
Why (Meta-)Theories of Automated Software
Design Are Essential: A Personal Perspective

Don Batory
Department of Computer Science

University of Texas at Austin
Austin, Texas, USA

batory@cs.utexas.edu

Abstract—Program generators are tools that automatically
construct customized programs in a particular domain. Gen-
erators mechanize implicit ”theories” of how a domain expert
would go about writing an efficient program. Abstracting the core
activities of a domain expert and automating them is analogous
to creating and evaluating theories in physics and other natural
sciences. Theories have a revered place in natural sciences;
eventually theories will assume a comparable place in automated
software design. The reason is simple economics: generators will
remove the burden of difficult or mundane tasks from an engineer
to a machine.

Index Terms—automated software design, relational query
optimization, semantic modularity, features, generators.

I. THEORY AND SOFTWARE ENGINEERING

Consider the first two definitions of ”science” from
dictionary.com:

1) a branch of knowledge or study dealing with a body of
facts or truths systematically arranged and showing the
operation of general laws: the mathematical sciences.

2) systematic knowledge of the physical or material world
gained through observation and experimentation.

The dominant paradigm today in Software Engineering (SE)
is for referees to insist on a rigorous hypothesis evaluation
of a proposed technique. A set of tests (observations) must
be conducted by an author and a careful analysis of one
or more hypotheses must be presented. This is the scientific
method. It closely matches Definition 2 and the intended use
of experimental methods in SE. To me, these are ”pre-theory”
activities.

To put this into perspective, a colleague once told me:
“Empirical studies helped design spacecraft, but it was the
theory of gravity that took us to the moon”. Theories are the
big ideas in science, not empirical studies. Empirical studies
help shape and determine the validity of laws, and may indeed
trigger the development of new and improved theories. But the
big ideas (to me) are the theories.

II. THEORIES OF SOFTWARE DESIGN

A colleague once asked me: ”What could be more inter-
esting and more fun than writing a program?” His answer:
”Writing a program that writes other programs”. The depth of
this challenge belies its simple description. Such a program
G must be able to produce many programs that vary in

predetermined ways. G must have an input language—however
primitive—for users to specify what program to output. Ide-
ally, the specification is declarative, much like the way people
select their dinners from restaurant menus or select features
to identify a product to buy. G must be able to reason about
a specification and understand how to map it to an efficient
implementation. In the late 1970s, this challenge was given a
name: automatic programming. The initial attempts to solve it
provided a sobering glimpse of its difficulty [1].

It is common in physics for there to be different and poorly-
related phenomena. A theoretical physicist would select a
set of phenomena and seek a theory that unifies them as
manifestations of the same underlying concepts. The broader
the initial set, the fewer the concepts, the more general and
significant the theory might be. An initial test of a theory is to
check that it does precisely what it claims—not only reproduce
or explain the phenomena of the initial set, but also explain
and predict other phenomena as well.

The phenomena of interest to SE are programs with certain
properties, and G is a program generator that is a concrete
mechanization of an “implicit” SE theory for constructing
domain-specific programs.

III. META-THEORIES OF SOFTWARE DESIGN

History and experience has shown that such SE theories
must be domain-specific to have any chance of success.
Domain-specific design knowledge is often rich and deep, with
few specifics transferable to other domains. It is somewhat
ironic then that domain-specific theories are uninteresting to
the general SE community. Meta-theories are more valued
as their instances are domain-specific theories from which
domain-specific generators can be developed. A meta-theory
identifies domain-independent concepts or a framework to
instantiate to create proper theories; these are the concepts that
should be taught to our students; they will instantiate meta-
theories to produce domain-specific generators of their own.

Meta-theories have been a part of SE education for years,
although existing examples are informal and not very auto-
matic or mathematical. Consider object-oriented (OO) frame-
works [2], which are common in today’s software libraries.
Framework designers understand that a set (a.k.a. domain) of
similar programs will be built frequently. They create an OO



framework to code the common objects and activities of a
domain to minimize what others have to write. The concepts
behind frameworks are fundamental (this is the meta-theory
part), we teach these (meta-theory) concepts, and our students
instantiate the concepts to create frameworks of their own.

UML is another example [3]. It asserts that an OO design
can be documented in the languages of class diagrams, state
machines, etc. (this is the meta-theory part). We teach UML
(meta-theory) concepts to our students; they in turn, instantiate
these concepts to design OO programs of their own. Meta-
theories do indeed exist in today’s SE curriculum. But meta-
theories that focus on automatic programming (G programs)
are hard to find.

It is unclear if automatic programming (meta-)theories were
ever really part of core SE research. Key papers originally
appeared in distant conferences (knowledge engineering, soft-
ware reuse, artificial intelligence, programming languages,
etc.) rather than flagship SE conferences. And for good
reason: not everyone is interested in domain theories and
meta-theories. Meta-theories tend to deal with concepts that
are foreign to main-stream software engineers. Further, G
programs—and what it takes to build them—are not the
focus of popular SE texts and today’s SE curriculum. Broadly
speaking, a good SE text provides a well-organized recitation
of proven SE techniques and analyses, and rarely (if at all)
theories of automated software design.

Case-in-point: The most significant advance in automatic
programming is relational query optimization (RQO), ironi-
cally accomplished in the late 1970s when most others were
giving up on automatic programming in droves [4]. A user
writes a data retrieval specification as a declarative SQL
query; an SQL parser maps a query to an inefficient relational
algebra expression. An optimizer uses algebraic identities to
rewrite the expression, never changing the semantics of the
original, to find a more efficient way to execute it. A code
generator translates an optimized expression to executable
code. This is an elegant solution to automatic programming.
RQO revolutionized databases, bringing it out of the stone-age
1960s to the omni-present and sophisticated technology we
know today. Yet, find one contemporary SE text that explains
RQO, its paradigm, or its connection to automated software
development. I have not found a single text. Not one. It is as
if the result or topic did not exist.

It seems evident that automating the development of well-
understood software should be a prime goal of SE—capturing
and mechanizing the knowledge of domain experts so others
can benefit. But we do not teach design (meta-)theories for
automation. So why should we be surprised that such (meta-)
theories have had little impact or are hard to find?

Another point: theories are not small results—they are
not new algorithms or new engineering techniques that one
can ”evaluate” easily. Theories are most effective for well-
understood domains. Even so, theories often take a long time
to develop; their generators can take months or years to build.
They embody new ways of thinking about old problems.
It takes time and effort to understand their strengths and

limitations. To evaluate a theory properly can take years or
decades—it cannot be done in a single paper (unless to show
where the theory is wrong). Pre-theory and theory activities
seem substantively different; it is not clear that they should be
evaluated in the same way. I suspect that they are.

Offhand, what is an indicator of a good theory or meta-
theory? I have found that if you can explain complex designs
in a simple way, you’re on the right track. Further, external
indicators of success are comments like:1

1) Ok, but so what? What’s the difficulty?
2) That’s nice. But I can’t see how it generalizes to anything

of interest to me.
3) My software is too complicated for this to work.

Comment 3) is reminiscent of a point Tony Hoare made in his
1980 Turing Award Lecture [5]:

There are two ways of constructing a software
design: one way is to make it so simple that there
are obviously no deficiencies, and the other way is
to make it so complicated that there are no obvious
deficiencies.

The first method is far more difficult.
Yet another irony: creating a G program is a good (if not great)
engineering achievement. Simplicity counts. Elegance matters.
Two words that one does not hear enough about SE results.

In summary, our current education system produces exactly
what SE expects: software engineers. I ask the question:
are we producing the scientists of tomorrow that we need?
Are we producing engineers and future leaders who have an
appreciation of theories? If your answer is ”no” to either of
these questions, then the theories I have described will be
under-appreciated for years to come.

IV. WHAT MIGHT A META-THEORY LOOK LIKE?

Developing meta-theories for automated software develop-
ment has been the focus of my career. I believe a small
number of core concepts underpin powerful and practical
meta-theories. My guide is the firm belief that programmers
(including me) are geniuses at making the simplest things com-
plicated; finding their underlying simplicity is the challenge.

The key question is how to express a meta-theory or theory?
I use algebra. I was not educated as a mathematician; my
educational background in the 1970s was software systems
engineering (where mathematics played a non-existent role).
I adopted mathematics as it was the only sensible way to
explain my discoveries and ideas. I have since recognized
a deeper reason: programs are sophisticated structures. Tools
of a software engineer manipulate these structures: compilers
map source code to byte code; refactoring tools restructure
source code; Model Driven Engineering (MDE) is all about
transforming models of one type to models of another. SE
is replete with such examples. Mathematics is the science of
structure and structure manipulation. Given this, it is not a
big intellectual leap to believe there must be a fundamental

1Often these comments are part and parcel of negative reviews.



connection. Frankly, the use of mathematics should come as
no surprise to any scientist or engineer outside of SE; within
the sub-discipline of software design there is a very limited
embrace of this connection.

My work has centered on semantic modularity—the mod-
ularization of semantic changes (typically increments) in pro-
gram functionality. Semantic modularity is not code modular-
ity: if you add new functionality to a program, you have to
update a program consistently in lots of different places. And
if you remove this functionality, all of these updates must
be removed simultaneously, much like a database transaction.
Modularizing such changes as an atomic unit is the goal.

Semantic modularity—called features—has been known for
over 20 years [6]. Different communities have pursued their
own agendas, terminologies, and distinctive takes on these
ideas. With few exceptions, most do not express their meta-
concepts algebraically.

To give a sense of what I’m talking about, I briefly illustrate
two core ideas that are elegantly expressed algebraically, and
of an algebraic theory that has had a modicum of success in
Software Product Lines (SPLs).

A. An Example of An Algebraic Meta-Theory

1) Basics of SPLs: A set or domain D of programs can
be constructed from a feature set ~D = {F1 . . .Fn}. Each
program in D is identified with a unique combination of
features. Features are composed by an abstract operation +.
So each program P ∈ D is compactly written as the sum of
a unique set of features (a.k.a. functionalities) from ~D, e.g.
P = F4 + F3 + F1, called a feature expression [7].

2) Implementations and Homomorphisms: Programs have
many concrete representations: source code σ, documentation
δ, makefile µ, etc. We want to construct each by module
composition.

Suppose P = F4 + F3 + F1. The source code of P, namely
σ(P), is constructed by code-composing (⊕) the code modules
for each of P’s features:2

σ(P) = σ(F4 + F3 + F1) = σ(F4)⊕ σ(F3)⊕ σ(F1)

That is, we translate a feature expression into a source-
code module expression to synthesize P’s code. Mapping an
expression in one algebra to an expression in another is a
homomorphism [8]. Homomorphisms are at the core of recent
SPL results, reviewed next.

3) Recent Instances of the Meta-Theory:

• Siegmund et al. [9] showed how to compute a perfor-
mance estimate π for a given workload for any P ∈ D.
Procedures were given to estimate the delta in perfor-
mance that each feature contributes to a program. Assum-
ing performance estimates of features are arithmetically
added, their work relied on the identity:

π(A+ B) = π(A) + π(B)

2Or more generally: σ(A+ B) = σ(A) σ(+) σ(B).

Surprisingly accurate predictions were reported using this
simple approach.

• Apel et al [10] showed how different program repre-
sentations can be encoded as syntax-trees and feature
composition maps to syntax-tree composition. Given the
grammar of a language λ and rules for composing λ
syntax-trees, FeatureHouse generates a tool that imple-
ments the following homomorphism:

λ(A+ B) = λ(A) +λ λ(B)

That is, the generated tool parses the λ modules for A and
B and composes them with the syntax-tree composition
operation +λ.

• The most sophisticated use to date of homomorphisms
is by Delaware et al. [11], who showed how proofs
of correctness of a program could be synthesized from
its feature expression. The target domain, FJ , con-
tains dialects of Featherweight Java. An integral part
of any type system are the meta-theoretic proofs that
show type soundness—the guarantee that the type sys-
tem statically enforces the desired run-time behavior of
a language, typically preservation and progress.3 Four
different representations of each feature—syntax, typing
rules for preservation, evaluation rules for progress, and
the proofs—were encoded as separate modules in the Coq
proof assistant [12]. The δ homomorphism (1) com-
poses syntax, typing rule, and evaluation rule modules
and the ψ homomorphism (2) composes proof modules,
each operation implemented by a Coq library [13]:

δ(A+ B) = δ(A) +δ δ(B) (1)
ψ(A+ B) = ψ(A) +ψ ψ(B) (2)

Each distinct module for feature syntax, feature typing
rules, etc. is certified once by Coq (this is the expensive
part) and reused as-is. Coq mechanically verifies the
correctness of a composite proof by a simple interface
check.

4) And More: There is over two decades of evidence that
features can be used to specify programs in diverse domains.
There is considerable evidence that the meta-theory described
above has wide applicability.

There are many extensions to this meta-theory: the inclusion
of feature interactions [14], feature models that define legal
feature expressions (as not all features are compatible) and
their relation to propositional formulas [15], and hierarchically
recursive applications of algebras (that these same concepts
apply at all levels of abstraction) [16]. As limitations are
discovered, generalizations of this meta-theory are proposed,
just like theories in physics and other natural sciences.

3Preservation says if expression e of type T evaluates to a value v then
v also has type T. Progress says expression evaluation does not get ”stuck”,
i.e. there are no expressions that cannot be evaluated.



B. More General Meta-Theories

As in physics where theories are special cases of more
general theories, the same holds here. Semantic modules can
also be understood as program transformations—mappings
of one program (representation) to another (representation).
More general meta-theories are elegantly grounded in category
theory (CT) [8]. It has been shown that SPLs and MDE are
different manifestations of the axioms of CT, but at different
levels of abstraction [17].

Having said the above, I know what most people who read
this must be thinking. A few years ago a colleague said to me:
“Using category theory is the kiss of death”, meaning anything
connected to CT is the perfect way to kill a line of research.
This is understandable: existing texts on CT are impenetrable
because they give impractical examples for software engineers
to appreciate and understand. It takes effort and the right set
of examples to bridge the gap.

Let me also remind critics that the relational data model
was based on set theory—roughly the first couple pages
of a set theory text. This was of great disappointment to
mathematicians, but it was exactly the right language and
exactly the right level of simplicity that database researchers
grew to appreciate.

My prediction is that elementary CT will play a comparable
role in automated software development, just as elementary set
theory played a foundational role in relational databases. You
don’t have to be a mathematician to appreciate the impact
of set theory on databases; the same will hold for CT and
automated design. So to critics who say CT is irrelevant to
software design: it is time to leave the dark ages.

V. WHY (META-)THEORIES ARE ESSENTIAL TO SE

An essential activity of SE is program design. Program
design involves abstraction: it is a process of distinguishing
essential ideas from non-essential. A generator scales abstrac-
tion to a family of domain-specific programs. Meta-theories
scale abstraction further to diverse domains, thereby laying the
groundwork for a more economical production of programs.

Just as programs should not be hacked, generators should
not be hacked. Both require thought and effort. The reasons
why a generator works in one domain is likely the same
reasons why other generators have worked in others. Meta-
theories can be deep intellectual excavations to understand the
reasons for why programs work the way they do, and that they
do not work by accident.

A meta-theory will tell you how your tools should work. It
will tell you that certain fundamental identities (e.g., homo-
morphisms) must hold otherwise your tools, designs, or ideas
are wrong [18]. In mature technical communities, there is an
accepted way to think about problems and how to formulate
solutions (e.g. type systems for programming languages, re-
lational algebra and sets for databases). Meta-theories bring
organization to what would otherwise be intellectual chaos.

VI. CLOSING THOUGHTS

The big ideas in science are theories, not empirical studies.
Still, algebraic meta-theories will be resisted for many reasons.
The primary reason is that people will need to learn something
new and to appreciate the value in doing so. But isn’t this the
substance of scientific advances? SE today largely practices
“pre-theory” science. The more important half of science re-
mains to take its place in SE education, history, and discourse.

Acknowledgments. I am grateful for conversations with B.
Delaware, P. Höfner, W. Lawvere, C. Lengauer, B. Marker,
M. Myers, and B. Möller in shaping my view of algebra
and the contents of this paper. I also gratefully acknowledge
support for this work by NSF projects OCI-1148125 and CCF-
1212683.

Any opinions, findings and conclusions or recommendations
expressed in this paper are those of the author and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] R. Balzer, “A 15 year perspective on automatic programming,” IEEE
Transactions on Software Engineering, 1985.

[2] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
Object-Oriented Programming, 1998.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 2010.

[4] P. G. Selinger, M. M. Astrahan, D. D. Chamberlain, R. A. Lorie,
and T. G. Price, “Access Path Selection in a Relational Database
Management System,” in ACM SIGMOD, 1979.

[5] C. A. R. Hoare, “The emperor’s old clothes,” CACM, 1991.
[6] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-

oriented domain analysis (foda) feasibility study,” 1990, cMU/SEI-90-
TR-021.

[7] D. Batory and S. O’Malley, “The Design and Implementation of Hier-
archical Software Systems with Reusable Components,” ACM TOSEM,
1992.

[8] B. Pierce, Basic Category Theory for Computer Scientists. MIT Press,
1991.

[9] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov, “Scalable prediction of non-functional properties
in software product lines,” in SPLC, 2011.

[10] S. Apel, C. Kästner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in ICSE, 2009.

[11] B. Delaware, W. Cook, and D. Batory, “Theorem proving for product
lines,” in OOPSLA/SPLASH, 2011.

[12] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Springer
Verlag, 2004.

[13] B. Delaware, B. C. d. S. Oliveira, and T. Schrijvers, “Meta-theory à la
carte,” in POPL, 2013.

[14] D. Batory, P. Höfner, and J. Kim, “Feature Interactions, Products, and
Composition,” in GPCE, 2011.

[15] D. Batory, “Feature Models, Grammars, and Propositional Formulas,”
in SPLC, 2005.

[16] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Refine-
ment,” IEEE TSE, Jun. 2004.

[17] D. Batory, M. Azanza, and J. Saraiva, “The Objects and Arrows of
Computational Design,” in MODELS, 2008.

[18] G. Freeman, D. Batory, R. G. Lavender, and J. N. Sarvela, “Lifting
transformational models of product lines: a case study,” Software and
System Modeling, 2010.


