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1. INTRODUCTION
Many dense linear algebra (DLA) operations are easy to under-

stand at a high level and users get functional DLA code on new
hardware relatively quickly. As a result, many people consider DLA
to be a “solved domain.” The truth is that DLA is not solved. DLA
experts are rare because the “tricks” and variety of algorithms they
need to get high performance take time to learn. DLA implementa-
tions are only available on a new architecture when an expert with
enough experience goes through a rote process to implement many
related DLA operations. While so much of the manual work is rote,
this hardly suggests the domain is “solved.” We have not proven
that we understand the field until we have automated the expert.
Automate the expert for the entire field, and the field is closed. We
view that goal as the equivalent of going to Mars. In practice, we
will get to the moon automatically, and experts will then be freed up
to worry about how to get from there to Mars.

Given the focus of SEHPCCSE, we summarize progress we have
made towards that goal over the last 10+ years of interface design
and 3 years of automation research. We explain our experiments
working towards a sustainable solution to this tedious, laborious,
and largely unnecessary process with fundamental and reusable
DLA interfaces. We talk about how those interfaces allow us to
generate most code automatically as an expert would manually.
With influences from the software engineering (SE) literature, we
present Design by Transformation (DxT) to encode knowledge about
domain interfaces. We talk about lessons that can be learned from
DLA and applied to other computation science and engineering
(CSE) domains with the hope that their code can also be generated
automatically.

2. LAYERING AND INTERFACES
DLA operations are vitally important to many domains. CSE

applications are built from layers of functionality, with DLA often
at the bottom. With each successive layer, abstraction reduces the
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amount of detail a software engineer must consider. One does not
need to think about the exact implementation of a function interface.
One only concerns herself with the functionality of an interface
(maybe in terms of preconditions and postconditions). Testing can
be done on the interfaces by themselves (e.g. via unit testing) to gain
trust without looking through and understanding an implementation
of each. The domain expert builds a layer on those interfaces in
terms of computational pieces that make sense to her, for example
thinking of the math involved in a simulation without concern to
target hardware specifics like the cache structure, which is only
considered at lower levels.

Performance is a software requirement for CSE domains. For
example a scientist cannot accept code that takes too long to run on
an expensive distributed-memory (cluster) machine for which she
is paying per core-hour. Therefore, it is essential to find the right
application interfaces that enable both engineering productivity and
performance. DLA experts have been refining and polishing DLA in-
terfaces for decades. From the CSE perspective, the well-established
DLA interfaces found in the BLAS [3] and LAPACK [1] layers are
great for implementing higher-level functionality quickly, easily,
and with good performance. When moving to a new architecture,
different library implementations of those interfaces are assumed
to exist and perform well, and all code built on top of them simply
works.

At this point, the interfaces internal to DLA code (those that CSE
engineers do not look at) have also become well-designed. We have
reached a point where large portions of DLA libraries are ported to
a new architecture by only re-implementing a relatively small set
of routines [12]. Abstraction has enabled DLA library developers
this great productivity enhancer, but for those routines that need
to be implemented, an experts’ work is often rote, tedious, and
error-prone.

The interfaces are such that an expert must implement many
families of related functionality with small tweaks. They are close
enough that it is rote to do, but they are different enough that it
is not simply copying and pasting code with minor changes. For
example take the classic general matrix-matrix multiplication (Gemm)
operation C := AB+ C where A, B, and C are general matrices (no
special form). A and B can each be (conjugate-)transposed or not,
which means an expert has four varieties of implementation to
provide. On some architectures (e.g. distributed-memory), an expert
specializes the implementation based on which of the three matrices
is largest to avoid communicating it. That is a family of 4×3= 12
implementations an expert needs to implement. With the internal
interfaces developed for DLA, though, the code for each of the
twelve is very similar.

Other level-3 BLAS (BLAS3) operations similarly have families
of implementations for each operation. They range from needing
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4 implementations (e.g. for Herk) to 16 (e.g. for Trsm) for good
performance of each of the exposed interfaces. To implement all
of these, a lot of knowledge is repeatedly applied (rote application
of that knowledge) in their code development. For example all
of the BLAS3 are implemented in terms a Gemm suboperation, so
knowledge of how to implement Gemm in different ways is reapplied
for each implementation. Further, many of the same optimizations
are applied repeatedly throughout BLAS3 code. Good interfaces
enable an expert to implement varied functionality with repeated
knowledge application, which improves productivity.

3. EXPERIMENTS WITH INTERFACES
There are two key benefits of abstracting to interfaces that lead

to automating an expert’s work. In this section, we explain those
benefits from the perspective of how the interfaces were developed
naturally by experts (to ease their burden). In the next section, we
explain how these apply to automatic program generation.

First, code is easier to develop because a DLA expert does not
think of all implementation details. Instead, layers of internal in-
terfaces enable an expert to consider only part of the details at a
time. Software layers often coincide with architecture layers. For
example in sequential code there are layered interfaces that target
layers of the cache [4]. At each layer of code, an expert assumes
the interfaces keep the correct pieces of data in certain layers of the
cache for reuse. Therefore, an expert only considers the next layer
of cache. For shared memory, interfaces build on the sequential
interfaces to parallelize for multiple cores. For distributed mem-
ory, interfaces hide sequential processor details, so experts consider
collective communication and computation as interfaces.

Second, interfaces leads to fewer operation types. One can think
of the set of interfaces as primitives for a DLA domain-specific
language (DSL). Experts then code in that DSL, only considering
valid programs in that DSL, which is a small subset of all programs
that can be expressed in a general language like C or Fortran. The
DSLs we talk about here are implemented as libraries within the gen-
eral language. As one can code using only the libraries’ interfaces,
we can think of them as DSLs. Experts only need implementation
knowledge and optimization tricks for those interfaces to get high-
performance code. This is part of the reason why an expert’s task
looks rote for so much of the library development effort. Limited
(but deep domain) knowledge is repeatedly reused.

The FLAME [5] project explores ways to abstract DLA algo-
rithms and their implementations. A hallmark of the project is the
ability to derive correct families of algorithms from a specification
of the computation to be performed. A prototypical algorithm is
shown in Figure 1 (left), which computes Cholesky factorization.
This uses FLAME interfaces to hide details of indexing, allowing
one to reason about the algorithm at a high level of abstraction. Each
of the loop body operations (between the horizontal lines) is one
of FLAME’s computation interfaces1 (which include the standard
BLAS- and LAPACK-like routines). There are a collection DSLs
following the FLAME approach to abstraction/interfaces, which we
now describe.

Elemental [9] is a library of distributed-memory DLA functional-
ity (BLAS and LAPACK-level, i.e. functionality similar to ScaLA-
PACK [2]) as well the basis for that functionality (which makes
up the Elemental DSL). In Elemental there is a small number of
ways (around 10) to distribute data on the processes in a cluster.
The DSL consists of operations to perform collective communi-
cation to redistribute data between the different distributions and

1“Chol” is Cholesky factorization and “Tril” takes the lower-
triangular portion of the input matrix.

there are interfaces to perform computation (the latter are largely
the same as the standard BLAS and LAPACK interfaces). The
FLAME interfaces for indexing are also included to omit indexing
in favor of reasoning about matrix partitions. The benefit of these
interfaces is that parallelizing most sequential DLA algorithms in
high-performance Elemental code is rote (this is described and auto-
mated in [6, 7]). An expert needs to decide which distributions are
efficient and how to redistribute between them. Implementing these
decisions in the DSL is straight-forward from there.

For BLAS-level routines on sequential and shared-memory archi-
tectures, BLIS [12] can be used as a DSL. BLIS is a framework for
quickly porting all functionality of the BLAS to new architectures.
It achieves this goal with good interfaces, where only a limited
number of functions need to be implemented in hardware-specific
code to provide all BLAS functionality. The BLIS framework is
built around those interfaces. The interfaces of BLIS, then, form
a DSL for BLIS developers to implement BLAS and BLAS-like
algorithms. The core interfaces are similar to those used in the
popular GotoBLAS library [4]. To perform an operation like Gemm

efficiently, some data is “packed” into special data buffers, where
the data is rearranged in a way that allows computation kernels to
proceed at high performance. The DSL is a language with those
few packing and computation interfaces and FLAME loop-related
interfaces. BLAS implementations consist of combinations of those
few interfaces.

For LAPACK-level routines on sequential and shared-memory
architectures, libflame [11] uses BLAS and LAPACK-like com-
putation and FLAME interfaces. Thanks to the interfaces, sequen-
tial libflame implementations look very much like FLAME algo-
rithms, as shown in Figure 1 (right), which implements the Cholesky
algorithm.

Each of these libraries can be viewed as DSLs with FLAME
and architecture-specific interfaces. Performance in each case is
comparable to or exceeds similar products that have less-refined
interface. Abstraction was embraced for each as an experiment to
see what could be done with DLA software to improve an expert
engineer’s productive, code readability, and software reliability.

4. ENCODING EXPERT KNOWLEDGE FOR
AUTOMATIC CODE GENERATION

So over time DLA experts have experimented with incorporating
layered interfaces, and the result is better code. Now we can further
improve DLA software and ease an experts’ burden. Anytime a
person’s task becomes rote, automation should be investigated. In
the case of DLA libraries, much of an experts’ development work is
rote thanks to good abstraction, and we can indeed automate it. In
this section, we present the basics of DxT [6, 7], which is used to
encode expert knowledge about DLA interfaces. A system can then
utilize that knowledge to generate high performance code.

In DxT sequential algorithms and their implementations are repre-
sented in directed acyclic graphs (DAGs). Edges represent data flow.
Nodes represent some piece of functionality. A node can either be
1) an interface with no implementation details, only a description
of the computation to be performed, or 2) a primitive, which maps
to given code in the DSL. The set of node types used to construct
graphs includes the interfaces found in the DLA domain.

Here, the goal with DxT is to start with a DAG representing a se-
quential DLA algorithm (e.g. that of Figure 1), encoding knowledge
about the operation to be implemented. Then, we want to transform
it with implementation details into high performance sequential or
parallel code (e.g. distributed-memory Elemental code). To do that,
we encode how to implement DLA interfaces in parallel code (using



Algorithm: A := CHOL_BLK(A)

Partition A→
(

ATL ?
ABL ABR

)
whereATL is 0×0

while m(ATL)< m(A) do
Repartition(

ATL ?
ABL ABR

)
→

(
A00 ? ?
A10 A11 ?
A20 A21 A22

)
whereA11 is b×b

A11 := CHOL(A11)
A21 := A21 TRIL(A11)−T

A22 := A22− TRIL(A21AT21)

Continue with(
ATL ATR
ABL ABR

)
←

(
A00 ? ?
A10 A11 ?
A20 A21 A22

)
endwhile

FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL );

while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) ){
b = FLA_Determine_blocksize( ABR, FLA_BR, FLA_Cntl_blocksize( cntl ) );
FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */
&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,
b, b, FLA_BR );

/*------------------------------------------------------------*/
FLA_Chol( FLA_LOWER_TRIANGULAR, A11 );

FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_CONJ_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11, A21 );

FLA_Herk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
FLA_MINUS_ONE, A21, FLA_ONE, A22 );

/*------------------------------------------------------------*/
FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,
/* ************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL );

}

Figure 1: Left: Algorithmx to compute the Cholesky factorization. m(B) is the number of rows of B and ‘?’ denotes matrix entries
that are not referenced. Only the lower triangular part of the matrix is updated. Right: Sequential implementation of algorithm in
sequential code using the libflame DSL.

lower-level interfaces).
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Figure 2: The top three transformations are refinement options
experts explore to parallelize the loop-body operations of Fig-
ure 1 (left) for the Elemental DSL. The bottom transformation
is an optimization to remove an unnecessary redistribution.

A refinement is a transformation that replaces an interface with a
graph that implements the interface’s functionality (possibly using
other interfaces for layering of interfaces). The top three transforma-
tions of Figure 2 show refinements replacing each of the loop body
operations for Cholesky factorization with one implementation in
parallel Elemental code. The boxes with a→ symbol are primitives
that map to the Elemental DSL primitve for redistributing data via
collective communication (from the distribution on the left of the
arrow to the distribution on the right). The other boxes are computa-
tion primitives. Each transformation encodes knowledge about one
way to parallelize an interface; we encode the various options an
expert considers.

The bottom transformation of Figure 2 is an optimization, which
replaces one subgraph with another. It encodes knowledge about
equivalent ways to implement functionality. Optimizations are
chained together to improve performance. In this example, the
optimization removes an unnecessary collective communication op-
eration, which is important for an expert to do to decrease runtime.

With these two types of transformations, we can encode the design
knowledge that experts use to develop most DLA functionality. The
knowledge can now be passed on to the next generation of experts
(optimization knowledge will not be lost when an expert retires
or when ten years pass without exercising the knowledge). Expert
knowledge is made concrete in terms of the transformations. Further,
by encoding the knowledge, we can enable a system to generate code
automatically. This eases an experts’ burden to implement libraries
of related functionality via the rote reapplication of knowledge.
Further, it gives higher confidence in code when the transformations
are correct by proof or by reasoning and the derived implementation
is then correct by construction — start with a correct algorithm,
apply transformations that maintain correctness, end with a correct
implementation.

To explore the idea of automated program generation for DLA,
we have a prototype system called DxTer [6]. DxTer takes an input
graph and transformations and outputs a high performance imple-
mentation of the input graph. It does this by applying all of the
transformation it can to the input graph, forming a combinatorial
search space of implementations, and choosing the “best” imple-
mentation.

DLA experts make implementation decisions based on an esti-
mate of “cost” like runtime. They aim for the shortest runtime
possible. With Elemental experts predict runtime to choose which
parallelization schemes to use or optimizations to apply. Estimates
are first-order approximations in terms of the amount of compu-
tation performed and the amount of data communicated between
processes [6, 7]. Thanks to the interfaces in Elemental, BLIS, and
libflame, relatively rough cost estimates are good enough to guide
experts without having to implement, compile, run, and time code.
Further, in DxTer we can encode these estimates to automate the
expert’s analysis.



Each primitive has a runtime estimate in terms of the problem
size. The cost of each implementation in the search space is the sum
of all primitives’ costs. The lowest cost implementation is output
from DxTer. The cost estimates are good enough to rank-order
the search space well [6] just as they are good enough to guide an
experts’ choices when manually developing code.

5. LESSONS LEARNED
DLA software has been studied longer than many CSE domains.

We have described how the results are interfaces that help an ex-
pert engineer. Now, those interfaces can also be used to generate
automatically a lot of the code experts manually develop (relieving
them of rote work). Granted, interfaces can result in some lost
performance by hiding opportunities for optimization. With good
interface design, these missed opportunities are minimized. The
gains in engineer productivity and software reliability are deemed
worth small losses.

Further, we have found that in many cases the increase in pro-
ductivity allows engineers to explore new algorithms/ideas that
lead to better performance. With FLAME and its interfaces, one
can derive a family of algorithmic variants for a particular oper-
ation. Generally, one algorithmic variant is not best in all cases.
An engineer can choose from this family for a particular hardware
architecture and problem size, specializing code as needed. Well
designed interfaces enable a variety of algorithms to be implemented
quickly for prototyping and deployment. Automation takes this a
step forward by automating the implementation process and even
the exploration of algorithmic options [8]. Such automation is not
possible without good interface design. Therefore, DLA interfaces
may increase overhead in low-order terms, but the benefit is
increased programmer productivity and automation, which en-
ables faster development of better code.

A lot of the push towards more interfaces came from the need
to port software to very different architectures that were changing
quickly. Only a few experts in the world could do that well, so
they had to increase their productivity. With FLAME a few people
decided on interfaces based on their expertise and experience.
Work on PLAPACK [10] led to interfaces specifically for distributed
memory, and that experience was applied to the entire domain.
This experimentation with interfaces has paid off for a variety of
FLAME’s projects (i.e. derived libraries and DSLs) and has led to a
lot of automatic code generation for those libraries.

The lesson for other CSE domains is that experimentation in
designing good interfaces for software and algorithms is worthwhile.
Fear of increased overhead is reduced by the promise of greater
productivity. Automatic code generation would be an extreme,
where good interfaces take the human developer out of the loop
almost entirely. For DLA it is a reasonable extreme given our results,
so why isn’t the same possible for other domains? Experiments
with interfaces have significantly improved DLA software, so
similar experiments should be undertaken for CSE domains.

A key is that such a push to experiment with, develop, and intro-
duce interfaces must come from domain experts willing to abandon
existing software in favor of new software coded in terms of the
better interfaces. Just as we throw away old hardware that is
obsolete, so too must we throw away old software that is obso-
lete. Learn from experience and invest in software that is more
manageable for the future.

6. CONCLUSION
We have explained how interfaces have been developed for DLA

through years of experience. The people with that experience are

considered experts, who are rare. Their expertise enables them to
balance the overhead of interfaces with the benefits that come from
more understandable, manageable, and maintainable software. This
is a worthwhile end point, but we have also explained how good
interfaces have enabled us to take the human out of the engineering
process entirely for much of the DLA library development effort.
That is to say that an experts’ work is largely a rote reapplication of
knowledge to manipulate the right combination of interfaces. That
knowledge can be encoded using DxT, and the experts’ tedious task
of reapplying knowledge repeatedly for many related functions is
automated.

The ability to automate DLA software generation is the result of
years of effort and experimentation. It is the result of an investment
in interfaces throughout the domain. We believe a similar experimen-
tation should be undertaken throughout CSE domains. For many we
believe the right interfaces are not immediately clear because people
have not attempted to abstract the domain in a wholehearted effort.
Instead, experts have simply responded to changing architectures or
new demands of functionality without finding the domain’s software
patterns. It is time to take a step forward and out of the dark ages of
software engineering where graduate students slave away to produce
the code we need for our science.
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