
DSLs, DLA, DxT, and MDE in CSE
Bryan Marker, Robert van de Geijn, and Don Batory

{bamarker,rvdg,batory}@cs.utexas.edu
The University of Texas at Austin

Abstract—We narrate insights from a collaboration be-
tween researchers in Software Engineering (SE) and in
the domain of Dense Linear Algebra (DLA) libraries. We
highlight our impressions of how software development
for computational science has traditionally been different
from the development of software in other domains. We
observe that scientific software (at least DLA libraries)
is often developed by domain experts rather than legions
of programmers. For this reason, researchers in SE need
to impact the productivity of experts rather than the
productivity of the masses. We document this and other
lessons learned.

I. INTRODUCTION

Our experience with the FLAME project, which has
been funded by NSF for more than a decade, motivates
this paper. Initially, FLAME pursued fundamental re-
search related to the derivation and implementation of
high-performance Dense Linear Algebra (DLA) libraries.
More recently, as part of an NSF Software Infrastructure
for Sustained Innovation grant, its mission has become
to vertically integrate the DLA software stack from
low level kernels to sequential, multi-threaded, and
distributed-memory libraries [1]. While this vertical
integration helps the DLA expert, we discuss how it
also facilitates the application of a rather different kind
of Software Engineering (SE), which we call Design by
Transformation (DxT), that can become a template of
how SE can codify expert knowledge and automate the
optimizations performed by experts. Since DLA libraries
are at the bottom of the Computational Science and
Engineering (CSE) food chain, we postulate that DxT has
applicability to CSE software development and beyond.

II. THE FLAME APPROACH TO DLA LIBRARY
DEVELOPMENT

Traditionally when developing DLA libraries, there
has been a tension between the natural layering and
abstraction that exists in its mathematics on one hand and
the demand that libraries attain near-peak performance on
the other. The street wisdom says that layering impedes
performance and the need for speed overrules abstraction
in the implementation. The FLAME project, especially
when combined with DxT, contradicts this belief. Many of
these lessons can be extrapolated for other CSE domains.

Lesson: Highly-layered abstractions can have
highly-efficient implementations.

A. The FLAME Notation

The FLAME project has always favored abstraction
and elegance over performance. A notation for expressing
dense linear algebra algorithms was invented [7], [12].
This notation hides details of indexing, allowing one to
reason about the algorithm at a high level of abstraction.
We illustrate it for a prototypical algorithm that computes
the Cholesky factorization, in Figure 1 (left). The notation
hides details of indexing by exposing regions of the matrix
being updated, thereby allowing one to reason about the
algorithm at a high-level of abstraction.

Lesson: Express algorithms at the same level
of abstraction as one reasons minimizes the
opportunity for mistakes and confusion while
writing an algorithm.

B. The FLAME methodology for deriving algorithms

We observed that our notation enabled algorithms to be
systematically derived correct [4], [15]. That is, given the
loop invariants, DLA algorithms are derived hand-in-hand
with their proof of correctness.

For a given matrix operation, a family of algorithms
are so derived, since one operation gives rise to several
or even dozens of loop invariants [13]. This is important,
because different high performance architectures may re-
quire different algorithms to be chosen in order to achieve
the best performance [3]. So although FLAME favors
abstraction and elegance, it enables high performance
because its methodology yields a multitude of algorithms
from which the best can be chosen, thus offsetting any
overhead incurred by abstractions 1.

Lesson: For DLA, the expert activity of iden-
tifying algorithms given an operation can be
made systematic. Indeed, the methodology is
systematic to the point that it has been auto-
mated [3].

C. From correct algorithms to correct implementations

A correct algorithm must still be translated into
code, which could introduce of coding errors (bugs). To
avoid this, the FLAME project defined domain-specific

1DLA may currently be unique in that multiple algorithms can be
systematically derived, but it is common for experts to choose from
multiple algorithms for the same operation in CSE domains.

1

Algorithm: A := CHOL BLK(A)

Partition A→
(

ATL ?

ABL ABR

)
where ATL is 0×0

while m(ATL)< m(A) do
Repartition(

ATL ?

ABL ABR

)
→

 A00 ? ?

A10 A11 ?
A20 A21 A22

where A11 is b×b

A11 := Chol(A11)
A21 := A21 A

−T
11

A22 := A22−A21AT21

Continue with(
ATL ATR
ABL ABR

)
←

 A00 ? ?
A10 A11 ?

A20 A21 A22

endwhile

PartitionDownDiagonal(A, ATL, ATR,
ABL, ABR, 0);

while(ABR.Height() > 0){
RepartitionDownDiagonal(ATL, /**/ ATR, A00, /**/ A01, A02,

/*************/ /******************/
/**/ A10, /**/ A11, A12,

ABL, /**/ ABR, A20, /**/ A21, A22);
//---//

A11_Star_Star = A11;
LocalChol(Lower, A11_Star_Star);
A11 = A11_Star_Star;

A21_VC_Star = A21;
LocalTrsm

(Right, Lower, Transpose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star);

A21_MC_Star = A21_VC_Star;
A21 = A21_MC_Star;

A21_MR_Star = A21_VC_Star;
LocalTriangularRankK(Lower, Transpose,

(T)-1, A21_MC_Star, A21_MR_Star,
(T)1, A22);

//---//
SlidePartitionDownDiagonal(ATL, /**/ ATR, A00, A01, /**/ A02,

/**/ A10, A11, /**/ A12,
/*************/ /******************/
ABL, /**/ ABR, A20, A21, /**/ A22);

}

Fig. 1. Left: Blocked algorithms for computing the Cholesky factorization. m(B) is the number of rows of B and ‘?’ denotes matrix entries that
are not referenced. Only the lower triangular part of the matrix is updated. Right: Parallel Elemental code developed from sequential algorithm.

languages (DSLs), implemented as library calls, for C,
C++, and scripting languages like M-script (Matlab’s
scripting language) so that the code closely resembles
the algorithms expressed in FLAME notation. Mapping
from a FLAME algorithm to code is straight forward.

Lesson: Express algorithms in code at the same
level of abstraction as one reason using DSLs
or good APIs. This minimizes translation effort
and reduces the opportunity for error.

D. From sequential code to parallel code

Parallelization of DLA algorithms to distributed-
memory architectures requires the distribution of matrices
to (MPI) processes, redistribution of data (in the form of
collective communication), and local computation that
can be performed in parallel [14]. The Elemental library,
based on FLAME notation and APIs, was developed for
distributed-memory DLA computations. It incorporates a
C++ API that is used as a DSL for expressing algorithms
with “=” operator overloading to hide communication
details in order to achieve high performance on large
distributed-memory architectures [10]. Code for the Ele-
mental Cholesky factorization is given in Figure 1 (right)
which we describe in more detail in Section III-B.

Lesson: If sequential algorithms and code are
expressed in the right way, parallel implemen-
tations can closely resemble their sequential
counterparts, without sacrificing performance.

The SE challenge is to take the sequential algorithm
in Figure 1 (left) to the highly optimized parallel code

in Figure 1 (right). To do so requires considerable expert
knowledge. Such experts are few and far between. But
once an expert understands how to apply this knowledge,
largely gained by parallelizing a few operations, paral-
lelizing the remaining operations in a DLA library is
more repetitive and time consuming than difficult. This
raises the interesting question: can this repetitive exercise
be mechanized? Can we enable the rare expert to be more
productive in producing the codes of many operations?

Lesson: Imposing a standardized, conceptual
structure to both understand and organize
design activities often leads to the ability to
the mechanization of these activities.

III. DXT: ENTER THE SOFTWARE ENGINEER

A. DxT Introduction

DxT is an approach to automate software design by
mechanizing expert knowledge of program construction.
Algorithms are represented in Pipe-and-Filter (PnF)
graphs where computations (or communications) are
nodes and I/O relationships are edges. A node can be an
interface — a specification of a computation that has no
implementation details — or a node can be a primitive,
which maps directly to an API call.

DxT encodes expert knowledge as graph rewrites.
Refinements replace an interface with a graph implement-
ing it (using lower-level interfaces and/or primitives).
Optimizations replace a subgraph with another subgraph
implementing the same functionality in a different way.

2

One or more optimizations are applied (as the name
suggests) to improve performance.

The goal of DxT is to derive correct implementations
of input PnF graphs (called Platform-Independent Models
(PIMs) in MDE-speak [6]) to platform-specific PnF
graphs (called Platform Specific Models (PSMs)) using
rewrite rules of the knowledge base.

We start with a PIM that represents a high-level
definition of our DLA algorithm. It contains only in-
terconnected interfaces. We then derive, using graph
rewrites, a PSM that contains only primitives. This PSM
an implementation of the PIM.

There can be many PSMs that implement a PIM. Each
implementing PSM has a cost (time-to-completion is a
common cost measure for DLA); domain knowledge can
be used to estimate this cost. By searching the space
of derivable PSMs, we can automatically find the most
efficient PSM for a target architecture and problem size.

Lesson: Well-known ideas in the history of au-
tomated SE, coupled with more recent ideas on
MDE, provide a simple and elegant framework
for generating high-performance codes.
Lesson: The above is possible only if a stan-
dard conceptual structure (e.g., FLAME) is
imposed on a domain; this structure reduces
the number of rewrite rules that an expert
uses/needs and promotes the reuse of such rules.
Without such structure—which tells us how the
big pieces fit together—all of what we describe
above becomes intellectual chaos.

B. Using DxT for Cholesky

Let’s now see the expert knowledge that is needed
to generate the high-performance implementation of
Figure 1 (left). To fully understand this parallelization
requires deep domain knowledge, presented in [8]. For
here, just understand that matrices are stored in ob-
jects, which distribute matrix data across the distributed-
memory process grid in several ways.2

An expert must know the various legal ways to
parallelize common DLA interfaces. These options are
encoded as DxT refinements. The top three transforma-
tions in Figure 2 show refinements used for the Cholesky
example (boxes that are internally labeled [x,y]→ [z,w]
represent redistribution from distribution [x,y] to [z,w]).
These are only some of the options that must be encoded—
experts have multiple parallelization schemes.

Experts must also know how to improve the cost of an
implementation by, for example, removing unnecessary
communication. This knowledge is encoded by DxT

2For readability, the variables in Figure 1 (right) are named by the
submatrix they represent and the way they are distributed, though we
will not explain those distributions here.

LCHOLA11 A11'[MC,MR]→[*,*] [*,*]→[MC,MR]

CHOL

CHOLA11 A11'

LTRSM
A21 [MC,MR]→[VC,*]

[MC,MR]→ [*,*]
[VC,*]→[MC,MR]TRSM A21' A21'

TRSM

A22

TriRK [MC,MR]→[MC,*]

[MC,MR] →[MR,*]

LTriRK

TriRK

A11'

A21

A11'

A21'
A22'

A22

A21'

A22'
A21' A21'

A [*,*]→[MC,MR]
[MC,MR]→ [*,*]

B

C
A

B

C

[*,*]→[MC,MR]

Fig. 2. The top three transformations are refinement options experts
explore to parallelize the loop-body operations of Figure 1 (left).
The bottom transformation is an example optimization to remove an
unnecessary and expensive redistribution.

optimizations, one of which is shown at the bottom of Fig-
ure 2.3 The transformations shown here are not specific
to this Cholesky algorithm; they are reusable pieces of
expert knowledge that are applied repeatedly to develop
a distributed-memory DLA library like Elemental.

Lesson: Expert program design knowledge can
be expressed by graph rewrites that capture
incremental steps in domain-specific program
development.
Lesson: Tools that automatically apply graph
rewrites and that can estimate the execution
cost of a produced graph can generate code
that is as good or better than human experts.

IV. AUTOMATED SOFTWARE GENERATION

A. Sustainable development

DxTer is a prototype that automatically explores the
space of derivable PSMs from an input PIM, and selects
the most efficient PSM. DxTer produces the same or better
implementations than an expert for distributed-memory
systems [5], [8], [9] and we are seeing promising results
for sequential implementations as well.

Architectures change very quickly. More algorithms
need to be implemented. But experts are still rare and
their time is valuable. Automating their job as much as
possible will enable them to be more productive. We see
this as a more sustainable approach to code development

3This particular optimization is easy to understand. On the bottom-
left of Figure 2, matrix A is redistributed from the [∗,∗] distribution to
[MC,MR]. This result is then output as matrix B and then redistributed
back to [∗,∗] to produce output C. An expert knows a more efficient
implementation is to output matrix A as C, and redistribute once to
produce B; this implementation is at the bottom-right.

3

for DLA and other CSE libraries: encode the expert’s
knowledge and automatically apply it to generate code
for various operations and hardware architectures.

There are a number of projects that have a similar view
and goal: Spiral [11] and Tensor Contraction Engine
(TCE) [2] are well-known examples. In each, expert
knowledge is encoded to implement domain computations
and to optimize code. How this is done for each project
varies, but the key is that domain knowledge is encoded
in a reusable way as rewrites and these rewrites are
automatically applied to find the “best” implementation.

Lesson: Experts are rare. There is far more
demand on their time than they can provide.
Mechanizing software development for well-
understood domains should be a primary goal
of SE. Doing so will achieve a sustainable way
for domain-specific program development.

B. Abstractions and layering are essential

The lessons described above have resulted in well-
abstracted algorithms, reasoning, and software for DLA.
We are finding that these abstractions enable us to encode
expert knowledge. There is a simple theory of how
DLA libraries can be constructed (see the simplicity
of Figure 2) and it is enabling automatic code generation.

We find the same story about abstraction to be true
for other code generators. Spiral, for example, has
abstractions to represent hardware-specific features and
domain-specific mathematical constructs [11]. The right
abstractions and layering are essential to success.

Finding the right balance with abstraction and layering
is not easy. Too many abstractions complicates software
and reasoning. Too few abstractions and performance
suffers. It takes a deep understanding to find the “sweet-
spot” structure and organization for a domain and to fit
the domain’s algorithms into that structure. Gaining this
knowledge takes time and effort, and even more time to
make the domain’s software explicitly use the structure.
This results from years of prolonged efforts, guided in
the belief that software can be elegant and simple.

Lesson: We are geniuses at complicating the
simplest of things; the challenge is to discover
its underlying simplicity.

V. LET’S MOVE FORWARD

It seems obvious that using good software abstractions
and layering aid the expert. With some extra consideration
(possibly a lot), we believe the abstractions can be
tuned and leveraged to encode domain knowledge and
automatically generate code. While we have focused on
DLA here, we believe the same ideas can be applied to
CSE software in general.

It is clear that this requires deep domain knowledge,
so we cannot wait for external forces to reengineer our
software to abstract it better. Further, we cannot wait
for external forces to obviate the rote work domain
experts go through. For sustainability of our software as
hardware continues to change in the future, we need to
work towards encoding expert knowledge and automating
program construction. With code generation, we do not
need to suffer (as much) with the next hardware change as
we have with distributed memory, shared memory, and co-
processors. This will not happen through democracy (e.g.
standards committees) but by a dictatorship of domain
experts who know how to get things done “best”.

Acknowledgements. Marker was sponsored by fellow-
ships from Sandia National Laboratories and NSF (grant
DGE-1110007). This work was also partially sponsored
by NSF grants CCF-0917167, and OCI-1148125. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the NSF.

REFERENCES

[1] A linear algebra software infrastructure for sustained innovation
in computational chemistry and other sciences. http://nsf.gov/
awardsearch/showAward?AWD ID=1148125.

[2] Alexander A. Auer et al. Automatic code generation for many-
body electronic structure methods: The tensor contraction engine.
Molecular Physics, 2005.

[3] Paolo Bientinesi. Mechanical Derivation and Systematic Analysis
of Correct Linear Algebra Algorithms. PhD thesis, UTCS, The
University of Texas at Austin, 2006.

[4] Paolo Bientinesi et al. The science of deriving dense linear
algebra algorithms. ACM Transactions on Mathematical Software,
31(1):1–26, March 2005.

[5] Jack J. Dongarra et al. A set of level 3 basic linear algebra
subprograms. ACM TOMS, 16(1), March 1990.

[6] David S. Frankel. Model Driven Architecture: Applying MDA to
Enterprise Computing. John Wiley & Sons, Inc., 2003.

[7] John A. Gunnels et al. FLAME: Formal linear algebra methods
environment. ACM TOMS, 27(4), December 2001.

[8] B. Marker et al. Designing linear algebra algorithms by
transformation: Mechanizing the expert developer. In IWAPT,
2012.

[9] Tze Meng Low et al. Theory and practice of fusing loops when
optimizing parallel dense linear algebra operations. Technical
Report TR-12-18, The University of Texas, Dept. of Comp Sci.

[10] Jack Poulson et al. Elemental: A new framework for distributed
memory dense matrix computations. ACM TOMS, 39(2), 2012.

[11] Markus Püschel et al. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on “Program
Generation, Optimization, and Adaptation”, 93(2):232– 275, 2005.

[12] Enrique S. Quintana et al. A note on parallel matrix inversion.
SIAM J. Sci. Comput., 22(5):1762–1771, 2001.

[13] Enrique S. Quintana-Ortı́ and Robert A. van de Geijn. Formal
derivation of algorithms: The triangular Sylvester equation. ACM
Trans. Math. Soft., 29(2):218–243, June 2003.

[14] Martin Schatz et al. Scalable universal matrix multiplication
algorithms: 2d and 3d variations on a theme. ACM Transactions
on Mathematical Software, 2012. submitted.

[15] Robert A. van de Geijn et al. The Science of Programming Matrix
Computations. lulu.com, 2008.

4

