Workshop on Refactoring Tools (WRT) 2013

Can Undergraduates Script Their Own Refactorings?

Jongwook Kim

Dept. of Computer Science
University of Texas at Austin

jongwook@cs.utexas.edu

Abstract

We present a status report on a project to build a refactoring en-
gine whose primary goal is to allow undergraduate students to write
classical and neo-classical refactorings (pull-up, class partitioning)
and design patterns (visitor, framework) as parameterized refactor-
ing scripts in Java. We explain the first step of our work that creates
a reflection-like interface to expose the structure of an Eclipse DT
application as Java objects; methods of these objects are refactor-
ings. Doing so hides the complexity of JDT refactoring code and
tools, so that refactoring scripts can be written as compact Java
methods. We present preliminary performance results of scripting
JDT refactorings and sketch the next steps of our work.

Categories and Subject Descriptors D.2.7 [SoftwareEngineer-
ing]: Distribution, Maintenance, and Enhancement

General Terms prototype, refactoring, case study

Keywords refactoring scripts

1. Introduction

I (Batory) teach an undergraduate class in software design, where
the central theme is to understand program construction from an
automated perspective. Fig. 1 illustrates the basic idea. A program-
ming task is to produce program P,. One starts with an initial pro-
gram Py, which could be the empty program or an existing pro-
gram, and progressively makes changes 71, T2, 73, 74 to transform
(map) Py to Py, henceforth written Py = Ps. Today each 7 is
manually hacked. In the world of automated design, each 7 is a
programmed transformation, making the process of Py = P, auto-
matic. To accomplish this change in perspective and development,
tools must be available to create transformations, add them to trans-
formation libraries, and be able to invoke them on user programs.

Figure 1. Program Derivation.

A key part of this course is material on object-oriented (OO)
refactorings and OO design patterns. Most core refactorings (re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

WRT ’13, October 27, 2013, Indianapolis, Indiana, USA.

Copyright © 2013 ACM 978-1-4503-2604-9/13/10. .. $15.00.
http://dx.doi.org/10.1145/2541348.2541351

Don Batory

Dept. of Computer Science
University of Texas at Austin

batory@cs.utexas.edu

Danny Dig

School of EECS
Oregon State University

digd@eecs.oregonstate.edu

name, move, delegate, partition-class, push-down, efc.) are concep-
tually easy to understand. Contemporary texts on design patterns
provide informal step-by-step descriptions on how each pattern can
be introduced into a program [9, 11, 13]. A few, such as the visitor
pattern, can be created automatically just by identifying a “seed”
method. (All methods in a class hierarchy that have the same re-
turn type, name, and argument signature of the seed can be auto-
matically moved into a newly created visitor class). Others, such as
framework, require more information and more activity from users.
(Identify the classes to be moved into the framework, which meth-
ods of these classes are to be partitioned — via the template method
—into a framework method and hook method, efc.) Given this extra
preparation and information, the class scaffolding that separates a
framework from its plug-in can be erected automatically.

One of the best ways to teach students about refactorings and
design patterns is not only to use them, but also to have them
write programs that sequence refactoring steps to mechanize pro-
gram changes. Doing so introduces them to metaprogramming; ob-
jects are programs and methods are refactorings (or more gener-
ally, transformations that do not necessarily preserve behavior). In
effect, students are writing the 7 transformations to mechanize the
Py = P, mappings of Fig. 1.

The obvious question is: what language should be used to script
refactorings? There are many proposals with distinguished merit
[1-5, 12, 15, 17, 19, 20], but all fall short. There is no time for
undergraduates to fully learn yet another language (functional or
otherwise) to manipulate programs. Or for them to learn to use
program transformation systems/utilities, such as the Eclipse Lan-
guage Toolkit (LTK) framework [10]. Although these systems are
monuments of engineering prowess, their learning curve is mea-
sured in increments of weeks or months. Undergraduates don’t have
the time, and perhaps not the background, to learn how to use such
tools.

Since classroom instruction uses Java, the obvious answer to the
above question is to use Java as a metaprogramming language. Our
thought was to use Eclipse Java Development Tools (JDT) [7] and
provide a programming interface/facade that presents an Eclipse
project, its packages, classes, methods, fields, efc. as Java objects.
Their methods are JDT refactorings. Scripting existing refactorings
would be fundamentally no different than having undergraduates
import an existing Java package and use it to write their programs
(in this case, refactoring metaprograms). At least, this is our con-
jecture.

This paper describes our experiences to date using the Eclipse
JDT Refactoring Engine and to chart our next steps to simplify
the construction of refactoring engines so that undergraduates can
script their own refactorings. Henceforth, we refer to “Eclipse” as
“Eclipse JDT” and “Eclipse Refactoring” as “JDT Refactoring” in
the rest of this paper.

dsb
Text Box
Workshop on Refactoring Tools (WRT) 2013

2. Reflective Refactoring

Let P denote a Java project in Eclipse. Our approach is to leverage
the idea of reflection — we define a class RClass whose instances
are the class declarations in P; we define classes RMethod and
RField whose instances are the method and field declarations of
P, and so on. When P is compiled by Eclipse, a set of tables (one
for RClass, RMethod, RField, etc.) is created, where each row
corresponds to a class, method, and field instance of P. The fields
of RClass, RMethod, and RF'ield —henceforth called Reflective
Refactoring (R'R) classes — define the association and inheritance
relationships among table rows (A is a superclass of B, foo is a
method of A, etc.). The methods of RR classes expose primitive
Eclipse refactorings or composite refactorings.

2.1 A Simple Example

To get a flavor of the scripts that we envision students may write,
here is a simple example. A GUI observer is to be created to dis-
play the current values of selected non-final static fields. A user can
select which static fields to observe, run an R'R refactoring that
modifies the user’s program. The program is run, debugged using
the observer, and further developed. Eventually, another R'R refac-
toring removes the observer from the program. The code in Fig. 2
shows the basic R'R calls. The steps to introduce the observer are:

1. Identify the project and package (here: project PTable and
package tables),

2. Introduce a singleton Observer class with its appropriate fields
and methods into the package,

3. Identify static fields to observe (here: field Node.ctr and
Node.age),

4. Invoke an observe R'R refactoring to create a setter method
for each field, where the setter method announces to the sin-
gleton Observer that its field value has been updated.

RPackage pkg = RProject.getPackage("PTable", "tables");

// add Observer class to the "tables" package
RClass obs = pkg.makeObserver("Observer");

// observe static fields Node.ctr and Node.age
RClass cls = pkg.getClass("tables.Node");
RField fld = cls.getField("ctr");
obs.observe(f1d); // observe field

f1ld = cls.getField("age");
obs.observe (f1d); // observe field

Figure 2. An Observer Script.

This example relies on previously written R’/R methods that
directly invoke Eclipse refactorings: makeObserver(N) adds an
observer class (with appropriately defined fields and methods) with
name N to the specified package and observe(F') invokes the en-
capsulate field refactoring on F' and alerts the observer whenever
the setter is called. Fig. 3 shows the result of the observe refac-
toring when the age field is the target of observation.

Fig. 4 shows the R'R script that undoes the changes made by
Fig. 2. We envision that R'R scripts will eventually be listed with
the predefined, hard-coded refactorings in the Eclipse refactoring
menu and invoked via the Eclipse GUI. The idea here is that
programmers can either import R'R refactorings (perhaps from an
on-line repository) or write their own.

1 // before refactoring

2 public class Node {

3 public static int age;

4 .

5 }

1 // after refactoring

2 public class Node {

3 private static int age;

4 public static void set(int x) {
5 age = Xx;

6 Observer.singleton.observe("age", age+"");
7 }

8 public static int get() {

9 return age;

10 }

11 e

12 3}

Figure 3. Transformation of observe Refactoring.

RPackage pkg = RProject.getPackage("PTable", "tables");
RClass obs = pkg.getClass("tables.Observer");

// remove field subjects

RClass cls = pkg.getClass("tables.Node");
RField fld = cls.getField("ctr");
fld.removeSubject (obs, "public");

f1d = cls.getField("age");
fld.removeSubject (obs, "public");

// delete Observer class
pkg.delete(obs);

Figure 4. A Script to Remove an Observer.

2.2 More Complex Examples and Current Status

We implemented an RR refactoring called makeVisitor that
automatically creates a visitor, given a method “seed” [14]. That
is, all methods in a class hierarchy that have the same return type,
name, and argument signature as the seeds are moved into a newly
created visitor. We also implemented the inverse of this refactoring.
Given a visitor that was created by makeVisitor, undoVisitor
returns the program to its original state.

We encountered plenty of challenges. Most were specific to
Eclipse, which we discuss later in Section 3. One that is not lim-
ited to Eclipse is the lack of a common and precise definition of
some refactorings. Fowler’s definition of move method is a case in
point [8]: it is extraordinarily vague. NetBeans (7.3), IntelliJ IDEA
(12.1.4), and Oracle’s JDeveloper (11g Release 2) refuse to move
polymorphic methods. Eclipse 4.2.2, in contrast, can move poly-
morphic methods, providing that it does not invoke super (com-
plying with other constraints) and that one leaves behind a del-
egate. As many of the methods that we wanted to use as seeds
for visitors reference super, we had to generalize move instance
method. This required a simple refactoring that lifts super calls
into its own method call Super, leaving behind the original method
with a call Super instead of a super reference. The modified orig-
inal method no longer references super, and Eclipse can move it.

We executed makeV isitor on programs where over 270 meth-
ods were moved into a single visitor in approximately 540 seconds
(9 minutes). Automated support for visitor creation is essential; we
are confident that visitors with many fewer methods could not be
created manually. We are now preparing user-studies to confirm this
hypothesis.

Interestingly, the individual length of our makeVisitor and
undoVisitor scripts are a few lines longer than the Java scripts

given in Fig. 2 and Fig. 4. As the Visitor pattern is among the most
complex patterns, we are confident that most 7R R methods will not
be very long.

Whether R'R methods are easy for undergraduates to write re-
mains to be seen. Eclipse refactorings, and refactorings in gen-
eral, have many side-effects. For example, a single invocation of
change method signature can alter all methods related by run-
time polymorphism.' A fairly deep knowledge about the semantics
of Eclipse refactorings is needed to write correct R'R scripts. We
are now preparing user studies with undergraduate classes to con-
firm this hypothesis (and to confirm results of prior work [18]).
More details on our work are presented in [14].

3. Experiences with Eclipse

It is well-known that program transformation systems are difficult
to use, and are typically used only by their creators. They are in-
timidating and are not for casual users. To us, the JDT Refactoring
Engine is no different.

Eclipse refactorings use the LTK framework to provide languag-
e-neutral refactoring APIs [10]. LTK consists of a refactoring core,
UI components, and incorporates the JDT’s Ul and language-
specific support. We wanted to separate Ul components from the
refactoring core but failed at this task due to highly tangled source
code. We also looked at JUnit tests where refactorings were in-
voked programmatically. Here again, we were unable to decipher
the arguments to these calls — they too were highly tangled in the
testing framework for us to understand how we could adopt JUnit
codes to script refactorings.

Eventually we recognized two possibilities: One utilized basic
LTK APIs only to invoke refactorings. The other used existing Ul
(refactoring dialogs) to trigger refactorings. Using Uls, we could
automate exactly the same procedures that occur when Eclipse
replays refactoring scripts, and it allowed us to measure the actual
time spent on overall refactoring process and accurately estimate
the overhead of JDT refactorings due to UI operations. We chose
the second option to both understand refactoring inputs and to
invoke refactorings using Eclipse’s XML-scripts.

In general, we were unable to find useful (or up-to-date) docu-
mentation on the JDT Refactoring Engine or an XML schema for
the scripts we had to write. It was unpleasant to reverse engineer,
via experiments, the information that we needed. It is this kind of
overhead that we feel disqualifies Eclipse for our project.

Here is another potential disqualification: Our experiments
showed that Eclipse refactorings are a bit too slow to be interactive
on large programs. Creating a visitor with 26 methods takes about
70 seconds. For 276 methods, makeVisitor takes over 9 minutes
to complete and about 7 minutes to undo. While this is not terrible,
it is not the performance that would encourage programmers to
dynamically create views of their applications.

Yet another disqualification is the number of Eclipse refactoring
bugs that we encountered. In building the makeVisitor transfor-
mation alone, we documented 6 bugs, 5 new and one reported five
years ago. Some bugs we could fix ourselves within our R’ R meth-
ods; others required us to manually repair refactored programs. Ob-
viously, there is a limit to how much manual reparation can be tol-
erated before the utility of R'R automation becomes questionable.
That is, if too many errors are introduced into a refactored program,
it is hard to argue the benefit of applying R'R transformations in the
first place. We chose Eclipse because we thought it provided a solid
foundation on which to build our work; to our dismay, it behaves
more like quicksand. We recognize that writing a refactoring en-

! Change method signature alters methods beyond a single class hierarchy
when interfaces containing a method seed are involved.

gine is not easy. Perhaps it is time to rethink how such engines can
be built in a more reliable way. This is part of our future work.

Bug ID Bﬁ;lzllll)ls: # Description

B1 217753 When a method with reference to static import
is moved, the reference type is qualified incorrectly.

B2 385550 When a method with reference to inherited fields is
moved, the field access is not updated.

B3 385989 When a method with reference to ¢mport type is
moved, the reference type is not qualified as the
import type.

B4 404471 When a method with @Owverride annotation is
moved, the annotation is also moved with the
method.

BS 404477 When a method is moved, wrong detection of du-
plicate methods occurs.

B6 411529 When a method with reference to protected
methods is moved to other package, protected is
not modified to public.

Table 1. Eclipse Bug Reports.

The JDT Refactoring Engine is typical of the state-of-the-art
refactoring tools. It is not a system that can be easily given to
typical undergraduates to pick up, use, and modify.

4. Conclusions and Future Work

We have spent the better part of two years on this project. We
committed ourselves to use Eclipse, at least initially, to better un-
derstand the problems of contemporary refactoring engines. We
also became familiar with Semantic Designs DMS (Design Main-
tenance System) [2], a very impressive, industry-hardened tool for
large-scale program transformations. We found it had different
problems of equal or greater magnitude (e.g., DMS has its own
proprietary programming language called Parlanse).

We are now convinced that further development of R'R within
Eclipse, using the JDT and LTK, is not the way to go. We were
inspired by Simonyi’s Intentional Programming (IP) [16] and have
built an IP-like prototype to write R'R scripts in Java, but to call
our refactoring implementations, not those of Eclipse. We hope to
have a full-scale prototype of this engine by Spring 2014. Again,
our goal is to create a refactoring engine that undergraduates can
understand and use. We are not aiming our effort at people with
hard-core interests writing arbitrary program transformations; the
LTK framework and DMS engine are for them.

After all this, we still have to add analyses that evaluate pre-
conditions for refactoring transformations. We know (and have
been reminded repeatedly) that these analyses are the most diffi-
cult to write. We do not disagree, but the main problem is that
we want to encode constraints into a more abstract, understand-
able and reusable form for our students (as opposed to, say, coding
them in Java as is currently done in the JDT Refactoring Engine).
Because R'R takes a database viewpoint, where all RR data of a
program is stored in tables (and 'R’R methods act on rows of these
tables), a main-memory Prolog or Datalog engine could be used to
express and evaluate preconditions expressed in terms of database
constraints, without inventing yet another DSL to do so. While this
still may not give us the speed that we seek, there are plenty of ways
to tune R'R implementations. One is to ignore the access privileges
of members until the program has been refactored, and then recom-
pute the privileges of members to support a type-correct structure.
Again, this is future work.

And finally, the broader picture of our research is that it is part of
the Change-Oriented Programming Environment (COPE) project,
whose goal is to raise transformations to first-class entities in soft-
ware development in general, and the Eclipse IDE in particular [6].
Our ultimate goal is to allow people to create views of programs, to

block out irrelevant features, and to reorganize code (using refac-
torings) to present a simpler representation of a program. Being
able to create visitors on-the-fly to inspect a set of related meth-
ods, or to eliminate frameworks and plug-ins by compacting their
classes and eliminating generality, and just as easily undo visitors
and framework compactions, is a capability that COPE (and ulti-
mately Eclipse) should have.

Acknowledgments. We gratefully acknowledge support for this
work by NSF grants CCF-1212683 and CCF-1213091.

References

[1] E. Balland and et al. Tom: piggybacking rewriting on java. In RTA,
2007.

[2] 1. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program transforma-
tions for practical scalable software evolution. In Proc. 26th Int. Conf.
on Software Engineering, 2004.

[3] M. Boshernitsan and S. L. Graham. iXj: interactive source-to-source
transformations for java. In OOPSLA Companion, 2004.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Strate-
20o/XT 0.17. A language and toolset for program transformation. Sci.
Comput. Program., June 2008.

[5] J. R. Cordy. The TXL source transformation language. Sci. Comput.
Program., Aug. 2006.

[6] D. Dig and et al. Science and Tools for Software Evolution. NSF
Grant CCF 1212683, 2012.

[7] EclipseJDT. Eclipse Java development tools (JDT). http://
eclipse.org/jdt/, 2013.

[8] M. Fowler. Move Method. http://www.refactoring.com/
catalog/moveMethod.html, 2013.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactor-
ing: Improving the Design of Existing Code. Addison-Wesley, 2000.
[10] L. Frenzel. The Language Toolkit: An API for Automated
Refactorings in Eclipse-based IDEs. http://www.eclipse.org/
articles/Article-LTK/1tk.html/, 2013.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Long-
man, 1995.

[12] M. Hills, P. Klint, and J. J. Vinju. Scripting a refactoring with Rascal
and Eclipse. In Workshop on Refactoring Tools, WRT, 2012.

[13] J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 2004.

[14] J. Kim, D. Batory, and D. Dig. Scripting Parameteric Refactorings in
Java to Implement Design Patterns. submitted to ICSE, 2014.

[15] H. Li and S. Thompson. A domain-specific language for scripting
refactorings in erlang. In FASE, 2012.

[16] C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In
OOPSLA ONWARD, Oct. 2006.

[17] E. Steimann, C. Kollee, and J. von Pilgrim. A refactoring constraint
language and its application to eiffel. In ECOOP, 2011.

[18] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson. Use, disuse, and misuse of automated refactorings. In
ICSE, 2012.

[19] van den Brand and et al. The ASF+SDF Meta-environment: A
Component-Based Language Development Environment. In Compiler
Construction, 2001.

[20] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: a scripting language
for refactoring. In ICSE, 2006.

