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Abstract

Design by Transformation (DxT) is an approach to software development that encodes domain-specific programs as graphs
and expert design knowledge as graph transformations. The goal of DXT is to mechanize the generation of highly-optimized
code. This paper demonstrates how DXT can be used to transform sequential specifications of an important set of Dense
Linear Algebra (DLA) kernels, the level-3 Basic Linear Algebra Subprograms (BLAS3), into high-performing library routines
targeting distributed-memory (cluster) architectures. Getting good BLAS3 performance for such platforms requires deep
domain knowledge, so their implementations are manually coded by experts. Unfortunately, there are few such experts and
developing the full variety of BLAS3 implementations takes a lot of repetitive effort. A prototype tool, DxTer, automates this
tedious task. We explain how we build on previous work to represent loops and multiple loop-based algorithms in DxTer.
Performance results on a BlueGene/P parallel supercomputer show that the generated code meets or beats implementations
that are hand-coded by a human expert and outperforms the widely used ScaLAPACK library.

© 2012 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of the [Organiser Name].

Keywords: program generation; dense linear algebra; high-performance software; distributed-memory computing

1. Introduction

Many scientific computing libraries and applications cast computations in terms of high-performing DLA
interfaces such as the BLAS [1], LAPACK [2]], and 1ibflame [3]. By providing efficient implementations for
such interfaces, portable high-performance can be achieved, enabling an application to be moved as-is to new
hardware architectures.

A large portion of the knowledge needed to implement DLA libraries resides in the BLAS3 operations, listed
in Figure [1] (Ieft). DLA libraries must provide many variants of each operation (column 2 of Figure|l|(left)). To
implement all variants, an engineer must be or become a domain expert. (S)he must consider many algorithms
for each operation variation and many implementations of each algorithm (e.g. different parallelization schemes),
so (s)he must have the knowledge to explore many options (column 3 of Figure[T] (left) quantifies some of these).
Unfortunately, there are very few experts with such knowledge, and only they can write correct high-performance
code. Further, applying this knowledge is both difficult and tedious. We believe the way forward is to automate
the development of DLA libraries.

E-mail address: bamarker @cs.utexas.edu.
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# of # Optimizations Compared to
BLAS3 Variants gpenerated hand oplzimization
per variant
Gemm 12 378 Added transpose
Hemm 8 16,884 Same Type Unique | Total
Her2k 4 552,415 Same Algorithm refinement 19 30
Herk 4 1,252 Same Parallelization refinement 14 31
Symm 8 16,880 Same Redistribution optimization 32 758
Syr2k 4 295,894 Same Redistribution transposition 6 22
Syrk 4 1,290 Same
Trmm 16 3,352 Better algorithms
Trsm 16 1,012 Added transpose;
new implementations

Fig. 1. (Left) DxTer code generation statistics for the BLAS3s. (Right) Rule count in DxTer’s BLAS3 knowledge base.

Design by Transformation (DXT) is an approach to software development that encodes domain-specific pro-
grams as graphs and expert design knowledge as graph transformations. Doing so enables experts to focus on
discovering and encoding algorithms and domain knowledge, and deferring to a tool, DxTer, the laborious task
of applying this knowledge to synthesize efficient code. This paper presents the application of DxT and DxTer to
an important subset DLA library functionality, the BLAS3. We introduced DxT in [4]], and have made consider-
able progress since. We go beyond our initial work in three ways: 1) DxTer can now explore multiple abstract
algorithmic variants for operations instead of just one, as in [4]. One variant is not always best, so exploring
options is good when targeting various architectures. 2) DxTer generates the algorithm in a loop body of a DLA
operation; to be able to select the best-performing algorithm, we must estimate the sum of all of its iterations; this
was unnecessary in prior work and is necessary now. To this end, we now represent loops in DxTer. 3) We add a
significant amount of knowledge to DxTer to enable followup work on more complicated DLA algorithms, seen
if Figure[I| (right).

2. Design by Transformation (DxT)

Abstractions, Refinements, and Optimizations. We use directed acyclic graphs (DAGs) to encode DLA algo-
rithms [S)]. Each node — also called a box or operation — represents a function call. Box inputs are indicated by
incoming edges and box outputs by outgoing edges.

We start with a simple DAG that encodes a sequence of one or more BLAS3 operations. There are no imple-
mentation details for these operations other than preconditions and postconditions. Nodes without implementation
details are called abstractions.

A refinement is a transformation that replaces an abstraction with a subgraph. This subgraph exposes details of
a specific algorithm that implements the abstraction (e.g. for clusters), maintaining the abstraction’s preconditions
and postconditions. These subgraphs contain nodes that are lower-level abstractions or calls to primitive functions
whose implementations are given to us. The process of refinement continues with the newly revealed abstractions
until no abstractions remain (i.e. all boxes are primitives).

At this point, experts transition to another mode of programming with the goal of program optimization. In
effect, experts optimize a DAG by repeatedly replacing subgraphs with other subgraphs that implement the same
functionality in a different, usually more efficient, way. Such transformations are called optimizations. Precon-
ditions and postconditions of the replaced subgraph are preserved, as required for correctness. Each rewrite does
not guarantee improved performance, but the result of multiple optimizations is a better-performing algorithm.

Performance Estimation. After applying a sequence of refinements and optimizations, we produce a graph that
references only primitives. This graph expresses an executable algorithm. Since many such algorithms result from
different choices of transformations, the question of which performs best needs to be answered.

Here again we exploit knowledge of the target domain and again mimic the activities of domain experts. A
domain expert uses a rough idea of cost to estimate the benefit of using a refinement or optimization during
algorithm design. In DLA, a cost function is used to estimate performance (or time-to-completion). Algorithms



Bryan Marker et al. / Procedia Computer Science 00 (2013) 000-000

Algorithm: [B] := TRMM_RLN_BLK(L, B)
where
Partition L — (ﬂlﬂ) B— ( By | Br ) Lop is 0 X 0, Distribution | Location of data in matrix
Legr | Ler BrisnxO0 [, %] All processes store all elements
while m(Ltp) <m(L) do [Mc, Mg] Process (1%r, j%c) stores element (1, j)
Repartition [Mc, *] Row i of data stored redundantly on
process row i%r
Lo | L Loo JLo1 | Loz [Mg, *] Row i of data stored redundantly on
(LBL o ) — | L1o | L11|L12 |, ( B.|Br ) - (Bo |B1]B> ) process col. i%c
Loo | L21 | Loz [, Mc] Column i of data stored redundantly
whereL1; is b X b, By has b columns on process row i%r
By [*, Mg] Column i of data stored redundantly
DGemm | g .
B, N o on process col. 1%c
Bo := Bg +BiL1o (gemm) Lig [Vg, *] Rolws Wrappe(;i around proc. grid in
By :=BiLj1 (Trmm) iy col.-major order
L1 Right ! [Vg, *] Rows wrapped around proc. grid in
row-major order
Continue with [*,Vc] Columns wrapped around proc. grid in
col.-major order
Lo | Lr Loo |Lo1 | Loz [*, Vg] Columns wrapped around proc. grid in
( ) | Lio|L11 | Li2 |, ( BL|Br ) — (Bo |B1|B2 ) row-major order
Lgr | Ler
Loo |L21 | Loz
endwhile

Fig. 2. (left) Variant of Trmm: right, lower, non-transposed and the DT representation of the loop body. (right) Examples of distributions on a
p = r X c process grid to be used to parallelize the algorithm.

for DLA on clusters are often bulk-synchronous, making cost estimation a matter of adding the costs of the
primitives, which implement collective communication or computation. Cost functions for these primitive that are
accurate enough to rank-order implementations are well-understood [6]. Example cost functions were presented
in [4]. We explain below how loop costs are now estimated by extending our previous work.

Methodology. DxXT transformations are acquired from a variety of sources. Most refinements can be found in
technical papers, but low-level optimizations are found only by reverse engineering source code written by experts.
From our experience, 45% of the encoded rules for DLA are refinements. The remaining 55% are optimizations,
which are templatized to represent many more transformations.

3. Parallelizing for Elemental

We now review basics about the Elemental library and explain how an Elemental expert manually developed
an algorithm for a BLAS3 operation optimized for clusters. We document the steps that an expert took in terms of
transformations. While the expert did not necessarily view his/her task with transformations in mind, the resulting
code can be forward-engineered by transformations. Further, these transformations are reusable, understandable,
and independent pieces of DLA knowledge.

A prototypical BLAS3 algorithm. Figure 2] (left) shows a prototypical BLAS3 algorithm in FLAME notation [[7],
which, given a lower triangular matrix L and general matrix B, overwrites B with the product BL. This is known
as a triangular matrix-matrix multiply (Trmm). What it shows is that this operation can be implemented as a loop
around operations with submatrices, which we call update statements. This is a blocked algorithm because the
loop body operates on blocks (submatrices) as opposed to vectors or scalars. If L is n X n, then Ly is b X b with
blocksize b < n so that most computation is in the Gemm operation, By := By + B;L1o (defined in Figure(]eft)).

This is a prototypical example of how all BLAS3 can be implemented by casting most computation in terms
of Gemm [[8]. The primary concern then is to get maximal parallelism from B, := By + B;L1o, while a secondary
concern is to parallelize By := B;Ly; (see Figure 2] (left)) and to minimize necessary communication.

It is well-known that hiding all parallelism within the separate update statements can introduce redundant
communication and/or synchronization. Our goal is for DXT to encode this algorithm, the knowledge to parallelize
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its abstract update statements, and the knowledge to optimize the resulting algorithm. Further, we want this
knowledge to be reusable for other DLA algorithms.

Elemental Basics. Elemental is a framework for parallelizing DLA algorithms as well as a library for DLA op-
erations. In Elemental, the p MPI processes on a cluster are viewed as a two-dimensional grid, p = r X c. For
the default distribution, Elemental uses a 2D element-wise cyclic distribution, labeled [M¢, Mg] where M¢ and Mg
represent partitionings of the index space that provide a filter to determine which row and column indices are
assigned to a given process. There are a handful of other one and two-dimensional distributions of matrices,
examples listed in Figure [2] (right), that are used to redistribute data so that efficient local computation can be
utilized. Elemental is written in C++ and encodes matrices and attributes (including distribution) in objects. In
order to parallelize a computation, matrices are redistributed from the default distribution to enable parallel local
computation, after which the result is placed back into the original distribution. In Elemental, this is accomplished
using the overloaded “=" operation in C++, which hides the (MPI) collective communication required to perform
data redistribution efficiently.

Farallelizing Trmm. 'We now examine the actions of an Elemental expert to develop an optimized parallel algorithm
for Trmm. We do so in terms of transformations, first explaining the refinements that parallelize suboperations and
then optimizations that are subsequently applied.

Trmm could be any of the following set of operations: B = LB,B = LB, B = UB, = U'B,B = BL,B = BLT, B = BU,
and B = BUT, where L and U are lower and upper triangular matrices, respectively. Each of these eight possibilities
is implemented separately with different algorithms. We focus on B = BL for which Figure 2] (left) gives one of
several algorithms an expert considers. The inputs L and B have the default [Mc, My ] distribution. The updates Trmm
and Gemm in Figure [2] (left) are parallelized by redistributing submatrices, performing local computation (via calls
to sequential BLAS3 routines) on each process, and (if necessary) reducing and/or communicating the result.

An expert would need to consider the various ways to parallelize the suboperations. The three parallelization
schemes for the Gemm update statement keep the A, B or C matrix stationary, avoiding costly redistribution from
[Mc, Mg]. The best choice generally keeps the largest matrix stationary. In this case, By (defined in Figure [2| (Ieft))
is the largest. To parallelize Gemm with a stationary By, we must redistribute Lo (to [*, Mz]) and By (to [Mc, *]), after
which a local Gemm can be performed in parallel on all processes, calculating disjoint portions of By.

To parallelize By := B;jLs4, an expert understands that if Ly; is duplicated to all processes (distribution [, *])
and B, is redistributed so that any one process owns complete rows of this matrix (e.g., distribution [V, *]), then
B;L;; can be computed in parallel by locally calling a sequential Trmm with local data. But the expert would also
consider many other distributions, given in Figure 2] (right), for L;; and B; before arriving at this particular refine-
ment of the abstract operation. There are many refinements to consider, each of which distributes computation
differently, requiring different communication and different local computation, offering a balance between com-
munication (overhead) and parallelism in computation (useful computation). For large problems, one refinement
may be best because the cost of communication is amortized over more computation. We focus on large problem
sizes here, but an expert would serve the user best by providing a set of optimized implementation variants for a
range of problem sizes. We use the refinement with a [V, *] distribution of B; in subsequent discussions.

Encoding the algorithm with Elemental. Elemental variable declarations and loop code are straight-forward and
uninteresting, so we do not show it here. The code of the Elemental update statements, once parallelized with the
above choices of refinements, are given in Figure 3]

This is close to the code found in the Elemental library. The operation in Elemental hides MPI collective
communication calls. An expert would consider alternate ways to perform the same communication and would
notice an opportunity for optimization in the above code. Data (B,) is redistributed from [M¢, Mz] to [Mc, *] (denoted
[Mc, Mg] — [Mc, #]) and then [Mc,Mg] — [Ve, *]. The [Mc,Mg] — [V, *] redistribution can be implemented with
an A11ToAll or it can be implemented in terms of the two redistributions, [M¢,Mg] — [Mc, *] — [V, *], which is
an AllGather followed by a memory copy. Although this redistribution is not as efficient, it allows an expert to
remove the extra redistribution to [Mc, *], which results in the best performance.

An expert explores this option in code by replacing the line: B1_vc_sTar = B1;With B1_VC_STAR = B1_MC_STAR = Bi;
and optimizing the inefficient code by removing one of the redundant redistributions in the duplicated line
B1_MC_sTAR = B1; The resulting optimized code, which is in the Elemental library, is shown in Figure {4

w_9
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The final code is the result of two parallelizing refine- B1i_MC_STAR = Bi:

ments, one optimization to explore an alternate implementation L10_STAR_MR = L10;
. s . LocalGemm( NORMAL, NORMAL, 1.0, B1_MC_STAR,

of [Mc,Mg] — [Vg,*], and one optimization to remove a redun- L10_STAR_MR, 1.0, BO );
dant redistribution. Each transformation is easy to understand L11_STAR_STAR = L11;
. . s . . . B1_VC_STAR = B1;
individually, but learning and manually exploring the options and LocalTrmm( RIGHT, LOWER, NORMAL, NON_UNIT, 1.0,
choosing the best combination is not easy and/or is tedious. It L11_STAR_STAR, B1_VC_STAR );

. . . Bl = B1_VC_STAR;
takes considerable knowledge and experience to do this well.

Fig. 3. Parallelized code for Figure[2]
4. Encoding Knowledge of the BLAS3

B1_MC_STAR = B1;
L10_STAR_MR = L10;

With a basic understanding of DXT and Elemental, we can LocalGemm( NORMAL, NORMAL, 1.0, 1;31_Mc_STAR,
. . L10_STAR_MR, 1.0, BO );
show prototypical transformations that enable DxTer to generate L11_STAR_STAR = L11,
implementations automatically for all BLAS3 variants mentioned B1_VC_STAR = B1_MC_STAR;
. . . e . LocalTrmm( RIGHT, LOWER, NORMAL, NON_UNIT, 1.0,
in Figure [T (left). We now describe the primitive operations and L11_STAR_STAR, Bi_VC. STAR ):
transformations used. Bl = B1_VC_STAR;

Graph and Code Operations. High-performance parallel DLA
software is coded in terms of loops, sequential DLA function
calls, and communication operations. There are other operations, but these are the main ones to be considered in
well-layered code thanks to decades of software engineering in this field [2} 13} 9} [10].

General rules for attaining high performance are that communication and redundant computation should be
reduced and the portion of time spent in high-performing computation kernels should be maximized. On a single
(many-core) CPU, communication is data movement between cache layers. With GPUs communication is data
movement between devices and the host computer. With clusters, communication is movement between processes.

The important design decisions for Elemental deal with a small number of computation operations. For the
paralle]l BLAS3, high-performance implementations call sequential BLAS3 kernels for suboperations. Further, El-
emental code requires redistribution operations (collective communication) between a finite number of supported
distributions. Only knowledge regarding these redistributions needs to be encoded, and much of that, as shown
below, is repetitive. These are the primitives in terms of which DxT graphs will ultimately be defined.

The best implementations come down to the right combination of a small number of operations. The transfor-
mations to generate those implementations can be very simple. The rest of this section demonstrates this point.

Fig. 4. Optimized version of that code.

Algorithms to Explore. The FLAME project has developed a repeatable process by which loop-based families of
algorithms for DLA operations can be systematically derived [[11]. Using formal derivation, a person or a me-
chanical system [[12] can derive multiple correct algorithmic variants, expressed similarly to Figure 2] (left), for a
target operation. This is useful because there is generally no single algorithm that works best for all architectures,
so with a family of algorithms for an operation, the best variant can be chosen. In [4], we implemented only one
such variant for each operation. For this work, we encoded multiple algorithmic variants, which allows DxTer
to explore the options, so a human does not need to choose one as best manually. BLAS3 operations and their
FLAME-derived algorithms are mathematical in nature (e.g., Figure[2|(left)) and are architecture invariant, so dif-
ferent optimizations and transformations are needed to yield efficient implementations for a specific architecture.

We represent BLAS3 in a graph with nodes named after the operations they represent (e.g., to optimize the
Trmm operation, the starting graph to be implemented consists of a single node labeled Trmm). These are purely
mathematical abstractions with no implementation details. Abstract operations can be combined in a graph with
other nodes to compose higher-level functionality, but in this paper we focus just on implementations of the
BLAS3 functions in isolation, and hence start with a graph with one node (i.e. as input to DxTer).

For each BLAS3 operation (e.g. Trmm), a refinement for each known algorithmic variant is encoded in DxTer.
These refinements replace the abstract node with a graph representing the algorithmic loop and loop body oper-
ations. For blocked algorithms like in Figure [2] (left), the update statements are BLAS3 operations themselves,
operating on smaller submatrices. The part of the loop that does not include the update statements we call the loop
skeleton, which can be specified at a very high level of abstraction and is often identical for all variants.

The refinement of node Trmm for the algorithm of Figure 2] (left) is a loop with abstract update statements Trmm
and Gemm (the update statements are shown in that figure). To differentiate between top-level BLAS3 operations
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that need to be implemented by a loop algorithm and the update statement BLAS3 operations that are implemented
differently (described below), the update statements are not abstract BLAS3 nodes (e.g. with the label Trmm).
Instead, they are architecture-specific, which we call DTrmm and DGemm (Where the D stands for distributed, not to be
confused with the subroutine DGemm where the D stands for double precision [[1]). Boxes that start with D (D* boxes)
are BLAS3 operations implemented in distributed-memory parallel code via redistribution, local computation, and
redistribution of the result. When targeting other architectures, the loop body operations are the same, but D may
be replaced with, say, GPU flavors of the same operations. In this way, algorithm transformations are reusable
across architectures; only the implementation of the suboperations changes, with different architecture-specific
refinements. To transform the loop body operations to architecture-specific implementations, there are refinements
for clusters, described below.

(a) DTrmm Left

-
|
|
L—{Me, Mgl = [*%] !
L DTrmm B —> | LTrmm 1%, =M. Mgl | B
B—| Left | N Left
B— Mo Mel= [, ] |
|

® DTrmm Right _ _ _ _ _ _ _

|

L * !

L— DTrmm ' LTrmm - |
B— Right B = | Right [m,71= Mo, Mgl B

B M MgJ~ [, |

o

Fig. 5. Templatized refinements for DTrmm: triangular matrix on the left (a) or right (b) with 7 € {*,M¢, Mg, V¢, Vg}. (c) Three refinements for
DGemm NN (DGemm without transposition), stationary A, B, and C from the top to bottom.

BLAS3 Cluster Refinements. With knowledge of algorithmic variants encoded, we now need transformations to
refine and parallelize D+ boxes. Examples are shown in Figure[5] When an expert implements abstract subopera-
tions, (s)he chooses from the ways to redistribute the operands in order to enable computations to be performed
in parallel across a machine by calling locally sequential computation on each core (e.g. via a call to a sequential
(local) BLAS3 function). The result then needs be re-redistributed to the default [Mc,Mg] distribution if it is not
already distributed as such. To encode parallelization options for each of the D* boxes, we add refinements that
have the building blocks of the local BLAS3 calls and the Elemental redistribution operation (“="). L* boxes
represent local computation that does not require communication with other MPI processes. For Elemental these
boxes map to a call to a sequential BLAS3 kernel (with parameter checking), so L* boxes are graph primitives
(e.g. calling LocalGemm in code).

Consider DTrmm. In Figure 5] we show a templatized form of the refinements for DTrmm with the triangular
matrix on the left (a) or the right (b) with € {x, M¢, Mg, V¢, Vg}. These options parallelize the computation over the
process grid’s rows or columns or over the entire grid. An expert considers these options based on other operations
in the loop body, the problem size, etc. Each possible refinement is included in the DxT knowledge base. The
refinement of Figure[3](b) with 7 = V¢ was used for the code of Section

For DGemm, an expert again has a handful of choices to consider based on, for example, the surrounding op-
erations and the size of operands. In Figure [5] (c), we show three refinements for stationary A, B, and ¢ for a
non-transposed DGemm NN, which is the form of DGemm without transposition (i.e. A and B are both Normal instead
of Transposed). TEMP boxes create a temporary storage matrix with the specified distribution. The input matrix
provides TEMP with problem size information, but its data is not changed.

The SumScatter box is a form of Elemental redistribution that performs a ReduceScatter collective operation
on the first operand and stores the result in the second operand [13]]. There are small variations on these refinements
for the three transposed versions of DGemm. An interested reader can discover them by looking at the Elemental
library’s Gemm implementations [13}14], which DxTer reproduces.

The other Dx BLAS3 functions have refinements that are comparably simple, but the particular parallelization
schemes are not important here. The fixed set of Elemental distributions enable the most useful (and some less
useful) ways to parallelize BLAS3 operations. These schemes are encoded in our DxT knowledge base.
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Redistribution Optimizations. Refinements are sufficient to attain parallel, executable code. Combinations of
costly redistribution operations need to be optimized to remove inefficient communication. For that, we use
optimizing transformations for Elemental redistribution boxes.

Redistribution boxes map one-to-one to a single “="" operation in Elemental. This operation is implemented
with default MPI collective communication, but there are other implementations. Exposing the implementation
behind “="" and exploring alternatives enables the expert or DxTer to optimize the overall communication pattern
of an implementation, possibly combining communications exposed by refinements of different update statements.

In some cases, Elemental implements “=" as a series of redistributions. One example is [M¢,Mg] — [Vg, *],
which utilizes an intermediate distribution [V¢, *] (i.e., with [M¢,Mg] — [V¢,*] — [Vg,*]). Optimizations like
Figure [6] (c) break through a layer of code to expose this detail. In Section [3] we demonstrated why this is
necessary to remove inefficient communication. The template optimizations of Figure [f] (a) and (b) can remove
inverse or redundant redistributions, respectively that were hiding behind the “=" interface. These optimizations
are applied often by experts.

| | d)

| 0-3 B . B | (Mo Mgl M, /L
: 03 ' A= '

: -3 c : C : Mg, Mg] = [V, *

Fig. 6. Templatized optimizations to remove inverse (a) and redundant (b) redistribution operations. X and ¢ can be any Elemental distribution.
(c) An optimization to expose a hidden intermediate redistribution. (d) Reusing an intermediate redistribution.

Optimizations like Figure [6] (¢) can explore alternate implementations of redistributions, too. For example
the [Mc,Mg] — [Mc, *] redistribution found in one DTrmm and DGemm refinement is implemented behind “=" with
an AllGather collective among process rows. This redistribution can also be implemented as the two redistribu-
tions [Mq,Mg] — [V, *] — [Mc, *], which requires an A11ToAll followed by an AllGather, both among process
rows. If code around the [M¢, Mz] — [Mc, *] operation already redistributes the data to [Vg, *], then exposing the
alternate redistributions enables a better overall implementation because an unnecessary redistribution to [V, %]
can be removed. There are four cases similar to this that are implemented with one templatized transformation.
These transformations replace a node representing valid Elemental code with a subgraph that chooses a different
implementation, which will allow DxTer to explore subsequent optimizations.

As shown in Section@ [Mc, Mg] — [V, *] can be implemented (suboptimally) as [Mq, Mg] — [Mc, *] — [V, *]
This is a refinement of the [Mq, My] — [V, *] redistribution. This enables a subsequent optimization. We encode
the optimization of Figure[6|(d), to represent both steps. This reuses the intermediate distribution [Mc, *]. There are
eight versions of this transformation that are implemented using a templatized version of Figure[6] (c). Template
parameters are limited to distributions that make sense for this optimization.

For redistributions, data is copied into and out of buffers that are passed to collective communication (MPI)
functions. It can be very costly to access memory with non-unit stride. With Elemental, data can be transposed
in some redistributions. This moves the cost of non-unit stride between packing and unpacking to push the
performance hit on the piece with less data to copy. Many inputs to BLAS3 functions can be transposed, so DxTer
has optimizations that transpose data during redistribution and implicitly untranspose it in BLAS3 function calls.
Simplicity of Transformations. The graph transformations we have illustrated are no more complicated than those
we have not. Abstractly, they are all simple graph rewrites that capture deep domain knowledge of DLA and its
encoding in Elemental. Had we chosen another cluster DLA library that did not have a cleanly-layered design, we
suspect we would have been less successful or not successful at all. We can not stress enough that the key to the
simplicity of our rewrite rules is that they capture relationships between fundamental levels of abstraction in DLA
library design. If these abstractions are encoded in an ugly way, transformations are substantially more complex.
Estimating Loop Costs. In DxTer, loops are represented with a graph for the loop body. Loop inputs are split
into submatrices (views of the input matrix), which are inputs to the loop body. The outputs of the body are
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submatrices “combined” to form the output of the loop (there is no actual combination since the submatrices are
just views of the same matrix). This reflects the beginning and end of the while loop in Figure 2| (Ieft), where
submatrices are exposed and combined. The split and combine operations are represented in the loop body by
LoopSplit and LoopCombine nodes, which mark the beginning and end of a loop body in the graph.

For the results in [4], DxTer only calculated the cost of the loop body for the middle iteration. Even though
submatrices are a different size at each iteration, it was sufficient to optimize for the middle iteration to reach the
same design decisions as an expert (perhaps he reasoned about the middle iteration as well). For BLAS3 functions,
though, the total cost of all iterations must be considered, so DxTer cost calculation was improved to do just that.

To calculate the cost of a loop, execution is simulated. Input matrix sizes are known, so the number of iterations
is known in terms of blocksize. At each iteration, the size of the inputs’ submatrices can be calculated, so the cost
of a loop body graph can be calculated by summing the cost of all nodes. Then, the cost of the whole loop is the
sum of the loop body’s cost at each iteration.

5. Results

We now describe the size of the knowledge base in DxTer, the size of the space encountered when using that
knowledge, and the quality of DxTer-generated code. Performance results were taken from Argonne’s BlueGene/P
system Intrepid. We tested on 8192 cores (2 racks), which have a combined theoretical peak of over 27 TFLOPS.
Two-thirds of peak performance is shown at the top of the graphs. For all runs, double precision arithmetic
was used and we tune the blocksize, choosing the best-performing run. DxTer’s algorithm and implementation
selections account for the vast majority of performance; tuning the blocksize provides a small performance boost.

Number of Transformations. The BLAS3 are reused repeatedly when implementing code for a variety of targets.
Further, refinements that implement suboperations are used repeatedly across libraries.

Redistribution optimizations are templatized for use by many communication patterns (Figure E] (a) and (b)).
Similarly, the transformations (algorithm and parallelization refinements) for Hermitian and symmetric BLAS3
operations are largely identical so the same knowledge can apply to both sets of operations.

To generate code for all BLAS3 operations, DxTer has a set of transformations that are reused repeatedly (i.e.
its knowledge base). Figure|[T](right) shows the unique (i.e. counting each template once) transformations encoded
in DxTer for BLAS3 operations. It also shows the total number of transformations that are generated from those
unique pieces of knowledge using templates (different distributions, symmetric and Hermitian, etc.).

Search Space and DxTer Results. BLAS3 implementations for clusters must be tailored to the problem size and
parameter combination. Consider, for example, Gemm: C := AB + C. Gemm is best provided in a library with different
implementations for when each of the three input matrices is the largest (to minimize communication of it) and
for each of the four combinations of “A” and “B” being transposed. As a result, Elemental offers 12 = 3 x 4
Gemm implementations. Implementations of Trmm could minimize communication of each of its two input matrices
(whichever is biggest) and there are three parameters that lead to eight different algorithms and parallelization
schemes, yielding a total of 16 implementations. The second column of Figure (1| (left) shows the number of
implementation variants for each BLAS3 operation.

For each variant of each operation, we tested DxTer’s ability to generate code. The third column of Figure|[T]
(left) shows the total number of implementations generated by DxTer. Different parameters lead to different im-
plementations (because different starting algorithms are used). For variants with the same parameter combination
(but different matrix sizes), the same implementations are generated, but the cost estimates rank-order them dif-
ferently. This count includes the repeated implementations that are re-generated for each of the variants. Each
implementation is generated within 30 minutes; the majority take less than a minute.

Many of the differences between implementations are due to the variety of ways in which data can be redis-
tributed and transposed. Consider the number of transformations dealing with redistributions, shown in FigureI]
(right). There are five algorithmic variants for Her2k, but only one parallelizing refinement for DHer2k in their
loop bodies. This does not lead to many implementations options. The large space is the result of the many ways
to redistribute and transpose operands to the local computation.

When the Elemental expert (Jack Poulson) first implemented the BLAS3, he explored a portion of these search
spaces. At that point, he did not apply transposition optimizations. Later, he revisited the BLAS3 implementations
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Fig. 7. Performance of real BLAS3 functions. Problem size is 50,000 along all dimensions for top graphs.

and transposed redistributions to improve performance. The expert explored large implementation spaces using
his intuition and experience. Because of the number of possibilities and the difficulty with reoptimizing existing
code, though, he chose sub-optimal implementations in some cases. The last column of Figure [T] (left) compares
DxTer’s implementations to the code in Elemental.

Figure [/] (top left) compares representative variants of each of the double-precision, real BLAS3 functions
with problem sizes along each dimension of 50,000. We show performance from ScaLAPACK, Elemental, DxTer
without optimization (only parallelization), and DxTer with optimization. In many cases, the expert and DxTer
produced the same implementations, but there were some notable improvements. In all cases, DxTer generated
implementations that were the same or better than the expert.

For Gemm, the expert missed a number of transposition opportunities that improved performance. DxTer de-
termined when those transpositions were worthwhile (the cost functions predicted that runtime decreased) and
generated code that incorporated the optimization.

For Trsm, DxTer again found a missed transposition opportunity in one variant. Figure 7] (top left) shows this
is a modest improvement, but it is worthwhile and it came without human effort. The improvement is greater
for smaller problem sizes. Additionally, the expert had not implemented some of the Trsm variants. DxTer had
sufficient knowledge to generate code for all variants.

The greatest DxTer successes came when studying Trmm. DxTer has three algorithms encoded for the “left-
side” and “right-side” versions of Trmm, each. DxTer explored all implementations of these algorithms and chose
as best a different algorithm than that chosen by the Elemental expert. He did not explore the algorithm in Fig-
ure 2] (left). Figure[7] (bottom right) shows the performance of DxTer’s implementation over the expert-optimized
version.

Figure [/| (top right) shows many parameter combinations for the real BLAS3 functions. We compare DxTer’s
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predicted-best implementations against ScaLAPACK’s implementations. The majority of these are the same as
Elemental, so we omit its performance. Figure [/| (bottom left) shows a sample of these functions across a range
of problem sizes, demonstrating DxTer-generated Elemental code performs better than or roughly equal to that of
ScaLAPACK. Figure [/| (bottom right) shows the performance improvement DxTer gained when exploring many
algorithms for Trmm, choosing one that is better than what the expert developer of Elemental used, highlighting the
utility of automatic code generationE]

6. Conclusion

We showed how the knowledge an expert uses to develop BLAS3 code for clusters can be encoded as reusable
transformations in the Design by Transformation (DxT) style. Using this knowledge, our tool DxTer automatically
generates code for the many BLAS3 variants showing that the burden of coding sequential algorithms in code for
clusters can be taken from a human and given to a machine. Instead of requiring an expert to apply knowledge
repeatedly — a tedious and error-prone process — a system like DxTer can be trusted to do it automatically.
BLAS3 operations do not allow many opportunities for optimization, but even an expert developer missed some.
DxTer missed none. DxTer even explored a different algorithmic variant than that chosen by the expert and
generated substantially better-performing code. This is the power of automatic code generation.

In [4] [15]], some of the knowledge used in this paper was applied to much more complicated algorithms (with
many BLAS3 operations in their loop bodies). This paper extends that knowledge base to support all BLAS3
operations and add support for loops. We expect to apply the knowledge to more algorithms and demonstrate
more utility from automatically generating DLA code for clusters. Further, we intend to use DxT to generate
sequential and shared-memory parallel code.

DxT is applicable beyond the DLA domain [16], but DLA is a prime candidate for initial evaluation. DLA code
can be cast in terms of a relatively small number of operations whose refinements and optimizations well-known.
The results in this paper are major step to automating code development for DLA and many other domains.
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