
P2: A Twenty+ Year Retrospective

Don Batory
Department of Computer Science

University of Texas at Austin

April 2012

P2-1

Introduction

For 30 years, I explored software architectures, component-based systems,
software product lines, DSLs, and automated program development

My background was Relational Database Systems and how DBMSs were built
In the 1990s, I transitioned to “Software Engineering”

My contribution is to explain that programs are complex structures and whose
construction follows simple and elegant ideas in mathematics

I take a broad, unified view of contributions in software design over the last
40 years – there is a reason why engineers and designers do what they do
– it is not by accident, but part of a larger scheme where elementary
mathematics plays a pivotal role in automated program development

P2-2

Central Observation

Complex software has levels of abstraction – layering – which when designed
properly leads to a compositional model of program constuction
Focusses on a fundamental approach to the modularization of increments in
functionality (features, collaborations, transformations)
Construct customized systems hierarchically, evolve though exchanges

P2-3

D

C

a
A

B

E
f

1986 database systems 80K LOC
1989 network protocols
1993 data structures P2
1994 avionics
1997 extensible Java preprocessors 40K LOC
1998 radio ergonomics
2000 program verification tools
2002 fire support simulators
2003 AHEAD tool suite 250K LOC
2004 robotics controllers
2006 web portlets
…

Ideas Scale...

ITP-4

P2

Is one of a series of tools (P1, P2, P3, DiSTiL) that generated data structures
Work circa 1991~1998

Motivation: Booch components (prior to STL) were available, and I thought were
awful. Little or no ability to compose data structures, little or no ability to swap data
structures, low-level programming, not declarative, and essentially, all the hard
work is still a burden on programmers

20 years later, not much has changed

Relational database technology provided a very powerful solution to some of the
more common and complex programming tasks – P2 was our take on it

P2-5

Basic Ideas of P2

Straight from RDBMS: raise the level of programming to querying and updating
tables. Tables are a clean programming abstraction with iterators to return results of
a declarative query

Key: generate complex implementations of tables by a layering / compositional
technology discussed earlier

Aside: look at the time frame: 1992 people were not talking about DSLs,
barely about program generation, not features and product lines, not
software architectures, not design patterns …. were talking about reuse

P2-6

P2 is DSL Extension to C

C structure decl:

Container declaration was a relation declaration with annotations

P2-7

Programming with P2

Declare cursors (iterators) to retrieve tuples that satisfy query

define cursor “curs” that ranges over container e1 to retrieve only tuples
where age>35 and first_name=“Don”

Iterate over selected tuples with a foreach clause (similar to for-clauses in Java)

Could update, delete tuples during an iteration, insertion, etc. Standard fare…

P2-8

Container Implementations

Follows prior and general work incremental software development

P2-9

container

cursor

root

left right

head

next

Operation
Mappings as well

Novelty of P2 is Map Composition

Implementations are composed maps

root

left right

bintree[…]

head

left
next

root

left right

bintree[list[…]]

P2 “Maps” or “Components” or “Features”

Standard data structures were among
offered mappings

Users could compose them to build
the customized container data
structures that they wanted

Very much a DBMS-like flavor
declaring indexes, file structures, etc .

P2-11

Layer meaning
rbtree red-black tree
list linked list
odlist ordered doubly-linked list
hash hash
df delete flag
hashcomp hash compare strings
predlist predicate list
array preallocated array storage
malloc heap storage
transient main memory
persistent on disk

(offhand I don’t remember
them all – and couldn’t
quickly find the full list)

“store elements of a container onto a ordered doubly-linked list (odlist1) , then
onto a second ordered doubly-linked list (odlist2) sort keys are different, whose nodes
are stored sequentially in an array in transient memory”

Container declaration was essentially a relation table declaration with annotations

Great power to generate huge numbers of customized data structures

Return to P2 Interface

P2-12

Example: Deque

In the following slides, I show how the code of a Deque (doubly-linked queue) is
“derived” to recreate a Booch Library container data structure

Look at add_front() method – same for other methods

P2 uses top-down derivation (generation) of code
automated software development by composing layers (mappings)

Heap() = Malloc(Transient)

Grammar-13

DeqInterface() Sync() Deque2c() Dlist() Avail() Heap()

 Chain of Mappings

Start with a DEQ abstraction

Add synchronous access

Grammar-14

ad
d

se
m

ap
ho

re

add_front (deque d, element e)
{ /* to be defined */ }

call
layer
below

(on next
page)

Chain of Decorators and Adapters

Grammar-15

ad
d

dl
is

t
ad

ap
t d

eq
ue

to
 c

on
ta

in
er

call
next
layer

call
next
layer

Chain of Decorators & Adapters

Grammar-16

ad
d

he
ap

ad

dr
es

se
s

ga
rb

ag
e

co
lle

ct
io

n

call
next

wrapper

Macro Expand to Produce Final Result

Grammar-17

Paper Title:
Scalable Software Libraries (Sigsoft 1993)

Because we could create huge number of distinct deque and other container
implementations: grammar of the language of compositions, each sentence defines
 a unique composition (data structure)

Grammar-18

Deque : deque2c Cont
 | deq_sync Deque
 ;

Cont : dlist Cont
 | odlist Cont
 | array Mem
 | heap Mem
 | avail Cont
 | bintree Cont
 | redblack Cont
 ;

Mem : persistent
 | transient
 ;

could have
replicas:

multiple odlists,
bintrees, etc.

Performance (No Contest)

Less code to write because of declarative specs, typically faster code because of
obvious optimizations that could be performed – such as query optimizations

P2-19

Query Optimization

Consider the following predicate: name == “Don” and age<20
name is primary key

Suppose 2 data structures are superimposed:
unordered list
ordered list on ascending age

Unordered list layer would analyze the predicate and produce the approximate
code below, which on average searches ½ of the elements

P2-20

foreach(element : unorderedList) {
 if (element.name==“Don”) {
 if (element.age<20) return element;
 else return null;
}
return null;

Query Optimization (Continued)

The age-ordered list would produce the following code, searching on average ¼ of
the container

Each layer is “queried” for its cost estimate – the layer that responds with the lowest
cost is the data structure that is traversed to produce qualified tuples
Standard fare in RDBMS implementation

P2-21

foreach(element : orderedList) {
 if (element.age<20) {
 if (element.name==“Don”) return element;
 else continue;
 }
 return null;
}

LEAPS Example (Sigsoft 1994)

Production system compiler that produces fastest executables of OPS5 rule sets
Used very complicated container data structures
We re-engineered LEAPS called RL, showed P2 scaled to this complex application,
and produced unexpected performance gains

Used standard LEAPS benchmarks

Performance of P2 code about 1.5-2.5 times faster than LEAPS executables

P2-22

Unexpected Benefits

We understood what they were doing
We could easily swap data structures (in this case container join algorithms) and
have run-times that were orders of magnitude faster than LEAPS

P2-23

Unexpected Benefits

P2 encouraged the exploration of different designs & data structures

LEAPS compiler is 20K LOC; our RL is 4K LOC
(productivity increase × 3, code volume × 4)

Only had to write 2 additional layers to generate LEAPS data structures

P2 enabled novices (ourselves) to program like domain experts

P2-24

LESSONS LEARNED IN HINDSIGHT

P2-25

To The Participants of This Dagstuhl

Design is more than a SAT problem
Not difficult to find a feasible solution – lots of crappy implementations
Hard part is to find an efficient implementation
Ex: Relational Query Optimization

P2-26

Lessons Learned #1

Thank Ras…

Periodically, I see a resurgence in this kind of work (PLDI’11 “An Introduction to
Data Representation Synthesis”), but often people aren’t aware of prior work

how do we know what problems to work on if we don’t know what already
has been done?
who would know except people with long memories?
no standard lexicon or terminology – can’t find my work or that of others by
googling “Data Representation Synthesis” or “Data Structure Synthesis”
Actually, I couldn’t find it myself

Consequence – results and knowledge disappear

not clear if they are reinvented
P2-27

Lessons Learned #2

Relying on referees to know prior work (particularly areas whose core knowledge
crosses many years) is increasingly a bad idea

referees generally don’t know the literature in automated program
development and generally don’t care – at present it is a limited audience

consequence: referees are unaware of when useful or significant progress
is being made

Dewayne Perry’s observations on typical Software Engineering referee reviews:
“you didn’t do it my way”
“that’s not the way that I would do it”

P2-28

Lessons Learned #3

Automated Program Development ‘program synthesis’ is a difficult and
fundamental problem that will take years or decades to become mainstream

Trend in SE research is: if you have a better way X than Y to solve problem P,
you must implement both solutions and have sound experimental results to
demonstrate how X is better than Y

in program automation, this is often the wrong question
we are more at a stage: is it possible to solve automatically?
deal with large or complex programs, such experiments may be infeasible

In an area that begs for abstractions and grander theories, the bar is being raised
beyond reach for such ideas to be published in visible venues

research programs that are long-term will have difficulty surviving today’s
conditions

P2-29

Lessons Learned #4

Arguably the greatest single result in automated software development is

Yet, pick any undergraduate text on software engineering in the last 20 years.
I defy you to find a reference to RQO

RQO about 30+ years old
revolutionized a fundamental branch of computer science
and whose results (program designs are algebraic expressions that can be
optimized) and relevance to automated design is unknown, unappreciated,
or forgotten

 P2-30

or forgotten

P2

Lessons Learned #5

Consequence: every new generation of students (and faculty?) has no idea of what
has been done

So how do we know what to work on if we don’t know what has been done?

Ans: we don’t. That’s why we have Dagstuhl Seminars….

P2-31

Thank You!

Questions?

P2-32

go ahead – make my day

ask me what I am doing now in
program generation

