
Exploiting Optical Interconnects to Eliminate Serial Bottlenecks

Doug Burger and James R. Goodman

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

galileo@cs.wisc.edu
http://www.cs.wisc.edu/~galileo
Abstract

Optical interconnects offer interesting new possibilities
because of the potential for scalable broadcast. Unfortu-
nately, most current algorithms using broadcast do not
scale well because of the rapid increase in message pro-
cessing resulting from broadcast, and particularly because
of potential uneven distribution of the work. We describe a
novel design as an example of how an architecture might
exploit broadcast capability not so much to speed up easily
parallelized code as to minimize the effects of serial bottle-
necks. While compatible with compiler-discovered parallel
programs, the architecture appears particularly promising
for code that exhibits serial bottlenecks. The architecture
appears well suited for future directions of semiconductor
and optical technologies.

1 Introduction

From the architect’s perspective, optical interconnects pro-
vide a new and interesting set of opportunities for design-
ing multiprocessor systems. Intrinsically high bandwidth,
potentially low latencies, and the “free space” nature of
optical interconnects all provide new opportunities for
both evolutionary and revolutionary changes in multipro-
cessor architectures.

Optical technologies have yet to move into the main-
stream, however, and have so far failed to supplant electri-
cally-based interconnects as the technology of choice for
multiprocessor interconnects. This is historically due to a
lag in the level of available optical technology compared
to the electrical equivalent. More recently, however, cost
This work was supported in part by NSF Grant CCR-9207971, an unre-
stricted grant from the Intel Research Council, and equipment donations
from Sun Microsystems.
and utility constraints have eclipsed the optical technol-
ogy’s rapid advances. Evolutionary improvements are
insufficient to overcome the long history and tremendous
investment in electrical transmission media.

To succeed, optical technologies must demonstrate not
just superiority, but a major advance over the dominant
technologies they hope to replace. The computer industry
has taken its place among the largest industries in the
world, while still continuing to produce rapid advances
across a wide range of technologies. The semiconductor
business is large and well financed, with a history of
progress so rapid and consistent that it is hazardous to pre-
dict when progress may slow. The massive resources avail-
able for the advancement of dominant technologies—
benefiting from economies of scale—present an enormous
challenge to any new technology, no matter how superior
it may appear. Core memory systems continued to sur-
vive—and even grow—years after they were predicted to
be supplanted with semiconductor RAM technology.

Though optical devices are likely to see increased use
in long-haul networks, it is not apparent that they offer a
clear benefit to conventional massively-parallel machines.
These machines already depend on high-bandwidth com-
munication to exploit fine-grained parallelism. They have
been well studied, and dramatic improvements are not
likely to be achieved by the elimination of a single bottle-
neck. We will discuss the two major classifications of par-
allel computers—shared-memory multiprocessors and
multicomputers—showing that no single improvement in
the interconnect is likely to provide dramatic improve-
ment. Thus optical interconnects are unlikely to become
ubiquitous in today’s conventional MPPs.

Networks that provide high-bandwidth, low-latency
communication between arbitrary nodes are critical to the
success of massively-parallel computers. Raw bandwidth
alone is not sufficient, however. Even if network band-
width were increased arbitrarily, other bottlenecks would

soon emerge, precluding substantial performance gains. In
bus-based snooping cache systems, for example, all com-
munications are broadcast, and each such communication
requires processing at every node, including a memory
lookup. Thus processing at each node grows linearly with
the number of processors in the system.

A major limitation of parallel computing is the chal-
lenge of balancing the workload. The availability of twenty
processors does not automatically translate into a speedup
of twenty, even if the code can be readily parallelized. It
may be that some parts take longer to compute than others,
or may be unpredictable, so that many of the processors are
idle much of the time, waiting for others to finish their
assigned work. Systems may have hot spots [15] both in
processors and in memory, where progress is impeded
because a computation, or access to a particular memory
location, is required excessively.

Hot spots are particularly troublesome in broadcast net-
works. A free-space optical interconnection network can
achieve extremely high bandwidth because many nodes
can be simultaneously broadcasting at a very high rate.
Unfortunately, if a single node must respond to a signifi-
cant portion of the messages being broadcast, it can be rap-
idly swamped. It must therefore have some mechanism for
throttling the sources of the data, a procedure known as
flow control. This problem emerges as a major limitation of
free-space optical interconnections: how to throttle sending
nodes that are overloading a particular receiver without
interfering with communications among other nodes.

Another limit to the successful implementation of mas-
sively-parallel systems (hundreds or thousands of proces-
sors) is serialized code within applications. Amdahl’s Law
states that a the speedup of a program is limited by the
reciprocal of the serial portion of the program. For exam-
ple, a program for which 95% of its code can be parallel-
ized will have a speedup of only 20 even if the non-serial
portion of the code is performed in zero time. Although
optical interconnects may enable very large systems to be
constructed, this serial overhead must be considered.

Thus the availability of a high bandwidth, low-latency
network (such as might be available using free-space opti-
cal interconnect) cannot be much better utilized by conven-
tional MPPs. Architectures that can exploit the high
bandwidth capability without having to provide elaborate
flow control are the best hope for inclusion of optical inter-
connect technology. This paper provides an example of a
novel architecture that exploits the unique features of opti-
cal interconnects to reduce serial overheads within a paral-
lel program. Our assumption is that microprocessors will
continue their exponential performance growth, with the
consequence that communication becomes relatively much
more expensive in future systems. Because computation in
such systems will be cheap compared to communication,

we propose to perform serial code redundantly at every
node, broadcasting all operands needed for that code on the
optical interconnect.

We call our proposed execution model Single-Program,
Single-Data stream (SPSD), extending Flynn’s classifica-
tion [7]. This execution model was devised for our pro-
posed DATASCALAR architecture [3], which targets future
uniprocessor programs running on a small number of pro-
cessors. The SPSD execution model was derived from the
Massive Memory Machine work of the early 1980s [8]. We
believe that the DATASCALAR concepts are an excellent
match for the small fraction of large-scale parallel pro-
grams that is difficult or impossible to parallelize. More
efficient execution of this serialized fraction will reduce the
fraction of execution time that it requires, thus increasing
the scalability of the program.

The rest of this paper is organized as follows: in
Section 2 we present an overview of multiprocessor archi-
tectures, and discuss how optical interconnects may inter-
act with each class of multiprocessors. We also discuss the
pitfalls that prevent these architectures from realizing sig-
nificant benefits from the use of optics. In Section 3 we
describe the SPSD execution model, and discuss how it
may be applied to massively-parallel systems. In Section 4
we engage in speculation as to how optics and parallel
architectures may interact in the future. Finally, in
Section 5 we provide a summary of our ideas.

2 Interaction of MPP architectures and optics

There are two major categories of multiprocessor architec-
tures that have emerged over the years. In this section, we
discuss how each category may or may not benefit signifi-
cantly from optical (as opposed to electrical) interconnects.

2.1 Shared-memory multiprocessors

The first shared-memory multiprocessors, in which all
memory lies equidistant from every processor, were what
are commonly called “dancehall” architectures. They were
so named because all processors were located on one side
of a general interconnect, while all memory modules
resided on the other (an eight-processor example is shown
in Figure 1). Examples of these machines include the IBM
GF-11 [1], the NYU Ultracomputer [10], and the IBM RP3
[15].

This organization had the advantage of a high-band-
width interconnect with uniform latency to all memory,
making the machines easy to program. The drawback to
these architectures is the long latency incurred by travers-
ing the multistage interconnect. Placing caches at the pro-
cessor side of the interconnect can reduce the average
memory latency, but introduces the well-known cache

coherence problem, which is difficult to solve for such
architectures. In addition, hot spot contention in the mem-
ory system can be extremely disruptive

An optical interconnect cannot hope to boost perfor-
mance substantially beyond what it is with the already
large bandwidths of multistage networks. Furthermore,
with processor caches to cut down on memory latency, the
optical network would incur the same scalability problems
as with the bus-based system described below.

Another class of shared-memory multiprocessor is the
bus-based, snooping cache machine (we show an example
in Figure 2). This architecture now forms the bulk of all
multiprocessor systems sold. In this architecture, the multi-
stage interconnection network is replaced by a single bus.
The broadcast capability of the bus is exploited to solve the
cache coherence problem by assuring that every processor
monitors every memory operation,. Each processor can
then intervene when necessary to assure that a single view
of memory is maintained.

As processor speeds have increased, fewer processors
can be placed on a single bus before the bus becomes satu-
rated. Vendors have managed to place as many as thirty or
forty processors on a single bus by pushing the electrical
interface to its limit, but this level of parallelism becomes
increasingly difficult as ever faster processors emerge.

An optical crossbar or free-space interconnect could
function much as an ultra high-bandwidth bus. This is no
panacea for scalability of bus-based systems, however. A

bus with infinite bandwidth and zero latency would quickly
swamp the snooping mechanisms as more processors were
added. Because each memory operation must be monitored
by every processor, the total processing requirement in the
system grows as the square of the number of processors,
and neither the bus interface nor the cache tag ports could
sustain a linear growth in traffic.

Thus, we see that even the best optical interconnects do
not provide a cure-all for shared-memory multiprocessor
communication limitations, for either type of shared-mem-
ory machine.

2.2 Multicomputers

The incredible performance growth rate of microproces-
sors, plus the benefits of economies of scale, have allowed
the multicomputer to emerge as the dominant scalable mul-
tiprocessor. Workstation-like multicomputer nodes provide
low-latency access to a fraction of the system memory
(although the two-tiered memory model makes these
machines very hard to program). Recent examples of mul-
ticomputers include the Thinking Machines CM-5 [12], the
Intel Paragon [5], and the IBM SP-2. We show a simple
example of a multicomputer architecture in Figure 3.

Multicomputers can provide either a message-passing
interface, such as the SP-2, or a shared-memory interface,
implemented either with hardware or software sending
inter-processor messages and providing the illusion of
P

P

P

P

M

M

M

M

P

P

P

P

M

M

M

M

Log(N) switches

Figure 1. Dancehall architectures

P

M

P P P

Memory bus

I/O

$ $ $ $

I/O bus

Figure 2. Example 4-node SMP

shared memory (these systems are often called distributed-
shared-memory machines).

Not only are the microprocessors off-the-shelf, com-
modity parts, but increasingly the memory system, inter-
connect, and communication interface are exploiting
economies of scale. This fact is driving the use of software
protocols, such as in the Sequent STiNG [14], and the use
of standards, such as the Scalable Coherence Interface [17]
in the Convex Exemplar [4].

The emphasis on cost makes it difficult for even an ideal
optical network to provide huge performance gains. In
message-passing computers, the latency through the actual
network wires is typically a small fraction of the total net-
work traversal time; most of the time is spent in the net-
work interface at the sender and receiver. In machines that
implement software protocols, such as the Wisconsin
Typhoon [16] and Stanford FLASH [11], most of the mes-
saging time is spent running the protocol handlers. Even in
hardware-based shared-memory interface systems, such as
SCI-based systems or the Stanford DASH [13] machine,
the shared-memory protocol logic may be a bottleneck.
While support could be added to increase the bandwidth of
the protocol engines, the increasing reliance on commodity
parts makes adding such support problematic. Again, an
ideal optical network achieving infinite bandwidth and zero
latency would not improve the performance dramatically
for these machines.

If the network interface problems were alleviated, a
very low-latency optical network could possibly provide
near-uniform access times to all of the memories in the sys-
tem, whether local or remote. This situation would be tran-
sitory at best, however.

As microprocessors become ever faster, long access
latencies for even local memories, as well as limited band-
width off the processor die and on the system bus, will
force the local memory progressively closer to the CPU.
We believe that this trend will culminate with a node’s
local memory on the same die (or module) as the processor,
exploiting the tremendously high bandwidth and low
latency out of on-chip memory banks.

This design point will serve to make remote communi-
cation orders of magnitude more expensive than local (on-
chip) communication, as the gap between a local on-chip
memory access and a remote memory access grows. This
gap will in turn make good speedups in massively parallel
systems even harder to obtain for codes that are not
“embarrassingly parallel.”

It is therefore paramount that both sequential portions of
the code, including the affiliated communication, be as effi-
cient as possible. It will also be critical that communication
during parallel phases be minimized or tolerated by over-
lapping with computation; otherwise scalability will suffer.

3 Implementing SPSD execution

Our proposal for reducing serial overhead in parallel pro-
grams exploits the fact that computation will be signifi-
cantly cheaper in future systems, particularly those that
have tightly-coupled processors and main memories (ren-
dering remote communication more expensive). For the
purposes of this discussion, we will assume that every par-
allel program can be decomposed (albeit at a fine grain)
into two modes: serial and parallel.

We can improve both the serial portion of a parallel pro-
gram, and uniprocessor programs, with an execution model
that is analogous to the Single-Program, Multiple Data
stream (SPMD) execution model identified by Darema-
Rogers et al. in 1985 [6]. This execution model, which we
call Single-Program, Single Data stream (SPSD), was
derived from the Massive Memory Machine work from the
early 1980s [8]. In SPSD mode, each of the processors exe-
cutes the entire program, reading and writing exactly the
same data (unlike SPMD, in which each processor writes
to different addresses).

SPSD execution was conceived to run on DATASCA-

LAR systems [3], which are small-scale systems that con-
tain processors tightly coupled with main memory, running
uniprocessor programs. DATASCALAR architectures are
optimized for efficient serial execution with exploitation of
coarser-grain parallelism when possible. For an MPP with
an optical network, the goal of SPSD execution is precisely
the converse: the program runs in parallel mode the major-
ity of the time, switching to SPSD to race through a serial
section of code.

Each node assumes ownership of the portion of physical
address space that it contains. When a node is operating in
SPSD mode, and issues a load to an operand that it owns, it
broadcasts that operand to the other nodes (since they are
all running the same code, they too will eventually need
that operand). When a node issues a load to an operand that
a different node owns, the load stalls, if necessary, until the
needed operand arrives over the optical network, broadcast
by the owning node. This ownership/broadcast scheme was
called ESP by the Massive Memory Machine work.

To cut down on inter-chip communication, and the
latencies associated therewith, we replicate some of the
heavily-accessed pages across all nodes. Accesses to this
statically-replicated data will complete locally on every
node, not requiring a broadcast. Memory on each node is
thus divided into two classes: replicated and communi-
cated. A load to a replicated datum never requires a broad-
cast since it completes on every node, and a load to a
communicated datum always requires a broadcast, since it
completes only on the node that owns that particular
datum. Data may also be replicated dynamically; we allow
each node to cache data owned by other nodes. A load to a

communicated datum that is found in all processor caches
is not broadcast.

In Figure 4 we show how loads and stores to replicated
versus communicated memory differ; both CPUs issue a
load and store to replicated memory (L1 and S1), which
complete on both nodes. Both CPUs also issue commands
L2 and S2, which are located in the communicated mem-
ory of node 1 only. Node 1 broadcasts L2, which node 2
receives and consumes. S2 completes at node 1, but is
dropped at node 2.

The rest of this section describes the three categories of
benefits that the SPSD mode of execution provides.

3.1 Request elimination through ESP

The Massive Memory Machine (MMM) defined ESP, the
notion of running the same program across multiple com-
putational engines, broadcasting accessed local data to all
non-local processors. However, the MMM proposed con-
ventional, non-pipelined uniprocessors connected by a sin-
gle global bus, and was therefore unlikely to provide better
cost-performance than competing solutions. Furthermore,
the MMM was a fully synchronous architecture, in which
all processors proceeded in lock-step, with one processor
running slightly ahead of the others (the lead processor). In
Figure 5a we illustrate the high-level design of the MMM.
In Figure 5b we show an example of the MMM’s opera-
tion, in which processor 3 owns the first four operands, so
is the lead processor for the first four accesses. Processor 2
owns operands five through seven, so upon the fifth access,
a lead change occurs and processor 2 becomes the lead
processor. Finally, another lead change occurs on the
access to the eighth operand, and processor 3 again
becomes the lead processor.

An MPP system running in SPSD mode enjoys the same
benefits from ESP as did the MMM proposal. The major
benefit in this case is reduced remote access latency, since
only one network traversal is needed for a remote operand
(as opposed to two for the traditional request/response pair,
or more if coherence protocol actions are required). Other
related benefits for SPSD are: (1) elimination of intercon-

nect request traffic, and (2) elimination of interconnect
write traffic.

Because each node runs the same program, a communi-
cated operand can be sent to the other nodes as soon as its
address is resolved and the operand is fetched from the
local memory. The request part of the access involves only
an on-chip lookup. The operand is sent directly to the other
nodes, eliminating half of the communication delay by
requiring only one-way communication.

This “response-only” model also reduces traffic
(increasing effective off-chip bandwidth) because off-chip
requests are unneeded. Finally, all inter-chip write traffic is
eliminated under ESP. Stores (or write-backs of dirty cache
lines) complete locally on every node if their target address
is contained within a replicated page. Stores or write-backs
to a communicated page occur only on the owning node,
which preserves consistency since that node holds the only
copy in main memory. Note that there are no consistency
issues, because every node is running the same code.

3.2 Pipelined memory prefetching

Consider an access to a datum obtained through a pointer.
In conventional systems: (1) a request must be sent off-chip
to memory, (2) the pointer is returned, the processor com-
putes the address of the datum, (3) sends a request to mem-
ory, and (4) the operand is returned. This sequence requires
a total of four chip-to-chip crossings. An ESP-based sys-
tem would incur two chip crossings at most: (1) the owner
of the pointer broadcasts the address, all nodes compute the
address of the datum, and then (2) the owner of the datum
broadcasts the datum.

An MPP running in SPSD mode can do even better. If
both the pointer and datum reside on the same node—the
owner can therefore read both without waiting for an off-
chip access, pipelining the broadcast of both operands to
the other nodes. We call the phenomenon of multiple con-
secutive accesses falling on the same node pipelined mem-
ory prefetching. Since each memory chip has an on-chip
processor, consecutive accesses falling on any memory
chip will cause memory prefetching. Another way of visu-

alizing memory prefetching is from the point of view of
one node—from its perspective, it is the processor actually
performing the serial phase of the program, and all other
nodes are simply memory—which can send it operands
that it will need, before it has even computed their
addresses.

Whenever an operand depends on another operand, and
the two reside on different nodes, an inter-chip message is
required. That communication effectively halts any mem-
ory prefetching occurring down that dependence chain on
any node. An example can be seen in Figure 5: if each
wi 1+ is dependent on wi , there are only two inter-chip
latencies on the critical path (after accessing w4 and w7).
To increase the performance gains from memory prefetch-
ing, it is therefore desirable to maximize the number of
consecutive references on single nodes. We refer to the
number of consecutive references to operands on a single
node as a streak. A streak includes both replicated and
communicated references.

With an in-order issue processor, a break in a streak will
force the node to stall until another node broadcasts the
needed operand. An out-of-order issue machine lends itself
particularly well to this model, however, as multiple nodes
may simultaneously prefetch down distinct dependence
chains if the instruction window is sufficiently large. The
ideal case is where all nodes are memory prefetching down
separate dependence chains that they contain locally.

Memory prefetching does not require software support
or re-compilation—running SPSD in a parallel system may
exploit spatial locality already inherent in reference
streams. (Programs may benefit from re-compilation or

programmer tuning, of course, since explicit support could
increase average streak length.) When streaks are greater
than average, the SPSD model benefits, since inter-chip
latencies on the critical path are reduced.

3.3 New opportunities for parallelism
When communication becomes relatively much more
expensive than computation, performing redundant compu-
tation to avoid communication becomes more attractive.
SPSD uses redundant computation to reduce remote laten-
cies. We can also use SPSD to extract new forms of “mem-
ory parallelism” that further reduce serial code.

For example, assume that a chained hash table is distrib-
uted across the physical memory of multiple nodes. We
modify the run-time storage allocator to place any chained
elements on the same node as the head of the chain.
Because this is code that is hard-to-parallelize, we are run-
ning in SPSD mode. All nodes thus compute the index of
the array when performing a hash table lookup, insertion,
or deletion.

Serial overhead is reduced by placing a “locality
branch” around the hash table operation. When performing
insertions and deletions, only the node containing the chain
performs the operation, with no remote communication.
For a lookup, the owner broadcasts the result of the lookup,
without any of the intervening chain addresses or keys.

Many other examples of such opportunities under SPSD
exist, but are beyond the scope of this paper. More detail
can be found elsewhere [3].
P
M

NI

$

Figure 3. Multicomputer Example

P
M

NI

$

Interconnection network

Memory
(communicated)

Memory
(communicated)

Memory
(replicated)

L2L1
S1 S2

Broadcast
network CPU-2

Memory
(replicated)

L2

L1

S1 S2

CPU-1
Node 1 Node 2

3.4 SPSD and optical interconnects

The major drawback of the SPSD model is that it requires
broadcast of data to all nodes. This limits its appeal using
traditional electrical interconnects to a small number of
nodes. To be successful, the SPSD model requires inexpen-
sive broadcasts, which makes it a good match for optics.
Since all nodes on a time-multiplexed or wave-multiplexed
optical interconnect can see any channel they choose (any,
but not all), broadcasts essentially come for free. With
electrical interconnects, SPSD is limited to small-scale sys-
tems that also have low-overhead broadcasts (e.g., buses
and small rings).

Furthermore, the optical interconnect can multicast to
subsets of the nodes in an MPP, and in fact can simulta-
neously multicast different data to different subsets. This
capability may eventually prove useful for more creative
and flexible ways of reducing communication, both in par-
allel and serial phases of the program’s execution.

The need for flow control is greatly mitigated with the
SPSD model. Since the processors are all executing the
same code, the number of communications depends not on
the number of nodes, but the number of operands being
communicated. This number will grow much more slowly,
since more nodes means more of the data can be replicated.
In addition, hot spots are less likely, because the single pro-
gram execution effectively produces its own flow control.

3.5 SPSD implementation issues

Because all operands for the serial phases must be present
at every processor, running in SPSD mode can only be
more efficient if most accesses can be found locally, reduc-
ing the average local memory access latency. It is well
known, however, that a large majority of memory refer-
ences tend to access a small minority of the memory loca-
tions. For this reason, cache memories—particularly those
specifically designed with this in mind—are often able to
reduce remote accesses, sometimes dramatically [2, 9].
While static replication of small numbers of “hot pages”
can cut down substantially on remote accesses, dynamic
replication—achieved with cache memories—can reduce
remote accesses even further. Using caches to reduce the
number of broadcasts introduces the problem of keeping
caches across nodes correspondent; the details of the solu-
tion are beyond the scope of this paper and appear else-
where [3].

Speculative execution also complicates this model.
Speculative code resulting from branch prediction can
either hold onto broadcasts until the branch target is
resolved, or speculatively broadcast communicated oper-
ands with some sort of sophisticated tagging scheme.
Coarse-grain speculative processors must guarantee that

large-scale speculative tasks issue the same way across
nodes.

One drawback to using SPSD execution in massively-
parallel processors is the reliance on commodity micropro-
cessors in such systems. It is difficult to justify architec-
tural changes to support a market as small as MPPs.
However, SPSD was originally envisioned for aggressive
uniprocessor systems[2]. The success of such small-scale
systems might well produce much of the required support
on future microprocessors (e.g., queues for buffering
broadcasts and matching them with processor requests).

4 Looking into the future

Optical interconnects provide a host of interesting opportu-
nities for the development of future massively-parallel sys-
tems. However, economies of scale—coupled with
architectures balanced and tuned for electrical intercon-
nects—will force optics to demonstrate a quantum leap in
capability before their widespread adoption.

The SPSD execution model is particularly appealing
because the computer appears to be a conventional unipro-
cessor. We envision that a computer employing the SPSD
model will run programs not explicitly written for it, with
the compiler discovering and exploiting the obvious paral-
lelism of the program. The DATASCALAR architecture can
easily switch between the conventional parallel (MIMD)
model and the SPSD model, exploiting the compiler-dis-
covered parallelism as appropriate, yet achieving very high
performance on the portions not easily parallelized. In
addition, with the help of the programmer (or a sophisti-
cated compiler) further optimizations are possible to cap-
ture opportunities for memory parallelism. The
DATASCALAR model appears promising for semiconduc-
tor-based technologies just over the horizon, when process-
ing power is readily available where needed. With
semiconductor interconnects, however, the scalability is
seriously limited by the requirement of broadcast, and in
fact we do not envision DATASCALAR systems beyond
twenty or so separate modules. These systems, of course,
might be used as components in larger systems. The oppor-
tunity for low-latency, scalable broadcast using free-space
optical interconnects promises the potential for much
larger systems. How far such systems could be extended
before other factors limit their scalability is a subject of
future research.

For the SPSD model, adding more processors can be
effective for applications where the data set grows without
increases in computation. Problems that require more
memory, but do not require more computation, can be
accommodated by larger numbers of modules. This model
scales from the communications standpoint because the
program execution inherently provides flow control that

limits the emergence of hot spots.
How far the SPSD model can scale depends on the

extent to which communications can be limited. The use of
replicated data may result in one to two orders of magni-
tude reduction in traffic. Other optimizations are also pos-
sible.

5 Summary

In this paper we have presented an execution model,
adapted from an aggressive uniprocessor proposal, which
exploits the cheap broadcasting capability of optical net-
works to reduce sequential overheads. Optical intercon-
nects will not become the communications method of
choice unless they are able to demonstrate clearly superior
capabilities. To do this, the architecture must exploit the
unique opportunities that the technology offers, not simply
settle for a higher-bandwidth communications network.
Novel architectures are needed to take advantage of the
benefits offered by optical technology. We have demon-
strated one such architecture and given arguments for why
the DATASCALAR architecture is well matched for optical
networks in large-scale, high-performance systems of the
future.

Acknowledgments

The authors thank Allan Gottlieb for the opportunity to
present our viewpoints in this forum. We thank Leon
McCaughan for his discussions on optical technologies,
and the other members of the Galileo project, Stefanos
Kaxiras and Alain Kägi, for their contributions to the ideas
presented in this paper.

References

[1] John Beetem, Monty Denneau, and Don Weingarten. The
GF11 Supercomputer. In ISCA12, pages 108–115.

[2] Doug Burger, James R. Goodman, and Alain Kägi. Mem-
ory Bandwidth Limitations of Future Microprocessors. In
Proceedings of the 23rd Annual International Symposium
on Computer Architecture, pages 79–90, May 1996.

[3] Doug Burger, Stefanos Kaxiras, and James R. Goodman.
DataScalar Architectures and the SPSD Execution Model.
Technical Report 1317, Computer Sciences Department,
University of Wisconsin, Madison, WI, June 1996.

[4] Convex Computer Corporation, Richardson, Texas.
SPP1000 Systems Overview, 1994.

[5] Intel Corporation. Paragon Technical Summary. Intel
Supercomputer Systems Division, 1993.

[6] F. Darema-Rogers, V. A. Norton, and G. F. Pfister. Using a
Single-Program Multiple-Data Computation Model for
Parallel Execution of Scientific Applications. IBM
Research Report RC 11552, November 1985.

[7] Michael J. Flynn. Some Computer Organizations and Their
Effectiveness. IEEE Transactions on Computers, C-
21:948–960, 1972.

[8] Hector Garcia-Molina, Richard J. Lipton, and Jacobo
Valdes. A Massive Memory Machine. IEEE Transactions
on Computers, C-33(5):391–399, May 1984.

[9] James R. Goodman. Using Cache Memory To Reduce Pro-
cessor-Memory Traffic. In Proceedings of the 10th Annual
International Symposium on Computer Architecture, pages
124–131, June 1983.

[10] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal,
Kevin P. McAuliffe, Larry Rudolph, and Marc Snir. The
NYU Ultracomputer–Designing an MIMD Shared Mem-
ory Parallel Computer. IEEE Transactions on Computers,
C-32(2):175–189, February 1983.

[11] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein,
Richard Simoni, Kourosh Gharachorloo, John Chapin,
David Nakahira, Joel Baxter, Mark Horowitz, Anoop
Gupta, Mendel Rosenblum, and John Hennessy. The Stan-
ford FLASH Multiprocessor. In Proceedings of the 21st
Annual International Symposium on Computer Architec-
ture, pages 302–313, April 1994.

[12] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Dou-
glas, Carl R. Feynman, Mahesh N. Ganmukhi, Jeffrey V.
Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret
A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen
Yang, and Robert Zak. The Network Architecture of the
Connection Machine CM-5. In Proceedings of the Fourth
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 272–285, June 1992.

[13] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark
Horowitz, and Monica Lam. The Stanford DASH Multi-
processor. IEEE Computer, 25(3):63–79, March 1992.

[14] Tom Lovett and Russell Clapp. STiNG: A CC-NUMA
Computer System for the Commercial Marketplace. In
Proceedings of the 23rd Annual International Symposium
on Computer Architecture, pages 304–315, May 1996.

[15] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey,
W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A.
Norton, and J. Weiss. The IBM Research Parallel Processor
Prototype (RP3): Introduction and Architecture. In Pro-
ceedings of the 1985 International Conference on Parallel
Processing, pages 764–771, August 1985.

[16] Steven K. Reinhardt, James L. Larus, and David A. Wood.
Tempest and Typhoon: User-Level Shared Memory. In
Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 24–33, April 1994.

[17] IEEE Computer Society. Scalable Coherent Interface
(SCI). ANSI/IEEE Std 1596-1992, August 1993.

	Abstract
	Optical interconnects offer interesting new possibilities because of the potential for scalable broadcast. Unfortunately, most c...
	1 Introduction
	2 Interaction of MPP architectures and optics
	2.1 Shared-memory multiprocessors
	2.2 Multicomputers

	3 Implementing SPSD execution
	3.1 Request elimination through ESP
	3.2 Pipelined memory prefetching
	3.3 New opportunities for parallelism
	3.4 SPSD and optical interconnects
	3.5 SPSD implementation issues

	4 Looking into the future
	5 Summary
	[1] John Beetem, Monty Denneau, and Don Weingarten. The GF11 Supercomputer. In ISCA12, pages 108-115.
	[2] Doug Burger, James R. Goodman, and Alain Kägi. Memory Bandwidth Limitations of Future Microprocessors. In Proceedings of the 23rd Annual International Symposium on Computer Architecture, pages 79-90, May 1996.
	[3] Doug Burger, Stefanos Kaxiras, and James R. Goodman. DataScalar Architectures and the SPSD Execution Model. Technical Report 1317, Computer Sciences Department, University of Wisconsin, Madison, WI, June 1996.
	[4] Convex Computer Corporation, Richardson, Texas. SPP1000 Systems Overview, 1994.
	[5] Intel Corporation. Paragon Technical Summary. Intel Supercomputer Systems Division, 1993.
	[6] F. Darema-Rogers, V. A. Norton, and G. F. Pfister. Using a Single-Program Multiple-Data Computation Model for Parallel Execution of Scientific Applications. IBM Research Report RC 11552, November 1985.
	[7] Michael J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Transactions on Computers, C- 21:948-960, 1972.
	[8] Hector Garcia-Molina, Richard J. Lipton, and Jacobo Valdes. A Massive Memory Machine. IEEE Transactions on Computers, C-33(5):391-399, May 1984.
	[9] James R. Goodman. Using Cache Memory To Reduce Processor-Memory Traffic. In Proceedings of the 10th Annual International Symposium on Computer Architecture, pages 124-131, June 1983.
	[10] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and Marc Snir. The NYU Ultracomputer-Designing an MIMD Shared Memory Parallel Computer. IEEE Transactions on Computers, C-32(2):175-189, February 1983.
	[11] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh Gharachorloo, John Chapin, David Nakahir...
	[12] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel ...
	[13] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63-79, March 1992.
	[14] Tom Lovett and Russell Clapp. STiNG: A CC-NUMA Computer System for the Commercial Marketplace. In Proceedings of the 23rd Annual International Symposium on Computer Architecture, pages 304-315, May 1996.
	[15] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, ...
	[16] Steven K. Reinhardt, James L. Larus, and David A. Wood. Tempest and Typhoon: User-Level Shared Memory. In Proceedings of the 21st Annual International Symposium on Computer Architecture, pages 24-33, April 1994.
	[17] IEEE Computer Society. Scalable Coherent Interface (SCI). ANSI/IEEE Std 1596-1992, August 1993.
	Figure 1. Dancehall architectures
	Figure 2. Example 4-node SMP
	Figure 3. Multicomputer Example
	Figure 4. Replicated versus communicated main memory
	Figure 5. Design and operation of the ESP Massive Memory Machine (taken from [8])

