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Introduction 

For 30 years, I explored software architectures, component-based systems, 
software product lines, DSLs, and automated program development 
 
My background was Relational Database Systems and how DBMSs were built 
In the 1990s, I transitioned to “Software Engineering” 
 
My contribution is to explain that programs are complex structures and whose 
construction follows simple and elegant ideas in mathematics 
 

I take a broad, unified view of contributions in software design over the last 
40 years – there is a reason why engineers and designers do what they do 
– it is not by accident, but part of a larger scheme where elementary 
mathematics plays a pivotal role in automated program development 
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Central Observation 

Complex software has levels of abstraction – layering – which when designed 
properly leads to a compositional model of program constuction 
Focusses on a fundamental approach  to the modularization of increments in 
functionality (features, collaborations, transformations) 
Construct customized systems hierarchically, evolve though exchanges 
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1986 database systems   80K LOC 
1989 network protocols 
1993 data structures    P2 
1994 avionics 
1997 extensible Java preprocessors  40K LOC 
1998 radio ergonomics 
2000 program verification tools 
2002 fire support simulators 
2003 AHEAD tool suite   250K LOC 
2004 robotics controllers 
2006 web portlets 
… 

Ideas Scale...  
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P2 

Is one of a series of tools (P1, P2, P3, DiSTiL) that generated data structures  
Work circa 1991~1998 
 
Motivation: Booch components (prior to STL) were available, and I thought were 
awful.  Little or no ability to compose data structures, little or no ability to swap data 
structures, low-level programming, not declarative, and essentially, all the hard 
work is still a burden on programmers 
 

20 years later, not much has changed 
 

Relational database technology provided a very powerful solution to some of the 
more common and complex programming tasks – P2 was our take on it 
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Basic Ideas of P2 

Straight from RDBMS: raise the level of programming to querying and updating 
tables.  Tables are a clean programming abstraction with iterators to return results of 
a declarative query 
 
Key: generate complex implementations of tables by a layering / compositional 
technology discussed earlier 

 
Aside: look at the time frame: 1992 people were not talking about DSLs,  
barely about program generation, not features and product lines, not 
software architectures, not design patterns …. were talking about reuse 
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P2 is DSL Extension to C 

C structure decl: 
 
 
 

 
Container declaration was a relation declaration with annotations 
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Programming with P2 

Declare cursors (iterators) to retrieve tuples that satisfy query 
 
 

 
define cursor “curs” that ranges over container e1 to retrieve only tuples 
where age>35 and first_name=“Don” 
 

Iterate over selected tuples with a foreach clause (similar to for-clauses in Java) 
 
 
 
 
Could update, delete tuples during an iteration, insertion, etc.  Standard fare… 
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Container Implementations 

Follows prior and general work incremental software development 
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P2 “Maps” or “Components” or “Features” 

Standard data structures were among 
offered mappings 
 
Users could compose them to build 
the customized container data 
structures that they wanted 
 
Very much a DBMS-like flavor 
declaring indexes, file structures, etc . 
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Layer meaning 
rbtree red-black tree 
list linked list 
odlist ordered doubly-linked list 
hash hash 
df delete flag 
hashcomp hash compare strings 
predlist predicate list 
array preallocated array storage 
malloc heap storage 
transient main memory 
persistent on disk 

(offhand I don’t remember 
them all – and couldn’t 
quickly find the full list) 

 

 
“store elements of a container onto a ordered doubly-linked list (odlist1) , then 
onto a second ordered doubly-linked list (odlist2) sort keys are different, whose nodes 
are stored sequentially in an array  in transient  memory” 
 
Container declaration was essentially a relation table declaration with annotations 
 
 
 
 
 
 
Great power to generate huge numbers of customized data structures 
 
 

Return to P2 Interface 
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Example: Deque 

In the following slides, I show how the code of a Deque  (doubly-linked queue) is 
“derived” to recreate a Booch Library container data structure 

 
Look at add_front() method – same for other methods 
 

P2 uses top-down derivation (generation) of code  
automated software development by composing layers (mappings) 
 
 
 
 
Heap() = Malloc(Transient) 
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DeqInterface(                                                                     ) Sync(                                                        ) Deque2c(                                     ) Dlist(                         ) Avail(             ) Heap() 

 Chain of Mappings 

Start with a DEQ abstraction 
 

 
 

 
 
 
Add  synchronous access 
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Chain of Decorators and Adapters 
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Chain of Decorators & Adapters 
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Macro Expand to Produce Final Result 
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Paper Title:  
Scalable Software Libraries (Sigsoft 1993) 

Because we could create huge number of distinct deque and other container 
implementations: grammar of the language of compositions, each sentence defines 
        a unique composition (data structure) 
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Deque : deque2c  Cont 
 | deq_sync Deque 
 ; 
 
Cont : dlist    Cont 
 | odlist   Cont 
 | array    Mem 
 | heap     Mem 
 | avail    Cont 
 | bintree  Cont 
 | redblack Cont 
 ; 
 
Mem : persistent 
 | transient 
 ; 

could have  
replicas:  

multiple odlists, 
bintrees, etc. 



Performance (No Contest) 

Less code to write because of declarative specs, typically faster code because of 
obvious optimizations that could be performed – such as query optimizations 
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Query Optimization 

Consider the following predicate:  name == “Don” and age<20 
name is primary key 
 

Suppose 2 data structures are superimposed: 
unordered list 
ordered list on ascending age 
 

Unordered list layer would analyze the predicate and produce the approximate 
code below, which on average searches ½ of the elements 
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foreach( element : unorderedList ) { 
     if (element.name==“Don”) { 
        if (element.age<20) return element; 
        else return null; 
}  
return null; 



Query Optimization (Continued) 

The age-ordered list would produce the following code, searching on average ¼ of 
the container 
 
 
 
 
 
 
 
Each layer is “queried” for its cost estimate – the layer that responds with the lowest 
cost is the data structure that is traversed to produce qualified tuples 
Standard fare in RDBMS implementation 
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foreach( element : orderedList ) { 
     if (element.age<20) { 
        if (element.name==“Don”) return element; 
        else continue; 
     } 
     return null; 
}  

LEAPS Example (Sigsoft 1994) 

Production system compiler that produces fastest executables of OPS5 rule sets 
Used very complicated container data structures 
We re-engineered LEAPS called RL, showed P2 scaled to this complex application,  
and produced unexpected performance gains 
 
Used standard LEAPS benchmarks 
 
 
 
 
 
Performance of P2 code about 1.5-2.5 times faster than LEAPS executables 
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Unexpected Benefits 

We understood what they were doing  
We could easily swap data structures (in this case container join algorithms) and 
have run-times that were orders of magnitude faster than LEAPS 
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Unexpected Benefits 

P2 encouraged the exploration of different designs & data structures 
 
LEAPS compiler is 20K LOC; our RL is 4K LOC  
(productivity increase  × 3, code volume × 4) 
 
Only had to write 2 additional layers to generate LEAPS data structures 
 
P2 enabled novices (ourselves) to program like domain experts 
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LESSONS LEARNED IN HINDSIGHT 
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To The Participants of This Dagstuhl 

Design is more than a SAT problem 
Not difficult to find a feasible solution – lots of crappy implementations 
Hard part is to find an efficient implementation 
Ex: Relational Query Optimization 
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Lessons Learned #1 

Thank Ras… 
 
Periodically, I see a resurgence in this kind of work (PLDI’11 “An Introduction to 
Data Representation Synthesis”), but often people aren’t aware of prior work 

how do we know what problems to work on if we don’t know what already 
has been done? 
who would know except people with long memories? 
no standard lexicon or terminology – can’t find my work or that of others by 
googling “Data Representation Synthesis” or “Data Structure Synthesis” 
Actually, I couldn’t find it myself  

 
Consequence – results and knowledge disappear 

not clear if they are reinvented 
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Lessons Learned #2 

Relying on referees to know prior work (particularly areas whose core knowledge 
crosses many years) is increasingly a bad idea 
 

referees generally don’t know the literature in automated program 
development and generally don’t care – at present it is a limited audience 
 
consequence: referees are unaware of when useful or significant progress 
is being made 
 

Dewayne Perry’s observations on typical Software Engineering referee reviews: 
“you didn’t do it my way” 
“that’s not the way that I would do it” 
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Lessons Learned #3 

Automated Program Development    ‘program synthesis’ is a difficult and 
fundamental problem that will take years or decades to become mainstream 
 
Trend in SE research is: if you have a better way X than Y to solve problem P,  
you must implement both solutions and have sound experimental results to 
demonstrate how X is better than Y 

in program automation, this is often the wrong question 
we are more at a stage: is it possible to solve automatically? 
deal with large or complex programs, such experiments may be infeasible 
 

In an area that begs for abstractions and grander theories, the bar is being raised 
beyond reach for such ideas to be published in visible venues 

research programs that are long-term will have difficulty surviving today’s 
conditions 
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Lessons Learned #4 

Arguably the greatest single result in automated software development is 
 
 
 
 
Yet, pick any undergraduate text on software engineering in the last 20 years.  
I defy you to find a reference to RQO 

RQO about 30+ years old 
revolutionized a fundamental branch of computer science 
and whose results (program designs are algebraic expressions that can be 
optimized) and relevance to automated design is unknown, unappreciated, 
or forgotten 
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or forgotten

P2



Lessons Learned #5 

Consequence: every new generation of students (and faculty?) has no idea of what 
has been done 
 
So how do we know what to work on if we don’t know what has been done? 
 
Ans: we don’t.  That’s why we have Dagstuhl Seminars….  
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Thank You! 

Questions? 
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go ahead – make my day 

ask me what I am doing now in  
program generation 


