Natural Language Applications for Decision Trees

• Syntactic parsing (Magerman 1995; Haruno et al. 1999)

• Noun phrase coreference (Aone & Bennett, 1995; McCarthy & Lehnert, 1995)

• Cue phrase identification in text and speech (Litman, 1994; Siegel & McKeown, 1994)

• Discourse structure classification from intonational features (Grosz & Hirschberg, 1992)

• Discourse analysis in information extraction (Soderland & Lehnert 1994)

• Lexical tagging: part-of-speech, semantic classes (Cardie, 1993)

• Word sense disambiguation (Mooney, 1996)
Noun Phrase Coreference

[John Simon], [chief Financial Officier] of [Prime Corp.] since 1986, saw [his] pay jump 20%, to $1.3 million, as [financial services company]'s [the 37-year-old] also became [the president].

- MLR (Aone & Bennett, 1995)
- RESOLVE (McCarthy & Lehnert, 1995)
- Corpus
 - texts annotated with coreference information
 - links refer to the most recent coreferent NP
- Training instance creation
 - convert coreference to a classification task
 - one instance for each pair of possible referents
 - features: describe each phrase in isolation as well as relationships between the phrases
 - class value: coref, not-coref

\[
p_{11}, p_{12}, \ldots, p_{1n}, \quad p_{21}, p_{22}, \ldots, p_{2n}, \quad c_1, c_2, \ldots, c_n, \quad C
\]

phrase 1 \quad phrase 2 \quad relations \quad class
MLR Training

• Training instances
 – 66 features per instance, e.g.
 • semantic class of head noun
 • lexical category of head noun
 • topicalization
 • grammatical category
 phrase features

• number
 relation features

• phrase1 precedes phrase2
• phrase1 subsequence of phrase2
• phrase1 topicalization matches phrase2
• phrase1 semantic class subsumes phrase2

• Generating the training set
 – For each NP anaphor in the training text, generate
 • positive examples for all antecedents on the anaphoric chain
 C → B → A: C-B, C-A, B-A
 • negative examples for all possible antecedents not in the anaphoric chain
 – 1971 anaphora from 295 texts
MLR Results

• Testing
 – 1359 anaphora from 200 blind texts
 – decision tree may predict more than one antecedent for a given anaphor

• Scoring
 – recall = # correct / # anaphora in answer key
 – precision # correct / # resolutions attempted

• Results
 – 69.7R / 86.7P
 – results are somewhat inflated because anaphora with multiple, discontinuous referents are omitted and because only anaphora identified by their NLP system are considered
 – manually designed anaphora resolution system (Aone & McKee, 1993)
 • 66.5R / 72.9 P
Japanese Dependency Parser
(Haruno et al., 1999)

• Segment a sentence into a sequence of bunsetsu.

```
[Yesterday] [evening] [the neighboring] [children]
```

```
[drank] [the wine]
```

• Prepare a modification matrix, each value of which represents how likely one bunsetsu is to modify another.

```
yesterday

evening  0.70  evening
the neighboring  0.07  0.10  the neighboring
children  0.10  0.10  0.70
```

...

• Find optimal modifications in a sentence by dynamic programming.
 – Standard bottom-up chart parsing.
Decision Trees for Modification Matrix Construction

• Notation

Sentence S comprises a set of bunsetsu B,

\[S = B = \{ b_1, ..., b_m \} \]

Define D to be a modification set,

\[D = \{ \text{mod}(1), \ldots, \text{mod}(m-1) \} \]

where \(\text{mod}(i) \) is the bunsetsu that is modified by the \(i \)th bunsetsu.

• Parser goal
 – find optimal D

• Decision tree goal
 – produce entries in modification matrix
Feature Set

- 13 features
- 5 each for bunsetsu b_i, b_j
 - part-of-speech of head word
 - type of bunsetsu
 - punctuation
 - parentheses
 - lexical information of head word
 - frequent word
 - thesaurus category
- 3 for relationship between b_i and b_j
 - distance between two bunsetsu
 - none
 - between 1 and 4
 - 5 or more
 - particle ‘wa’ between two bunsetsu
 - punctuation between two bunsetsu
- Class
 - yes: b_i modifies b_j
 - no: b_i does not modify b_j
Changes to Decision Tree Algorithm

- Parser assigns most plausible modification set \(D_{\text{best}} \) to a sentence:

\[
D_{\text{best}} = \arg\max_D P(D \mid B)
\]

- Adopt an independence assumption:

\[
P(D \mid B) = \prod_{i=1}^{m-1} P(\text{yes} \mid b_i, b_j, f_{ij})
\]

- Modify decision tree for regression rather than classification. Extract class frequencies at every node in the decision tree.

- Compute \(P(\text{yes}) \) at every node.

\[
P(\text{yes} \mid b_i, b_j, f_{ij}) = \frac{P_{DT}(\text{yes} \mid b_i, b_j, f_{ij})}{\sum_{k>i}^m P_{DT}(\text{yes} \mid b_i, b_k, f_{ik})}
\]
Evaluation

• EDR Japanese annotated corpus

• Did not use lexical information feature

• Training: 50,000 sentences
• Testing: 10,000 sentences

• Only used sentences with correct bunsetsu segmentation.

• Accuracy = Precision
 – 84.33%P
 – beats the best stochastic parser for Japanese
 – close to best stochastic English parsers
 • 86-87%P
Qualitative Evaluation

- Investigated importance of individual features
 - bunsetsu type and distance most important

- Some advantages over Collins-style stochastic dependency parser (Collins, 1996 and 1997)
 - Collins defines a set of attributes and conditions the modification probabilities for all attachment decisions on all attributes regardless of the bunsetsu type.
 - Collins can include only a small number of features due to sparse data problems.

- Haruno et al.’s approach allows the use of an arbitrary number of attributes.

- Decision trees allow a more sophisticated modification matrix than traditional methods. Selects sufficient number of significant attributes according to bunsetsu type.