
Dark Knowledge and Graph Grammars
in Automated Software Design

Don Batory1, Rui Gonçalves2, Bryan Marker1, Janet Siegmund3

1 University of Texas at Austin, Austin, TX 78712 USA
batory@cs.utexas.edu, marker@cs.utexas.edu

2 Universidade do Minho, Braga, Portugal
rgoncalves@di.uminho.pt

3 University of Passau, Germany
feigensp@ovgu.de

Abstract. Mechanizing the development of hard-to-write and costly-to-maintain
software is the core problem of automated software design. Encoding expert knowl-
edge (a.k.a. dark knowledge) about a software domain is central to its solution.
We assert that a solution can be cast in terms of the ideas of language design and
engineering. Graph grammars can be a foundation for modern automated soft-
ware development. The sentences of a grammar are designs of complex dataflow
systems. We explain how graph grammars provide a framework to encode expert
knowledge, produce correct-by-construction derivations of dataflow applications,
enable the generation of high-performance code, and improve how software design
of dataflow applications can be taught to undergraduates.

1 Introduction4

Like many of you, I read popular science articles. I especially enjoy discussions on
current problems in theoretical physics. My favorite problem is that roughly 80% of
the mass of our universe is made of material that scientists cannot directly observe. It
is called dark matter. Dark matter emits no light or energy, but is not entirely invisible.
Scientists know it exists because with it they can explain the otherwise unusual rotations
of galaxies, the unexpected bending of light in empty space, and the surprising fact that
the expansion of our universe is accelerating. The issue of dark matter has been known
for at least 25 years [2], yet today it remains poorly understood.

Dark matter reminds me of a corresponding problem in software design. Software
design is a series of decisions whose effects are seen in programs, but are not directly
observable. In analogy to dark matter, I call it dark knowledge. Dark knowledge is
fleeting. Programmers may know it one day and forget it the next. It is not present
in source code. Yet we know dark knowledge exists, because with it we can explain
program designs. If an engineer makes a certain decision, (s)he would expect to see
algorithm α in a program; with an alternative choice, (s)he would see β. The presence of
dark knowledge in programs has been known for at least 30 years [6,9,22], and today it
too remains poorly understood.

4 As this paper transcribes a keynote presentation, “I” refers to Batory’s personal experience and
“We” refers to the experience of all authors.

dsb
Text Box
keynote: Software Language Engineering 2013

2

sle‐1

spec spec’

cone of
implementations

(a) (b)

Fig. 1. Cone of Implementations for a Specification.

Dark knowledge is important. Software design starts with a formal or informal
specification. We know that there are huge numbers of possible programs that could
implement a spec (indicated by the “cone of implementations” in Fig. 1a, [3]). With
domain and software-engineering knowledge, an engineer makes a series of decisions
to create a program to implement the spec. The dashed lines in Fig. 1a indicate “dark
knowledge”: the engineer starts with an existing program (possibly the empty program)
P0 that typically does not satisfy the spec, makes a series of modifications (one per
decision) to ultimately arrive at a program that does satisfy the spec. This chain of
decisions is fleeting—over time it is forgotten, thereby losing vital knowledge about
the program’s design. When the spec is updated (Fig. 1b), engineers who maintain the
program effectively have to recreate the series of decisions that lead to the original
program, erase a previous decision, and replace it with those that are consistent with the
new spec. In time, these decisions are forgotten as before, bringing us back to square
one where design knowledge is dark.5

The connection to language design is immediate in a shallow way: language design
and language implementation are instances of these ideas. They too involve a series of
decisions whose effects can be seen, but not explicitly encoded. Consequently, the same
problems arise: vital design knowledge for maintenance and evolution is lost.

The importance of dark knowledge is well-known. Making dark knowledge white
(explicit) was expressed in 1992 by Baxter in his paper on “Design Maintenance Sys-
tems” [6]. More recently, another version of this idea arises in self-adaptive and self-
managing software [48] . Here, the goal is to encode design decisions explicitly in
software to make dark knowledge white, so these decisions can be revisited and rede-
cided automatically (possibly with a human in the loop). Illuminating dark knowledge
embodies a new approach to software development [40].

The approach presented in this paper to make dark knowledge white is called Design
by Transformation (DxT) [17,21,37,38,46,50].

2 How Dark Knowledge Can Be Encoded

The challenge is how to encode dark knowledge thereby making it white. Transforma-
tions can do this. Fig. 2 shows the basic idea. Starting with program P0, a series of
transformations τ4 · τ3 · τ2 · τ1 is applied to produce the desired program P4. Of course,
today each of these transformations is accomplished manually: P0 is hacked into P1, P1

5 Dark knowledge can be encoded in code comments, but this is woefully inadequate.

3

଴ܲ Pସଵܲ ଶܲ ଷܲ
߬ଵ ߬ଶ ߬ଷ ߬ସ

sle‐2

grammar
࣡

cone of
sentences

࣭

(a)

A B + C* ()࣭ =

(b)

∅

Fig. 2. Program Derivation.

is hacked into P2, P2 into P3, and P3 into P4. With enough experience, an engineer can
skip intermediate steps. But if each transformation were programmed so that it could
be applied by a tool, P4 would be automatically derived from P0. It is this automation
mindset that drives DxT.

β γ

β γ

α ଵ(a)ିߙ

β α ଵିߙ
β

ߚ

(b)

γ α ଵିߙ
ߛ

γ

(c)

ଵα(d)ିߙ

grammar ࣡

cone of
sentences

S

(a)

A B + C* ()S =

(b)

S0

S0

Fig. 3. The Language of a Grammar
and a Parse Tree of Sentence S

Program derivation in DxT is related to gram-
mars and parse trees. A grammar G for a lan-
guage is a set of rules called productions that de-
scribe how to form sentences (in the language’s
alphabet) that are valid according to the lan-
guage’s syntax. The set of derivable sentences
is the language L(G). Fig. 3a shows grammar
G and its cone of sentences L(G). What I have
called dark knowledge is a sequence of decisions
that derives a particular sentence S (the dashed
arrows in Fig. 3a). Starting from a representa-
tion S0 that likely does not belong to L(G), a
series of decisions (production invocations) de-
rives S. This derivation, of course, is the parse
tree of S: it is a proof that S ∈ L(G) (Fig. 3b).
It also represents the not-so-dark knowledge of
S. Characteristic of dark knowledge is that there
is no direct evidence of these productions in S

itself; all that appears are their after-effects. Such
knowledge is important; given the abstract syntax tree (AST) of a program, one can auto-
mate program manipulations, such as refactorings. Without such knowledge, refactorings
would be difficult, if not impossible, to perform correctly.

In over 25 years of studying program design, I have come to see typical programming
languages and their grammars as one-dimensional; their sentences (eg Java programs)
are simply 1D strings. This is not enough: to see the possibilities that arise in program
development, one has to think in terms of n≥2 dimensional graphs, not 1D lines.

I focus on dataflow programs in this paper. They are not representative of all programs,
but they do occupy a significant group of programs that are developed today. A dataflow
program can be visualized as a graph of computations, where nodes are primitive
computations and edges indicate the flow of data. Fig. 4a is an example: α,β,γ are
computations; data enters on the left and exits on the right. Although it is always possible
to map dataflow graphs to 1D programs, there is an important distinction between 1D
and nD grammars, which I’ll discuss later in Section 5.1.

Informally, graph grammars are generalizations of Chomsky string grammars.
They extend the concatenation of strings to a gluing of graphs [10,15]. Productions
are of the form Graphleft → Graphright; ie replace Graphleft with Graphright.6

6 There are different formalisms for graph grammars [47]. DxT grammars follow the algebraic
(double-pushout) approach to (hyper-)graph grammars.

4

β γ

β γ

α ଵ(a)ିߙ

β α ଵିߙ
β

ߚ

(b)

γ α ଵିߙ
ߛ

γ

(c)

ଵα(d)ିߙ

grammar ࣡

cone of
sentences

࣭

(a)

A B + C* ()࣭ =

(b)

଴ܲ

Fig. 4. A Dataflow Graph and 3 Rewrites

Derivations are of the form Graphinitial
⇒∗ Graphfinal; ie apply a sequence
of rewrites to Graphinitial to produce
Graphfinal. Graph grammars have
been used for many purposes, such as
design of visual languages [19,44,59],
model synchronization [20,28], model
validation [25,52], program compila-
tion [49], and dynamic adaptation/evol-
ution of architectures [11,14,33,55,56].

Fig. 4 shows three rewrites. Fig. 4b
replaces a β computation with a
graph of computations (eg a map-
reduce of β). Fig. 4c shows the same
for γ. Fig. 4d shows that of α fol-
lowed by α−1 cancels each other,
yielding an identity map. Fig. 5 is
a derivation that starts at an initial graph where computation β precedes γ to the final
graph of Fig. 4a using the rewrites of Fig. 4b-d.

	β

ߚ	

ߙ	 ଵିߙ	 	γ

β	ߛ

ߚ	ߛ	

ߙ	ଵିߙ		 ଵିߙ	 ߙ	

ߚ	 ߛ	

௜௡௜௧௜௔௟݄݌ܽݎܩ

ߚ	 ߛ	

ߚ	 ߛ	

ߙ ଵିߙ	

௙௜௡௔௟݄݌ܽݎܩ

Fig. 5. Graphinitial⇒∗ Graphfinal

A direct analogy of 1D and nD
grammars would have both defining the
syntax of a language. For example, it
is easy to imagine a language of cyclic
graphs, where each node is connected
to exactly two other nodes. DxT goes
further in that each production defines a
semantic equivalence between its LHS
and RHS graphs.

There is a subtle distinction be-
tween a graph grammar and a graph-
rewriting system: the former enumer-
ates all graphs from some starting
graph and the latter transforms a given
state (host graph) into a new state [57].
In this sense, DxT is closer to a graph
grammar.

All of this is rather abstract, so let’s
pause here to see a concrete example.

3 Upright: A Synchronous
Crash Fault Tolerant Server

Upright was the state-of-the-art Byzan-
tine crash fault tolerant server in 2009
[8]. We were interested in its dataflow

5

design. Talking to the Upright authors, we soon discovered that ∼15 people on earth
really understood it (and we certainly were not among them). It posed a challenging
reverse engineering task [46]. In this section, we review Upright’s Synchronous Crash
Fault Tolerant (SCFT) design in terms of DxT. Doing so turns its dark knowledge white.

Fig. 6. Cylinder

Upright’s starting dataflow graph is Fig. 7a. (My apology for the
size of this figure; it can be digitally enlarged). Such a graph in Model
Driven Engineering (MDE) is called a Platform Independent Model
(PIM). Clients (the C boxes) asynchronously send requests to a stateful
server (box VS); the network effectively serializes these requests (box
Serialize). The server reads each request, updates its state, and then
sends out a response. The network routes the response back to the
originating client (box Demultiplex). In effect, messages exiting on
the right of Fig. 7a re-enter the figure on the left, as if the graph were
embedded on the surface of a cylinder (Fig. 6).

The derivation of Upright’s implemented dataflow graph, called a Platform Specific
Model (PSM), begins with the transition from Fig. 7a to Fig. 7b that exposes a network
queue (L) in front of the server (S). Next, the transition from Fig. 7b to Fig. 7c effectively
performs a map-reduce of both L and S [29]. Fig. 7d is a copy of Fig. 7c that shows
the subgraphs to be replaced (to eliminate single points of failure). The SCFT dataflow
design of Fig. 7e is a PSM for Fig. 7a [46]. We used this derivation to reimplement
Upright’s SCFT design [46].

The semantics of these rewrites are well-understood by experts of SCFT design; for
this presentation, we view them as sterile graph transformations.

(a)

(b)

(c)

(d)

(e)

Fig. 7. Upright’s SCFT PIM⇒∗ PSM Mapping.

6

3.1 DxT and the Essence of Graph Grammars

A graph grammar GG is an ordered pair (g,P); g is the starting graph and P is a set of
graph productions. The language of GG , L(GG), is the set of graphs that can be derived
by applying the rules in P to g [10,15,47].

DxT builds on this foundation: (1) the primitive computations (operations) of a
domain are the alphabet of GG , (2) the fundamental computational equivalences of
the domain are its graph transformations (which encode the fundamental patterns of
computation that were previously dark knowledge), and (3) the initial graph g is the
PIM of an application and L(GG) is the set of its PSMs—the cone of implementations
for g. DxT goes further, in that the initial graph can be a member of a domain of PIMs,
g ∈ Gpim.

There are indeed distinctions between 1D and nD grammars. Here are a few:

– In general, the parse of a sentence in a 1D grammar should be unique; the grammar
is either unambiguous or it is ambiguous with context making a parse unambiguous.
Not so for nD grammars: multiple parses of a dataflow program simply means
there are multiple equivalent ways of deriving that program—a perfectly acceptable
situation.

– 1D productions do not need proofs of correctness—they simply define a textual
pattern where there is nothing to prove. In contrast, each DxT rewrite defines a
fundamental computational equivalence in a domain; there should be some evidence
(ideally a proof) that each rewrite is correct.

– A parse tree for sentence S in a 1D grammar G is proof that S is a sentence of L(G).
A derivation tree for dataflow application S in an nD grammar GG is a proof that
S ∈ L(GG), ie S is a correct-by-construction implementation of g.

– 1D technology aims at parsing sentences. Although DxT can also be used for reverse
engineering (parse the design of a legacy application), here we use it to derive
programs (and explore the space of implementations of a spec).

It is not difficult to imagine the utility of Upright’s DxT explanation. I could go into
more technical details about DxT now, but that would be overkill. Instead, a big picture
is needed to motivate this general field of research, which I consider next.

4 Who Cares? Motivations from Practice

Software Engineering (SE) largely aims at techniques and tools to aid masses of pro-
grammers whose code is used by hoards—these programmers need all the help they
can get. At the same time, there are many domains where programming tasks are so
demanding that there are only a few programmers that can perform them—these experts
need all the help that they can get, too.

As said earlier, the focus of my research group is on dataflow domains which
represent an important class of today’s applications (eg virtual instrumentation [53]
and applications of streaming languages [54]). The specific domains of our interest
include parallel relational join algorithms [12], crash fault tolerant file servers [8],
and distributed-memory, sequential, and shared-memory Dense Linear Algebra (DLA)
kernels [37,38].

7

In practice, domain experts magically produce a big bang design: the dataflow graph
of the complete application. Typically, it is a spaghetti diagram. How it was created and
why it works are mysteries to all but its authors. For academic and practical reasons, it
seems intuitively better to derive the graph from domain knowledge; doing so would
answer both questions.7 A digitally enlargeable Fig. 8 shows a DxT derivation of the
parallelization of hash joins in the Gamma database machine [12]. Ask yourself: would
you want only Gammafinal or its derivation Gammainitial⇒∗ Gammafinal? I return to this
point in Section 6.

HJOINA
B

A*B

BLAS3 # of Variants

Gemm 12

Hemm 8

Her2k 4

Herk 4

Symm 8

Syr2k 4

Trmm 16

Trsm 16

Fig. 8. Derivation of the Gamma Join Algorithm

Our current project focuses
on the generation of DLA ker-
nels/libraries. Kernel portability
is a serious problem. First, port-
ing may fail: kernels for dis-
tributed memory (where commu-
nication between cores is explic-
itly handled via a high-speed net-
work [38]) may not work on se-
quential machines and vice versa.
Second, if it does work, it may
not perform well. The choice of
algorithms to use on one hard-
ware architecture may be different
from those to use on another. One
cannot simply “undo” optimiza-
tions and apply others—hopefully
the reason for this is clear: such
changes require dark knowledge.
Third, in the worst case (which
does frequently happen), kernels
are coded from scratch.

Why is this so? The primary
reason is performance. Applica-
tions that make DLA kernel calls
are common to scientific comput-
ing, eg simulation of airflow, climate change, and weather forecasting. These applications
are run on extraordinarily expensive machines. Time on these machines costs money;
higher performance means quicker/cheaper runs or more accurate results. Bottom line:
Application developers want the best performance to justify their costs [35].

Consider distributed-memory DLA kernels. They deal with Single Program, Multiple
Data (SPMD) hardware architectures: the same program is run on each processor, but
with different inputs and processors communicate with one another. The operations that a
DLA kernel is expected to support is fixed—they have been well-known and well-defined
for 40 years. Fig. 9 lists some of the Level 3 Basic Linear Algebra Subprograms (BLAS3),

7 This is no surprise to scientists. Physics students, for example, typically rederive equations to
understand a paper. Similar activities occur in Computer Science.

8

which are matrix-matrix operations [13]. (Level 2 deals with vector-matrix operations
and Level 1 vector-vector operations.) There is Gemm, general matrix-matrix multiply,
Hermitian Hemm, symmetric Symm, and triangular Trmm matrix-matrix multiplies. Trsm
solves non-singular triangular system of equations.

HJOINA
B

A*B

BLAS3 # of Variants

Gemm 12

Hemm 8

Her2k 4

Herk 4

Symm 8

Syr2k 4

Trmm 16

Trsm 16

Fig. 9. The BLAS3

What is unusual from an SE perspective is that each opera-
tion has many variants. Consider Gemm. With constants α,β, the
general form of this operation is:

C := α ·A ·B+β ·C
where matrices A and B are either “normal” or transposed. That’s
4 possibilities. Further, the implementation of Gemm is specialized
for distributed memory based on whether A, B, or C is largest.
That’s another 3 for a total of 4×3 = 12. A similar variety is
required for other operations.

We also must consider “LAPACK-level” algorithms, which
call DLA and BLAS3 operations, such as solvers, factorizations
(eg Cholesky), and eigenvalue decompositions [1]. We have to
generate high-performance algorithms for these operations, too.

Let me be clear: our work on DLA kernels did not start from scratch. We mechanized
portions of van de Geijn’s FLAME project [26] and the distributed-memory DLA library
Elemental [42]. FLAME and Elemental leverage 15 years of polishing elegantly layered
designs of DLA libraries and their computations. FLAME and Elemental provided the
foundation for us to convert dark knowledge of DLA into white knowledge.

4.1 Performance Results

We used two machines in our benchmarks: Intrepid, Argonne’s BlueGene/P with 8,192
cores and 27+ TFLOPS peak performance and Lonestar of the Texas Advanced Comput-
ing Center with 240 cores and 3.2 TFLOPS peak performance. We compared our results
against ScaLAPACK [7], which is the standard linear algebra library for distributed
memory machines. Each installation of ScaLAPACK is auto-tuned or manually-tuned.
ScaLAPACK was the only DLA library, other than Elemental, for these machines.

DxTer is our tool that generates Elemental code [34,37]. It takes a PIM g of a
sequential DLA program as input. It exhaustively applies all of the productions P in
its library to produce the space of all of g’s implementations L((g,P)) in distributed
memory. Using cost functions to estimate the performance of each derived graph, the
most efficient graph is chosen.8

We used DxTer to automatically generate and optimize Elemental code for BLAS3
and Cholesky FLAME algorithms. Fig. 10 shows the performance for BLAS3. Overall,
DxTer-generated code executes significantly faster than its hand-written ScaLAPACK
counterparts. Fig. 11 shows the performance of Cholesky factorization. Again, DxT-
er generated-code is noticeably faster, which is the same or better than hand-coded
Elemental implementations. These graphs are typical of DxTer results [36,37,38].

Today, Elemental is shipped with DxTer-generated algorithms [16].

8 This process of mapping an abstract specification to an efficient implementation is historically
called automatic programming.

9

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

G
em

m
 N
N

G
em

m
 N
T

G
em

m
 T
N

G
em

m
 T
T

Sy
m
m
 L
L

Sy
m
m
 R
L

Sy
m
m
 L
U

Sy
m
m
 R
U

Sy
r2
k
LN

Sy
r2
k
LT

Sy
r2
k
U
N

Sy
r2
k
U
T

Sy
rk
 L
N

Sy
rk
 L
T

Sy
rk
 U
N

Sy
rk
 U
T

Tr
m
m
 L
LN

N

Tr
m
m
 R
LN

N

Tr
m
m
 L
LT
N

Tr
m
m
 L
U
N
N

Tr
sm

 L
LN

N

Tr
sm

 R
LN

N

Tr
sm

 L
LT
N

Tr
sm

 L
U
N
N

Pe
rf
or
m
an

ce
 (G

FL
O
PS
) ScaLAPACK

DxTer

sle‐7
Fig. 10. BLAS3 Performance on Intrepid.

0

200

400

600

800

1000

1200

1400

1600

1800

4000 8000 12000 16000 20000 24000 28000 32000 36000 40000

Pe
rf
or
m
an

ce
 (G

FL
O
PS
)

Matrix Dimension Size

DxT

ScaLAPACK

Fig. 11. Cholesky Performance on Lonestar.

4.2 State-of-the-Art vs. Our Group’s Vision

Today’s linear algebra libraries exist as code. They are rewritten manually as the archi-
tecture du jour changes, and it changes rapidly. Consequently, library development lags
far behind architecture development, by as much as a decade. Attaining sub-optimal
performance on the latest and greatest machines carries a big price for end users.

This is not sustainable. We argue that linear algebra libraries written in a specific
language for a specific architecture should never be developed entirely manually. Instead,
tools, techniques, and theories are needed to encode algorithms, expert knowledge,
and information about target architectures. The majority of code libraries can then
be generated automatically. Experts can overlook optimizations and make mistakes.
Machines can not. Performance of generated code is as good as or better than hand-
written [36,37,38]. For algorithms that cannot be automatically generated, experts will
now have more free time to code them manually. This code can eventually be cast
in terms of transformations to encode its dark knowledge. In short, automation will
ultimately be a faster, cheaper, better, and more sustainable solution the development of
libraries for linear algebra (cf [4]).

10

4.3 DxT Limitations and Salute to Prior Work

DxT is not limited to stateless computations; DxT was originally developed to explain
the stateful design of Upright. DxT can be applied to any dataflow domain where the
mechanization of rote and/or high-performance code is needed. There are huge numbers
of such domains representing great diversity [53].

We would be remiss in not acknowledging prior projects with similar goals and ideas.
Among them are the pioneering works on correct-by-construction and deductive program
synthesis [24], Amphion [32], rule-based relational query optimization (from which
DxT is a direct descendant) [31], SPIRAL [43], the Tensor Contraction Engine [5], and
Build-To-Order BLAS [51]. These projects were successful, because their authors put
in the effort to make them succeed. Unfortunately, the successes of these projects are
known to far too few in the SE community. I return to this point in Section 6.

5 Technical Details

With the big picture made clear, let’s now drill down to see some details—what in MDE
is called the metamodel—of DxT. There are three basic “objects” in DxT: interfaces,
primitives, and algorithms. An interface is exactly what it suggests: It is a box that
defines only the input/output ports and—at least informally—box semantics. A primitive
is a box that implements a fundamental computation (operation) in code. An algorithm
is a dataflow graph that references interfaces and primitives.

DxT has two basic “relationships”: refinements and abstractions. A refinement
replaces an interface with an implementation (primitive or algorithm). An abstraction
rewrites in the opposite direction: from primitive or algorithm to an interface.9

Interfaces have preconditions (no surprise). But primitives and algorithms may have
preconditions of their own that are stronger than the interfaces they implement (this is
different). Fig. 12 is a classical example. The sort interface takes a stream of recordsExample: Sorting Streams

sle‐10

݅݊ଵ ଵݐݑ݋ ; ݎ݁݀ݎ݋	݀݁ݎ݅ݏ݁݀	݊݅	ݕ݀ܽ݁ݎ݈ܽ	݉ܽ݁ݎݐݏ

ଵ݊݅ݐݎ݋ݏ	 ଵݐݑ݋ ଵ݊݅݇ܿ݅ݑݍ	 ଵݐݑ݋

ଵ݊݅݁݃ݎ݁݉	 ଵݐݑ݋

ݐݎ݋ݏ	

ݐݎ݋ݏ	
݄ݏ݄ܽ	 ଵ݊݅݁݃ݎ݁݉݋	 ଵݐݑ݋

Fig. 12. The sort Interface and its Implementations.

as input and produces a sorted stream as output. (The sort key parameter is not shown).
The first two refinements show quick-sort and merge-sort as primitives. The third
shows a map-reduce implementation, where hash and omerge are primitive and any

9 There is more to DxT, but this is sufficient for this paper. See [21,46] for more details.

11

implementation of sort can be substituted for sort interfaces. The last refinement is the
focus of this discussion: it says if the input stream is already in sort-key order, nothing
needs to be done. This donothing algorithm has a precondition that is stronger than its
sort interface.

The Liskov Substitution Principle (LSP) is a hallmark of object-orientation [30]. It
says if S is a subtype of T, then objects of type S can be substituted for objects of type T
without altering program correctness. Substituting an interface with an implementing ob-
ject (component) is standard fare today and is a way to realize refinement in LSP [39,58].
The key constraints of LSP are that preconditions for using S can not be stronger than
preconditions for T, and postconditions for S are not weaker than that for T.

The donothing refinement is incompatible with LSP. In fact, LSP is too restrictive
for graph rewriting; another principle is at work. In 1987, Perry [41] said a box A (read:
algorithm or primitive) is upward compatible with box I (read: interface) iff:

pre(A)⇒ pre(I) ; preconditions can be stronger

post(A)⇒ post(I) ; postconditions can’t be weaker

This is exactly what we need, which we call the Perry Substitution Principle (PSP) [41].
It is a practical alternative to LSP that dominates the DxT world. PSP takes into account
the local conditions surrounding an interface to qualify legal refinements. We could not
re-engineer legacy designs without it.

Abstraction—which replaces an implementation with an interface—has stronger
constraints than refinement. It implies that a graph A must implement I. For this to hold,
the pre- and postconditions of A and I must be equivalent [21]:

pre(I)⇔ pre(A)

post(I)⇔ post(A)

5.1 Optimizations

Earlier we used rewrites that replace a graph α1 (more than a single node) with another
graph α2 (Fig. 13a), where Fig. 4d is an example. We call these rewrites optimizations.
Optimizations effectively break “modular” boundaries of adjacent algorithms to expose
inefficient graphs which are replaced with more efficient graphs. Optimization is equiv-

Rewrite Rules: Optimizations

sle‐11

(a) (b)

Fig. 13. Optimizing Rewrite Rules.

alent to an abstraction (replacing graph α1 with interface ι) followed by a refinement
(replacing ι with graph α2) (Fig. 13b). This allows DxT rewrites to assume the canonical
form of interfaces on the left and implementations on the right (Fig. 13b).

12

Optimizations are easily expressed in nD grammars. Not so for 1D grammars.
Consider the following 1D grammar, where uppercase names are interfaces and lowercase
names are primitives:

A : a B c | . . . ;
B : b | . . . ;

A sentence of this grammar is abc. Suppose composition bc implements interface Z:

Z : bc | q ;

Further, domain experts know that bc is inefficient and can be replaced by box q, which
is faster. This is accomplished by abstracting sentence abc to aZ and then refining to
a faster program by replacing Z with q to yield aq. Although this makes perfect sense,
abstraction is foreign to 1D grammars and parsing technology [45]; it is a natural part
of nD grammars. I mentioned earlier (Section 2) that there is an important distinction
between 1D and nD grammars; this is the point that I wanted to make.

Much of this should look familiar: it is similar to optimization techniques in compilers
(esp. for functional languages) [27]. Optimizations break encapsulation boundaries to
produce more efficient code. The novelties of DxT are (1) DxT uses graphs not trees, (2)
DxT grammars derive software designs, which are not parse-trees or ASTs of programs
and are not states of program executions, and (3) DxT rewrites should be clearly visible
to domain experts and program designers, not hidden compiler internals.

5.2 Abstract Interpretation

Another fundamental idea (stolen from compiler playbooks) is abstract interpretation.
A DxT graph g may have many interpretations. The default—what we have used up to
now—is to interpret each box of g as the computation it represents. sort means “sort
the input stream”. We call this the standard interpretation S . The S interpretation of
box b is denoted S(b) or simply b, eg S(sort) is “sort the input stream”. The standard
interpretation of graph g is S(g) or simply g.

There are other interpretations. COST interprets each box b as a computation that es-
timates the execution time of S(b) given statistics about S(b)’s inputs. So COST (sort)
is “return an estimate of the execution time to produce sort’s output stream”. Each box
b ∈ G has exactly the same ports as COST (b) ∈ COST (G), but the meaning of each
box and its ports are different.

– We mentioned in Section 4.1 that DxTer forward-engineers (derives) all possible
PSMs from an input PIM. The estimated run-time of a PSM p is determined by
executing COST (p). The most efficient PSM that implements the PIM is the one
with the lowest estimated cost [38].

– M 2T (p) is a model-to-text interpretation that maps p to executable code.
– Pre- and postconditions help guarantee the correctness of DxT graphs. The P OST

interpretation computes properties that are output by a box given properties about
box inputs. The P R E interpretation reads properties about box inputs (computed
by P OST) and checks if the preconditions of that box are satisfied. A composition
of these interpretations (P R E ·P OST (P)) computes postconditions and validates
preconditions of P [21].

13

6 The Reaction to DxT

Fellisen once remarked “It is not a problem to keep ourselves as researchers busy; we
need to keep undergraduates busy” [18]. I saved the most important message about DxT
for last. DxT is simple enough to teach to undergraduates.

Our thought has always been: once you have a proof or derivation of a design, you’ve
hit the jackpot: you have turned dark knowledge into white knowledge. Having said this,
we have been surprised at the reaction to DxT. Some of the reviews we received had
breathtaking statements of technical acuity. In Letterman Show countdown order, our
top 3 statements are:

3. “Refinement is not a transformation.”
2. “Why will you succeed where others have not?”10,11

1. “The work lacks motivation.”

We were comforted by the fact that conferences were being created solely for rejecting
our papers. Overall, none of the reactions made sense to us.

This lead us to conduct user studies involving third-year CS undergraduates and
first-year graduates. We split each set of students into two groups. To the first, we
presented the big-bang design for Gamma (Fig. 8); to the second, we presented Gamma’s
derivation. We gave a written quiz that we graded. The result: no difference! There was
no difference in the number of correct answers, no obvious benefit to DxT derivations
over a big-bang. Both undergraduates and graduates were consistent on this point. This
was counter-intuitive to us; it didn’t make sense.

Perhaps, we thought, Gamma was too simple. So we re-ran the experiment using
Upright. The result: again no difference! We were mystified.

Then it occurred to us: maybe these students and referees had no experience develop-
ing software in this manner. It could not be the case that DxT was difficult to grasp—the
ideas are simple. And perhaps also the students and referees had no domain knowledge
of parallel relational query processing or crash fault tolerant servers. They could not
appreciate what we were telling them. If so, they could not recognize the value on our
part to distill software-architecture knowledge as elementary graph rewrites. Nor could
they see the practical implication of our results.

We had anecdotal evidence for this last conjecture. We asked ourselves “what are the
refinements of DGemm (Distributed Gemm)?” Of course, we knew the answer (see Fig. 14),
but how many others would? People who were familiar with distributed DLA algorithms
should know. But very few would know a majority of the rules that we used in DxTer to
derive DLA algorithms and how these rules could be applied. In short, the answer was:
very, very few.

This again brings us back to the differences between 1D and nD grammars. It is
relatively easy to understand 1D productions—there is little to know. Graph grammars
as we use them are different. One needs deep knowledge of a domain to appreciate
most rewrites. Very few have such knowledge. Cordell Green once told me “It takes
effort” [23]. Few people have been in his (our) position to appreciate this point.

10 They conveniently ignored our performance results.
11 Others have been successful (Section 4.3). It helps to know the literature.

14

DGemm NN

B

A

C
C'

[MC,MR]→[MR,*]
LGemm
NN

DGemm NN

B

A

C

C'

[MC,MR]→[MC,*]

[MC,MR]→[*,MR]
LGemm
NN

Temp
[MC,*] Sum

Scatter

DGemm
NNB

A

C
C'

DGemm NN

B

A

C
C'

LGemm
NN

Temp
[*, MR] Sum

Scatter

[MC,MR]→[*,MC]

Fig. 14. Distributed Gemm Refinements.

Our next user study in Fall 2012 explored these conjectures. We gave a programming
assignment to an undergraduate class of 28 students. We had them build Gamma given
its derivation. Once they completed the task, we gave them a questionnaire asking for
them to compare their experiences with a big-bang approach (where derivation details
were absent). As students had been exposed to big-bang implementations in other classes
(and in previous assignments), they could compare DxT with a big-bang. We briefly
review some of our questions and results [17,50]:

– Comprehension. Do you think the structured way DxT imposes gives you a deeper
understanding of Gamma’s design than you would get by not using it and doing it
your own way?

– Modification. Do you think it would be easier or more difficult to modify Gamma
with DxT compared to a big-bang approach?

– Recommendation. Would you recommend to your fellow students implementing
Gamma using DxT or in a big-bang manner?

Analyzing the responses showed that 55% said DxT provided a deeper comprehension
of Gamma’s design; over 80% said DxT improved comprehension. 47% said it would
be considerably easier to modify Gamma given its derivation; over 90% said it would
make modification easier. None said it would make it harder. And 88% said they would
recommend DxT over a big-bang.

More gratifying were the written comments, a few from different individuals are
listed below:

– I have learned the most from this project than any other CS project I have ever done.
– I even made my OS group do a DxT implementation on the last 2 projects due to

my experience implementing Gamma.
– Honestly, I don’t believe that software engineers ever have a source (to provide a

DxT explanation) in real life. If there was such a thing we would lose our jobs,
because there is an explanation which even a monkey can implement.

– It’s so much easier to implement (using DxT). The big-bang makes it easy to make
so many errors, because you can’t test each section separately. DxT might take a bit
longer, but saves you so much time debugging, and is a more natural way to build
things. You won’t get lost in your design trying to do too many things at once.

15

In retrospect, these comments were familiar. In October 2003, NSF held a Science
of Design Workshop in Airlie, Virginia. Fred Brooks (1999 Turing Award) summarized
the conclusions of his working group to explore the role of science in design: “We
don’t know what we’re doing and we don’t know what we’ve done!”. To paraphrase
Edsger Dijkstra (1972 Turing Award): “Have you noticed that there are child prodigies in
mathematics, music, and gymnastics, but none in human surgery?”. The point being that
there are bodies of knowledge that take years to comprehend and there are no short-cuts
to achieve such understanding. We owe our success with DxTer to 15 years of research
by van de Geijn and others to understand the domain of DLA. Not all domains are this
hard to understand, but again, it takes effort. Our take-away conclusion is this:

Knowledge, experience, and understanding how to codify knowledge of efficient
programs in a reproducible way is everything to automated design. Lacking any
of these is a significant barrier to progress.

7 Conclusions

Programmers are geniuses at making the simplest things look complicated; finding the
underlying simplicity is the challenge. Programmers are also geniuses at making critical
white knowledge dark; reversing the color of knowledge is yet another challenge. It takes
effort to understand a legacy application or domain to mine out its fundamental identities
or rewrite rules that are key to (a) automated design, (b) correct-by-construction, and
(c) transforming undergraduate education on software design from hacking to a more
scientific foundation.

Software Language and Engineering (SLE) has great potential for the future of
Software Engineering. Formal languages will be the foundation for automated software
development. Knowledge of dataflow application designs will be encoded as graph
grammars, not Chomsky string grammars, whose sentences define complex programs.
Such grammars will enable the design of programs to be optimized automatically; they
will remove the burden of rote, tedious, difficult, and error-prone activities of program
development; they will scale domain expertise from a few people to the masses; and
most importantly, they ultimately will help modernize undergraduate curriculums in
software design.

Acknowledgements. We thank R. van de Geijn (Texas), T. Riche (NI), M. Erwig
(Oregon), R. Paige (York), and C. Kästner (CMU) for their helpful comments on drafts
of this paper. We gratefully acknowledge support for this work by NSF grants CCF-
0724979, CCF-0917167, and ACI-1148125. Gonçalves was funded by the ERDF project
FCOMP-01-0124-FEDER-010152 and FCT grant SFRH/BD/47800/2008. Marker held
fellowships from Sandia National Laboratories and NSF (grant DGE-1110007). Sieg-
mund was funded by BMBF project 01IM10002B. This research used resources of the
Argonne Leadership Computing Facility at Argonne National Lab, which is supported
by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357. We are greatly indebted to Jack Poulson for his help to understand his
Elemental library.

16

References

1. Anderson, E., et al.: LAPACK Users’ Guide. SIAM, Philadelphia (1992)
2. Bahcall, J., Piran, T., Weinberg, S.: Dark matter in the universe. In: 4TH Jerusalem Winter

School For Theoretical Physics (1987)
3. Batory, D., Azanza, M., Saraiva, J.: The Objects and Arrows of Computational Design. In:

MODELS (2008)
4. Batory, D., Singhal, V., Sirkin, M., Thomas, J.A.: Scalable software libraries. In: SIGSOFT

(1993)
5. Baumgartner, G., et al.: Synthesis of high-performance parallel programs for a class of ab

initio quantum chemistry models. Proceedings of the IEEE (2005)
6. Baxter, I.D.: Design Maintenance Systems. CACM (April 1992)
7. Blackford, L.S., et al.: ScaLAPACK: a portable linear algebra library for distributed memory

computers - design issues and performance. In: SC (1996)
8. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.: Upright

cluster services. In: SOSP (2009)
9. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large

systems. Comm. ACM (Nov 1988)
10. D’Antonio, F.: http://www.docstoc.com/docs/123006845/

Introduction-to-Graph-Grammars-DAntonio (Oct 2003)
11. Derk, M., DeBrunner, L.: Reconfiguration graph grammar for massively parallel, fault tolerant

computers. In: Graph Grammars and Their Application to Computer Science, vol. 1073.
Springer Berlin Heidelberg (1996)

12. Dewitt, D.J., Ghandeharizadeh, S., Schneider, D., Hsiao, A.B.H., Rasmussen, R.: The Gamma
Database Machine Project. IEEE ToKaDE 2(1) (1990)

13. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Software 16(1) (Mar 1990)

14. Dowling, J., Cahill, V.: Dynamic software evolution and the k-component model. In: Workshop
on Software Evolution at OOPSLA (2001)

15. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach. In: SWAT
(1973)

16. Elemental Team. http://libelemental.org/about/team.html
17. Feigenspan, J., Batory, D., Riché, T.L.: Is the derivation of a model easier to understand than

the model itself? In: ICPC (2012)
18. Felleisen, M.: Private Correspondence (Jan 2007)
19. Ferrucci, F., Tortora, G., Tucci, M., Vitiello, G.: A predictive parser for visual languages

specified by relation grammars. In: VL (1994)
20. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars. In:

MODELS (2006)
21. Gonçalves, R.C., Batory, D., Sobral, J.: ReFlO: An interactive tool for pipe-and-filter domain

specification and program generation. submitted (2013)
22. Green, C., Luckham, D., Balzer, R., Cheatham, T., Rich, C.: Report on a knowledge-based

software assistant. Tech. rep., Kestrel Institute (1983)
23. Green, C.: Private Correspondence (Jan 2009)
24. Green, C., Luckham, D., Balzer, R., Cheatham, T., Rich, C.: Report on a knowledge-based

software assistant. Kestrel Institute Technical Report KES.U.83.2 (1983)
25. Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, N., Van Gorp, P., Varro, D.: Using graph

transformation for practical model driven software engineering. In: Model-Driven Software
Development. Springer Berlin Heidelberg (2005)

http://www.docstoc.com/docs/123006845/Introduction-to-Graph-Grammars-DAntonio
http://www.docstoc.com/docs/123006845/Introduction-to-Graph-Grammars-DAntonio
http://libelemental.org/about/team.html

17

26. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: FLAME: Formal Linear
Algebra Methods Environment. ACM Trans. on Math. Softw. (Dec 2001)

27. Jones, S.L.P., Santos, A.L.M.: A transformation-based optimiser for haskell. Science of
Computer Programming 32(1–3) (1998)

28. Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey. Electronic
Notes in Theoretical Computer Science 148(1) (2006)

29. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2) (1998)
30. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang.

Syst. 16(6) (1994)
31. Lohman, G.M.: Grammar-like functional rules for representing query optimization alternatives.

In: ACM SIGMOD (1988)
32. Lowry, M., Philpot, A., Pressburger, T., Underwood, I.: Amphion: Automatic programming

for scientific subroutine libraries. In: ISMIS (1994)
33. Maggiolo-Schettini, A., Peron, A.: A graph rewriting framework for statecharts semantics.

In: Graph Grammars and Their Application to Computer Science, vol. 1073. Springer Berlin
Heidelberg (1996)

34. Marker, B., Batory, D., Shepherd, C.: Dxter: A dense linear algebra program synthesizer.
Computer Science report TR-12-17, Univ. of Texas at Austin (2012)

35. Marker, B., Batory, D., van de Geijn, R.: DSLs, DLA, DxT, and MDE in CSE. In: SECSE
(May 2013)

36. Marker, B., Batory, D., van de Geijn, R.: A case study in mechanically deriving dense linear
algebra code. International Journal of High Performance Computing Applications (To Appear)

37. Marker, B., Batory, D.S., van de Geijn, R.A.: Code generation and optimization of distributed-
memory dense linear algebra kernels. In: ICCS (2013)

38. Marker, B., Poulson, J., Batory, D.S., van de Geijn, R.A.: Designing linear algebra algorithms
by transformation: Mechanizing the expert developer. In: VECPAR (2012)

39. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and environment for architecture-
based software development and evolution. In: ICSE (1999)

40. Müller, H.: Private Correspondence (May 2013)
41. Perry, D.E.: Version control in the inscape environment. In: ICSE (1987)
42. Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Elemental: A

new framework for distributed memory dense matrix computations. ACM Trans. on Math.
Softw. 39(2) (Feb 2013)

43. Püschel, M., et al.: SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and Adaptation” (2005)

44. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph grammars.
Journal of Visual Languages & Computing 8(1) (1997)

45. Rich, E.A.: Automata, Computability and Complexity: Theory and Applications. Pearson-
Prentice Hall (2008)

46. Riché, T., Goncalves, R., Marker, B., Batory, D.: Pushouts in Software Architecture Design.
In: GPCE (2012)

47. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation, Vol
I: Foundations. World Scientific (1997)

48. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM
Trans. Auton. Adapt. Syst. (2009)

49. Schürr, A.: Introduction to progress, an attribute graph grammar based specification language.
In: Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol.
411. Springer Berlin Heidelberg (1990)

50. Siegmund, J.: Framework for Measuring Program Comprehension. Ph.D. thesis, University
of Magdeburg, School of Computer Science (2012)

18

51. Siek, J.G., Karlin, I., Jessup, E.R.: Build to order linear algebra kernels. Parallel and Dis-
tributed Processing (2008)

52. Taentzer, G.: Agg: A graph transformation environment for modeling and validation of
software. In: Applications of Graph Transformations with Industrial Relevance, vol. 3062.
Springer Berlin Heidelberg (2004)

53. The LabVIEW Environment. http://www.ni.com/labview/
54. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A language for streaming applica-

tions. In: Conference on Compiler Construction (2002)
55. Tichy, M., Henkler, S., Holtmann, J., Oberthür, S.: Component story diagrams: A trans-

formation language for component structures in mechatronic systems. In: Workshop on
Object-oriented Modeling of Embedded Real-Time Systems, Paderborn, Germany (2008)

56. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software architecture
reconfiguration. Sci. Comput. Program. (2002)

57. Wikipedia: Graph rewriting. http://en.wikipedia.org/wiki/Graph_rewriting
58. Wikipedia: Component-based software engineering. http://en.wikipedia.org/wiki/

Component-based_software_engineering (2013)
59. Wittenburg, K.: Earley-style parsing for relational grammars. In: Visual Languages (1992)

http://www.ni.com/labview/
http://en.wikipedia.org/wiki/Graph_rewriting
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Component-based_software_engineering

	Dark Knowledge and Graph Grammars in Automated Software Design
	Don Batory, Rui Gonçalves, Bryan Marker, Janet Siegmund

