRAM parts (the feasibility of
the latter model in the market is still an unanswered ques-
tion).

Using cost/performance models coupled with simula-
tion results, we compare three simple on-chip memory
organizations (cache, fraction of main memory, and a
hybrid of the two). We then examine the constraints under
which all of the main memory may migrate onto the pro-
cessor, thus enabling IRAM-based systems. Finally, we
discuss the implications that large on-processor memories
have for chip multiprocessors (CMPs), and we discuss
appropriate uses for the multiple on-chip processors.

1 Implications of large on-processor memo-
ries

The continuing exponential growth in microprocessor
performance and real-estate, coupled with the growing gap
between processor and stock DRAM performance, is mak-
ing the performance of the memory hierarchy the key
determinant of overall system performance. The growing
interest in IRAM chips—which combine processor and
physical memory on a single die—reflects the growing
importance of the memory hierarchy in system design.
IRAM chips have been proposed [2, 10, 13] as a cost-
effective way to improve memory bandwidth and reduce
memory latency, as opposed to the current conventional
approach of multiple levels of expensive caches and high-
performance inter-chip buses.

The complete integration of processors and main mem-
ory, if it happens, could take one of two paths, and perhaps

both. Successively larger memories will be placed onto the
processor (or into the processor package), until the entire
physical memory may be fit within the processor package.
Alternatively, commodity DRAM manufacturers may
begin placing small, inexpensive processors on the DRAM
die, which, over time, become powerful enough to obviate
the need for a large, central processor in the system. Both
directions may occur simultaneously, of course, with the
central processor aggregating memory as limited “intelli-
gence” (either a small general-purpose processor or PIM-
like logic [5]). While there is excitement in the community
about both directions, the “memory to the processor” alter-
native is much less revolutionary, and it is on this alterna-
tive that we focus in this work.

Large on-processor memories are a near-certainty in the
future. In Figure1a we plot the recent growth of main
memory sizes, the historical and projected [15] increases
in the number of microprocessor transistors (Intel x86),
and the historical and projected increase in bits per DRAM
die. The solid line in Figure1a represents a least-mean-
squares regression for the existing and projected micropro-
cessor transistor count growth. The projected growth of
microprocessor transistors remains stable, doubling
approximately every 18 months with no slowdown of
exponential growth. In Figure1b, we plot the percentage
of processor transistor counts devoted to in-package cache
memory for a range of microprocessors. The lines repre-
sent LMS regressions for a few of the processor families.
While it is impossible to extrapolate quantitatively from
these numbers, the trend is clear: a growing percentage—
reaching 85% in some cases—of microprocessor transistor
budgets are allocated to cache memory. A qualitative
extrapolation implies that future microprocessors, with
their vast numbers of on-chip transistors, will be mostly
memory.

The rest of this paper is organized as follows. In
Section2, we explore the effects that large on-processor
memories will have on the memory hierarchy. Specifically,
we will quantify the constraints under which the on-chip
memory will be treated as a cache, or as a fast fraction of
the physical memory. We present a performance model

2

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

2 Kb

4 Kb

8 Kb

16 Kb

32 Kb

64 Kb

128 Kb

256 Kb

512 Kb

1 Mb

2 Mb

4 Mb

8 Mb

16 Mb

32 Mb

64 Mb

128 Mb

256 Mb

512 Mb

1 Gb

2 Gb

4 Gb

8 Gb

1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010

Year

N
um

be
r

of
 b

its
 (

m
em

or
y)

, t
ra

ns
is

to
rs

 (
pr

oc
es

so
rs

)

(a) Density increases

Processor trend (LMS)
Main memory trend (LMS)

Processor transistors
Main memory sizes
DRAM densities

0

10

20

30

40

50

60

70

80

90

100

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Year

P
er

ce
nt

 c
ac

he
 tr

an
si

st
or

s

(b) Cache percentage of processor transistors

PA	7100

PA	7200

PA	7300LC

PA	8000 PA	8200

PA	8500

386	SX

486	DX

386	SL

486	SX

Pentium

486	DX4

Pentium	Pro	256

P55C

Pentium	Pro	512
Merced	(est.)

Cyrix	M1

Cyrix	M2

AMD	K5

AMD	K6

68030

68040

68060

PowerPC	601

PowerPC	604

PowerPC	604e

21064

21064a

21164

21264

All
x86 processors
Motorola
DEC Alpha

Figure 1. Future trends for processors and memories
In part (a) of this figure, we graph capacities of Intel x86 processors (transistors), single DRAM chips (bits), and main memory sizes in
medium-range PCs (bits). The lines represent least-mean-squares regressions. In part (b), we plot the percentage of transistors within a
processor package devoted to caches. We include LMS regressions for three of the processor families, plus one for all points.

that quantifies the cost/performance benefits of the two
possibilities for a range of future technical parameters. We
show that putting a small cache along with main memory
on the processor chip can be cost-effective, compared to
having all the on-chip memory be treated as cache. We
also discuss the necessary constraints for single-chip com-
puting, in which all of the physical memory migrates onto
the processor die, and show that, given enough support in
the manufacturing process for a denser memory cell, sys-
tems with no processor-less memory chips are quite con-
ceivable within the next decade. In Section3, we discuss
issues that arise for the processor when very large memo-
ries exist on-chip. We will argue that chip multiprocessors
(CMPs) used as throughput engines (as currently envi-
sioned) are the wrong multiprocessor model for the future.
We argue that multiple on-chip processors should either be
used solely to enhance the performance of a single task, or
that the multiple on-chip processors should each be cou-
pled with a fraction of main memory, if they are to run dis-
tinct tasks.

2 Changing the memory hierarchy

The average number of DRAM chips in systems is
decreasing over time, as the minimum granularity of mem-
ory size increases [11]. This effect results from both the
increasing depth of DRAM chips (the capacity increases
outstrip the growth in I/O widths of the DRAM chips) and

the slowed growth in main memory sizes [9] (these two
factors are not independent, of course). The dotted line in
Figure1a shows a LMS regression for main memory
growths (for medium-cost PCs) from 1986 to 1998,
extrapolated to 2010. We see that these trends point to PCs
with single-chip memories sometime around the middle of
the next decade. We also see that processor resources are
converging with main memory sizes, although they are
still a moderate factor apart by 2010.

If the processor die grows faster than main memory
dice, the number of DRAM chips in systems goes to one.
If a majority of the processor die is devoted to memory, the
silicon area devoted to memory on the processor and in the
one-chip main memory itself will be comparable. How-
ever, there is a substantial difference in bits per unit area
(density) between current SRAM caches implemented in
modern logic processes and DRAM chips fabricated in
processes optimized for bit density. This density factor has
been cited at various values: 15 in one case [4] and 25 to
50 in others [9, 11]. There is much ongoing work aimed at
merging logic and DRAM processes—particularly for the
embedded and ASIC markets—but little consensus as to
whether the best direction is adding DRAM support to a
logic process or vice versa [6]. If support for dense DRAM
cells is added to logic fabrication processes, the amount of
memory on the processor may grow to be a substantial
fraction of (or even comparable to) the system’s main

3

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

memory.
With on-processor memories that grow quite large,

there are three main categories of possibilities for design-
ing the memory hierarchy, depicted in Figure2. The on-
chip memory can be managed very much like a traditional
cache (Figure2a), the on-chip memory may be treated as a
fast fraction of physical memory (Figure2b), or the on-
chip memory could be sufficiently large to contain all of
the physical memory in the system (Figure2c). We discuss
the issues associated with each of these three models
below. We do not consider large off-chip caches, since we
believe that the combined effects of large on-chip caches
and closer coupling of the processor and main memory
will eliminate the cost/performance benefits of large off-
chip SRAMs

For clarity of the ensuing discussion, we define the fol-
lowing terms: is the ratio of the area devoted to memory
(or lowest level of cache) on the processor to the total chip
area in the main memory. For example, in Figure2a, if the
two chips were the same size, and the cache marked “$”
took up 80% of the die, . If another memory chip
of the same size was added, then . is the den-
sity ratio between the off-chip DRAM and the on-proces-
sor memory (for example, if the DRAM array had 15
times as many bits per unit area as the on-processor cache,

). The desirable main memory size for a given sys-
tem is (we assume that this a typical main memory size
for a system of the generation in question).

2.1 On-chip memory as a cache
If is too large to fit on the processor die, then the on-

processor memory may be implemented as a cache or as a
fraction of physical memory. The cache will pay a capac-
ity penalty because of the larger tag overhead, comparator
logic, etc. However, a cache is much more likely to reduce
the number of off-chip accesses substantially, since it cap-
tures the dynamic, fine-grained nature of the dynamic ref-
erence stream (something that memory pages mapped on-

chip are unlikely to do).
However, since the cache enforces the principle of

inclusion, this performance comes at a cost: a fraction of
the physical address space is duplicated. The magnitude of
this cost overhead depends on the size of the on-chip
cache, relative to . As and (meaning that
the on-processor memory and off-chip main memory
come to have similar areas and densities), the costs will
grow, and the relative performance gains will diminish
(discussed in Section2.2).

2.2 On-chip memory as a fraction of physical
memory

As the on-chip memory capacity grows closer to ,
the performance differential between caching lines and
statically mapping pages (enforcing exclusion, not inclu-
sion as with the cache) into the memory will shrink. Map-
ping pages into the on-processor memory may become
competitive with caching, particularly if the pages to be
mapped on the processor are judiciously selected. The
total system cost of this scheme is less than for caching.
Since some of the physical memory is on-processor, less
needs to be present outside of the processor to provide a
total of in the system (for simplicity, we ignore mini-
mum granularity issues here). Thus, as and

, treating the on-chip memory as a fraction of main
memory provides superior cost/performance to caching.

There are many techniques by which pages could be
chosen for placement into the processor. These include
round-robin placement (simple but low performance), sim-
ple heuristics (such as mapping in the top of the stack and
the text segment, if possible), profiling to determine a set
of “hot” pages, having the OS “promote” and “demote”
pages upon a page fault (based on usage counts), or per-
haps even some sort of dynamic remapping.

A possible optimization to having main memory on-
chip is to provide a relatively small on-chip cache for off-
chip data along with the on-chip main memory. This cache

α

α 0.8=
α 0.4= ρ

ρ 15=
M

M

M α 1→ ρ 1→

M

M
α 1→

ρ 1→

¢P ¢
$

M

P
M

M

P ¢
M

(a) Cache (b) Fraction of physical memory (c) All physical memory

Figure 2. Possible organizations for on-processor memory

4

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

captures some of the dynamic locality in the off-chip
accesses without substantially increasing the cost (this
scheme bears some similarity to DASH’s remote access
cache [8]). In the this paper, we present profiled page
assignments, as well as the hybrid caching scheme.

2.3 A cost/performance model
To evaluate the relative merits of these schemes, we

developed a simple cost/performance model. The chosen,
fixed parameters are as follows: is the processor die
size, is the fraction of the die dedicated to the processor
and L1 cache, and is the bits per unit area on the proces-
sor die. is the area dedicated to on-chip
memory. is the cost per bit of off-processor memory.

 is the main memory size.
We will vary one parameter:, which is the ratio of the

latency of an off-chip memory access to an on-chip mem-
ory access. Finally, we will measure (the on-chip miss
rate) experimentally. is a function of the on-processor
memory capacity (e.g.,) and organization (cache, frac-
tion of main memory, and hybrid).

We can determine the performance of a given memory
organization as the inverse of the average memory access
latency, normalized to the on-chip memory access time:

(1)
The cost of the memory organization is:

(2)

where in this case is the number of bits on the processor
die functioning as a fraction of main memory, for each
given experiment. Thus, by maximizing the performance/
cost:

(3)

for each of and , we can determine the most cost-
effective organization (according to our metric).

We measured experimentally using the SimpleSca-
lar tool suite [1]. We simulated the on-chip memory per-
formance of eight of the SPEC95 benchmarks, using the
“test” inputs. The benchmarks werecompress, gcc,
go, hydro2d, mgrid, su2cor, swim, andwave5. We
chose a value of 0.01 for , and we set

 where for each experi-
ment is the data set size of the application being simulated
(more intuitively, the on-chip memory will have enough
transistors for an on-chip cache of 1/2, 1/4, ..., 1/128 of the
program data set size).

For each benchmark, we simulated three memory hier-
archy organizations. The first assumed that all main mem-
ory resided off-chip, and that the processor contained a
cache ranging from 1/2 to 1/128 of the main memory size.
The second assumed that the on-chip memory was man-
aged as a fraction of main memory. Since caches pay an
extra area overhead (typically between 10% and 20%), we

scaled up the capacity of the on-chip main memory an
additional 15% over that of the cache. In the third organi-
zation, we have a main memory the same size as the cache
in the first organization, and instead of using the 15% of
area harvested from the cache tags as extra memory, we
use a cache that is 1/8 (12.5%) of the on-chip main mem-
ory size. These three organizations are thus all roughly
equivalent in area.

Since we are attempting to establish an upper bound on
the potential performance of on-chip main memories, we
statically map the most frequently accessed pages into the
on-chip main memory (i.e., we assume a perfect oracle).
The caches are 2-way set associative, with LRU replace-
ment and 32-byte lines. The pages in main memory are
4KB each. We show the data set sizes, plus the sizes of the
structures we used in the 1/2 experiment, in Table1.

In Table2 we list the percentage of memory operations
that go off-chip for each experiment (cache misses, or
accesses to off-chip banks in lieu of on-chip banks). Even
though the fraction of main memory on-chip has a 15%
larger capacity in each experiment, and the most heavily
accessed pages are mapped on-chip, the miss rates for the
cache is much lower in every case.

When the small cache replaces the extra 15% of the on-
chip main memory pages, however, the page+cache
scheme exhibits fewer off-chip accesses than does the
plain cache scheme on numerous occasions. As the on-
chip memory grows larger, the performance of the hybrid
scheme improves relative to the pure caching scheme.
When the on-chip memory size is half that of the program
data set, the hybrid scheme generates fewer off-chip
accesses than the pure cache for four of the eight bench-
marks we evaluated.

In Figure3 and Figure4 we show the values of our per-
formance/cost model for a range of off/on-chip memory
access latency ratios (). As can be
inferred from Table2, the pure main memory-on-chip
scheme is never more cost-effective than the alternatives.
For low and moderate , however, the hybrid scheme is
frequently cost-effective for very large (1/4 and 1/2 of the
program data set) on-chip memories (five of the eight
benchmarks). As grows, the pure caching scheme does
better in a few cases, since in those cases the pure cache
generates fewer off-chip accesses, which is of paramount
importance when off-chip accesses become very expen-
sive.

These results indicate that if indeed processors begin to
have on-chip memories that are within a small constant
factor of the main memory size, it may be cost-effective to
manage most of the on-chip memory as a fraction of main
memory, provided that a smaller cache is still used to
cache off-chip data.

D
P

f
A D P–() f=
coff

M
l

m
m

A

P 1 ml 1 m–()+()⁄=

C M A–()coff=

A

P C⁄ 1 ml 1 m–+() M A–()coff()()⁄=

A l

m

coff
fA M 2i()⁄ i, 1 2 …7, ,= = M

m 10 50 100 500, , ,=

m

l

5

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

Benchmark go swim su2cor hydro2d mgrid gcc compress wave5

Data set size 612K 14M 8M 8M 7M 2M 436K 41M
Cache size 256K 8M 4M 4M 4M 1M 256K 16M
Scaled pages 74p 2355p 589p 1178p 1178p 147p 74p 4710p
Pages + cache 64p

8K
2048p
256K

512p
64K

1024p
128K

1024p
128K

128p
16K

64p
8K

4096p
512K

Table 1: Data set and memory sizes for SPEC95 simulations
In the first row of this table, we show the data set sizes for the eight SPEC95 benchmarks we simulated. The following three
rows show the memory structure sizes we used in the three experiments (“p” stands for pages). These sizes are shown for
the experiment in which the on-chip memory is 1/2 of the main memory size. For the other experiments, the second through
fourth rows should be scaled down accordingly (e.g. for the 1/4 experiment, every number in rows two through four should be
divided by two).

Benchmark Experiment 1/128 1/64 1/32 1/16 1/8 1/4 1/2

099.go
Cache 14.3 8.4 4.3 1.741 0.770 0.28 0.04
Page 66.6 58.3 45.5 34.7 19.0 6.0 0.44
Page+cache 46.9 36.5 25.2 12.0 3.8 0.63 0.07

102.swim
Cache 3.6 3.6 3.6 3.6 3.5 3.2 1.7
Page 64.5 62.9 59.8 54.1 46.1 30.1 11.2
Page+cache 47.5 31.9 14.7 3.3 3.0 2.5 1.3

103.su2cor
Cache 4.1 3.4 2.6 0.9 0.39 0.15 0.04
Page 71.3 64.2 51.8 34.8 21.0 13.9 6.6
Page+cache 8.3 5.5 4.0 2.5 1.3 0.78 0.44

104.hydro2d
Cache 5.2 5.2 5.2 5.1 4.7 3.2 1.3
Page 66.6 65.1 62.0 56.15 48.1 33.7 15.2
Page+cache 6.1 5.9 5.4 4.8 3.9 3.0 1.5

107.mgrid
Cache 1.8 1.5 1.2 1.1 1.1 1.0 0.73
Page 76.6 75.0 72.0 66.2 54.3 31.8 5.3
Page+cache 8.6 3.6 1.9 1.8 1.5 1.1 0.39

126.gcc
Cache 2.2 1.3 0.78 0.45 0.21 0.09 0.03
Page 82.5 67.2 54.9 37.5 24.9 16.5 7.4
Page+cache 22.3 14.4 8.1 4.3 2.1 1.1 0.42

129.compress
Cache 6.3 5.4 4.5 3.8 3.1 2.4 1.6
Page 43.7 35.2 27.3 23.3 18.2 12.8 5.5
Page+cache 16.3 10.1 7.5 6.0 4.7 2.4 1.1

146.wave5
Cache 0.66 0.50 0.42 0.37 0.33 0.30 0.25
Page 17.7 16.0 13.0 8.2 4.5 3.0 1.43
Page+cache 0.95 0.77 0.55 0.40 0.31 0.23 0.13

Table 2: Miss rates for on-chip memory structures
In this table we list the percentage of memory operations that go off-chip for each of the benchmarks and the three experi-
ments. The fraction in the header row represents the size of the on-chip memory (approximately that fraction times the pro-
gram’s data set size).

6

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Hydro2d (l=10)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Hydro2d (l=50)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Hydro2d (l=100)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Hydro2d (l=500)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Go (l=10)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Go (l=50)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Go (l=100)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Go (l=500)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Gcc (l=10)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Gcc (l=50)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Gcc (l=100)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Gcc (l=500)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Compress (l=10)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Compress (l=50)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Compress (l=100)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Compress (l=500)

All cache

Pages + 1/8 cache

All pages

Figure 3. Performance/cost graphs for four SPEC95 benchmarks

7

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Wave5 (l=10)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Wave5 (l=50)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Wave5 (l=100)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Wave5 (l=500)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Swim (l=10)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Swim (l=50)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Swim (l=100)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Swim (l=500)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Su2cor (l=10)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Su2cor (l=50)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Su2cor (l=100)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Su2cor (l=500)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Mgrid (l=10)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Mgrid (l=50)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Mgrid (l=100)

0

50

100

150

200

1/128 1/64 1/32 1/16 1/8 1/4 1/2

Fraction memory on-chip

P
/C

Mgrid (l=500)

Figure 4. Performance/cost graphs for four more SPEC95 benchmarks

8

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

2.4 Single-chip computers
In Figure1a, we see that projected main memory sizes

cross single DRAM densities (thus projecting single-chip
main memories) and begin to converge with on-processor
real estate. The memory capacity of these processor chips
will be quite large, with the exact amount depending on
the on-chip memory cell density improvements brought
about through hybrid memory/logic processes.

We can quantify the circumstances under which all of
the main memory will exist on one or more processor
chips. We assume that is the percentage of
memory on the processor, that is the number of transis-
tors needed to implement one bit of storage in logic-pro-
cess SRAM, and that is the vertical gap between the
processor transistor line and the main memory size line in
Figure1a for any year . Recall that is the density dif-
ference between unoptimized, logic process SRAM and a
heavily optimized, DRAM process cell. Let repre-
sent the minimal factor improvement in processor memory
density necessary to eliminate “dumb RAM” in a given
year . We can calculate as follows:

(4)

 is the normalized amount of memory on the pro-
cessor, barring process support (when multiplied by ,
we obtain the normalized amount of memory with process
support). That amount must be greater than , mean-
ing that the amount on the processor should be at least half
of the desired main memory size. If it is half, then the
desired main memory size may be reached simply by add-
ing another processor, thus eliminating the need for more
than one type of chip in the system and improving econo-
mies of scale (to certain vendors’ dismay). As an example,
if we assume that processor transistors are 95% memory in
2010, and still use 6T SRAM cells, then, since

, we obtain . This factor is
within the realm of the density differentials between these
two memory technologies (logic SRAM cells and opti-
mized DRAM cells), so we conclude that single-chip com-
puters are feasible within a 15-year time frame (assuming
the trends continue as presented in this analysis, which is
certainly not necessarily true).

Since we showed that on-chip memories a quarter the
size of main memory (with the hybrid cache support) can
be cost effective for many benchmarks (at least under our
performance/cost model), we now estimate as
another illustrative example. in this case must
be greater than (since we are now considering a
quarter of the on-chip main memory, as opposed to a half
as before). , so using the same assumptions
as in the preceding example, we obtain ,
which implies that it will be possible to fit a quarter of the
main memory on-chip by 2001 with a sufficiently good

merged logic/DRAM process.

3 Changing the processor

In this section, we discuss the implications that large
on-chip memories have for the future of chip multiproces-
sors (CMPs).

On-chip resources will soon be sufficient to permit
multiple, high-performance processors to be placed on the
same die. Conventional wisdom is that such CMPs would
run parallel programs when able, and act as throughput
engines to run multiple programs in parallel when parallel
codes were not available. The data in Figure1b hint as to
why the latter model is unlikely to succeed. The increasing
percentage of the processor die devoted to memory results
from the growing relative cost of off-chip accesses. Pro-
cessor designers thus put on as much cache as they can in
an attempt to contain the working set of the target applica-
tions. If the dominant workloads had small, well-contained
working sets that fit easily within small on-chip caches,
industry would find some other use for the transistors on
the die to improve performance (such as massive branch
prediction tables).

The ratio of on-chip memory transistors to processor
logic transistors ranges from one to nine, and is still grow-
ing. If designers wish to place multiple processors on the
same chip to run independent jobs, they will need to
greatly increase the size (or number) of the on-chip caches
to prevent massive conflicts among working sets. This
increase (scaling up the die size by the same factor as the
number of processors) is likely to be far more expensive
than simply using multiple separate processors for high
throughput (since the cost increases dramatically as the die
size grows). If the cache working sets of future applica-
tions grow more slowly than do on-chip resources, CMPs
as throughput engines may become more feasible, how-
ever.

3.1 When to use a CMP
A CMP would be cost-effective when the multiple pro-

cessors could share data in the on-chip memory. While
processors running a parallelized program are certainly
likely to share code (we include parallel instances of a
task, such aspmake, in this category), the datasets of
large programs that lend themselves well to parallelization
(computational fluid dynamic codes, for example) tend to
have relatively distinct working sets. Such codes would
thus run more cost-effectively on multiple separate proces-
sors, even though they would benefit from the lower on-
chip communication latencies.

One good candidate for a CMP is a coarse-grained
speculative processor—such as a Multiscalar processor
[14]—in which multiple on-chip execute speculative, tem-

β A D⁄=
k

g t()

t ρ

ρ′ t()

t ρ′ t()
βρ′ t()

k
-------------- g t()

2
--------≥ ρ′ t()

kg t()
2β

-----------≥⇒

β k⁄
ρ′ t()

g t() 2⁄

g 2010() 6.1≅ ρ′ 2010() 19.2≥

ρ′ 2001()
βρ′ t()() k⁄

g t() 4⁄

g 2001() 11.3≅
ρ′ 2001() 18.9≥

9

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

porally ordered tasks from the dynamic instruction stream.
These processors tend to exhibit much data sharing in their
shared caches, and thus the overlapped working sets would
allow the processors to remain utilized without requiring
vast increases in the on-chip cache size.

3.2 Looking farther ahead
So long as the on-chip memory is treated as cache, with

its contents dynamically changing from cycle to cycle, the
cost-effectiveness of CMPs for running independent jobs
or even many parallel programs will be limited.

Once the on-chip memory banks are treated as physical
memory, however, this situation changes fundamentally.
The increasing RC delays on global intrachip wiring—as
feature sizes are scaled down—will drive future processor
chips to consist of multiple partitioned modules. One pos-
sibility is coupling multiple processors with the multiple
memory banks on a chip, such that each processor is
closely coupled with a nearby part of the on-chip memory,
and can run extremely fast when data it needs are in its
local bank.

In this model, the question of resource allocation disap-
pears somewhat, as the number of processors allocated to
a job becomes proportional to the amount of physical
memory that the job requires. There are fewer issues with
conflicting working sets, because if a job requires all of the
memory on a chip, all of the processors on that chip will
be dedicated to that job. If part of main memory does
eventually migrate onto the processor die (which is cer-
tainly possible as discussed in Section2), it is likely that
economies of scale will drive the system to contain only
that one type of chip.

While this distributed processor/memory bank model
may be attractive from a design perspective, the perennial
problem of how to program this architecture looms. Tradi-
tional parallelization techniques will work for many codes,
but there are many others that parallelize either poorly or
not at all.

A good candidate for such codes is the DataScalar
architecture [3]. Each participating processor runs the
same program, performing redundant computation. In a
CMP-based DataScalar system (or multi-CMP-based),
when a processor loads an operand from its local bank, it
broadcasts the operand to the rest of the participating pro-
cessors. All communication is one-way, and thus cuts
down on the latency of requests for operands in remote
memories (a cross-chip request may take tens of cycles in
future processors). Processors that find multiple consecu-
tive, dependent operands in their local banks can run ahead
of the others on that dependence chain, broadcasting the
entire chain to the other processors much earlier than
would normally be possible. Best of all, the base Data-
Scalar model is fully transparent, and requires no recompi-

lation or binary rewriting ... unmodified codes that were
not good candidates for parallelization can thus exploit the
multiple processors and improve performance.

DataScalar architectures require global broadcasts,
however, and are thus unlikely to scale to large numbers of
nodes, whether in a one-chip system with many processor/
bank modules, or in a system with multiple such chips. By
dividing computational slices among subsets of the partic-
ipating processors, broadcasting only to local subsets, and
allowing much deviation from the base DataScalar model
(in which processors may dynamically decide to perform
private computation, broadcasting only a result or perhaps
directions to other processors), we can improve the scal-
ability of the computation, allowing a huge range of codes
to run efficiently on a tightly integrated, IRAM/CMP sys-
tem. More important, heroic software support is not
required for codes to run on this system (but may improve
performance on codes that are amenable to such analysis).

4 Summary

In this paper, we have examined several issues concern-
ing processor/memory integration from the CPU (logic
process) perspective. We speculated about the directions in
which the increasing size of on-chip memories will drive
future processors and systems. We first reiterated others’
point that if the current trends hold (which of course they
may not), we may have only one memory chip in future
PC-class systems. We showed that the percentage of pro-
cessor transistors devoted to memory is high (and grow-
ing), and that the processor transistor budget is slowly
converging with main memory size.

We then analyzed the implications of these trends for
the memory hierarchy. We showed that, given on-proces-
sor memory cells that are comparable in density to DRAM
cells, that the processor may eventually contain the entire
main memory. We then used a cost/performance model to
examine the space between here and single-chip systems,
showing the point at which it may become cost-effective to
treat a part of on-chip memory as main memory instead of
as a cache.

Finally, we engaged in a qualitative discussion of how
CMPs, as traditionally thought of, are unlikely to emerge
due to memory restrictions. We believe that the CMP
model makes much more sense when the processors are
each coupled with a different main memory bank (homo-
geneously throughout the system), rather than competing
for space in a shared cache. We are currently exploring
new techniques (derived from our DataScalar work) to
allow hard-to-parallelize codes to run efficiently on such a
system without mandating excessive or impractical soft-
ware support.

10

This paper appeared in the Mixing Logic and DRAM workshop at the 24th International Symposium on Computer Architecture, June, 1997.

Acknowledgments

The author would like to thank David Wood for his
helpful comments on an earlier draft, and Jim Goodman
for both good feedback and for not firing the author while
he worked on this paper.

References
[1] Doug Burger and ToddM. Austin. The SimpleScalar Tool

Set Version 2.0. Technical Report 1342, Computer Sci-
ences Department, University of Wisconsin, Madison, WI,
May 1997.

[2] Doug Burger, JamesR. Goodman, and Alain Kägi. Mem-
ory Bandwidth Limitations of Future Microprocessors. In
Proceedings of the 23rd Annual International Symposium
on Computer Architecture, pages 79–90, May 1996.

[3] Doug Burger, Stefanos Kaxiras, and JamesR. Goodman.
DataScalar Architectures. InProceedings of the 24th
Annual International Symposium on Computer Architec-
ture, May 1997.

[4] RichardC. Foss. Implementing Application Specific Mem-
ory. In Proceedings of the 1996 International Solid-State
Circuits Conference, pages 260–261, February 1996.

[5] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in
Memory: the Terasys Massively Parallel PIM Array. IEEE
Computer, 28(3):23–31, April 1995.

[6] Osamu Kimura, Richard Crisp, Michael Nagy, Henry Lie,
Roelof Salters, Kenji Numata, Takao Watanabe, and
Kazunori Saitoh. Panel Session: DRAM + Logic Integra-
tion: Which Architecture and Fabrication Process. InPro-
ceedings of the 1997 International Solid-State Circuits
Conference, February 1997.

[7] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Hein-
lein, Richard Simoni, Kourosh Gharachorloo, John Chapin,
David Nakahira, Joel Baxter, Mark Horowitz, Anoop
Gupta, Mendel Rosenblum, and John Hennessy. The Stan-
ford FLASH Multiprocessor. In Proceedings of the 21st
Annual International Symposium on Computer Architec-
ture, pages 302–313, April 1994.

[8] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark
Horowitz, and Monica Lam. The Stanford DASH Multi-
processor. IEEE Computer, 25(3):63–79, March 1992.

[9] David Patterson, Thomas Anderson, Neal Cardwell, Rich-
ard Fromm, Kimberly Keeton, Christoforos Kozyrakis,
Randi Thomas, and Katherine Yelick. A Case for Intelli-
gent RAM.IEEE Micro, 17(2):34–44, March/April 1997.

[10] David Patterson, Tom Anderson, and Kathy Yelick. The
Case for IRAM. InProceedings of HOT Chips 8, Stanford,
CA, August 1996.

[11] StevenA. Przybylski.New DRAM Technologies: A Com-
prehensive Analysis of the New Architectures. MicroDe-
sign Resources, Sebastopol, CA, 1994.

[12] StevenK. Reinhardt, JamesL. Larus, and David A. Wood.
Tempest and Typhoon: User-Level Shared Memory. In
Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 24–33, April 1994.

[13] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk.
Missing the Memory Wall: The Case for Processor/Mem-
ory Integration. InProceedings of the 23rd Annual Interna-
tional Symposium on Computer Architecture, pages 90–
101, May 1996.

[14] Guri Sohi, Scott E. Breach, and T.N. Vijaykumar. Multi-
scalar Processors. InProceedings of the 22nd Annual
International Symposium on Computer Architecture, May
1995.

[15] Albert Yu. The Future of Microprocessors.IEEE Micro,
pages 46–53, December 1996.

