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Abstract

In this paperwe addess the systemdel implications
of processor/memory irgeation. Specificallywe eplore
the efects that very lage on-pocessor memories will have
upon both the memory hachy as a whole and the gr
cessor oganization. Our focus is on the mégion of
memory to the pcessarnot the migation of inepensive
processos onto commodity DRAM parts (the feasibility of
the latter model in the maek s still an unanswed ques-
tion).

Using cost/performance models coupled with simula-
tion results, we comparthee simple onidp memory
organizations (cauwe fraction of main memoyyand a
hybrid of the two). Wthen gamine the constints under
which all of the main memory may mége onto the -
cessor thus enabling IRAM-based systemgahy, we
discuss the implications that @ on-ppcessor memories
have for tip multipocessos (CMPs), and we discuss
appropriate uses for the multiple orip processos.

1 Implications of large on-processor memo-
ries

The continuing ®ponential gravth in microprocessor
performance and real-estate, coupled with thevigng gap

http://ww. cs.w sc. edu/galileo

both. Successgely lager memories will be placed onto the
processor (or into the processor package), until the entire
physical memory may be fit within the processor package.
Alternatively, commodity DRAM manudcturers may
begin placing small, ingensve processors on the DRAM
die, which, @er time, become peerful enough to oldate

the need for a lge, central processor in the system. Both
directions may occur simultaneoustf course, with the
central processor aggating memory as limited “intelli-
gence” (either a small general-purpose processor or PIM-
like logic [5]). While there isxe&itement in the community
about both directions, the “memory to the processor” alter-
native is much less welutionary and it is on this alterna-
tive that we focus in this avk.

Large on-processor memories are a f@atainty in the
future. In Figurela we plot the recent gsh of main
memory sizes, the historical and projected [15] increases
in the number of microprocessor transistors (Intel x86),
and the historical and projected increase in bits per DRAM
die. The solid line in Figuréa represents a least-mean-
squares mgression for thexasting and projected micropro-
cessor transistor count gvth. The projected gmth of
microprocessor transistors remains stable, doubling
approximately eery 18 months with no shadown of
exponential gravth. In Figurelb, we plot the percentage

between processor and stock DRAM performance, is mak-0f processor transistor countsvdeed to in-package cache

ing the performance of the memory hierarde ley
determinant of werall system performance. The ging
interest in IRAM chips—which combine processor and
physical memory on a single die—reflects thevgny
importance of the memory hierakctin system design.
IRAM chips hae been proposed [2, 10, 13] as a cost-
effective way to improve memory bandwidth and reduce
memory lateng, as opposed to the current gentional
approach of multiple iels of pensve caches and high-
performance intechip kuses.

The complete infgration of processors and main mem-
ory, if it happens, could takone of tw paths, and perhaps
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memory for a range of microprocessors. The lines repre-
sent LMS regressions for a fe of the processommmilies.
While it is impossible to drapolate quantitately from
these numbers, the trend is clear: axgng percentage—
reaching 85% in some cases—of microprocessor transistor
budgets are allocated to cache memoaohy qualitative
extrapolation implies that future microprocessors, with
their vast numbers of on-chip transistors, will be mostly
memory

The rest of this paper is ganized as follws. In
Section2, we &plore the dkcts that lage on-processor
memories will hae on the memory hierarghSpecifically
we will quantify the constraints under which the on-chip
memory will be treated as a cache, or aast fraction of
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Figure 1. Future trends for processors and memories

In part (a) of this figure, we graph capacities of Intel x86 processors (transistors), single DRAM chips (bits), and main memory sizes in
medium-range PCs (bits). The lines represent least-mean-squares regressions. In part (b), we plot the percentage of transistors within a
processor package devoted to caches. We include LMS regressions for three of the processor families, plus one for all points.

that quantifies the cost/performance benefits of the tw the slaved gravth in main memory sizes [9] (theseaw
possibilities for a range of future technical parametees. W factors are not independent, of course). The dotted line in
shaw that putting a small cache along with main memory Figurela shavs a LMS rgression for main memory
on the processor chip can be co$¢eive, compared to  growths (for medium-cost PCs) from 1986 to 1998,
having all the on-chip memory be treated as cache. W extrapolated to 2010. ®/see that these trends point to PCs
also discuss the necessary constraints for single-chip comwith single-chip memories sometime around the middle of
puting, in which all of the pfsical memory migrates onto  the net decade. W also see that processor resources are
the processor die, and shdhat, gven enough support in  corverging with main memory sizes, although yhare

the manudcturing process for a denser memory cell, sys- still a moderatedctor apart by 2010.

tems with no processdess memory chips are quite con- If the processor die gws faster than main memory
ceivable within the net decade. In Sectiod, we discuss  dice, the number of DRAM chips in systems goes to one.
issues that arise for the processor whery Vage memo- If a majority of the processor die isvied to memorythe

ries eist on-chip. Vi will argue that chip multiprocessors silicon area deoted to memory on the processor and in the
(CMPs) used as throughput engines (as currentif- en one-chip main memory itself will be comparable.wHo
sioned) are the wrong multiprocessor model for the future. ever, there is a substantial tfence in bits per unit area
We ague that multiple on-chip processors should either be (density) between current SRAM caches implemented in
used solely to enhance the performance of a single task, omodern logic processes and DRAM chigdbricated in
that the multiple on-chip processors should each be cou-processes optimized for bit densitiis density dictor has
pled with a fraction of main memariy they are to run dis- been cited atarious walues: 15 in one case [4] and 25 to

tinct tasks. 50 in others [9, 11]. There is much ongoingrkvaimed at
meuging logic and DRAM processes—particularly for the
2 Changing the memory hierarchy embedded and ASIC mats—hut little consensus as to

whether the best direction is adding DRAM support to a
logic process or viceersa [6]. If support for dense DRAM
cells is added to logi@brication processes, the amount of
memory on the processor may @réo be a substantial
fraction of (or ®en comparable to) the systesmmain

The arerage number of DRAM chips in systems is
decreasing\er time, as the minimum granularity of mem-
ory size increases [11]. Thisfeft results from both the
increasing depth of DRAM chips (the capacity increases
outstrip the gravth in 1/0 widths of the DRAM chips) and
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Figure 2. Possible organizations for on-processor memory

memory chip are unlilely to do).

With on-processor memories that grajuite lage, However, since the cache enforces the principle of
there are three main cgteries of possibilities for design-  inclusion, this performance comes at a cost: a fraction of
ing the memory hierargh depicted in Figur@. The on- the plysical address space is duplicated. The magnitude of

chip memory can be manageery much lile a traditional this cost @erhead depends on the size of the on-chip
cache (Figur@a), the on-chip memory may be treated as a cache, relatie toM. Asa — 1 andp —» 1 (meaning that
fast fraction of pwsical memory (Figur@b), or the on- the on-processor memory andf-clip main memory
chip memory could be didiently lamge to contain all of  come to hee similar areas and densities), the costs will
the plysical memory in the system (Figuze). We discuss grow, and the relatie performance gjns will diminish
the issues associated with each of these three modelédiscussed in Sectiah?2).

belov. We do not consider lge of-chip caches, since we

believe that the combined fetts of lage on-chip caches 2.2 On-chip memory as a fraction of physical

and closer coupling of the processor and main memorymemory

will eliminate the cost/performance benefits ofjaiof-

As the on-chip memory capacit ® closer toM,
chip SRAMs P y rapacty

the performance d#rential between caching lines and

Eor clarity of Fhe ensu.ing discussion, we define the fol- statically mapping pages (enforcingctusion, not inclu-
lowing terms:a is the ratio of the areaddsied to memory  gjgn a5 with the cache) into the memory will shrink. Map-

(or onvest level pf cache) on the processor to the t'otal chip ping pages into the on-processor memory may become
area in the main memorkjor xample, in Figur@a, ifthe  oompetitie with caching, particularly if the pages to be

two chips were the same size, and the cacheedd®’  5h0ed on the processor are judiciously selected. The
took up 80% of the diey = 0.8. If another memory chip 45 system cost of this scheme is less than for caching.

of the same size a8 added, then = 0.4. p is the den-  gjnce some of the ghical memory is on-processdess
sity ratio between the Bthip DRAM and the on-proces-  aads to be present outside of the processor todera

sor memory (for xample, if the DRAM array had 15 (41 of M in the system (for simplicifywe ignore mini-
times as manbits per unit area as the on-processor cache, ; m granularity issues here). Thus, as— 1 and

p = 15). The desirable main memory size foreegisys-  , _ 1 “treating the on-chip memory as a fraction of main
tem isM (we assume that this a typical main memory sizé memory preides superior cost/performance to caching.
for a system of the generation in question). There are mantechniques by which pages could be
. chosen for placement into the processkinese include
2.1 On-chip memory asa cache round-robin placement (simpleiblow performance), sim-

If M is too lage to fit on the processor die, then the on- ple heuristics (such as mapping in the top of the stack and
processor memory may be implemented as a cache or as the text segment, if possible), profiling to determine a set
fraction of plysical memoryThe cache will pay a capac- of “hot” pages, haing the OS “promote” and “demote”
ity penalty because of the ¢mr tag @erhead, comparator  pages upon a pagauit (based on usage counts), or per-
logic, etc. Havever, a cache is much more dily to reduce haps gen some sort of dynamic remapping.
the number of dfchip accesses substantial§ynce it cap- A possible optimization to king main memory on-
tures the dynamic, fine-grained nature of the dynamic ref-chip is to preide a relatiely small on-chip cache for fof
erence stream (something that memory pages mapped orehip data along with the on-chip main memdfiis cache
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captures some of the dynamic locality in thd-abfip scaled up the capacity of the on-chip main memory an
accesses without substantially increasing the cost (thisadditional 15% wer that of the cache. In the thircdgani-
scheme bears some similarity t®A8H’s remote access zation, we hae a main memory the same size as the cache
cache [8]). In the this papewe present profiled page in the first oganization, and instead of using the 15% of

assignments, as well as thgbhid caching scheme. area hargsted from the cache tags agr@& memory we
use a cache that is 1/8 (12.5%) of the on-chip main mem-
2.3 A cost/performance model ory size. These three ganizations are thus all roughly

To evaluate the relate merits of these schemes, we equ'yalent in area. _ _
developed a simple cost/performance model. The chosen, Since we are attempting to establish an upper bound on
fixed parameters are as folle: D is the processor die the _potent|al performance of on-chip main memories, we
size, P is the fraction of the die dedicated to the processor Statically map the most frequently accessed pages into the
and L1 cache, anfiis the bits per unit area on the proces- On-chip main memory (i.e., we assume a perfect oracle).
sor die.A = (D—P)f is the area dedicated to on-chip The caches are 2ay set associat, with LRU replace-
memory c, is the cost per bit of Bprocessor memory ~ Ment and 32-byte lines. The pages in main memory are

M is the main memory size. 4KB each. W& shav the data set sizes, plus the sizes of the
We will vary one parametet:, which is the ratio of the ~ Structures we used in the 1/gperiment, in &blel. _

ory access. Finallyve will measurem (the on-chip miss ~ that go of-chip for each eperiment (cache misses, or
rate) eperimentally m is a function of the on-processor ~accesses to behip banks in lieu of on-chip banks). &v
memory capacity (e.gA) and oganization (cache, frac-  though the fraction of main memory on-chip has a 15%
tion of main memoryand lybrid). larger capacity in eachxperiment, apd the most hely

We can determine the performance ofwegimemory ~ accessed pages are mapped on-chip, the miss rates for the
organization as the irerse of the werage memory access Cache is much leer in every case.
lateng, normalized to the on-chip memory access time: When the small cache replaces thza@15% of the on-

P = 1/(ml +(1—m)) 1 chip main memory pages, Wwever, the page+cache
The cost of the memory ganization is: scheme xhibits faver of-chip accesses than does the
' plain cache scheme on numerous occasions. As the on-
C = (M—A)Cy; (2) chip memory grors lager, the performance of theybrid
whereA in this case is the number of bits on the processorscheme imprees relatre to the pure caching scheme.
die functioning as a fraction of main memofgr each When the on-chip memory size is half that of the program
given periment. Thus, by maximizing the performance/ data set, the ybrid scheme generateswier of-chip
cost: accesses than the pure cache for four of the eight bench-
P/C = 1/((ml+1—m)((M—A)cy)) (3  marks we ealuated.

In Figure3 and Figurel we shav the \alues of our per-
formance/cost model for a range of/ofi-chip memory
access latencratios (n = 10, 50, 100 500). As can be
inferred from HAble2, the pure main memory-on-chip
scheme is neer more cost-ééctive than the alternags.

For low and moderaten, havever, the tybrid scheme is
frequently cost-déctive for \ery lage (1/4 and 1/2 of the
program data set) on-chip memories dfigf the eight
benchmarks). As$ grows, the pure caching scheme does
J)etter in a fev cases, since in those cases the pure cache
generates fger of-chip accesses, which is of paramount
importance when 6fthip accesses becomery epen-

sive.

These results indicate that if indeed processaymho
have on-chip memories that are within a small constant
factor of the main memory size, it may be cofgative to
manage most of the on-chip memory as a fraction of main
memory provided that a smaller cache is still used to
cache dfchip data.

for each of A and |, we can determine the most cost-
effective olganization (according to our metric).

We measuredn experimentally using the SimpleSca-
lar tool suite [1]. V& simulated the on-chip memory per-
formance of eight of the SPEC95 benchmarks, using the
“test” inputs. The benchmarks weo®onpr ess, gcc,
go, hydro2d, ngri d, su2cor,swi m andwave5. We
chose a alue of 0.01 for cye, and we set
fA=M/(2Y),i = 1,2,...7 where M for each gperi-
ment is the data set size of the application being simulate
(more intuitively, the on-chip memory will hee enough
transistors for an on-chip cache of 1/2, 1/4, ..., 1/128 of the
program data set size).

For each benchmark, we simulated three memory hier-
archy organizations. The first assumed that all main mem-
ory resided dfchip, and that the processor contained a
cache ranging from 1/2 to 1/128 of the main memory size.
The second assumed that the on-chip memay man-
aged as a fraction of main memoS8ince caches pay an
extra area werhead (typically between 10% and 20%), we
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Benchmark go swim su2cor hydro2d mgrid gcc compress waveb
Data set size 612K 1AM 8M 8M ™ 2M 436K 41IM
Cache size 256K 8M aMm aMm aMm 1M 256K 16M
Scaled pages 74p 2355p 589p 1178p 1178p 147p 74p 4710p
Pages + cache 64p 2048p 512p 1024p 1024p 128p 64p 4096p

8K 256K 64K 128K 128K 16K 8K 512K

Table 1: Data set and memory sizes for SPEC95 simulations
In the first row of this table, we show the data set sizes for the eight SPEC95 benchmarks we simulated. The following three
rows show the memory structure sizes we used in the three experiments (“p” stands for pages). These sizes are shown for
the experiment in which the on-chip memory is 1/2 of the main memory size. For the other experiments, the second through
fourth rows should be scaled down accordingly (e.g. for the 1/4 experiment, every number in rows two through four should be
divided by two).

Benchmark Experiment 1/128 1/64 1/32 1/16 1/8 1/4 1/2
Cache 143 8.4 43| 1.741] 0770 | 028 | 0.04
099.g0 Page 66.6 58.3 455 34.7 19.0 6.0 0.44
Page-+cache 46.9 36.5 | 252 12.0 38| 063 007
Cache 3.6 3.6 3.6 3.6 35 3.2 1.7
102.swim Page 645 | 629 508 | 541 461 30.1 11.2
Page+cache 475 | 319 14.7 3.3 3.0 25 1.3
Cache 41 34 2.6 0.9 0.39 015 | 0.04
103.su2cor Page 713 64.2 51.8 34.8 21.0 13.9 6.6
Page+cache 8.3 5.5 4.0 2.5 1.3 0.78 0.44
Cache 5.2 5.2 5.2 5.1 4.7 3.2 1.3
104.hydro2d | page 66.6 | 65.1 620 | 56.15 | 481 33.7 15.2
Page+cache 6.1 5.9 5.4 4.8 3.9 3.0 15
Cache 1.8 15 1.2 11 11 10| 073
107.mgrid Page 766 | 750 | 720]| 66.2 543 | 31.8 5.3
Page+cache 8.6 3.6 1.9 1.8 15 1.1 0.39
Cache 2.2 13| 078 045] o0.21 0.09 0.03
126.gcc Page 82.5 67.2 54.9 375 24.9 16.5 7.4
Page+cache 22.3 14.4 8.1 43 2.1 1.1 0.42
Cache 6.3 5.4 45 3.8 31 24 1.6
129.compress | page 43.7 35.2 27.3 23.3 18.2 12.8 5.5
Page+cache 16.3 10.1 7.5 6.0 4.7 2.4 1.1
Cache 0.66 | 050 | 0.42 0.37 033 | 030 025
146.wave5 Page 17.7 16.0 13.0 8.2 45 3.0 1.43
Page+cache 0.95 | 0.77 055 | 040 031 023 | 013

Table 2: Miss rates for on-chip memory structures
In this table we list the percentage of memory operations that go off-chip for each of the benchmarks and the three experi-
ments. The fraction in the header row represents the size of the on-chip memory (approximately that fraction times the pro-
gram’s data set size).
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Figure 3. Performance/cost graphs for four SPEC95 benchmarks
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Figure 4. Performance/cost graphs for four more SPEC95 benchmarks
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2.4 Single-chip computers

In Figurela, we see that projected main memory sizes

merged logic/DRAM process.

cross single DRAM densities (thus projecting single-chip 3 Changing the processor

main memories) and b to cowerge with on-processor

In this section, we discuss the implications thagdar

real estate. The memory capacity of these processor chipg-chip memories ve for the future of chip multiproces-

will be quite lage, with the gact amount depending on
the on-chip memory cell density impements brought
about through ybrid memory/logic processes.

sors (CMPs).
On-chip resources will soon be 8aent to permit
multiple, high-performance processors to be placed on the

We can quantify the circumstances under which all of ggme die. Corentional wisdom is that such CMPwd

the main memory will xist on one or more processor
chips. W assume thap = A/D is the percentage of
memory on the processahatk is the number of transis-

run parallel programs when able, and act as throughput
engines to run multiple programs in parallel when parallel
codes were notvailable. The data in Figurb hint as to

tors needed to implement one bit of storage in logic-pro- why the latter model is unlidy to succeed. The increasing

cess SRAM, and thaj(t) is the \ertical gap between the

percentage of the processor dieated to memory results

processor transistor line and the main memory size line infrom the graving relative cost of dfchip accesses. Pro-

Figurela for ay yeart. Recall thatp is the density dif-

cessor designers thus put on as much cacheysdhdn

ference between unoptimized, logic process SRAM and agn attempt to contain theonking set of the taet applica-

heavily optimized, DRAM process cell. Lep'(t) repre-
sent the minimaléctor impreement in processor memory
density necessary to eliminate “dumb RAM” in aeyi
yeart. We can calculat@'(t) as followvs:

Be ), o p'(t)zkg—g) @)

B/k is the normalized amount of memory on the pro-

cessorbarring process support (when multiplied giyt) ,

tions. If the dominant arkloads had small, well-contained
working sets that fit easily within small on-chip caches,
industry would find some other use for the transistors on
the die to impree performance (such as massbranch
prediction tables).

The ratio of on-chip memory transistors to processor
logic transistors ranges from one to nine, and is stilvgro
ing. If designers wish to place multiple processors on the

we obtain the normalized amount of memory with process same chip to run independent jobs,ytheill need to

support). That amount must be greater th@)v 2, mean-

greatly increase the size (or number) of the on-chip caches

ing that the amount on the processor should be at least halfo present massie conflicts among wrking sets. This
of the desired main memory size. If it is half, then the increase (scaling up the die size by the saam®f as the
desired main memory size may be reached simply by add-number of processors) is &k to be &r more gpensve

ing another processathus eliminating the need for more
than one type of chip in the system and ineprg econo-
mies of scale (to certairemdors’ dismay). As arxample,

than simply using multiple separate processors for high
throughput (since the cost increases dramatically as the die
size gravs). If the cache arking sets of future applica-

if we assume that processor transistors are 95% memory irions grav more slavly than do on-chip resources, CMPs

2010, and still use 6T SRAM cells, then, since
0(2010 06.1, we obtainp’(2010 = 19.2. This factor is
within the realm of the density €grentials between these
two memory technologies (logic SRAM cells and opti-

mized DRAM cells), so we conclude that single-chip com-

as throughput engines may become more feasiblg; ho
ever.

3.1 WhentouseaCMP
A CMP would be cost-déctive when the multiple pro-

puters are feasible within a 15-year time frame (assumingcessors could share data in the on-chip memyile

certainly not necessarily true).

Since we sheed that on-chip memories a quarter the
size of main memory (with theyhrid cache support) can
be cost dective for may benchmarks (at least under our
performance/cost model), we wcestimatep'(2001) as
another illustratie exkample.(Bp’(t))/k in this case must
be greater thamy(t)/4 (since we are mo considering a
guarter of the on-chip main memopgas opposed to a half
as before)g(2001) 011.3, so using the same assumptions
as in the precedingxample, we obtairp’'(2001) = 18.9,
which implies that it will be possible to fit a quarter of the
main memory on-chip by 2001 with a faiently good

likely to share code (we include parallel instances of a
task, such apnake, in this catgory), the datasets of
large programs that lend themsedwvell to parallelization
(computational fluid dynamic codes, foraeple) tend to
have relatvely distinct working sets. Such codesould
thus run more cost-efctively on multiple separate proces-
sors, @en though the would benefit from the lwer on-
chip communication latencies.

One good candidate for a CMP is a coarse-grained
speculatre processor—such as a Multiscalar processor
[14]—in which multiple on-chipxecute speculate, tem-
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porally ordered tasks from the dynamic instruction stream.

These processors tend it much data sharing in their
shared caches, and thus tentapped wrking sets wuld
allow the processors to remain utilized without requiring
vast increases in the on-chip cache size.

3.2 Looking farther ahead

lation or binary revriting ... unmodified codes that were
not good candidates for parallelization can thysat the
multiple processors and imu® performance.

DataScalar architectures require global broadcasts,
however, and are thus unlity to scale to lare numbers of
nodes, whether in a one-chip system with ynamocessor/
bank modules, or in a system with multiple such chips. By

So long as the on-chip memory is treated as cache, witrdividing computational slices among subsets of the partic-

its contents dynamically changing froycte to gcle, the
cost-efectiveness of CMPs for running independent jobs
or even may parallel programs will be limited.

Once the on-chip memory banks are treated gsiqdl
memory however, this situation changes fundamentally
The increasing RC delays on global intrachip wiring—as
feature sizes are scaledwie—will drive future processor

ipating processors, broadcasting only to local subsets, and
allowing much deiation from the base DataScalar model
(in which processors may dynamically decide to perform
private computation, broadcasting only a result or perhaps
directions to other processors), we can imprthe scal-
ability of the computation, alling a huge range of codes

to run eficiently on a tightly intgrated, IRAM/CMP sys-

chips to consist of multiple partitioned modules. One pos- tem. More important, heroic sofare support is not

sibility is coupling multiple processors with the multiple

required for codes to run on this systemt(may impreoe

memory banks on a chip, such that each processor if€rformance on codes that are amenable to such analysis).

closely coupled with a nearby part of the on-chip memory
and can rundremely fist when data it needs are in its
local bank.

In this model, the question of resource allocation disap-
pears somghat, as the number of processors allocated to

a job becomes proportional to the amount ofsutal
memory that the job requires. There amdeissues with
conflicting working sets, because if a job requires all of the
memory on a chip, all of the processors on that chip will
be dedicated to that jobf part of main memory does
eventually migrate onto the processor die (which is cer-
tainly possible as discussed in Sect)nit is likely that
economies of scale will dré the system to contain only
that one type of chip.

While this distriluted processor/memory bank model
may be attractie from a design perspegi the perennial
problem of hav to program this architecture loomsadi-
tional parallelization techniques willotk for mary codes,
but there are manothers that parallelize either poorly or
not at all.

4 Summary

In this paperwe hae examined seeral issues concern-
ing processor/memory irgeation from the CPU (logic
process) perspeed. We speculated about the directions in
which the increasing size of on-chip memories will/eri
future processors and systemse Wst reiterated others’
point that if the current trends hold (which of course/the
may not), we may h& only one memory chip in future
PC-class systems. &\shaved that the percentage of pro-
cessor transistors dated to memory is high (and gve
ing), and that the processor transistoddpet is slaly
converging with main memory size.

We then analyzed the implications of these trends for
the memory hierargh We shaved that, gren on-proces-
sor memory cells that are comparable in density to DRAM
cells, that the processor mayeatually contain the entire
main memoryWe then used a cost/performance model to
examine the space between here and single-chip systems,
shaving the point at which it may become codeefive to

A good candidate for such codes is the DataScalaryeat 5 part of on-chip memory as main memory instead of
architecture [3]. Each participating processor runs the 5¢ 4 cache.

same program, performing redundant computation. In a

Finally, we en@ged in a qualitate discussion of he

CMP-based DataScalar system (or muIti-CMP-based),CMps, as traditionally thought of, are umlik to emege
when a processor loads an operand from its local bank, ity,,e 1o memory restrictions. @Vbelive that the CMP
broadcasts the operand to the rest of the participating pro1,,odel maks much more sense when the processors are

cessors. All communication is oneayy and thus cuts
down on the latenc of requests for operands in remote
memories (a cross-chip request mayettdns of gcles in

each coupled with a dé@rent main memory bank (homo-
geneously throughout the system), rather than competing
for space in a shared cachee \&re currently xploring

future processors). Processors that find multiple consecuy,q,, techniques (deved from our DataScalar ark) to
tive, dependent operands in their local banks can run aheaguow hard-to-parallelize codes to rurfieiently on such a

of the others on that dependence chain, broadcasting th%ystem without mandatingceessie or impractical soft-
entire chain to the other processors much earlier than, o support.

would normally be possible. Best of all, the base Data-
Scalar model is fully transparent, and requires no recompi-
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