
The Challenges and
Science of Variability

Don Batory
Department of Computer Science

University of Texas at Austin
Austin, Texas 78712

dagstuhl13 1

Variability is Everywhere!
• Except the weather at Dagstuhl…

dagstuhl13 2

This Talk is a Perspective
• On the looming storms that face our community

dagstuhl13 3

WHERE IS THE THEORY
FOR SOFTWARE ENGINEERING?

workshop at this year at ICSE on the title

dagstuhl13 4

Ivar Jacobson

Definition of Science
• From dictionary.com

• Dominant paradigm in SE insists on a rigorous hypothesis evaluation. A set of tests
are conducted by an author and a careful analysis of one or more hypotheses must
be presented. This is the “Scientific Method”

• This matches Definition 2 and the intended use of empirical methods in SE
• We are missing the most important part of science

dagstuhl13 5

And the Important Part?
• My answer is an analogy from physics…

• In physics, there are lots of poorly related phenomena – they vary some how

• A theoretical physicist would select a set and seek a
mathematical theory that unifies them as manifestations
of the same underlying concepts

• broader the initial set
• fewer the concepts
• more general and significant the theory might be

• Initial test of a theory is a check that it does precisely what it claims
• reproduce, explain phenomena of the initial set
• explain, predict other phenomena as well

dagstuhl13 6

And the Important Part?
• My answer is an analogy from physics…

• In physics, there are lots of poorly related phenomena – they vary some how

• A theoretical physicist would select a set and seek a
mathematical theory that unifies them as manifestations
of the same underlying concepts

• broader the initial set
• fewer the concepts
• more general and significant the theory might be

• Initial test of a theory is a check that it does precisely what it claims
• reproduce, explain phenomena of the initial set
• explain, predict other phenomena as well

dagstuhl13 7

Phenomena of Software Engineering

• Are programs with certain properties
• A software product line (SPL) or generator (), is a concrete embodiment of an

“implicit” SE theory of how to automatically build programs in this domain with
lower cost and higher quality

SPL or not only explains and
reproduces initial programs,
but predicts and explains the existence
of other programs as well

SPL or

dagstuhl13 8

History and Experience Tells Us
• Such SE “theories” must be domain-specific

(DS) to have any chance of success

• DS knowledge is rich and deep, with few
specifics transferable to other domains

• irony: DS theories () are not
very interesting to the general SE
community

• Meta-theories () are more valued
• domain-independent concepts
• instances are DS theories
• teach ideas to students; they will

produce instances of their own
dagstuhl13 9

Familiar SE Meta-Theories
• Just not very “automatic” or mathematical
• OO frameworks are common in today’s libraries

• framework designers understand that a set of similar programs will be built
• their OO framework codes the common objects and activities in this

domain to minimize what others have to write
• concepts of frameworks, abstract classes, plugins are meta-theory
• we teach (meta-theory) to our students
• our students instantiate concepts to create frameworks, plugins of their

own

framework

framework + plugins

dagstuhl13 10

Another Example
• UML asserts than an OO design can be documented in the languages of class

diagrams, state machines, etc. (the meta-theory part)
• We teach UML (meta-theory) to our students; they instantiate to design their own

OO programs

• Not Definition 1, maybe Definition 4
dagstuhl13 11

What Brings Us Together Today
• The study of variability and its manifestations in SE

• understand how program families can be built and analyzed automatically
• our engineering efforts (SPLs,) are concrete demonstrations that our

“theories” work

• For most, not Definition 1, maybe Definition 4
dagstuhl13 12

We need a MT!
• How tools should work – gives a precise definition of what “composition” means

• are you aware of the volume of work where “composition” makes no sense
mathematically?

• In mature communities, MT provides a standard way to describe problems and
how to formulate solutions

• type systems for programming languages
• relational algebra and sets for classical databases
• conceptual & technical glue that holds communities together

• MTs bring organization to what would otherwise be intellectual chaos

dagstuhl13 13

Your Work is Important!
Understanding Variability is the key to Scientific

Theories of Automated Software Design and Analysis

dagstuhl13 14

Your Thoughts on MT
Martin Luecker: “(we need) a well understood theory with tool support”

Tiziana Margaria: “(we have) a lot of formalisms with unclear relation to each other”

Alessandro Fantechi: “there is no standard description language (to express)
variability, only ad hoc solutions are available”

Andrzey Wasowski: “In my experience, SPLs are so complex and idiosyncratic,
that providing generic tools for them is almost impossible (the build systems

are for example all very different and project specific)”

Janet Siegmund: “(we need) proper tool support for developers working with variability”

dagstuhl13 15

First Step on the
Road to MT Maturity

• Separate Concerns: distinguish abstractions from their implementations

• Agree on the core abstractions – implementations will sort themselves out in time

dagstuhl13 16

Towards Maturity
• For SPLs: Agree on basic MT abstractions

• domain

• semantic modules

• how modules compose

• Notation is by Pamela Zave circa 1999

dagstuhl13 17

assume no
feature

replication,
static configs

We Know from Experience
• From feature modeling:

• And feature selection:

• commutative
• associative

dagstuhl13 18

Honestly…
• I was one of the last people to come to this conclusion about

• Took years for me to understand feature interactions and other “stuff” to believe it

• So what I’ve just said is not obvious…

dagstuhl13 19

Your Thoughts on Implementations

dagstuhl13 20

Martin Erwig: “(we need) understand the fundamental difference between
‘projectional’ variation (SYSGEN) and ‘alternative based’ variation (modular) ”

Andreas Classen: “(we need) FOSD language support in mainstream programming
languages (C#) and their IDEs (Visual Studio)”

Shriram Krishnamurthi: “True programming language modularity for supporting
true variability modeling; we get one or the other, but not both”.

Initial Work on Semantic Modules

• Showed how scaling of ideas on mixins and was useful to distinguish code modules
from semantic modules. It is a Language Problem!

• Can be traced to earlier work (Beta language, van Hilst)
• These ideas have since evolved…

Implementing Layered Designs
with Mixin Layers
ECOOP 1998

dagstuhl13 21

POPL98

ECOOP98

More Recently: Coloring
• Equates semantic modularity with virtual modularity
• Allows micro changes to programs. It is a Tool Problem!

dagstuhl13 22

My Take…
• Very different implementations of the same ideas (abstractions)

• classical modularity vs. virtual modularity
• still thinking abstractly in terms of features and

• We should expect that there will be different implementations of abstractions
• multiple ways to implement feature (modules) and the operation
• different implementations, languages are used for different

problems, purposes, analyses
• one implementation does not fit all…

• Challenge: classic modules or virtual modules – YOUR work
will decide when to use which and we all win

• remember: manifestations of the same ideas
dagstuhl13 23

Your Thoughts on Variability

Stefania Gnesi: “how to combine feature models with behavior models?”

Stefan Sobernig: “look beyond source code artifacts (e.g., documentation,
building/deployment); how are variation points manifested in a product line?”

Kim Lauenroth: “(how to) specify variability across requirement artifacts”

Norbert Siegmund: “(how to) ensure software quality (non functional) properties
of customizable programs”

Sven Apel: “(how to reason with feature modules)”

dagstuhl13 24

What Meta-Theory Says
• We know programs have many concrete representations: source code (),

performance estimate (), requirements (), makefile (), …
• want to construct each representation by composing modules

• Suppose:

• The source code of , namely , is constructed by code-composing () the
code modules of each of ’s features

• Last step is a key behind modular construction AND modular reasoning
dagstuhl13 25

Meta-Theory
• Translating an expression in one algebra to an expression in another is called a

• Fundamental concept in mathematics, just like addition ()

dagstuhl13 26

Did you know that homomorphisms
play a fundamental role in well known

and recent results on SPLs?

• Problem: we have a feature expression of a program
• For any want an estimate its efficiency w.r.t. a fixed workload

• Invented procedures to estimate the “change” in performance that each feature
contributes to a program. Assuming that performance estimates are arithmetically
added, work relied on the homomorphism:

“efficiency estimate of a program is the arithmetic-sum of the estimates for each of its features”

• Surprisingly accurate predictions were reported with this simple approach

dagstuhl13 27

SPLC’11

• Shows how a representation of a program can be encoded as
syntax trees and feature-composition is syntax-tree composition

• Give me the grammar of language and specialized rules for composing -syntax
trees, and FH produces a tool that implements the following homomorphism:

“ -source of a program is the -sum of the -source of each of its features”

• FH is a generator of language-specific tools that implement homomorphisms

dagstuhl13 28

ICSE 09

Your Thoughts on Verification
Alessandro Fantechi: “(how to) factorize formal verification activities among

products of a family”

Dave Clark: “need an adequate formal model of ‘feature’ that is amenable to
formal verification in a modular way”

Jean Vivien Millo: “(we want) design verification in the presence of variability”

Holger Schlingloff: “(we want) reuse of verification artifacts within an SPL”

Ina Schaefer: “(we want) compositional verification of features and products”

dagstuhl13 29

Proofs for SPL Programs

dagstuhl13 30

ICSTW11

Thomas Thum: “how can we efficiently verify SPLs using theorem proving”

• Programming language literature is replete
with examples of (tiny) product lines that
include proofs

• Typically have only 2 members:
• core Featherweight Java (FJ)
• and a feature-extended version of

FJ

• Original FJ paper also presented
Featherweight Generic Java (FGJ)
a modified version of FJ with support for
generics

dagstuhl13 31

OOPSLA 11

Type Soundness
• Integral part of any type system are the meta-theoretic proofs showing type

soundness – the guarantee that the type system statically enforces the desired
run-time behavior of a language, typically preservation and progress

• preservation – if expression has type and evaluates to a value
then also has type

• progress – there are no expressions in the language that can’t be
evaluated

• To write these proofs, you need at 4 different representations of a language
• syntax, typing rules for preservation, operational semantics rules for

progress, meta-theory proofs

dagstuhl13 32

Formalization Includes
• Specification of language syntax

• Typing rules for preservation

• Rules for operational semantics
(not shown) for progress

• All in their own notations

dagstuhl13 33

Same for Proofs
• Proofs of preservation and progress

• Here’s a fragment of the proof for field
inheritance which proceeds by
induction on the derivation of the
subtyping judgment

• Has its own notation

dagstuhl13 34

Variability adds Complexity
add new syntax,
modify syntax

add new rules,
modify rules

extend judgment
signatures,

modify premises
and conclusions

dagstuhl13 35

Proofs become more Complex too

add new syntax,
modify syntax

extend judgment
signatures,

modify premises
and conclusions

dagstuhl13 36

Big Picture
• Ben’s challenge:

• start with a domain of FeatherWeight Java dialects
• constructed from a feature set
• goal is to automatically verify the type soundness property of any

by composing modules for each feature’s representation

• Scales homomorphisms to new heights…

dagstuhl13 37

Ben’s Magic Sauce…
• All representations (syntax, typing rules, evaluation rules, theorems, proofs) are

encoded in Coq Proof Assistant (CPA)

• Relies on 4 homomorphisms:

dagstuhl13 38

Remember!
• Composing modules in CPA isn’t syntax tree munging or projection

• Module is an open definition and module composition computes a fixed point

• ask Shriram for details

• Ben invented 2 operations (for composing definitions) and
another (for composing proofs); both are defined in a CPA library

dagstuhl13 39

e ::= x
| e.f
| e.m t ()
| new C t ()
;

t ::= « »
;

• Needed 2 levels of homomorphisms to make everything work – Look!

Composition of Definitions
(syntax, typing rules, evaluation rules)

dagstuhl13 40

e ::= x
| e.f
| e.m t ()
| new C t ()
;

t ::=
;

t ::= « »;

• Needed 2 levels of homomorphisms to make everything work – Look!

Composition of Definitions
(syntax, typing rules, evaluation rules)

dagstuhl13 41

• Needed 2 levels of homomorphisms to make everything work – Look!

• Same for typing rules and operation semantic rules:

• And proof composition…

Composition of Definitions
(syntax, typing rules, evaluation rules)

dagstuhl13 42

Semantic Composition
that guarantees the correctness of proofs

• Ben defined properties per VP that must be satisfied by any VP plug-in
• stated as additional assumptions with default lemma(s)

• Allows a general theorem(s) to be proven per feature, independent of features that
might “plug-in” specific definitions for its VPs

• in effect, the proof assumes a general behavior for all possible VP
instantiations

• Obligation: any feature that “plugs-in” a VP must supply a proof that the properties
assumed by the general theorem are satisfied

ITP 43

module with “VP” plugins

Semantic Composition
that guarantees the correctness of proofs

• In effect, the assumptions of a general theorem form an explicit interface against
which a proof is written

• Once you certify general theorem, do not recertify, reuse as is
• Once you certify plug-in theorems, do not recertify, reused as is
• Must certify that general assumptions hold for plugins

ITP 44

feature

Lemma
.

(default)

.
X

Theorem
.
.
.

X Y

Yfeature

Lemma
.
.
.
X

=

Theorem
.
.
.

X Y

Y

Lemma
.
.
.
X

feature

Lemma
.
.
.
X

Theorem
.
.
.

X Y

composition overrides default lemma and replaces it with new lemma

Summarizing
• Recall what I said about virtual/classical modules?

• Ben illustrates modules by coloring

• Actually uses language modules

• Given a feature expression can produce the target language’s proofs of
preservation and progress modularly, verifying proofs by “interface” checks

dagstuhl13 45

META THEORY AGAIN…

dagstuhl13 46

Work with Höfner and Möller
• What is going on in coloring?
• Look at the contents of a VP – given what we’ve seen in Ben’s work

dagstuhl13 47

default

fragment

Work with Höfner and Möller
• What is going on in coloring?
• Look at the contents of a VP – given what we’ve seen in Ben’s work

• Lattice: its join operation is our addition operation ():
• identity
• commutative
• associative

dagstuhl13 48

default

fragment

Your Thoughts on Analyses

dagstuhl13 49

Jo Atlee: “Efficient analysis of entire product lines (v.s. analysis
of products) – it ought to be more efficient than the work we’ve seen so far”

Vander Alves: “(we need) efficient and precise analysis of product lines”

Roberta Coelho: “The current infrastructure for static analysis does not take
into account that each piece of code may be related to one or more features.

As a consequence, each tool was developed its own way to deal with
features during static analysis. A common infra structure should be developed.”

Sandro Schulze: “Analyzing variable software systems/software
product lines with respect to metrics and code smells”

Ina Schaefer: “Analyze incomplete artifacts, such as
feature modules or deltas”

We Know…
• That the features that add non-default fragments must be mutually exclusive

dagstuhl13 50

default

fragment

• Let be the propositional formula of a feature model
• Let be the prop formula that says at most one of the

features can be chosen

• SAT solver can efficiently verify:

• Proving all have no such composition errors is easy and efficient

GPCE 2008

Check Compositions Statically

dagstuhl13 51

GPCE 06

Your Thoughts on Interactions

dagstuhl13 52

Chris Lengauer: “(how to) specify … feature interactions,
have ‘structured programming’ with features”

Krzysztof Czarnecki : “(how to) understand and handle feature interactions
(presence of one feature influences the behavior and/or
performance of another feature) in complex systems.”

Bernhard Möller: “(we need) a good algebra for treating feature interaction”

Sven Apel: “(how to) detect, resolve, and manage feature interactions”

Feature Interactions
• Are NOT feature dependencies, like:

• Which arise (or are part of) feature models

• A 2-way interaction (or rather resolution) is an additional module that is
needed to integrate features and so that they work correctly together

• mediator
• coloring – it is the code that has the colors

of both A and B

• Generalizes to n-way interactions

dagstuhl13 53

Feature Interactions
• There are other operations on features besides addition ()

• multiplication ()
• interaction ()

• Instead of adding features, we multiply them instead

• And one axiom to rule them all:

dagstuhl13 54

“the product of 2 features is their sum plus
any additional interaction that makes them

work together correctly”

Prior Discussions Extend Naturally

• Homomorphism on addition:

• Easily generalizes to a homomorphism on multiplication

dagstuhl13 55

Your Thoughts on Testing

dagstuhl13 56

Salva Trujillo: “(how do we) test inter related design models with variability”?

Gilles Perrouin: “(how do we) select tests for variable intensive systems?
Combinatorial test interaction techniques have made progress
to significantly reduce the number of configurations to consider

for testing and how to prioritize them?”

Holger Schlingloff: “(how do we) reuse testing artifacts within a SPL?”

Paulo Borba: “lack of efficient techniques for PL testing”

Problem With Testing

• Maxim: Testing programs only shows the presence of errors, not their absence

• Maxim: Testing features can only show the presence of errors, not their absence

Dagstuhl2013 57

Locating Errors in Compositions

• Problem: Last 3 seem indistinguishable – not obvious whether error is in:
• feature, base program, or both

• Program assembled from optional features, theoretically error could spread
across any combination of features – possibilities

Dagstuhl2013 58

I could not solve
this problem!

Meta-Theory Again
• MT has something to say w.r.t. tests

• Yesterday’s talk: Martin Johannsen used a simple homomorphism:

“the tests of a program are the union of the tests for each of its features”

• More can be done…

dagstuhl13 59

You Have The Ideas Now…

• Remember what Ben Delaware did: He required precise properties to be satisfied
by a plug-in – this gave him the modularity that he needed

• Is Design by Contract the next step?

dagstuhl13 60

Thomas Thüm: “how do we apply Design by Contract to SPLs, (as it allows one) to split
a large verification problem into manageable pieces. How can we generate

contracts, which could be used as documentation, for testing, and verification.”

Prior lectures by Ina and Thomas
covered recent results

FUNDAMENTAL PROBLEMS
STILL REMAIN!

even after all this

dagstuhl13 61

Fundamental Problems Still Remain!

• Can we have multiple copies of a feature?
Are features classes that can be instantiated?

• Q: is this the right way to go?
• how will this generalize MT?

• you will discover the answer!

dagstuhl13 62

• How does Model Driven Engineering fit in?

• survey answers focused on “code”, few on “models”

• MDE is where the future lies… Is a much more general
framework in which to understand activities of software
engineering in general and variability in particular

• how will this generalize MT?

• you will discover the answer…

Fundamental Problems Still Remain!

dagstuhl13 63

Fundamental Problems Still Remain!

• How can we have (meta-)theories of variability without including refactorings?

• Major hole in our knowledge

• How will this generalize MT?

• You will discover the answer!

dagstuhl13 64

Paulo Borba: “lack of support for evolving (refactoring, maintaining, etc.) product lines”

Sandro Schulze: “refactoring in the presence of variability”

Fundamental Problems Still Remain!

dagstuhl13 65

Jörg Liebig: “how do we deal with large feature models (slicing)?”

Tiziana Margaria: “we really miss good case studies. There is not much out there
that is realistically designed in this way, where we in academia can get ahold

of the design”

Alexander von Rhein: “Scaling existing (analysis) techniques to really large
product lines (linux kernels). (There are steps that we can take…) but

they do not scale to the linux kernel.”

Christian Kästner: “how did developers implement 10K features (representing
an unbelievably huge configuration space) with so few variability bugs – (perhaps

we might learn from them) how to design and implement variations”

There are Many, Many More

dagstuhl13 66

• There is clear value in established thinking, but it is NOT everything

• Even a broken watch is correct twice a day

Programmers are geniuses at making the simplest things look
complicated – the hard part is finding the simplicity

A Last Word from Me…

dagstuhl13 67

And A Final Thought from Woody

68

Rzecz. podzi kowanie
Dagstuhl2013 69

